1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SCSI Primary Commands (SPC) parsing and emulation.
4  *
5  * (c) Copyright 2002-2013 Datera, Inc.
6  *
7  * Nicholas A. Bellinger <nab@kernel.org>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <asm/unaligned.h>
13 
14 #include <scsi/scsi_proto.h>
15 #include <scsi/scsi_common.h>
16 #include <scsi/scsi_tcq.h>
17 
18 #include <target/target_core_base.h>
19 #include <target/target_core_backend.h>
20 #include <target/target_core_fabric.h>
21 
22 #include "target_core_internal.h"
23 #include "target_core_alua.h"
24 #include "target_core_pr.h"
25 #include "target_core_ua.h"
26 #include "target_core_xcopy.h"
27 
spc_fill_alua_data(struct se_lun * lun,unsigned char * buf)28 static void spc_fill_alua_data(struct se_lun *lun, unsigned char *buf)
29 {
30 	struct t10_alua_tg_pt_gp *tg_pt_gp;
31 
32 	/*
33 	 * Set SCCS for MAINTENANCE_IN + REPORT_TARGET_PORT_GROUPS.
34 	 */
35 	buf[5]	= 0x80;
36 
37 	/*
38 	 * Set TPGS field for explicit and/or implicit ALUA access type
39 	 * and opteration.
40 	 *
41 	 * See spc4r17 section 6.4.2 Table 135
42 	 */
43 	rcu_read_lock();
44 	tg_pt_gp = rcu_dereference(lun->lun_tg_pt_gp);
45 	if (tg_pt_gp)
46 		buf[5] |= tg_pt_gp->tg_pt_gp_alua_access_type;
47 	rcu_read_unlock();
48 }
49 
50 static u16
spc_find_scsi_transport_vd(int proto_id)51 spc_find_scsi_transport_vd(int proto_id)
52 {
53 	switch (proto_id) {
54 	case SCSI_PROTOCOL_FCP:
55 		return SCSI_VERSION_DESCRIPTOR_FCP4;
56 	case SCSI_PROTOCOL_ISCSI:
57 		return SCSI_VERSION_DESCRIPTOR_ISCSI;
58 	case SCSI_PROTOCOL_SAS:
59 		return SCSI_VERSION_DESCRIPTOR_SAS3;
60 	case SCSI_PROTOCOL_SBP:
61 		return SCSI_VERSION_DESCRIPTOR_SBP3;
62 	case SCSI_PROTOCOL_SRP:
63 		return SCSI_VERSION_DESCRIPTOR_SRP;
64 	default:
65 		pr_warn("Cannot find VERSION DESCRIPTOR value for unknown SCSI"
66 			" transport PROTOCOL IDENTIFIER %#x\n", proto_id);
67 		return 0;
68 	}
69 }
70 
71 sense_reason_t
spc_emulate_inquiry_std(struct se_cmd * cmd,unsigned char * buf)72 spc_emulate_inquiry_std(struct se_cmd *cmd, unsigned char *buf)
73 {
74 	struct se_lun *lun = cmd->se_lun;
75 	struct se_portal_group *tpg = lun->lun_tpg;
76 	struct se_device *dev = cmd->se_dev;
77 	struct se_session *sess = cmd->se_sess;
78 
79 	/* Set RMB (removable media) for tape devices */
80 	if (dev->transport->get_device_type(dev) == TYPE_TAPE)
81 		buf[1] = 0x80;
82 
83 	buf[2] = 0x06; /* SPC-4 */
84 
85 	/*
86 	 * NORMACA and HISUP = 0, RESPONSE DATA FORMAT = 2
87 	 *
88 	 * SPC4 says:
89 	 *   A RESPONSE DATA FORMAT field set to 2h indicates that the
90 	 *   standard INQUIRY data is in the format defined in this
91 	 *   standard. Response data format values less than 2h are
92 	 *   obsolete. Response data format values greater than 2h are
93 	 *   reserved.
94 	 */
95 	buf[3] = 2;
96 
97 	/*
98 	 * Enable SCCS and TPGS fields for Emulated ALUA
99 	 */
100 	spc_fill_alua_data(lun, buf);
101 
102 	/*
103 	 * Set Third-Party Copy (3PC) bit to indicate support for EXTENDED_COPY
104 	 */
105 	if (dev->dev_attrib.emulate_3pc)
106 		buf[5] |= 0x8;
107 	/*
108 	 * Set Protection (PROTECT) bit when DIF has been enabled on the
109 	 * device, and the fabric supports VERIFY + PASS.  Also report
110 	 * PROTECT=1 if sess_prot_type has been configured to allow T10-PI
111 	 * to unprotected devices.
