1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2014 - 2018, NVIDIA CORPORATION. All rights reserved.
4 *
5 * Author:
6 * Mikko Perttunen <mperttunen@nvidia.com>
7 *
8 * This software is licensed under the terms of the GNU General Public
9 * License version 2, as published by the Free Software Foundation, and
10 * may be copied, distributed, and modified under those terms.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 */
18
19 #include <linux/debugfs.h>
20 #include <linux/bitops.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/err.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/irqdomain.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/platform_device.h>
31 #include <linux/reset.h>
32 #include <linux/thermal.h>
33
34 #include <dt-bindings/thermal/tegra124-soctherm.h>
35
36 #include "../thermal_core.h"
37 #include "soctherm.h"
38
39 #define SENSOR_CONFIG0 0
40 #define SENSOR_CONFIG0_STOP BIT(0)
41 #define SENSOR_CONFIG0_CPTR_OVER BIT(2)
42 #define SENSOR_CONFIG0_OVER BIT(3)
43 #define SENSOR_CONFIG0_TCALC_OVER BIT(4)
44 #define SENSOR_CONFIG0_TALL_MASK (0xfffff << 8)
45 #define SENSOR_CONFIG0_TALL_SHIFT 8
46
47 #define SENSOR_CONFIG1 4
48 #define SENSOR_CONFIG1_TSAMPLE_MASK 0x3ff
49 #define SENSOR_CONFIG1_TSAMPLE_SHIFT 0
50 #define SENSOR_CONFIG1_TIDDQ_EN_MASK (0x3f << 15)
51 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT 15
52 #define SENSOR_CONFIG1_TEN_COUNT_MASK (0x3f << 24)
53 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT 24
54 #define SENSOR_CONFIG1_TEMP_ENABLE BIT(31)
55
56 /*
57 * SENSOR_CONFIG2 is defined in soctherm.h
58 * because, it will be used by tegra_soctherm_fuse.c
59 */
60
61 #define SENSOR_STATUS0 0xc
62 #define SENSOR_STATUS0_VALID_MASK BIT(31)
63 #define SENSOR_STATUS0_CAPTURE_MASK 0xffff
64
65 #define SENSOR_STATUS1 0x10
66 #define SENSOR_STATUS1_TEMP_VALID_MASK BIT(31)
67 #define SENSOR_STATUS1_TEMP_MASK 0xffff
68
69 #define READBACK_VALUE_MASK 0xff00
70 #define READBACK_VALUE_SHIFT 8
71 #define READBACK_ADD_HALF BIT(7)
72 #define READBACK_NEGATE BIT(0)
73
74 /*
75 * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
76 * because it will be used by tegraxxx_soctherm.c
77 */
78 #define THERMCTL_LVL0_CPU0_EN_MASK BIT(8)
79 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK (0x3 << 5)
80 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT 0x1
81 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY 0x2
82 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK (0x3 << 3)
83 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT 0x1
84 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY 0x2
85 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK BIT(2)
86 #define THERMCTL_LVL0_CPU0_STATUS_MASK 0x3
87
88 #define THERMCTL_LVL0_UP_STATS 0x10
89 #define THERMCTL_LVL0_DN_STATS 0x14
90
91 #define THERMCTL_INTR_STATUS 0x84
92
93 #define TH_INTR_MD0_MASK BIT(25)
94 #define TH_INTR_MU0_MASK BIT(24)
95 #define TH_INTR_GD0_MASK BIT(17)
96 #define TH_INTR_GU0_MASK BIT(16)
97 #define TH_INTR_CD0_MASK BIT(9)
98 #define TH_INTR_CU0_MASK BIT(8)
99 #define TH_INTR_PD0_MASK BIT(1)
100 #define TH_INTR_PU0_MASK BIT(0)
101 #define TH_INTR_IGNORE_MASK 0xFCFCFCFC
102
103 #define THERMCTL_STATS_CTL 0x94
104 #define STATS_CTL_CLR_DN 0x8
105 #define STATS_CTL_EN_DN 0x4
106 #define STATS_CTL_CLR_UP 0x2
107 #define STATS_CTL_EN_UP 0x1
108
109 #define OC1_CFG 0x310
110 #define OC1_CFG_LONG_LATENCY_MASK BIT(6)
111 #define OC1_CFG_HW_RESTORE_MASK BIT(5)
112 #define OC1_CFG_PWR_GOOD_MASK_MASK BIT(4)
113 #define OC1_CFG_THROTTLE_MODE_MASK (0x3 << 2)
114 #define OC1_CFG_ALARM_POLARITY_MASK BIT(1)
115 #define OC1_CFG_EN_THROTTLE_MASK BIT(0)
116
117 #define OC1_CNT_THRESHOLD 0x314
118 #define OC1_THROTTLE_PERIOD 0x318
119 #define OC1_ALARM_COUNT 0x31c
120 #define OC1_FILTER 0x320
121 #define OC1_STATS 0x3a8
122
123 #define OC_INTR_STATUS 0x39c
124 #define OC_INTR_ENABLE 0x3a0
125 #define OC_INTR_DISABLE 0x3a4
126 #define OC_STATS_CTL 0x3c4
127 #define OC_STATS_CTL_CLR_ALL 0x2
128 #define OC_STATS_CTL_EN_ALL 0x1
129
130 #define OC_INTR_OC1_MASK BIT(0)
131 #define OC_INTR_OC2_MASK BIT(1)
132 #define OC_INTR_OC3_MASK BIT(2)
133 #define OC_INTR_OC4_MASK BIT(3)
134 #define OC_INTR_OC5_MASK BIT(4)
135
136 #define THROT_GLOBAL_CFG 0x400
137 #define THROT_GLOBAL_ENB_MASK BIT(0)
138
139 #define CPU_PSKIP_STATUS 0x418
140 #define XPU_PSKIP_STATUS_M_MASK (0xff << 12)
141 #define XPU_PSKIP_STATUS_N_MASK (0xff << 4)
142 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK BIT(1)
143 #define XPU_PSKIP_STATUS_ENABLED_MASK BIT(0)
144
145 #define THROT_PRIORITY_LOCK 0x424
146 #define THROT_PRIORITY_LOCK_PRIORITY_MASK 0xff
147
148 #define THROT_STATUS 0x428
149 #define THROT_STATUS_BREACH_MASK BIT(12)
150 #define THROT_STATUS_STATE_MASK (0xff << 4)
151 #define THROT_STATUS_ENABLED_MASK BIT(0)
152
153 #define THROT_PSKIP_CTRL_LITE_CPU 0x430
154 #define THROT_PSKIP_CTRL_ENABLE_MASK BIT(31)
155 #define THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8)
156 #define THROT_PSKIP_CTRL_DIVISOR_MASK 0xff
157 #define THROT_PSKIP_CTRL_VECT_GPU_MASK (0x7 << 16)
158 #define THROT_PSKIP_CTRL_VECT_CPU_MASK (0x7 << 8)
159 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK 0x7
160
161 #define THROT_VECT_NONE 0x0 /* 3'b000 */
162 #define THROT_VECT_LOW 0x1 /* 3'b001 */
163 #define THROT_VECT_MED 0x3 /* 3'b011 */
164 #define THROT_VECT_HIGH 0x7 /* 3'b111 */
165
166 #define THROT_PSKIP_RAMP_LITE_CPU 0x434
167 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31)
168 #define THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8)
169 #define THROT_PSKIP_RAMP_STEP_MASK 0xff
170
171 #define THROT_PRIORITY_LITE 0x444
172 #define THROT_PRIORITY_LITE_PRIO_MASK 0xff
173
174 #define THROT_DELAY_LITE 0x448
175 #define THROT_DELAY_LITE_DELAY_MASK 0xff
176
177 /* car register offsets needed for enabling HW throttling */
178 #define CAR_SUPER_CCLKG_DIVIDER 0x36c
179 #define CDIVG_USE_THERM_CONTROLS_MASK BIT(30)
180
181 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */
182 #define CCROC_SUPER_CCLKG_DIVIDER 0x024
183
184 #define CCROC_GLOBAL_CFG 0x148
185
186 #define CCROC_THROT_PSKIP_RAMP_CPU 0x150
187 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31)
188 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8)
189 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK 0xff
190
191 #define CCROC_THROT_PSKIP_CTRL_CPU 0x154
192 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK BIT(31)
193 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8)
194 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK 0xff
195
196 /* get val from register(r) mask bits(m) */
197 #define REG_GET_MASK(r, m) (((r) & (m)) >> (ffs(m) - 1))
198 /* set val(v) to mask bits(m) of register(r) */
199 #define REG_SET_MASK(r, m, v) (((r) & ~(m)) | \
200 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
201
202 /* get dividend from the depth */
203 #define THROT_DEPTH_DIVIDEND(depth) ((256 * (100 - (depth)) / 100) - 1)
204
205 /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h
206 * level vector
207 * NONE 3'b000
208 * LOW 3'b001
209 * MED 3'b011
210 * HIGH 3'b111
211 */
212 #define THROT_LEVEL_TO_DEPTH(level) ((0x1 << (level)) - 1)
213
214 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
215 #define THROT_OFFSET 0x30
216 #define THROT_PSKIP_CTRL(throt, dev) (THROT_PSKIP_CTRL_LITE_CPU + \
217 (THROT_OFFSET * throt) + (8 * dev))
218 #define THROT_PSKIP_RAMP(throt, dev) (THROT_PSKIP_RAMP_LITE_CPU + \
219 (THROT_OFFSET * throt) + (8 * dev))
220
221 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
222 #define THROT_PRIORITY_CTRL(throt) (THROT_PRIORITY_LITE + \
223 (THROT_OFFSET * throt))
224 #define THROT_DELAY_CTRL(throt) (THROT_DELAY_LITE + \
225 (THROT_OFFSET * throt))
226
227 #define ALARM_OFFSET 0x14
228 #define ALARM_CFG(throt) (OC1_CFG + \
229 (ALARM_OFFSET * (throt - THROTTLE_OC1)))
230
231 #define ALARM_CNT_THRESHOLD(throt) (OC1_CNT_THRESHOLD + \
232 (ALARM_OFFSET * (throt - THROTTLE_OC1)))
233
234 #define ALARM_THROTTLE_PERIOD(throt) (OC1_THROTTLE_PERIOD + \
235 (ALARM_OFFSET * (throt - THROTTLE_OC1)))
236
237 #define ALARM_ALARM_COUNT(throt) (OC1_ALARM_COUNT + \
238 (ALARM_OFFSET * (throt - THROTTLE_OC1)))
239
240 #define ALARM_FILTER(throt) (OC1_FILTER + \
241 (ALARM_OFFSET * (throt - THROTTLE_OC1)))
242
243 #define ALARM_STATS(throt) (OC1_STATS + \
244 (4 * (throt - THROTTLE_OC1)))