112 	 */
113 	if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
114 		if (dev->dev_attrib.pi_prot_type || cmd->se_sess->sess_prot_type)
115 			buf[5] |= 0x1;
116 	}
117 
118 	/*
119 	 * Set MULTIP bit to indicate presence of multiple SCSI target ports
120 	 */
121 	if (dev->export_count > 1)
122 		buf[6] |= 0x10;
123 
124 	buf[7] = 0x2; /* CmdQue=1 */
125 
126 	/*
127 	 * ASCII data fields described as being left-aligned shall have any
128 	 * unused bytes at the end of the field (i.e., highest offset) and the
129 	 * unused bytes shall be filled with ASCII space characters (20h).
130 	 */
131 	memset(&buf[8], 0x20,
132 	       INQUIRY_VENDOR_LEN + INQUIRY_MODEL_LEN + INQUIRY_REVISION_LEN);
133 	memcpy(&buf[8], dev->t10_wwn.vendor,
134 	       strnlen(dev->t10_wwn.vendor, INQUIRY_VENDOR_LEN));
135 	memcpy(&buf[16], dev->t10_wwn.model,
136 	       strnlen(dev->t10_wwn.model, INQUIRY_MODEL_LEN));
137 	memcpy(&buf[32], dev->t10_wwn.revision,
138 	       strnlen(dev->t10_wwn.revision, INQUIRY_REVISION_LEN));
139 
140 	/*
141 	 * Set the VERSION DESCRIPTOR fields
142 	 */
143 	put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SAM5, &buf[58]);
144 	put_unaligned_be16(spc_find_scsi_transport_vd(tpg->proto_id), &buf[60]);
145 	put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SPC4, &buf[62]);
146 	if (cmd->se_dev->transport->get_device_type(dev) == TYPE_DISK)
147 		put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SBC3, &buf[64]);
148 
149 	buf[4] = 91; /* Set additional length to 91 */
150 
151 	return 0;
152 }
153 EXPORT_SYMBOL(spc_emulate_inquiry_std);
154 
155 /* unit serial number */
156 static sense_reason_t
spc_emulate_evpd_80(struct se_cmd * cmd,unsigned char * buf)157 spc_emulate_evpd_80(struct se_cmd *cmd, unsigned char *buf)
158 {
159 	struct se_device *dev = cmd->se_dev;
160 	u16 len;
161 
162 	if (dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL) {
163 		len = sprintf(&buf[4], "%s", dev->t10_wwn.unit_serial);
164 		len++; /* Extra Byte for NULL Terminator */
165 		buf[3] = len;
166 	}
167 	return 0;
168 }
169 
170 /*
171  * Generate NAA IEEE Registered Extended designator
172  */
spc_gen_naa_6h_vendor_specific(struct se_device * dev,unsigned char * buf)173 void spc_gen_naa_6h_vendor_specific(struct se_device *dev,
174 				    unsigned char *buf)
175 {
176 	unsigned char *p = &dev->t10_wwn.unit_serial[0];
177 	u32 company_id = dev->t10_wwn.company_id;
178 	int cnt, off = 0;
179 	bool next = true;
180 
181 	/*
182 	 * Start NAA IEEE Registered Extended Identifier/Designator
183 	 */
184 	buf[off] = 0x6 << 4;
185 
186 	/* IEEE COMPANY_ID */
187 	buf[off++] |= (company_id >> 20) & 0xf;
188 	buf[off++] = (company_id >> 12) & 0xff;
189 	buf[off++] = (company_id >> 4) & 0xff;
190 	buf[off] = (company_id & 0xf) << 4;
191 
192 	/*
193 	 * Generate up to 36 bits of VENDOR SPECIFIC IDENTIFIER starting on
194 	 * byte 3 bit 3-0 for NAA IEEE Registered Extended DESIGNATOR field
195 	 * format, followed by 64 bits of VENDOR SPECIFIC IDENTIFIER EXTENSION
196 	 * to complete the payload.  These are based from VPD=0x80 PRODUCT SERIAL
197 	 * NUMBER set via vpd_unit_serial in target_core_configfs.c to ensure
198 	 * per device uniqeness.
199 	 */
200 	for (cnt = off + 13; *p && off < cnt; p++) {
201 		int val = hex_to_bin(*p);
202 
203 		if (val < 0)
204 			continue;
205 
206 		if (next) {
207 			next = false;
208 			buf[off++] |= val;
209 		} else {
210 			next = true;
211 			buf[off] = val << 4;
212 		}
213 	}
214 }
215 
216 /*
217  * Device identification VPD, for a complete list of
218  * DESIGNATOR TYPEs see spc4r17 Table 459.
219  */
220 sense_reason_t
spc_emulate_evpd_83(struct se_cmd * cmd,unsigned char * buf)221 spc_emulate_evpd_83(struct se_cmd *cmd, unsigned char *buf)
222 {
223 	struct se_device *dev = cmd->se_dev;
224 	struct se_lun *lun = cmd->se_lun;
225 	struct se_portal_group *tpg = NULL;
226 	struct t10_alua_lu_gp_member *lu_gp_mem;
227 	struct t10_alua_tg_pt_gp *tg_pt_gp;
228 	unsigned char *prod = &dev->t10_wwn.model[0];
229 	u32 off = 0;
230 	u16 len = 0, id_len;
231 
232 	off = 4;
233 
234 	/*
235 	 * NAA IEEE Registered Extended Assigned designator format, see
236 	 * spc4r17 section 7.7.3.6.5
237 	 *
238 	 * We depend upon a target_core_mod/ConfigFS provided
239 	 * /sys/kernel/config/target/core/$HBA/$DEV/wwn/vpd_unit_serial
240 	 * value in order to return the NAA id.
241 	 */
242 	if (!(dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL))
243 		goto check_t10_vend_desc;
244 
245 	/* CODE SET == Binary */
246 	buf[off++] = 0x1;
247 
248 	/* Set ASSOCIATION == addressed logical unit: 0)b */
249 	buf[off] = 0x00;
250 
251 	/* Identifier/Designator type == NAA identifier */
252 	buf[off++] |= 0x3;
253 	off++;
254 
255 	/* Identifier/Designator length */
256 	buf[off++] = 0x10;
257 
258 	/* NAA IEEE Registered Extended designator */
259 	spc_gen_naa_6h_vendor_specific(dev, &buf[off]);
260 
261 	len = 20;
262 	off = (len + 4);
263 
264 check_t10_vend_desc:
265 	/*
266 	 * T10 Vendor Identifier Page, see spc4r17 section 7.7.3.4
267 	 */
268 	id_len = 8; /* For Vendor field */
269 
270 	if (dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL)
271 		id_len += sprintf(&buf[off+12], "%s:%s", prod,
272 				&dev->t10_wwn.unit_serial[0]);
273 	buf[off] = 0x2; /* ASCII */
274 	buf[off+1] = 0x1; /* T10 Vendor ID */
275 	buf[off+2] = 0x0;
276 	/* left align Vendor ID and pad with spaces */
277 	memset(&buf[off+4], 0x20, INQUIRY_VENDOR_LEN);
278 	memcpy(&buf[off+4], dev->t10_wwn.vendor,
279 	       strnlen(dev->t10_wwn.vendor, INQUIRY_VENDOR_LEN));
280 	/* Extra Byte for NULL Terminator */
281 	id_len++;
282 	/* Identifier Length */
283 	buf[off+3] = id_len;
284 	/* Header size for Designation descriptor */
285 	len += (id_len + 4);
286 	off += (id_len + 4);
287 
288 	if (1) {
289 		struct t10_alua_lu_gp *lu_gp;
290 		u32 padding, scsi_name_len, scsi_target_len;
291 		u16 lu_gp_id = 0;
292 		u16 tg_pt_gp_id = 0;
293 		u16 tpgt;
294 
295 		tpg = lun->lun_tpg;
296 		/*
297 		 * Relative target port identifer, see spc4r17
298 		 * section 7.7.3.7
299 		 *
300 		 * Get the PROTOCOL IDENTIFIER as defined by spc4r17
301 		 * section 7.5.1 Table 362
302 		 */
303 		buf[off] = tpg->proto_id << 4;
304 		buf[off++] |= 0x1; /* CODE SET == Binary */
305 		buf[off] = 0x80; /* Set PIV=1 */
306 		/* Set ASSOCIATION == target port: 01b */
307 		buf[off] |= 0x10;
308 		/* DESIGNATOR TYPE == Relative target port identifer */
309 		buf[off++] |= 0x4;
310 		off++; /* Skip over Reserved */
311 		buf[off++] = 4; /* DESIGNATOR LENGTH */
312 		/* Skip over Obsolete field in RTPI payload
313 		 * in Table 472 */
314 		off += 2;
315 		put_unaligned_be16(lun->lun_tpg->tpg_rtpi, &buf[off]);
316 		off += 2;
317 		len += 8; /* Header size + Designation descriptor */
318 		/*
319 		 * Target port group identifier, see spc4r17
320 		 * section 7.7.3.8
321 		 *
322 		 * Get the PROTOCOL IDENTIFIER as defined by spc4r17
323 		 * section 7.5.1 Table 362
324 		 */
325 		rcu_read_lock();
326 		tg_pt_gp = rcu_dereference(lun->lun_tg_pt_gp);
327 		if (!tg_pt_gp) {
328 			rcu_read_unlock();
329 			goto check_lu_gp;
330 		}
331 		tg_pt_gp_id = tg_pt_gp->tg_pt_gp_id;
332 		rcu_read_unlock();
333 
334 		buf[off] = tpg->proto_id << 4;
335 		buf[off++] |= 0x1; /* CODE SET == Binary */
336 		buf[off] = 0x80; /* Set PIV=1 */
337 		/* Set ASSOCIATION == target port: 01b */
338 		buf[off] |= 0x10;
339 		/* DESIGNATOR TYPE == Target port group identifier */
340 		buf[off++] |= 0x5;
341 		off++; /* Skip over Reserved */
342 		buf[off++] = 4; /* DESIGNATOR LENGTH */
343 		off += 2; /* Skip over Reserved Field */
344 		put_unaligned_be16(tg_pt_gp_id, &buf[off]);
345 		off += 2;
346 		len += 8; /* Header size + Designation descriptor */
347 		/*
348 		 * Logical Unit Group identifier, see spc4r17
349 		 * section 7.7.3.8
350 		 */