245
246 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
247 #define CCROC_THROT_OFFSET 0x0c
248 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect) (CCROC_THROT_PSKIP_CTRL_CPU + \
249 (CCROC_THROT_OFFSET * vect))
250 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect) (CCROC_THROT_PSKIP_RAMP_CPU + \
251 (CCROC_THROT_OFFSET * vect))
252
253 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
254 #define THERMCTL_LVL_REGS_SIZE 0x20
255 #define THERMCTL_LVL_REG(rg, lv) ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
256
257 #define OC_THROTTLE_MODE_DISABLED 0
258 #define OC_THROTTLE_MODE_BRIEF 2
259
260 static const int min_low_temp = -127000;
261 static const int max_high_temp = 127000;
262
263 enum soctherm_throttle_id {
264 THROTTLE_LIGHT = 0,
265 THROTTLE_HEAVY,
266 THROTTLE_OC1,
267 THROTTLE_OC2,
268 THROTTLE_OC3,
269 THROTTLE_OC4,
270 THROTTLE_OC5, /* OC5 is reserved */
271 THROTTLE_SIZE,
272 };
273
274 enum soctherm_oc_irq_id {
275 TEGRA_SOC_OC_IRQ_1,
276 TEGRA_SOC_OC_IRQ_2,
277 TEGRA_SOC_OC_IRQ_3,
278 TEGRA_SOC_OC_IRQ_4,
279 TEGRA_SOC_OC_IRQ_5,
280 TEGRA_SOC_OC_IRQ_MAX,
281 };
282
283 enum soctherm_throttle_dev_id {
284 THROTTLE_DEV_CPU = 0,
285 THROTTLE_DEV_GPU,
286 THROTTLE_DEV_SIZE,
287 };
288
289 static const char *const throt_names[] = {
290 [THROTTLE_LIGHT] = "light",
291 [THROTTLE_HEAVY] = "heavy",
292 [THROTTLE_OC1] = "oc1",
293 [THROTTLE_OC2] = "oc2",
294 [THROTTLE_OC3] = "oc3",
295 [THROTTLE_OC4] = "oc4",
296 [THROTTLE_OC5] = "oc5",
297 };
298
299 struct tegra_soctherm;
300 struct tegra_thermctl_zone {
301 void __iomem *reg;
302 struct device *dev;
303 struct tegra_soctherm *ts;
304 struct thermal_zone_device *tz;
305 const struct tegra_tsensor_group *sg;
306 };
307
308 struct soctherm_oc_cfg {
309 u32 active_low;
310 u32 throt_period;
311 u32 alarm_cnt_thresh;
312 u32 alarm_filter;
313 u32 mode;
314 bool intr_en;
315 };
316
317 struct soctherm_throt_cfg {
318 const char *name;
319 unsigned int id;
320 u8 priority;
321 u8 cpu_throt_level;
322 u32 cpu_throt_depth;
323 u32 gpu_throt_level;
324 struct soctherm_oc_cfg oc_cfg;
325 struct thermal_cooling_device *cdev;
326 bool init;
327 };
328
329 struct tegra_soctherm {
330 struct reset_control *reset;
331 struct clk *clock_tsensor;
332 struct clk *clock_soctherm;
333 void __iomem *regs;
334 void __iomem *clk_regs;
335 void __iomem *ccroc_regs;
336
337 int thermal_irq;
338 int edp_irq;
339
340 u32 *calib;
341 struct thermal_zone_device **thermctl_tzs;
342 struct tegra_soctherm_soc *soc;
343
344 struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
345
346 struct dentry *debugfs_dir;
347
348 struct mutex thermctl_lock;
349 };
350
351 struct soctherm_oc_irq_chip_data {
352 struct mutex irq_lock; /* serialize OC IRQs */
353 struct irq_chip irq_chip;
354 struct irq_domain *domain;
355 int irq_enable;
356 };
357
358 static struct soctherm_oc_irq_chip_data soc_irq_cdata;
359
360 /**
361 * ccroc_writel() - writes a value to a CCROC register
362 * @ts: pointer to a struct tegra_soctherm
363 * @value: the value to write
364 * @reg: the register offset
365 *
366 * Writes @v to @reg. No return value.
367 */
ccroc_writel(struct tegra_soctherm * ts,u32 value,u32 reg)368 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
369 {
370 writel(value, (ts->ccroc_regs + reg));
371 }
372
373 /**
374 * ccroc_readl() - reads specified register from CCROC IP block
375 * @ts: pointer to a struct tegra_soctherm
376 * @reg: register address to be read
377 *
378 * Return: the value of the register
379 */
ccroc_readl(struct tegra_soctherm * ts,u32 reg)380 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
381 {
382 return readl(ts->ccroc_regs + reg);
383 }
384
enable_tsensor(struct tegra_soctherm * tegra,unsigned int i)385 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
386 {
387 const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
388 void __iomem *base = tegra->regs + sensor->base;
389 unsigned int val;
390
391 val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
392 writel(val, base + SENSOR_CONFIG0);
393
394 val = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
395 val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
396 val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
397 val |= SENSOR_CONFIG1_TEMP_ENABLE;
398 writel(val, base + SENSOR_CONFIG1);
399
400 writel(tegra->calib[i], base + SENSOR_CONFIG2);
401 }
402
403 /*
404 * Translate from soctherm readback format to millicelsius.
405 * The soctherm readback format in bits is as follows:
406 * TTTTTTTT H______N
407 * where T's contain the temperature in Celsius,
408 * H denotes an addition of 0.5 Celsius and N denotes negation
409 * of the final value.
410 */
translate_temp(u16 val)411 static int translate_temp(u16 val)
412 {
413 int t;
414
415 t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
416 if (val & READBACK_ADD_HALF)
417 t += 500;
418 if (val & READBACK_NEGATE)
419 t *= -1;
420
421 return t;
422 }
423
tegra_thermctl_get_temp(struct thermal_zone_device * tz,int * out_temp)424 static int tegra_thermctl_get_temp(struct thermal_zone_device *tz, int *out_temp)
425 {
426 struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz);
427 u32 val;
428
429 val = readl(zone->reg);
430 val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
431 *out_temp = translate_temp(val);
432
433 return 0;
434 }
435
436 /**
437 * enforce_temp_range() - check and enforce temperature range [min, max]
438 * @dev: struct device * of the SOC_THERM instance
439 * @trip_temp: the trip temperature to check
440 *
441 * Checks and enforces the permitted temperature range that SOC_THERM
442 * HW can support This is
443 * done while taking care of precision.
444 *
445 * Return: The precision adjusted capped temperature in millicelsius.
446 */
enforce_temp_range(struct device * dev,int trip_temp)447 static int enforce_temp_range(struct device *dev, int trip_temp)
448 {
449 int temp;
450
451 temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
452 if (temp != trip_temp)
453 dev_dbg(dev, "soctherm: trip temperature %d forced to %d\n",
454 trip_temp, temp);
455 return temp;
456 }
457
458 /**
459 * thermtrip_program() - Configures the hardware to shut down the
460 * system if a given sensor group reaches a given temperature
461 * @dev: ptr to the struct device for the SOC_THERM IP block
462 * @sg: pointer to the sensor group to set the thermtrip temperature for
463 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
464 *
465 * Sets the thermal trip threshold of the given sensor group to be the
466 * @trip_temp. If this threshold is crossed, the hardware will shut
467 * down.
468 *
469 * Note that, although @trip_temp is specified in millicelsius, the
470 * hardware is programmed in degrees Celsius.
471 *
472 * Return: 0 upon success, or %-EINVAL upon failure.
473 */
thermtrip_program(struct device * dev,const struct tegra_tsensor_group * sg,int trip_temp)474 static int thermtrip_program(struct device *dev,
475 const struct tegra_tsensor_group *sg,
476 int trip_temp)
477 {
478 struct tegra_soctherm *ts = dev_get_drvdata(dev);
479 int temp;
480 u32 r;
481
482 if (!sg || !sg->thermtrip_threshold_mask)
483 return -EINVAL;
484
485 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
486
487 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
488 r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
489 r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
490 r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
491 writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
492
493 return 0;
494 }
495
496 /**
497 * throttrip_program() - Configures the hardware to throttle the
498 * pulse if a given sensor group reaches a given temperature
499 * @dev: ptr to the struct device for the SOC_THERM IP block
500 * @sg: pointer to the sensor group to set the thermtrip temperature for
501 * @stc: pointer to the throttle need to be triggered
502 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
503 *
504 * Sets the thermal trip threshold and throttle event of the given sensor
505 * group. If this threshold is crossed, the hardware will trigger the
506 * throttle.
507 *
508 * Note that, although @trip_temp is specified in millicelsius, the
509 * hardware is programmed in degrees Celsius.
510 *
511 * Return: 0 upon success, or %-EINVAL upon failure.