351 check_lu_gp:
352 		lu_gp_mem = dev->dev_alua_lu_gp_mem;
353 		if (!lu_gp_mem)
354 			goto check_scsi_name;
355 
356 		spin_lock(&lu_gp_mem->lu_gp_mem_lock);
357 		lu_gp = lu_gp_mem->lu_gp;
358 		if (!lu_gp) {
359 			spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
360 			goto check_scsi_name;
361 		}
362 		lu_gp_id = lu_gp->lu_gp_id;
363 		spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
364 
365 		buf[off++] |= 0x1; /* CODE SET == Binary */
366 		/* DESIGNATOR TYPE == Logical Unit Group identifier */
367 		buf[off++] |= 0x6;
368 		off++; /* Skip over Reserved */
369 		buf[off++] = 4; /* DESIGNATOR LENGTH */
370 		off += 2; /* Skip over Reserved Field */
371 		put_unaligned_be16(lu_gp_id, &buf[off]);
372 		off += 2;
373 		len += 8; /* Header size + Designation descriptor */
374 		/*
375 		 * SCSI name string designator, see spc4r17
376 		 * section 7.7.3.11
377 		 *
378 		 * Get the PROTOCOL IDENTIFIER as defined by spc4r17
379 		 * section 7.5.1 Table 362
380 		 */
381 check_scsi_name:
382 		buf[off] = tpg->proto_id << 4;
383 		buf[off++] |= 0x3; /* CODE SET == UTF-8 */
384 		buf[off] = 0x80; /* Set PIV=1 */
385 		/* Set ASSOCIATION == target port: 01b */
386 		buf[off] |= 0x10;
387 		/* DESIGNATOR TYPE == SCSI name string */
388 		buf[off++] |= 0x8;
389 		off += 2; /* Skip over Reserved and length */
390 		/*
391 		 * SCSI name string identifer containing, $FABRIC_MOD
392 		 * dependent information.  For LIO-Target and iSCSI
393 		 * Target Port, this means "<iSCSI name>,t,0x<TPGT> in
394 		 * UTF-8 encoding.
395 		 */
396 		tpgt = tpg->se_tpg_tfo->tpg_get_tag(tpg);
397 		scsi_name_len = sprintf(&buf[off], "%s,t,0x%04x",
398 					tpg->se_tpg_tfo->tpg_get_wwn(tpg), tpgt);
399 		scsi_name_len += 1 /* Include  NULL terminator */;
400 		/*
401 		 * The null-terminated, null-padded (see 4.4.2) SCSI
402 		 * NAME STRING field contains a UTF-8 format string.
403 		 * The number of bytes in the SCSI NAME STRING field
404 		 * (i.e., the value in the DESIGNATOR LENGTH field)
405 		 * shall be no larger than 256 and shall be a multiple
406 		 * of four.
407 		 */
408 		padding = ((-scsi_name_len) & 3);
409 		if (padding)
410 			scsi_name_len += padding;
411 		if (scsi_name_len > 256)
412 			scsi_name_len = 256;
413 
414 		buf[off-1] = scsi_name_len;
415 		off += scsi_name_len;
416 		/* Header size + Designation descriptor */
417 		len += (scsi_name_len + 4);
418 
419 		/*
420 		 * Target device designator
421 		 */
422 		buf[off] = tpg->proto_id << 4;
423 		buf[off++] |= 0x3; /* CODE SET == UTF-8 */
424 		buf[off] = 0x80; /* Set PIV=1 */
425 		/* Set ASSOCIATION == target device: 10b */
426 		buf[off] |= 0x20;
427 		/* DESIGNATOR TYPE == SCSI name string */
428 		buf[off++] |= 0x8;
429 		off += 2; /* Skip over Reserved and length */
430 		/*
431 		 * SCSI name string identifer containing, $FABRIC_MOD
432 		 * dependent information.  For LIO-Target and iSCSI
433 		 * Target Port, this means "<iSCSI name>" in
434 		 * UTF-8 encoding.
435 		 */
436 		scsi_target_len = sprintf(&buf[off], "%s",
437 					  tpg->se_tpg_tfo->tpg_get_wwn(tpg));
438 		scsi_target_len += 1 /* Include  NULL terminator */;
439 		/*
440 		 * The null-terminated, null-padded (see 4.4.2) SCSI
441 		 * NAME STRING field contains a UTF-8 format string.
442 		 * The number of bytes in the SCSI NAME STRING field
443 		 * (i.e., the value in the DESIGNATOR LENGTH field)
444 		 * shall be no larger than 256 and shall be a multiple
445 		 * of four.
446 		 */
447 		padding = ((-scsi_target_len) & 3);
448 		if (padding)
449 			scsi_target_len += padding;
450 		if (scsi_target_len > 256)
451 			scsi_target_len = 256;
452 
453 		buf[off-1] = scsi_target_len;
454 		off += scsi_target_len;
455 
456 		/* Header size + Designation descriptor */
457 		len += (scsi_target_len + 4);
458 	}
459 	put_unaligned_be16(len, &buf[2]); /* Page Length for VPD 0x83 */
460 	return 0;
461 }
462 EXPORT_SYMBOL(spc_emulate_evpd_83);
463 
464 /* Extended INQUIRY Data VPD Page */
465 static sense_reason_t
spc_emulate_evpd_86(struct se_cmd * cmd,unsigned char * buf)466 spc_emulate_evpd_86(struct se_cmd *cmd, unsigned char *buf)
467 {
468 	struct se_device *dev = cmd->se_dev;
469 	struct se_session *sess = cmd->se_sess;
470 
471 	buf[3] = 0x3c;
472 	/*
473 	 * Set GRD_CHK + REF_CHK for TYPE1 protection, or GRD_CHK
474 	 * only for TYPE3 protection.
475 	 */
476 	if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
477 		if (dev->dev_attrib.pi_prot_type == TARGET_DIF_TYPE1_PROT ||
478 		    cmd->se_sess->sess_prot_type == TARGET_DIF_TYPE1_PROT)
479 			buf[4] = 0x5;
480 		else if (dev->dev_attrib.pi_prot_type == TARGET_DIF_TYPE3_PROT ||
481 			 cmd->se_sess->sess_prot_type == TARGET_DIF_TYPE3_PROT)
482 			buf[4] = 0x4;
483 	}
484 
485 	/* logical unit supports type 1 and type 3 protection */
486 	if ((dev->transport->get_device_type(dev) == TYPE_DISK) &&
487 	    (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) &&
488 	    (dev->dev_attrib.pi_prot_type || cmd->se_sess->sess_prot_type)) {
489 		buf[4] |= (0x3 << 3);
490 	}
491 
492 	/* Set HEADSUP, ORDSUP, SIMPSUP */
493 	buf[5] = 0x07;
494 
495 	/* If WriteCache emulation is enabled, set V_SUP */
496 	if (target_check_wce(dev))
497 		buf[6] = 0x01;
498 	/* If an LBA map is present set R_SUP */
499 	spin_lock(&cmd->se_dev->t10_alua.lba_map_lock);
500 	if (!list_empty(&dev->t10_alua.lba_map_list))
501 		buf[8] = 0x10;
502 	spin_unlock(&cmd->se_dev->t10_alua.lba_map_lock);
503 	return 0;
504 }
505 
506 /* Block Limits VPD page */
507 static sense_reason_t
spc_emulate_evpd_b0(struct se_cmd * cmd,unsigned char * buf)508 spc_emulate_evpd_b0(struct se_cmd *cmd, unsigned char *buf)
509 {
510 	struct se_device *dev = cmd->se_dev;
511 	u32 mtl = 0;
512 	int have_tp = 0, opt, min;
513 	u32 io_max_blocks;
514 
515 	/*
516 	 * Following spc3r22 section 6.5.3 Block Limits VPD page, when
517 	 * emulate_tpu=1 or emulate_tpws=1 we will be expect a
518 	 * different page length for Thin Provisioning.
519 	 */
520 	if (dev->dev_attrib.emulate_tpu || dev->dev_attrib.emulate_tpws)
521 		have_tp = 1;
522 
523 	buf[0] = dev->transport->get_device_type(dev);
524 	buf[3] = have_tp ? 0x3c : 0x10;
525 
526 	/* Set WSNZ to 1 */
527 	buf[4] = 0x01;
528 	/*
529 	 * Set MAXIMUM COMPARE AND WRITE LENGTH
530 	 */
531 	if (dev->dev_attrib.emulate_caw)
532 		buf[5] = 0x01;
533 
534 	/*
535 	 * Set OPTIMAL TRANSFER LENGTH GRANULARITY
536 	 */
537 	if (dev->transport->get_io_min && (min = dev->transport->get_io_min(dev)))
538 		put_unaligned_be16(min / dev->dev_attrib.block_size, &buf[6]);
539 	else
540 		put_unaligned_be16(1, &buf[6]);
541 
542 	/*
543 	 * Set MAXIMUM TRANSFER LENGTH
544 	 *
545 	 * XXX: Currently assumes single PAGE_SIZE per scatterlist for fabrics
546 	 * enforcing maximum HW scatter-gather-list entry limit
547 	 */
548 	if (cmd->se_tfo->max_data_sg_nents) {
549 		mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE) /
550 		       dev->dev_attrib.block_size;
551 	}
552 	io_max_blocks = mult_frac(dev->dev_attrib.hw_max_sectors,
553 			dev->dev_attrib.hw_block_size,
554 			dev->dev_attrib.block_size);
555 	put_unaligned_be32(min_not_zero(mtl, io_max_blocks), &buf[8]);
556 
557 	/*
558 	 * Set OPTIMAL TRANSFER LENGTH
559 	 */
560 	if (dev->transport->get_io_opt && (opt = dev->transport->get_io_opt(dev)))
561 		put_unaligned_be32(opt / dev->dev_attrib.block_size, &buf[12]);
562 	else
563 		put_unaligned_be32(dev->dev_attrib.optimal_sectors, &buf[12]);
564 
565 	/*
566 	 * Exit now if we don't support TP.