512 */
throttrip_program(struct device * dev,const struct tegra_tsensor_group * sg,struct soctherm_throt_cfg * stc,int trip_temp)513 static int throttrip_program(struct device *dev,
514 const struct tegra_tsensor_group *sg,
515 struct soctherm_throt_cfg *stc,
516 int trip_temp)
517 {
518 struct tegra_soctherm *ts = dev_get_drvdata(dev);
519 int temp, cpu_throt, gpu_throt;
520 unsigned int throt;
521 u32 r, reg_off;
522
523 if (!sg || !stc || !stc->init)
524 return -EINVAL;
525
526 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
527
528 /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
529 throt = stc->id;
530 reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
531
532 if (throt == THROTTLE_LIGHT) {
533 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
534 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
535 } else {
536 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
537 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
538 if (throt != THROTTLE_HEAVY)
539 dev_warn(dev,
540 "invalid throt id %d - assuming HEAVY",
541 throt);
542 }
543
544 r = readl(ts->regs + reg_off);
545 r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
546 r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
547 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
548 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
549 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
550 writel(r, ts->regs + reg_off);
551
552 return 0;
553 }
554
555 static struct soctherm_throt_cfg *
find_throttle_cfg_by_name(struct tegra_soctherm * ts,const char * name)556 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
557 {
558 unsigned int i;
559
560 for (i = 0; ts->throt_cfgs[i].name; i++)
561 if (!strcmp(ts->throt_cfgs[i].name, name))
562 return &ts->throt_cfgs[i];
563
564 return NULL;
565 }
566
tsensor_group_thermtrip_get(struct tegra_soctherm * ts,int id)567 static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id)
568 {
569 int i, temp = min_low_temp;
570 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
571
572 if (id >= TEGRA124_SOCTHERM_SENSOR_NUM)
573 return temp;
574
575 if (tt) {
576 for (i = 0; i < ts->soc->num_ttgs; i++) {
577 if (tt[i].id == id)
578 return tt[i].temp;
579 }
580 }
581
582 return temp;
583 }
584
tegra_thermctl_set_trip_temp(struct thermal_zone_device * tz,int trip_id,int temp)585 static int tegra_thermctl_set_trip_temp(struct thermal_zone_device *tz, int trip_id, int temp)
586 {
587 struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz);
588 struct tegra_soctherm *ts = zone->ts;
589 struct thermal_trip trip;
590 const struct tegra_tsensor_group *sg = zone->sg;
591 struct device *dev = zone->dev;
592 int ret;
593
594 if (!tz)
595 return -EINVAL;
596
597 ret = __thermal_zone_get_trip(tz, trip_id, &trip);
598 if (ret)
599 return ret;
600
601 if (trip.type == THERMAL_TRIP_CRITICAL) {
602 /*
603 * If thermtrips property is set in DT,
604 * doesn't need to program critical type trip to HW,
605 * if not, program critical trip to HW.
606 */
607 if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id))
608 return thermtrip_program(dev, sg, temp);
609 else
610 return 0;
611
612 } else if (trip.type == THERMAL_TRIP_HOT) {
613 int i;
614
615 for (i = 0; i < THROTTLE_SIZE; i++) {
616 struct thermal_cooling_device *cdev;
617 struct soctherm_throt_cfg *stc;
618
619 if (!ts->throt_cfgs[i].init)
620 continue;
621
622 cdev = ts->throt_cfgs[i].cdev;
623 if (get_thermal_instance(tz, cdev, trip_id))
624 stc = find_throttle_cfg_by_name(ts, cdev->type);
625 else
626 continue;
627
628 return throttrip_program(dev, sg, stc, temp);
629 }
630 }
631
632 return 0;
633 }
634
thermal_irq_enable(struct tegra_thermctl_zone * zn)635 static void thermal_irq_enable(struct tegra_thermctl_zone *zn)
636 {
637 u32 r;
638
639 /* multiple zones could be handling and setting trips at once */
640 mutex_lock(&zn->ts->thermctl_lock);
641 r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE);
642 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN);
643 writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE);
644 mutex_unlock(&zn->ts->thermctl_lock);
645 }
646
thermal_irq_disable(struct tegra_thermctl_zone * zn)647 static void thermal_irq_disable(struct tegra_thermctl_zone *zn)
648 {
649 u32 r;
650
651 /* multiple zones could be handling and setting trips at once */
652 mutex_lock(&zn->ts->thermctl_lock);
653 r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE);
654 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0);
655 writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE);
656 mutex_unlock(&zn->ts->thermctl_lock);
657 }
658
tegra_thermctl_set_trips(struct thermal_zone_device * tz,int lo,int hi)659 static int tegra_thermctl_set_trips(struct thermal_zone_device *tz, int lo, int hi)
660 {
661 struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz);
662 u32 r;
663
664 thermal_irq_disable(zone);
665
666 r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset);
667 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0);
668 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
669
670 lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain;
671 hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain;
672 dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo);
673
674 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi);
675 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo);
676 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
677 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
678
679 thermal_irq_enable(zone);
680
681 return 0;
682 }
683
684 static const struct thermal_zone_device_ops tegra_of_thermal_ops = {
685 .get_temp = tegra_thermctl_get_temp,
686 .set_trip_temp = tegra_thermctl_set_trip_temp,
687 .set_trips = tegra_thermctl_set_trips,
688 };
689
get_hot_temp(struct thermal_zone_device * tz,int * trip_id,int * temp)690 static int get_hot_temp(struct thermal_zone_device *tz, int *trip_id, int *temp)
691 {
692 int i, ret;
693 struct thermal_trip trip;
694
695 for (i = 0; i < thermal_zone_get_num_trips(tz); i++) {
696
697 ret = thermal_zone_get_trip(tz, i, &trip);
698 if (ret)
699 return -EINVAL;
700
701 if (trip.type == THERMAL_TRIP_HOT) {
702 *trip_id = i;
703 return 0;
704 }
705 }
706
707 return -EINVAL;
708 }
709
710 /**
711 * tegra_soctherm_set_hwtrips() - set HW trip point from DT data
712 * @dev: struct device * of the SOC_THERM instance
713 * @sg: pointer to the sensor group to set the thermtrip temperature for
714 * @tz: struct thermal_zone_device *
715 *
716 * Configure the SOC_THERM HW trip points, setting "THERMTRIP"
717 * "THROTTLE" trip points , using "thermtrips", "critical" or "hot"
718 * type trip_temp
719 * from thermal zone.
720 * After they have been configured, THERMTRIP or THROTTLE will take
721 * action when the configured SoC thermal sensor group reaches a
722 * certain temperature.
723 *
724 * Return: 0 upon success, or a negative error code on failure.
725 * "Success" does not mean that trips was enabled; it could also
726 * mean that no node was found in DT.
727 * THERMTRIP has been enabled successfully when a message similar to
728 * this one appears on the serial console:
729 * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
730 * THROTTLE has been enabled successfully when a message similar to
731 * this one appears on the serial console:
732 * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
733 */
tegra_soctherm_set_hwtrips(struct device * dev,const struct tegra_tsensor_group * sg,struct thermal_zone_device * tz)734 static int tegra_soctherm_set_hwtrips(struct device *dev,
735 const struct tegra_tsensor_group *sg,
736 struct thermal_zone_device *tz)
737 {
738 struct tegra_soctherm *ts = dev_get_drvdata(dev);
739 struct soctherm_throt_cfg *stc;
740 int i, trip, temperature, ret;
741
742 /* Get thermtrips. If missing, try to get critical trips. */
743 temperature = tsensor_group_thermtrip_get(ts, sg->id);
744 if (min_low_temp == temperature)
745 if (thermal_zone_get_crit_temp(tz, &temperature))
746 temperature = max_high_temp;
747
748 ret = thermtrip_program(dev, sg, temperature);
749 if (ret) {
750 dev_err(dev, "thermtrip: %s: error during enable\n", sg->name);
751 return ret;
752 }
753
754 dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n",
755 sg->name, temperature);
756
757 ret = get_hot_temp(tz, &trip, &temperature);
758 if (ret) {
759 dev_info(dev, "throttrip: %s: missing hot temperature\n",
760 sg->name);
761 return 0;
762 }
763
764 for (i = 0; i < THROTTLE_OC1; i++) {
765 struct thermal_cooling_device *cdev;
766
767 if (!ts->throt_cfgs[i].init)
768 continue;
769
770 cdev = ts->throt_cfgs[i].cdev;
771 if (get_thermal_instance(tz, cdev, trip))
772 stc = find_throttle_cfg_by_name(ts, cdev->type);
773 else
774 continue;
775
776 ret = throttrip_program(dev, sg, stc, temperature);
777 if (ret) {
778 dev_err(dev, "throttrip: %s: error during enable\n",
779 sg->name);
780 return ret;
781 }
782
783 dev_info(dev,
784 "throttrip: will throttle when %s reaches %d mC\n",
785 sg->name, temperature);
786 break;
787 }
788
789 if (i == THROTTLE_SIZE)
790 dev_info(dev, "throttrip: %s: missing throttle cdev\n",
791 sg->name);
792
793 return 0;
794 }
795
soctherm_thermal_isr(int irq,void * dev_id)796 static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id)
797 {
798 struct tegra_soctherm *ts = dev_id;
799 u32 r;
800
801 /* Case for no lock:
802 * Although interrupts are enabled in set_trips, there is still no need
803 * to lock here because the interrupts are disabled before programming
804 * new trip points. Hence there cant be a interrupt on the same sensor.
805 * An interrupt can however occur on a sensor while trips are being
806 * programmed on a different one. This beign a LEVEL interrupt won't
807 * cause a new interrupt but this is taken care of by the re-reading of
808 * the STATUS register in the thread function.