567 	 */
568 	if (!have_tp)
569 		goto max_write_same;
570 
571 	/*
572 	 * Set MAXIMUM UNMAP LBA COUNT
573 	 */
574 	put_unaligned_be32(dev->dev_attrib.max_unmap_lba_count, &buf[20]);
575 
576 	/*
577 	 * Set MAXIMUM UNMAP BLOCK DESCRIPTOR COUNT
578 	 */
579 	put_unaligned_be32(dev->dev_attrib.max_unmap_block_desc_count,
580 			   &buf[24]);
581 
582 	/*
583 	 * Set OPTIMAL UNMAP GRANULARITY
584 	 */
585 	put_unaligned_be32(dev->dev_attrib.unmap_granularity, &buf[28]);
586 
587 	/*
588 	 * UNMAP GRANULARITY ALIGNMENT
589 	 */
590 	put_unaligned_be32(dev->dev_attrib.unmap_granularity_alignment,
591 			   &buf[32]);
592 	if (dev->dev_attrib.unmap_granularity_alignment != 0)
593 		buf[32] |= 0x80; /* Set the UGAVALID bit */
594 
595 	/*
596 	 * MAXIMUM WRITE SAME LENGTH
597 	 */
598 max_write_same:
599 	put_unaligned_be64(dev->dev_attrib.max_write_same_len, &buf[36]);
600 
601 	return 0;
602 }
603 
604 /* Block Device Characteristics VPD page */
605 static sense_reason_t
spc_emulate_evpd_b1(struct se_cmd * cmd,unsigned char * buf)606 spc_emulate_evpd_b1(struct se_cmd *cmd, unsigned char *buf)
607 {
608 	struct se_device *dev = cmd->se_dev;
609 
610 	buf[0] = dev->transport->get_device_type(dev);
611 	buf[3] = 0x3c;
612 	buf[5] = dev->dev_attrib.is_nonrot ? 1 : 0;
613 
614 	return 0;
615 }
616 
617 /* Thin Provisioning VPD */
618 static sense_reason_t
spc_emulate_evpd_b2(struct se_cmd * cmd,unsigned char * buf)619 spc_emulate_evpd_b2(struct se_cmd *cmd, unsigned char *buf)
620 {
621 	struct se_device *dev = cmd->se_dev;
622 
623 	/*
624 	 * From spc3r22 section 6.5.4 Thin Provisioning VPD page:
625 	 *
626 	 * The PAGE LENGTH field is defined in SPC-4. If the DP bit is set to
627 	 * zero, then the page length shall be set to 0004h.  If the DP bit
628 	 * is set to one, then the page length shall be set to the value
629 	 * defined in table 162.
630 	 */
631 	buf[0] = dev->transport->get_device_type(dev);
632 
633 	/*
634 	 * Set Hardcoded length mentioned above for DP=0
635 	 */
636 	put_unaligned_be16(0x0004, &buf[2]);
637 
638 	/*
639 	 * The THRESHOLD EXPONENT field indicates the threshold set size in
640 	 * LBAs as a power of 2 (i.e., the threshold set size is equal to
641 	 * 2(threshold exponent)).
642 	 *
643 	 * Note that this is currently set to 0x00 as mkp says it will be
644 	 * changing again.  We can enable this once it has settled in T10
645 	 * and is actually used by Linux/SCSI ML code.
646 	 */
647 	buf[4] = 0x00;
648 
649 	/*
650 	 * A TPU bit set to one indicates that the device server supports
651 	 * the UNMAP command (see 5.25). A TPU bit set to zero indicates
652 	 * that the device server does not support the UNMAP command.
653 	 */
654 	if (dev->dev_attrib.emulate_tpu != 0)
655 		buf[5] = 0x80;
656 
657 	/*
658 	 * A TPWS bit set to one indicates that the device server supports
659 	 * the use of the WRITE SAME (16) command (see 5.42) to unmap LBAs.
660 	 * A TPWS bit set to zero indicates that the device server does not
661 	 * support the use of the WRITE SAME (16) command to unmap LBAs.