809 */
810 r = readl(ts->regs + THERMCTL_INTR_STATUS);
811 writel(r, ts->regs + THERMCTL_INTR_DISABLE);
812
813 return IRQ_WAKE_THREAD;
814 }
815
816 /**
817 * soctherm_thermal_isr_thread() - Handles a thermal interrupt request
818 * @irq: The interrupt number being requested; not used
819 * @dev_id: Opaque pointer to tegra_soctherm;
820 *
821 * Clears the interrupt status register if there are expected
822 * interrupt bits set.
823 * The interrupt(s) are then handled by updating the corresponding
824 * thermal zones.
825 *
826 * An error is logged if any unexpected interrupt bits are set.
827 *
828 * Disabled interrupts are re-enabled.
829 *
830 * Return: %IRQ_HANDLED. Interrupt was handled and no further processing
831 * is needed.
832 */
soctherm_thermal_isr_thread(int irq,void * dev_id)833 static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
834 {
835 struct tegra_soctherm *ts = dev_id;
836 struct thermal_zone_device *tz;
837 u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0;
838
839 st = readl(ts->regs + THERMCTL_INTR_STATUS);
840
841 /* deliberately clear expected interrupts handled in SW */
842 cp |= st & TH_INTR_CD0_MASK;
843 cp |= st & TH_INTR_CU0_MASK;
844
845 gp |= st & TH_INTR_GD0_MASK;
846 gp |= st & TH_INTR_GU0_MASK;
847
848 pl |= st & TH_INTR_PD0_MASK;
849 pl |= st & TH_INTR_PU0_MASK;
850
851 me |= st & TH_INTR_MD0_MASK;
852 me |= st & TH_INTR_MU0_MASK;
853
854 ex |= cp | gp | pl | me;
855 if (ex) {
856 writel(ex, ts->regs + THERMCTL_INTR_STATUS);
857 st &= ~ex;
858
859 if (cp) {
860 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU];
861 thermal_zone_device_update(tz,
862 THERMAL_EVENT_UNSPECIFIED);
863 }
864
865 if (gp) {
866 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU];
867 thermal_zone_device_update(tz,
868 THERMAL_EVENT_UNSPECIFIED);
869 }
870
871 if (pl) {
872 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX];
873 thermal_zone_device_update(tz,
874 THERMAL_EVENT_UNSPECIFIED);
875 }
876
877 if (me) {
878 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM];
879 thermal_zone_device_update(tz,
880 THERMAL_EVENT_UNSPECIFIED);
881 }
882 }
883
884 /* deliberately ignore expected interrupts NOT handled in SW */
885 ex |= TH_INTR_IGNORE_MASK;
886 st &= ~ex;
887
888 if (st) {
889 /* Whine about any other unexpected INTR bits still set */
890 pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
891 writel(st, ts->regs + THERMCTL_INTR_STATUS);
892 }
893
894 return IRQ_HANDLED;
895 }
896
897 /**
898 * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
899 * @ts: pointer to a struct tegra_soctherm
900 * @alarm: The soctherm throttle id
901 * @enable: Flag indicating enable the soctherm over-current
902 * interrupt or disable it
903 *
904 * Enables a specific over-current pins @alarm to raise an interrupt if the flag
905 * is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
906 */
soctherm_oc_intr_enable(struct tegra_soctherm * ts,enum soctherm_throttle_id alarm,bool enable)907 static void soctherm_oc_intr_enable(struct tegra_soctherm *ts,
908 enum soctherm_throttle_id alarm,
909 bool enable)
910 {
911 u32 r;
912
913 if (!enable)
914 return;
915
916 r = readl(ts->regs + OC_INTR_ENABLE);
917 switch (alarm) {
918 case THROTTLE_OC1:
919 r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1);
920 break;
921 case THROTTLE_OC2:
922 r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1);
923 break;
924 case THROTTLE_OC3:
925 r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1);
926 break;
927 case THROTTLE_OC4:
928 r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1);
929 break;
930 default:
931 r = 0;
932 break;
933 }
934 writel(r, ts->regs + OC_INTR_ENABLE);
935 }
936
937 /**
938 * soctherm_handle_alarm() - Handles soctherm alarms
939 * @alarm: The soctherm throttle id
940 *
941 * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
942 * a warning or informative message.
943 *
944 * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
945 */
soctherm_handle_alarm(enum soctherm_throttle_id alarm)946 static int soctherm_handle_alarm(enum soctherm_throttle_id alarm)
947 {
948 int rv = -EINVAL;
949
950 switch (alarm) {
951 case THROTTLE_OC1:
952 pr_debug("soctherm: Successfully handled OC1 alarm\n");
953 rv = 0;
954 break;
955
956 case THROTTLE_OC2:
957 pr_debug("soctherm: Successfully handled OC2 alarm\n");
958 rv = 0;
959 break;
960
961 case THROTTLE_OC3:
962 pr_debug("soctherm: Successfully handled OC3 alarm\n");
963 rv = 0;
964 break;
965
966 case THROTTLE_OC4:
967 pr_debug("soctherm: Successfully handled OC4 alarm\n");
968 rv = 0;
969 break;
970
971 default:
972 break;
973 }
974
975 if (rv)
976 pr_err("soctherm: ERROR in handling %s alarm\n",
977 throt_names[alarm]);
978
979 return rv;
980 }
981
982 /**
983 * soctherm_edp_isr_thread() - log an over-current interrupt request
984 * @irq: OC irq number. Currently not being used. See description
985 * @arg: a void pointer for callback, currently not being used
986 *
987 * Over-current events are handled in hardware. This function is called to log
988 * and handle any OC events that happened. Additionally, it checks every
989 * over-current interrupt registers for registers are set but
990 * was not expected (i.e. any discrepancy in interrupt status) by the function,
991 * the discrepancy will logged.
992 *
993 * Return: %IRQ_HANDLED
994 */
soctherm_edp_isr_thread(int irq,void * arg)995 static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg)
996 {
997 struct tegra_soctherm *ts = arg;
998 u32 st, ex, oc1, oc2, oc3, oc4;
999
1000 st = readl(ts->regs + OC_INTR_STATUS);
1001
1002 /* deliberately clear expected interrupts handled in SW */
1003 oc1 = st & OC_INTR_OC1_MASK;
1004 oc2 = st & OC_INTR_OC2_MASK;
1005 oc3 = st & OC_INTR_OC3_MASK;
1006 oc4 = st & OC_INTR_OC4_MASK;
1007 ex = oc1 | oc2 | oc3 | oc4;
1008
1009 pr_err("soctherm: OC ALARM 0x%08x\n", ex);
1010 if (ex) {
1011 writel(st, ts->regs + OC_INTR_STATUS);
1012 st &= ~ex;
1013
1014 if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1))
1015 soctherm_oc_intr_enable(ts, THROTTLE_OC1, true);
1016
1017 if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2))
1018 soctherm_oc_intr_enable(ts, THROTTLE_OC2, true);
1019
1020 if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3))
1021 soctherm_oc_intr_enable(ts, THROTTLE_OC3, true);
1022
1023 if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4))
1024 soctherm_oc_intr_enable(ts, THROTTLE_OC4, true);
1025
1026 if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
1027 handle_nested_irq(
1028 irq_find_mapping(soc_irq_cdata.domain, 0));
1029
1030 if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
1031 handle_nested_irq(
1032 irq_find_mapping(soc_irq_cdata.domain, 1));
1033
1034 if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
1035 handle_nested_irq(
1036 irq_find_mapping(soc_irq_cdata.domain, 2));
1037
1038 if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
1039 handle_nested_irq(
1040 irq_find_mapping(soc_irq_cdata.domain, 3));
1041 }
1042
1043 if (st) {
1044 pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
1045 writel(st, ts->regs + OC_INTR_STATUS);
1046 }
1047
1048 return IRQ_HANDLED;
1049 }
1050
1051 /**
1052 * soctherm_edp_isr() - Disables any active interrupts
1053 * @irq: The interrupt request number
1054 * @arg: Opaque pointer to an argument
1055 *
1056 * Writes to the OC_INTR_DISABLE register the over current interrupt status,
1057 * masking any asserted interrupts. Doing this prevents the same interrupts
1058 * from triggering this isr repeatedly. The thread woken by this isr will
1059 * handle asserted interrupts and subsequently unmask/re-enable them.
1060 *
1061 * The OC_INTR_DISABLE register indicates which OC interrupts
1062 * have been disabled.
1063 *
1064 * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
1065 */
soctherm_edp_isr(int irq,void * arg)1066 static irqreturn_t soctherm_edp_isr(int irq, void *arg)
1067 {
1068 struct tegra_soctherm *ts = arg;
1069 u32 r;
1070
1071 if (!ts)
1072 return IRQ_NONE;
1073
1074 r = readl(ts->regs + OC_INTR_STATUS);
1075 writel(r, ts->regs + OC_INTR_DISABLE);
1076
1077 return IRQ_WAKE_THREAD;
1078 }
1079
1080 /**
1081 * soctherm_oc_irq_lock() - locks the over-current interrupt request
1082 * @data: Interrupt request data
1083 *
1084 * Looks up the chip data from @data and locks the mutex associated with
1085 * a particular over-current interrupt request.
1086 */
soctherm_oc_irq_lock(struct irq_data * data)1087 static void soctherm_oc_irq_lock(struct irq_data *data)
1088 {
1089 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1090
1091 mutex_lock(&d->irq_lock);
1092 }
1093
1094 /**
1095 * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
1096 * @data: Interrupt request data
1097 *
1098 * Looks up the interrupt request data @data and unlocks the mutex associated
1099 * with a particular over-current interrupt request.
1100 */
soctherm_oc_irq_sync_unlock(struct irq_data * data)1101 static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
1102 {
1103 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1104
1105 mutex_unlock(&d->irq_lock);
1106 }
1107
1108 /**
1109 * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
1110 * @data: irq_data structure of the chip
1111 *
1112 * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
1113 * to respond to over-current interrupts.