662 	 */
663 	if (dev->dev_attrib.emulate_tpws != 0)
664 		buf[5] |= 0x40 | 0x20;
665 
666 	/*
667 	 * The unmap_zeroes_data set means that the underlying device supports
668 	 * REQ_OP_DISCARD and has the discard_zeroes_data bit set. This
669 	 * satisfies the SBC requirements for LBPRZ, meaning that a subsequent
670 	 * read will return zeroes after an UNMAP or WRITE SAME (16) to an LBA
671 	 * See sbc4r36 6.6.4.
672 	 */
673 	if (((dev->dev_attrib.emulate_tpu != 0) ||
674 	     (dev->dev_attrib.emulate_tpws != 0)) &&
675 	     (dev->dev_attrib.unmap_zeroes_data != 0))
676 		buf[5] |= 0x04;
677 
678 	return 0;
679 }
680 
681 /* Referrals VPD page */
682 static sense_reason_t
spc_emulate_evpd_b3(struct se_cmd * cmd,unsigned char * buf)683 spc_emulate_evpd_b3(struct se_cmd *cmd, unsigned char *buf)
684 {
685 	struct se_device *dev = cmd->se_dev;
686 
687 	buf[0] = dev->transport->get_device_type(dev);
688 	buf[3] = 0x0c;
689 	put_unaligned_be32(dev->t10_alua.lba_map_segment_size, &buf[8]);
690 	put_unaligned_be32(dev->t10_alua.lba_map_segment_multiplier, &buf[12]);
691 
692 	return 0;
693 }
694 
695 static sense_reason_t
696 spc_emulate_evpd_00(struct se_cmd *cmd, unsigned char *buf);
697 
698 static struct {
699 	uint8_t		page;
700 	sense_reason_t	(*emulate)(struct se_cmd *, unsigned char *);
701 } evpd_handlers[] = {
702 	{ .page = 0x00, .emulate = spc_emulate_evpd_00 },
703 	{ .page = 0x80, .emulate = spc_emulate_evpd_80 },
704 	{ .page = 0x83, .emulate = spc_emulate_evpd_83 },
705 	{ .page = 0x86, .emulate = spc_emulate_evpd_86 },
706 	{ .page = 0xb0, .emulate = spc_emulate_evpd_b0 },
707 	{ .page = 0xb1, .emulate = spc_emulate_evpd_b1 },
708 	{ .page = 0xb2, .emulate = spc_emulate_evpd_b2 },
709 	{ .page = 0xb3, .emulate = spc_emulate_evpd_b3 },
710 };
711 
712 /* supported vital product data pages */
713 static sense_reason_t
spc_emulate_evpd_00(struct se_cmd * cmd,unsigned char * buf)714 spc_emulate_evpd_00(struct se_cmd *cmd, unsigned char *buf)
715 {
716 	int p;
717 
718 	/*
719 	 * Only report the INQUIRY EVPD=1 pages after a valid NAA
720 	 * Registered Extended LUN WWN has been set via ConfigFS
721 	 * during device creation/restart.
722 	 */
723 	if (cmd->se_dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL) {
724 		buf[3] = ARRAY_SIZE(evpd_handlers);
725 		for (p = 0; p < ARRAY_SIZE(evpd_handlers); ++p)
726 			buf[p + 4] = evpd_handlers[p].page;
727 	}
728 
729 	return 0;
730 }
731 
732 static sense_reason_t
spc_emulate_inquiry(struct se_cmd * cmd)733 spc_emulate_inquiry(struct se_cmd *cmd)
734 {
735 	struct se_device *dev = cmd->se_dev;
736 	unsigned char *rbuf;
737 	unsigned char *cdb = cmd->t_task_cdb;
738 	unsigned char *buf;
739 	sense_reason_t ret;
740 	int p;
741 	int len = 0;
742 
743 	buf = kzalloc(SE_INQUIRY_BUF, GFP_KERNEL);
744 	if (!buf) {
745 		pr_err("Unable to allocate response buffer for INQUIRY\n");
746 		return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
747 	}
748 
749 	buf[0] = dev->transport->get_device_type(dev);
750 
751 	if (!(cdb[1] & 0x1)) {
752 		if (cdb[2]) {
753 			pr_err("INQUIRY with EVPD==0 but PAGE CODE=%02x\n",
754 			       cdb[2]);
755 			ret = TCM_INVALID_CDB_FIELD;
756 			goto out;
757 		}
758 
759 		ret = spc_emulate_inquiry_std(cmd, buf);
760 		len = buf[4] + 5;
761 		goto out;
762 	}
763 
764 	for (p = 0; p < ARRAY_SIZE(evpd_handlers); ++p) {
765 		if (cdb[2] == evpd_handlers[p].page) {
766 			buf[1] = cdb[2];
767 			ret = evpd_handlers[p].emulate(cmd, buf);
768 			len = get_unaligned_be16(&buf[2]) + 4;
769 			goto out;
770 		}
771 	}
772 
773 	pr_debug("Unknown VPD Code: 0x%02x\n", cdb[2]);
774 	ret = TCM_INVALID_CDB_FIELD;
775 
776 out:
777 	rbuf = transport_kmap_data_sg(cmd);
778 	if (rbuf) {
779 		memcpy(rbuf, buf, min_t(u32, SE_INQUIRY_BUF, cmd->data_length));
780 		transport_kunmap_data_sg(cmd);
781 	}
782 	kfree(buf);
783 
784 	if (!ret)
785 		target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, len);
786 	return ret;
787 }
788 
spc_modesense_rwrecovery(struct se_cmd * cmd,u8 pc,u8 * p)789 static int spc_modesense_rwrecovery(struct se_cmd *cmd, u8 pc, u8 *p)