1114 *
1115 */
soctherm_oc_irq_enable(struct irq_data * data)1116 static void soctherm_oc_irq_enable(struct irq_data *data)
1117 {
1118 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1119
1120 d->irq_enable |= BIT(data->hwirq);
1121 }
1122
1123 /**
1124 * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
1125 * @data: The interrupt request information
1126 *
1127 * Clears the interrupt request enable bit of the overcurrent
1128 * interrupt request chip data.
1129 *
1130 * Return: Nothing is returned (void)
1131 */
soctherm_oc_irq_disable(struct irq_data * data)1132 static void soctherm_oc_irq_disable(struct irq_data *data)
1133 {
1134 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1135
1136 d->irq_enable &= ~BIT(data->hwirq);
1137 }
1138
soctherm_oc_irq_set_type(struct irq_data * data,unsigned int type)1139 static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
1140 {
1141 return 0;
1142 }
1143
1144 /**
1145 * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
1146 * @h: Interrupt request domain
1147 * @virq: Virtual interrupt request number
1148 * @hw: Hardware interrupt request number
1149 *
1150 * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
1151 * interrupt request is called, the irq_domain takes the request's virtual
1152 * request number (much like a virtual memory address) and maps it to a
1153 * physical hardware request number.
1154 *
1155 * When a mapping doesn't already exist for a virtual request number, the
1156 * irq_domain calls this function to associate the virtual request number with
1157 * a hardware request number.
1158 *
1159 * Return: 0
1160 */
soctherm_oc_irq_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)1161 static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
1162 irq_hw_number_t hw)
1163 {
1164 struct soctherm_oc_irq_chip_data *data = h->host_data;
1165
1166 irq_set_chip_data(virq, data);
1167 irq_set_chip(virq, &data->irq_chip);
1168 irq_set_nested_thread(virq, 1);
1169 return 0;
1170 }
1171
1172 /**
1173 * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
1174 * @d: Interrupt request domain
1175 * @ctrlr: Controller device tree node
1176 * @intspec: Array of u32s from DTs "interrupt" property
1177 * @intsize: Number of values inside the intspec array
1178 * @out_hwirq: HW IRQ value associated with this interrupt
1179 * @out_type: The IRQ SENSE type for this interrupt.
1180 *
1181 * This Device Tree IRQ specifier translation function will translate a
1182 * specific "interrupt" as defined by 2 DT values where the cell values map
1183 * the hwirq number + 1 and linux irq flags. Since the output is the hwirq
1184 * number, this function will subtract 1 from the value listed in DT.
1185 *
1186 * Return: 0
1187 */
soctherm_irq_domain_xlate_twocell(struct irq_domain * d,struct device_node * ctrlr,const u32 * intspec,unsigned int intsize,irq_hw_number_t * out_hwirq,unsigned int * out_type)1188 static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d,
1189 struct device_node *ctrlr, const u32 *intspec, unsigned int intsize,
1190 irq_hw_number_t *out_hwirq, unsigned int *out_type)
1191 {
1192 if (WARN_ON(intsize < 2))
1193 return -EINVAL;
1194
1195 /*
1196 * The HW value is 1 index less than the DT IRQ values.
1197 * i.e. OC4 goes to HW index 3.
1198 */
1199 *out_hwirq = intspec[0] - 1;
1200 *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
1201 return 0;
1202 }
1203
1204 static const struct irq_domain_ops soctherm_oc_domain_ops = {
1205 .map = soctherm_oc_irq_map,
1206 .xlate = soctherm_irq_domain_xlate_twocell,
1207 };
1208
1209 /**
1210 * soctherm_oc_int_init() - Initial enabling of the over
1211 * current interrupts
1212 * @np: The devicetree node for soctherm
1213 * @num_irqs: The number of new interrupt requests
1214 *
1215 * Sets the over current interrupt request chip data
1216 *
1217 * Return: 0 on success or if overcurrent interrupts are not enabled,
1218 * -ENOMEM (out of memory), or irq_base if the function failed to
1219 * allocate the irqs
1220 */
soctherm_oc_int_init(struct device_node * np,int num_irqs)1221 static int soctherm_oc_int_init(struct device_node *np, int num_irqs)
1222 {
1223 if (!num_irqs) {
1224 pr_info("%s(): OC interrupts are not enabled\n", __func__);
1225 return 0;
1226 }
1227
1228 mutex_init(&soc_irq_cdata.irq_lock);
1229 soc_irq_cdata.irq_enable = 0;
1230
1231 soc_irq_cdata.irq_chip.name = "soc_therm_oc";
1232 soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock;
1233 soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
1234 soctherm_oc_irq_sync_unlock;
1235 soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable;
1236 soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable;
1237 soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type;
1238 soc_irq_cdata.irq_chip.irq_set_wake = NULL;
1239
1240 soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs,
1241 &soctherm_oc_domain_ops,
1242 &soc_irq_cdata);
1243
1244 if (!soc_irq_cdata.domain) {
1245 pr_err("%s: Failed to create IRQ domain\n", __func__);
1246 return -ENOMEM;
1247 }
1248
1249 pr_debug("%s(): OC interrupts enabled successful\n", __func__);
1250 return 0;
1251 }
1252
1253 #ifdef CONFIG_DEBUG_FS
regs_show(struct seq_file * s,void * data)1254 static int regs_show(struct seq_file *s, void *data)
1255 {
1256 struct platform_device *pdev = s->private;
1257 struct tegra_soctherm *ts = platform_get_drvdata(pdev);
1258 const struct tegra_tsensor *tsensors = ts->soc->tsensors;
1259 const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
1260 u32 r, state;
1261 int i, level;
1262
1263 seq_puts(s, "-----TSENSE (convert HW)-----\n");
1264
1265 for (i = 0; i < ts->soc->num_tsensors; i++) {
1266 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
1267 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
1268
1269 seq_printf(s, "%s: ", tsensors[i].name);
1270 seq_printf(s, "En(%d) ", state);
1271
1272 if (!state) {
1273 seq_puts(s, "\n");
1274 continue;
1275 }
1276
1277 state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
1278 seq_printf(s, "tiddq(%d) ", state);
1279 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
1280 seq_printf(s, "ten_count(%d) ", state);
1281 state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
1282 seq_printf(s, "tsample(%d) ", state + 1);
1283
1284 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
1285 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
1286 seq_printf(s, "Temp(%d/", state);
1287 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
1288 seq_printf(s, "%d) ", translate_temp(state));
1289
1290 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
1291 state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
1292 seq_printf(s, "Capture(%d/", state);
1293 state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
1294 seq_printf(s, "%d) ", state);
1295
1296 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
1297 state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
1298 seq_printf(s, "Stop(%d) ", state);
1299 state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
1300 seq_printf(s, "Tall(%d) ", state);
1301 state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
1302 seq_printf(s, "Over(%d/", state);
1303 state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
1304 seq_printf(s, "%d/", state);
1305 state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
1306 seq_printf(s, "%d) ", state);
1307
1308 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
1309 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
1310 seq_printf(s, "Therm_A/B(%d/", state);
1311 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
1312 seq_printf(s, "%d)\n", (s16)state);
1313 }
1314
1315 r = readl(ts->regs + SENSOR_PDIV);
1316 seq_printf(s, "PDIV: 0x%x\n", r);
1317
1318 r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
1319 seq_printf(s, "HOTSPOT: 0x%x\n", r);
1320
1321 seq_puts(s, "\n");
1322 seq_puts(s, "-----SOC_THERM-----\n");
1323
1324 r = readl(ts->regs + SENSOR_TEMP1);
1325 state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
1326 seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
1327 state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
1328 seq_printf(s, " GPU(%d) ", translate_temp(state));
1329 r = readl(ts->regs + SENSOR_TEMP2);
1330 state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
1331 seq_printf(s, " PLLX(%d) ", translate_temp(state));
1332 state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
1333 seq_printf(s, " MEM(%d)\n", translate_temp(state));
1334
1335 for (i = 0; i < ts->soc->num_ttgs; i++) {
1336 seq_printf(s, "%s:\n", ttgs[i]->name);
1337 for (level = 0; level < 4; level++) {
1338 s32 v;
1339 u32 mask;
1340 u16 off = ttgs[i]->thermctl_lvl0_offset;
1341
1342 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1343
1344 mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
1345 state = REG_GET_MASK(r, mask);
1346 v = sign_extend32(state, ts->soc->bptt - 1);
1347 v *= ts->soc->thresh_grain;
1348 seq_printf(s, " %d: Up/Dn(%d /", level, v);
1349
1350 mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
1351 state = REG_GET_MASK(r, mask);
1352 v = sign_extend32(state, ts->soc->bptt - 1);
1353 v *= ts->soc->thresh_grain;
1354 seq_printf(s, "%d ) ", v);
1355
1356 mask = THERMCTL_LVL0_CPU0_EN_MASK;
1357 state = REG_GET_MASK(r, mask);
1358 seq_printf(s, "En(%d) ", state);
1359
1360 mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
1361 state = REG_GET_MASK(r, mask);
1362 seq_puts(s, "CPU Throt");
1363 if (!state)
1364 seq_printf(s, "(%s) ", "none");
1365 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
1366 seq_printf(s, "(%s) ", "L");
1367 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
1368 seq_printf(s, "(%s) ", "H");
1369 else
1370 seq_printf(s, "(%s) ", "H+L");
1371
1372 mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
1373 state = REG_GET_MASK(r, mask);
1374 seq_puts(s, "GPU Throt");
1375 if (!state)
1376 seq_printf(s, "(%s) ", "none");
1377 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
1378 seq_printf(s, "(%s) ", "L");
1379 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
1380 seq_printf(s, "(%s) ", "H");
1381 else
1382 seq_printf(s, "(%s) ", "H+L");
1383
1384 mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
1385 state = REG_GET_MASK(r, mask);
1386 seq_printf(s, "Status(%s)\n",
1387 state == 0 ? "LO" :
1388 state == 1 ? "In" :
1389 state == 2 ? "Res" : "HI");
1390 }
1391 }
1392
1393 r = readl(ts->regs + THERMCTL_STATS_CTL);
1394 seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
1395 r & STATS_CTL_EN_UP ? "En" : "--",
1396 r & STATS_CTL_EN_DN ? "En" : "--");
1397
1398 for (level = 0; level < 4; level++) {
1399 u16 off;
1400
1401 off = THERMCTL_LVL0_UP_STATS;
1402 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1403 seq_printf(s, " Level_%d Up(%d) ", level, r);
1404
1405 off = THERMCTL_LVL0_DN_STATS;
1406 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1407 seq_printf(s, "Dn(%d)\n", r);
1408 }
1409
1410 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
1411 state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
1412 seq_printf(s, "Thermtrip Any En(%d)\n", state);
1413 for (i = 0; i < ts->soc->num_ttgs; i++) {
1414 state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
1415 seq_printf(s, " %s En(%d) ", ttgs[i]->name, state);
1416 state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
1417 state *= ts->soc->thresh_grain;
1418 seq_printf(s, "Thresh(%d)\n", state);
1419 }
1420
1421 r = readl(ts->regs + THROT_GLOBAL_CFG);
1422 seq_puts(s, "\n");
1423 seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
1424
1425 seq_puts(s, "---------------------------------------------------\n");
1426 r = readl(ts->regs + THROT_STATUS);
1427 state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
1428 seq_printf(s, "THROT STATUS: breach(%d) ", state);
1429 state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
1430 seq_printf(s, "state(%d) ", state);
1431 state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
1432 seq_printf(s, "enabled(%d)\n", state);
1433
1434 r = readl(ts->regs + CPU_PSKIP_STATUS);
1435 if (ts->soc->use_ccroc) {
1436 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1437 seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
1438 } else {
1439 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
1440 seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
1441 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
1442 seq_printf(s, "N(%d) ", state);
1443 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1444 seq_printf(s, "enabled(%d)\n", state);
1445 }
1446
1447 return 0;
1448 }
1449
1450 DEFINE_SHOW_ATTRIBUTE(regs);
1451
soctherm_debug_init(struct platform_device * pdev)1452 static void soctherm_debug_init(struct platform_device *pdev)
1453 {
1454 struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1455 struct dentry *root;
1456
1457 root = debugfs_create_dir("soctherm", NULL);
1458
1459 tegra->debugfs_dir = root;
1460
1461 debugfs_create_file("reg_contents", 0644, root, pdev, ®s_fops);
1462 }
1463 #else
soctherm_debug_init(struct platform_device * pdev)1464 static inline void soctherm_debug_init(struct platform_device *pdev) {}
1465 #endif
1466
soctherm_clk_enable(struct platform_device * pdev,bool enable)1467 static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
1468 {
1469 struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1470 int err;
1471
1472 if (!tegra->clock_soctherm || !tegra->clock_tsensor)
1473 return -EINVAL;
1474
1475 reset_control_assert(tegra->reset);
1476
1477 if (enable) {
1478 err = clk_prepare_enable(tegra->clock_soctherm);
1479 if (err) {
1480 reset_control_deassert(tegra->reset);
1481 return err;
1482 }
1483
1484 err = clk_prepare_enable(tegra->clock_tsensor);
1485 if (err) {
1486 clk_disable_unprepare(tegra->clock_soctherm);
1487 reset_control_deassert(tegra->reset);
1488 return err;
1489 }
1490 } else {
1491 clk_disable_unprepare(tegra->clock_tsensor);
1492 clk_disable_unprepare(tegra->clock_soctherm);
1493 }
1494
1495 reset_control_deassert(tegra->reset);
1496
1497 return 0;
1498 }
1499
throt_get_cdev_max_state(struct thermal_cooling_device * cdev,unsigned long * max_state)1500 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
1501 unsigned long *max_state)
1502 {
1503 *max_state = 1;
1504 return 0;
1505 }
1506
throt_get_cdev_cur_state(struct thermal_cooling_device * cdev,unsigned long * cur_state)1507 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
1508 unsigned long *cur_state)
1509 {
1510 struct tegra_soctherm *ts = cdev->devdata;
1511 u32 r;
1512
1513 r = readl(ts->regs + THROT_STATUS);
1514 if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
1515 *cur_state = 1;
1516 else
1517 *cur_state = 0;
1518
1519 return 0;
1520 }
1521
throt_set_cdev_state(struct thermal_cooling_device * cdev,unsigned long cur_state)1522 static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
1523 unsigned long cur_state)
1524 {
1525 return 0;
1526 }
1527
1528 static const struct thermal_cooling_device_ops throt_cooling_ops = {
1529 .get_max_state = throt_get_cdev_max_state,
1530 .get_cur_state = throt_get_cdev_cur_state,
1531 .set_cur_state = throt_set_cdev_state,
1532 };
1533
soctherm_thermtrips_parse(struct platform_device * pdev)1534 static int soctherm_thermtrips_parse(struct platform_device *pdev)
1535 {
1536 struct device *dev = &pdev->dev;
1537 struct tegra_soctherm *ts = dev_get_drvdata(dev);
1538 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
1539 const int max_num_prop = ts->soc->num_ttgs * 2;
1540 u32 *tlb;
1541 int i, j, n, ret;
1542
1543 if (!tt)
1544 return -ENOMEM;
1545
1546 n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips");
1547 if (n <= 0) {
1548 dev_info(dev,
1549 "missing thermtrips, will use critical trips as shut down temp\n");
1550 return n;
1551 }
1552
1553 n = min(max_num_prop, n);
1554
1555 tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL);
1556 if (!tlb)
1557 return -ENOMEM;
1558 ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips",
1559 tlb, n);
1560 if (ret) {
1561 dev_err(dev, "invalid num ele: thermtrips:%d\n", ret);
1562 return ret;
1563 }
1564
1565 i = 0;
1566 for (j = 0; j < n; j = j + 2) {
1567 if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM)
1568 continue;
1569
1570 tt[i].id = tlb[j];
1571 tt[i].temp = tlb[j + 1];
1572 i++;
1573 }
1574
1575 return 0;
1576 }
1577
soctherm_oc_cfg_parse(struct device * dev,struct device_node * np_oc,struct soctherm_throt_cfg * stc)1578 static void soctherm_oc_cfg_parse(struct device *dev,
1579 struct device_node *np_oc,
1580 struct soctherm_throt_cfg *stc)
1581 {
1582 u32 val;
1583
1584 if (of_property_read_bool(np_oc, "nvidia,polarity-active-low"))
1585 stc->oc_cfg.active_low = 1;
1586 else
1587 stc->oc_cfg.active_low = 0;
1588
1589 if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) {
1590 stc->oc_cfg.intr_en = 1;
1591 stc->oc_cfg.alarm_cnt_thresh = val;
1592 }
1593
1594 if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val))
1595 stc->oc_cfg.throt_period = val;
1596
1597 if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val))
1598 stc->oc_cfg.alarm_filter = val;
1599
1600 /* BRIEF throttling by default, do not support STICKY */
1601 stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF;
1602 }
1603
soctherm_throt_cfg_parse(struct device * dev,struct device_node * np,struct soctherm_throt_cfg * stc)1604 static int soctherm_throt_cfg_parse(struct device *dev,
1605 struct device_node *np,
1606 struct soctherm_throt_cfg *stc)
1607 {
1608 struct tegra_soctherm *ts = dev_get_drvdata(dev);
1609 int ret;
1610 u32 val;
1611
1612 ret = of_property_read_u32(np, "nvidia,priority", &val);
1613 if (ret) {
1614 dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name);
1615 return -EINVAL;
1616 }
1617 stc->priority = val;
1618
1619 ret = of_property_read_u32(np, ts->soc->use_ccroc ?
1620 "nvidia,cpu-throt-level" :
1621 "nvidia,cpu-throt-percent", &val);
1622 if (!ret) {
1623 if (ts->soc->use_ccroc &&
1624 val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1625 stc->cpu_throt_level = val;
1626 else if (!ts->soc->use_ccroc && val <= 100)
1627 stc->cpu_throt_depth = val;
1628 else
1629 goto err;
1630 } else {
1631 goto err;
1632 }
1633
1634 ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val);
1635 if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1636 stc->gpu_throt_level = val;
1637 else
1638 goto err;
1639
1640 return 0;
1641
1642 err:
1643 dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n",
1644 stc->name);
1645 return -EINVAL;
1646 }
1647
1648 /**
1649 * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
1650 * and register them as cooling devices.
1651 * @pdev: Pointer to platform_device struct
1652 */
soctherm_init_hw_throt_cdev(struct platform_device * pdev)1653 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
1654 {
1655 struct device *dev = &pdev->dev;
1656 struct tegra_soctherm *ts = dev_get_drvdata(dev);
1657 struct device_node *np_stc, *np_stcc;
1658 const char *name;
1659 int i;
1660
1661 for (i = 0; i < THROTTLE_SIZE; i++) {
1662 ts->throt_cfgs[i].name = throt_names[i];
1663 ts->throt_cfgs[i].id = i;
1664 ts->throt_cfgs[i].init = false;
1665 }
1666
1667 np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
1668 if (!np_stc) {
1669 dev_info(dev,
1670 "throttle-cfg: no throttle-cfgs - not enabling\n");
1671 return;
1672 }
1673
1674 for_each_child_of_node(np_stc, np_stcc) {
1675 struct soctherm_throt_cfg *stc;
1676 struct thermal_cooling_device *tcd;
1677 int err;
1678
1679 name = np_stcc->name;
1680 stc = find_throttle_cfg_by_name(ts, name);
1681 if (!stc) {
1682 dev_err(dev,
1683 "throttle-cfg: could not find %s\n", name);
1684 continue;
1685 }
1686
1687 if (stc->init) {
1688 dev_err(dev, "throttle-cfg: %s: redefined!\n", name);
1689 of_node_put(np_stcc);
1690 break;
1691 }
1692
1693 err = soctherm_throt_cfg_parse(dev, np_stcc, stc);
1694 if (err)
1695 continue;
1696
1697 if (stc->id >= THROTTLE_OC1) {
1698 soctherm_oc_cfg_parse(dev, np_stcc, stc);
1699 stc->init = true;
1700 } else {
1701
1702 tcd = thermal_of_cooling_device_register(np_stcc,
1703 (char *)name, ts,
1704 &throt_cooling_ops);
1705 if (IS_ERR_OR_NULL(tcd)) {
1706 dev_err(dev,
1707 "throttle-cfg: %s: failed to register cooling device\n",
1708 name);
1709 continue;
1710 }
1711 stc->cdev = tcd;
1712 stc->init = true;
1713 }
1714
1715 }
1716
1717 of_node_put(np_stc);
1718 }
1719
1720 /**
1721 * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
1722 * @ts: pointer to a struct tegra_soctherm
1723 * @level: describing the level LOW/MED/HIGH of throttling
1724 *
1725 * It's necessary to set up the CPU-local CCROC NV_THERM instance with
1726 * the M/N values desired for each level. This function does this.
1727 *
1728 * This function pre-programs the CCROC NV_THERM levels in terms of
1729 * pre-configured "Low", "Medium" or "Heavy" throttle levels which are
1730 * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
1731 */
throttlectl_cpu_level_cfg(struct tegra_soctherm * ts,int level)1732 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
1733 {
1734 u8 depth, dividend;
1735 u32 r;
1736
1737 switch (level) {
1738 case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1739 depth = 50;
1740 break;
1741 case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1742 depth = 75;
1743 break;
1744 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1745 depth = 80;
1746 break;
1747 case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
1748 return;
1749 default:
1750 return;
1751 }
1752
1753 dividend = THROT_DEPTH_DIVIDEND(depth);
1754
1755 /* setup PSKIP in ccroc nv_therm registers */
1756 r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1757 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1758 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1759 ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1760
1761 r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1762 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
1763 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1764 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1765 ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1766 }
1767
1768 /**
1769 * throttlectl_cpu_level_select() - program CPU pulse skipper config
1770 * @ts: pointer to a struct tegra_soctherm
1771 * @throt: the LIGHT/HEAVY of throttle event id
1772 *
1773 * Pulse skippers are used to throttle clock frequencies. This
1774 * function programs the pulse skippers based on @throt and platform
1775 * data. This function is used on SoCs which have CPU-local pulse
1776 * skipper control, such as T13x. It programs soctherm's interface to
1777 * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
1778 * vectors. PSKIP_BYPASS mode is set as required per HW spec.
1779 */
throttlectl_cpu_level_select(struct tegra_soctherm * ts,enum soctherm_throttle_id throt)1780 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
1781 enum soctherm_throttle_id throt)
1782 {
1783 u32 r, throt_vect;
1784
1785 /* Denver:CCROC NV_THERM interface N:3 Mapping */
1786 switch (ts->throt_cfgs[throt].cpu_throt_level) {
1787 case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1788 throt_vect = THROT_VECT_LOW;
1789 break;
1790 case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1791 throt_vect = THROT_VECT_MED;
1792 break;
1793 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1794 throt_vect = THROT_VECT_HIGH;
1795 break;
1796 default:
1797 throt_vect = THROT_VECT_NONE;
1798 break;
1799 }
1800
1801 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1802 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1803 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
1804 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
1805 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1806
1807 /* bypass sequencer in soc_therm as it is programmed in ccroc */
1808 r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
1809 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1810 }
1811
1812 /**
1813 * throttlectl_cpu_mn() - program CPU pulse skipper configuration
1814 * @ts: pointer to a struct tegra_soctherm
1815 * @throt: the LIGHT/HEAVY of throttle event id
1816 *
1817 * Pulse skippers are used to throttle clock frequencies. This
1818 * function programs the pulse skippers based on @throt and platform
1819 * data. This function is used for CPUs that have "remote" pulse
1820 * skipper control, e.g., the CPU pulse skipper is controlled by the
1821 * SOC_THERM IP block. (SOC_THERM is located outside the CPU
1822 * complex.)
1823 */
throttlectl_cpu_mn(struct tegra_soctherm * ts,enum soctherm_throttle_id throt)1824 static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
1825 enum soctherm_throttle_id throt)
1826 {
1827 u32 r;
1828 int depth;
1829 u8 dividend;
1830
1831 depth = ts->throt_cfgs[throt].cpu_throt_depth;
1832 dividend = THROT_DEPTH_DIVIDEND(depth);
1833
1834 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1835 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1836 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1837 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1838 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1839
1840 r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1841 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1842 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1843 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1844 }
1845
1846 /**
1847 * throttlectl_gpu_level_select() - selects throttling level for GPU
1848 * @ts: pointer to a struct tegra_soctherm
1849 * @throt: the LIGHT/HEAVY of throttle event id
1850 *
1851 * This function programs soctherm's interface to GK20a NV_THERM to select
1852 * pre-configured "Low", "Medium" or "Heavy" throttle levels.
1853 *
1854 * Return: boolean true if HW was programmed
1855 */
throttlectl_gpu_level_select(struct tegra_soctherm * ts,enum soctherm_throttle_id throt)1856 static void throttlectl_gpu_level_select(struct tegra_soctherm *ts,
1857 enum soctherm_throttle_id throt)
1858 {
1859 u32 r, level, throt_vect;
1860
1861 level = ts->throt_cfgs[throt].gpu_throt_level;
1862 throt_vect = THROT_LEVEL_TO_DEPTH(level);
1863 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1864 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1865 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect);
1866 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1867 }
1868
soctherm_oc_cfg_program(struct tegra_soctherm * ts,enum soctherm_throttle_id throt)1869 static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
1870 enum soctherm_throttle_id throt)
1871 {
1872 u32 r;
1873 struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg;
1874
1875 if (oc->mode == OC_THROTTLE_MODE_DISABLED)
1876 return -EINVAL;
1877
1878 r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1);
1879 r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode);
1880 r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low);
1881 r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1);
1882 writel(r, ts->regs + ALARM_CFG(throt));
1883 writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt));
1884 writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt));
1885 writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt));
1886 soctherm_oc_intr_enable(ts, throt, oc->intr_en);
1887
1888 return 0;
1889 }
1890
1891 /**
1892 * soctherm_throttle_program() - programs pulse skippers' configuration
1893 * @ts: pointer to a struct tegra_soctherm
1894 * @throt: the LIGHT/HEAVY of the throttle event id.
1895 *
1896 * Pulse skippers are used to throttle clock frequencies.
1897 * This function programs the pulse skippers.
1898 */
soctherm_throttle_program(struct tegra_soctherm * ts,enum soctherm_throttle_id throt)1899 static void soctherm_throttle_program(struct tegra_soctherm *ts,
1900 enum soctherm_throttle_id throt)
1901 {
1902 u32 r;
1903 struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
1904
1905 if (!stc.init)
1906 return;
1907
1908 if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt)))
1909 return;
1910
1911 /* Setup PSKIP parameters */
1912 if (ts->soc->use_ccroc)
1913 throttlectl_cpu_level_select(ts, throt);
1914 else
1915 throttlectl_cpu_mn(ts, throt);
1916
1917 throttlectl_gpu_level_select(ts, throt);
1918
1919 r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
1920 writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
1921
1922 r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
1923 writel(r, ts->regs + THROT_DELAY_CTRL(throt));
1924
1925 r = readl(ts->regs + THROT_PRIORITY_LOCK);
1926 r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
1927 if (r >= stc.priority)
1928 return;
1929 r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
1930 stc.priority);
1931 writel(r, ts->regs + THROT_PRIORITY_LOCK);
1932 }
1933
tegra_soctherm_throttle(struct device * dev)1934 static void tegra_soctherm_throttle(struct device *dev)
1935 {
1936 struct tegra_soctherm *ts = dev_get_drvdata(dev);
1937 u32 v;
1938 int i;
1939
1940 /* configure LOW, MED and HIGH levels for CCROC NV_THERM */
1941 if (ts->soc->use_ccroc) {
1942 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
1943 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
1944 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
1945 }
1946
1947 /* Thermal HW throttle programming */
1948 for (i = 0; i < THROTTLE_SIZE; i++)
1949 soctherm_throttle_program(ts, i);
1950
1951 v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
1952 if (ts->soc->use_ccroc) {
1953 ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
1954
1955 v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
1956 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1957 ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
1958 } else {
1959 writel(v, ts->regs + THROT_GLOBAL_CFG);
1960
1961 v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1962 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1963 writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1964 }
1965
1966 /* initialize stats collection */
1967 v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
1968 STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
1969 writel(v, ts->regs + THERMCTL_STATS_CTL);
1970 }
1971
soctherm_interrupts_init(struct platform_device * pdev,struct tegra_soctherm * tegra)1972 static int soctherm_interrupts_init(struct platform_device *pdev,
1973 struct tegra_soctherm *tegra)
1974 {
1975 struct device_node *np = pdev->dev.of_node;
1976 int ret;
1977
1978 ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX);
1979 if (ret < 0) {
1980 dev_err(&pdev->dev, "soctherm_oc_int_init failed\n");
1981 return ret;
1982 }
1983
1984 tegra->thermal_irq = platform_get_irq(pdev, 0);
1985 if (tegra->thermal_irq < 0) {
1986 dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n");
1987 return 0;
1988 }
1989
1990 tegra->edp_irq = platform_get_irq(pdev, 1);
1991 if (tegra->edp_irq < 0) {
1992 dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n");
1993 return 0;
1994 }
1995
1996 ret = devm_request_threaded_irq(&pdev->dev,
1997 tegra->thermal_irq,
1998 soctherm_thermal_isr,
1999 soctherm_thermal_isr_thread,
2000 IRQF_ONESHOT,
2001 dev_name(&pdev->dev),
2002 tegra);
2003 if (ret < 0) {
2004 dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n");
2005 return ret;
2006 }
2007
2008 ret = devm_request_threaded_irq(&pdev->dev,
2009 tegra->edp_irq,
2010 soctherm_edp_isr,
2011 soctherm_edp_isr_thread,
2012 IRQF_ONESHOT,
2013 "soctherm_edp",
2014 tegra);
2015 if (ret < 0) {
2016 dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n");
2017 return ret;
2018 }
2019
2020 return 0;
2021 }
2022
soctherm_init(struct platform_device * pdev)2023 static void soctherm_init(struct platform_device *pdev)
2024 {
2025 struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2026 const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
2027 int i;
2028 u32 pdiv, hotspot;
2029
2030 /* Initialize raw sensors */
2031 for (i = 0; i < tegra->soc->num_tsensors; ++i)
2032 enable_tsensor(tegra, i);
2033
2034 /* program pdiv and hotspot offsets per THERM */
2035 pdiv = readl(tegra->regs + SENSOR_PDIV);
2036 hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
2037 for (i = 0; i < tegra->soc->num_ttgs; ++i) {
2038 pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
2039 ttgs[i]->pdiv);
2040 /* hotspot offset from PLLX, doesn't need to configure PLLX */
2041 if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
2042 continue;
2043 hotspot = REG_SET_MASK(hotspot,
2044 ttgs[i]->pllx_hotspot_mask,
2045 ttgs[i]->pllx_hotspot_diff);
2046 }
2047 writel(pdiv, tegra->regs + SENSOR_PDIV);
2048 writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
2049
2050 /* Configure hw throttle */
2051 tegra_soctherm_throttle(&pdev->dev);
2052 }
2053
2054 static const struct of_device_id tegra_soctherm_of_match[] = {
2055 #ifdef CONFIG_ARCH_TEGRA_124_SOC
2056 {
2057 .compatible = "nvidia,tegra124-soctherm",
2058 .data = &tegra124_soctherm,
2059 },
2060 #endif
2061 #ifdef CONFIG_ARCH_TEGRA_132_SOC
2062 {
2063 .compatible = "nvidia,tegra132-soctherm",
2064 .data = &tegra132_soctherm,
2065 },
2066 #endif
2067 #ifdef CONFIG_ARCH_TEGRA_210_SOC
2068 {
2069 .compatible = "nvidia,tegra210-soctherm",
2070 .data = &tegra210_soctherm,
2071 },
2072 #endif
2073 { },
2074 };
2075 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
2076
tegra_soctherm_probe(struct platform_device * pdev)2077 static int tegra_soctherm_probe(struct platform_device *pdev)
2078 {
2079 const struct of_device_id *match;
2080 struct tegra_soctherm *tegra;
2081 struct thermal_zone_device *z;
2082 struct tsensor_shared_calib shared_calib;
2083 struct tegra_soctherm_soc *soc;
2084 unsigned int i;
2085 int err;
2086
2087 match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
2088 if (!match)
2089 return -ENODEV;
2090
2091 soc = (struct tegra_soctherm_soc *)match->data;
2092 if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
2093 return -EINVAL;
2094
2095 tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
2096 if (!tegra)
2097 return -ENOMEM;
2098
2099 mutex_init(&tegra->thermctl_lock);
2100 dev_set_drvdata(&pdev->dev, tegra);
2101
2102 tegra->soc = soc;
2103
2104 tegra->regs = devm_platform_ioremap_resource_byname(pdev, "soctherm-reg");
2105 if (IS_ERR(tegra->regs)) {
2106 dev_err(&pdev->dev, "can't get soctherm registers");
2107 return PTR_ERR(tegra->regs);
2108 }
2109
2110 if (!tegra->soc->use_ccroc) {
2111 tegra->clk_regs = devm_platform_ioremap_resource_byname(pdev, "car-reg");
2112 if (IS_ERR(tegra->clk_regs)) {
2113 dev_err(&pdev->dev, "can't get car clk registers");
2114 return PTR_ERR(tegra->clk_regs);
2115 }
2116 } else {
2117 tegra->ccroc_regs = devm_platform_ioremap_resource_byname(pdev, "ccroc-reg");
2118 if (IS_ERR(tegra->ccroc_regs)) {
2119 dev_err(&pdev->dev, "can't get ccroc registers");
2120 return PTR_ERR(tegra->ccroc_regs);
2121 }
2122 }
2123
2124 tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
2125 if (IS_ERR(tegra->reset)) {
2126 dev_err(&pdev->dev, "can't get soctherm reset\n");
2127 return PTR_ERR(tegra->reset);
2128 }
2129
2130 tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
2131 if (IS_ERR(tegra->clock_tsensor)) {
2132 dev_err(&pdev->dev, "can't get tsensor clock\n");
2133 return PTR_ERR(tegra->clock_tsensor);
2134 }
2135
2136 tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
2137 if (IS_ERR(tegra->clock_soctherm)) {
2138 dev_err(&pdev->dev, "can't get soctherm clock\n");
2139 return PTR_ERR(tegra->clock_soctherm);
2140 }
2141
2142 tegra->calib = devm_kcalloc(&pdev->dev,
2143 soc->num_tsensors, sizeof(u32),
2144 GFP_KERNEL);
2145 if (!tegra->calib)
2146 return -ENOMEM;
2147
2148 /* calculate shared calibration data */
2149 err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
2150 if (err)
2151 return err;
2152
2153 /* calculate tsensor calibration data */
2154 for (i = 0; i < soc->num_tsensors; ++i) {
2155 err = tegra_calc_tsensor_calib(&soc->tsensors[i],
2156 &shared_calib,
2157 &tegra->calib[i]);
2158 if (err)
2159 return err;
2160 }
2161
2162 tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
2163 soc->num_ttgs, sizeof(z),
2164 GFP_KERNEL);
2165 if (!tegra->thermctl_tzs)
2166 return -ENOMEM;
2167
2168 err = soctherm_clk_enable(pdev, true);
2169 if (err)
2170 return err;
2171
2172 soctherm_thermtrips_parse(pdev);
2173
2174 soctherm_init_hw_throt_cdev(pdev);
2175
2176 soctherm_init(pdev);
2177
2178 for (i = 0; i < soc->num_ttgs; ++i) {
2179 struct tegra_thermctl_zone *zone =
2180 devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
2181 if (!zone) {
2182 err = -ENOMEM;
2183 goto disable_clocks;
2184 }
2185
2186 zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
2187 zone->dev = &pdev->dev;
2188 zone->sg = soc->ttgs[i];
2189 zone->ts = tegra;
2190
2191 z = devm_thermal_of_zone_register(&pdev->dev,
2192 soc->ttgs[i]->id, zone,
2193 &tegra_of_thermal_ops);
2194 if (IS_ERR(z)) {
2195 err = PTR_ERR(z);
2196 dev_err(&pdev->dev, "failed to register sensor: %d\n",
2197 err);
2198 goto disable_clocks;
2199 }
2200
2201 zone->tz = z;
2202 tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
2203
2204 /* Configure hw trip points */
2205 err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
2206 if (err)
2207 goto disable_clocks;
2208 }
2209
2210 err = soctherm_interrupts_init(pdev, tegra);
2211
2212 soctherm_debug_init(pdev);
2213
2214 return 0;
2215
2216 disable_clocks:
2217 soctherm_clk_enable(pdev, false);
2218
2219 return err;
2220 }
2221
tegra_soctherm_remove(struct platform_device * pdev)2222 static int tegra_soctherm_remove(struct platform_device *pdev)
2223 {
2224 struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2225
2226 debugfs_remove_recursive(tegra->debugfs_dir);
2227
2228 soctherm_clk_enable(pdev, false);
2229
2230 return 0;
2231 }
2232
soctherm_suspend(struct device * dev)2233 static int __maybe_unused soctherm_suspend(struct device *dev)
2234 {
2235 struct platform_device *pdev = to_platform_device(dev);
2236
2237 soctherm_clk_enable(pdev, false);
2238
2239 return 0;
2240 }
2241
soctherm_resume(struct device * dev)2242 static int __maybe_unused soctherm_resume(struct device *dev)
2243 {
2244 struct platform_device *pdev = to_platform_device(dev);
2245 struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2246 struct tegra_soctherm_soc *soc = tegra->soc;
2247 int err, i;
2248
2249 err = soctherm_clk_enable(pdev, true);
2250 if (err) {
2251 dev_err(&pdev->dev,
2252 "Resume failed: enable clocks failed\n");
2253 return err;
2254 }
2255
2256 soctherm_init(pdev);
2257
2258 for (i = 0; i < soc->num_ttgs; ++i) {
2259 struct thermal_zone_device *tz;
2260
2261 tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
2262 err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
2263 if (err) {
2264 dev_err(&pdev->dev,
2265 "Resume failed: set hwtrips failed\n");
2266 return err;
2267 }
2268 }
2269
2270 return 0;
2271 }
2272
2273 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
2274
2275 static struct platform_driver tegra_soctherm_driver = {
2276 .probe = tegra_soctherm_probe,
2277 .remove = tegra_soctherm_remove,
2278 .driver = {
2279 .name = "tegra_soctherm",
2280 .pm = &tegra_soctherm_pm,
2281 .of_match_table = tegra_soctherm_of_match,
2282 },
2283 };
2284 module_platform_driver(tegra_soctherm_driver);
2285
2286 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
2287 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
2288 MODULE_LICENSE("GPL v2");
2289