790 {
791 	p[0] = 0x01;
792 	p[1] = 0x0a;
793 
794 	/* No changeable values for now */
795 	if (pc == 1)
796 		goto out;
797 
798 out:
799 	return 12;
800 }
801 
spc_modesense_control(struct se_cmd * cmd,u8 pc,u8 * p)802 static int spc_modesense_control(struct se_cmd *cmd, u8 pc, u8 *p)
803 {
804 	struct se_device *dev = cmd->se_dev;
805 	struct se_session *sess = cmd->se_sess;
806 
807 	p[0] = 0x0a;
808 	p[1] = 0x0a;
809 
810 	/* No changeable values for now */
811 	if (pc == 1)
812 		goto out;
813 
814 	/* GLTSD: No implicit save of log parameters */
815 	p[2] = (1 << 1);
816 	if (target_sense_desc_format(dev))
817 		/* D_SENSE: Descriptor format sense data for 64bit sectors */
818 		p[2] |= (1 << 2);
819 
820 	/*
821 	 * From spc4r23, 7.4.7 Control mode page
822 	 *
823 	 * The QUEUE ALGORITHM MODIFIER field (see table 368) specifies
824 	 * restrictions on the algorithm used for reordering commands
825 	 * having the SIMPLE task attribute (see SAM-4).
826 	 *
827 	 *                    Table 368 -- QUEUE ALGORITHM MODIFIER field
828 	 *                         Code      Description
829 	 *                          0h       Restricted reordering
830 	 *                          1h       Unrestricted reordering allowed
831 	 *                          2h to 7h    Reserved
832 	 *                          8h to Fh    Vendor specific
833 	 *
834 	 * A value of zero in the QUEUE ALGORITHM MODIFIER field specifies that
835 	 * the device server shall order the processing sequence of commands
836 	 * having the SIMPLE task attribute such that data integrity is maintained
837 	 * for that I_T nexus (i.e., if the transmission of new SCSI transport protocol
838 	 * requests is halted at any time, the final value of all data observable
839 	 * on the medium shall be the same as if all the commands had been processed
840 	 * with the ORDERED task attribute).
841 	 *
842 	 * A value of one in the QUEUE ALGORITHM MODIFIER field specifies that the
843 	 * device server may reorder the processing sequence of commands having the
844 	 * SIMPLE task attribute in any manner. Any data integrity exposures related to
845 	 * command sequence order shall be explicitly handled by the application client
846 	 * through the selection of appropriate ommands and task attributes.
847 	 */
848 	p[3] = (dev->dev_attrib.emulate_rest_reord == 1) ? 0x00 : 0x10;
849 	/*
850 	 * From spc4r17, section 7.4.6 Control mode Page
851 	 *
852 	 * Unit Attention interlocks control (UN_INTLCK_CTRL) to code 00b
853 	 *
854 	 * 00b: The logical unit shall clear any unit attention condition
855 	 * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
856 	 * status and shall not establish a unit attention condition when a com-
857 	 * mand is completed with BUSY, TASK SET FULL, or RESERVATION CONFLICT
858 	 * status.
859 	 *
860 	 * 10b: The logical unit shall not clear any unit attention condition
861 	 * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
862 	 * status and shall not establish a unit attention condition when
863 	 * a command is completed with BUSY, TASK SET FULL, or RESERVATION
864 	 * CONFLICT status.
865 	 *
866 	 * 11b a The logical unit shall not clear any unit attention condition
867 	 * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
868 	 * status and shall establish a unit attention condition for the
869 	 * initiator port associated with the I_T nexus on which the BUSY,
870 	 * TASK SET FULL, or RESERVATION CONFLICT status is being returned.
871 	 * Depending on the status, the additional sense code shall be set to
872 	 * PREVIOUS BUSY STATUS, PREVIOUS TASK SET FULL STATUS, or PREVIOUS
873 	 * RESERVATION CONFLICT STATUS. Until it is cleared by a REQUEST SENSE
874 	 * command, a unit attention condition shall be established only once
875 	 * for a BUSY, TASK SET FULL, or RESERVATION CONFLICT status regardless
876 	 * to the number of commands completed with one of those status codes.
877 	 */
878 	switch (dev->dev_attrib.emulate_ua_intlck_ctrl) {
879 	case TARGET_UA_INTLCK_CTRL_ESTABLISH_UA:
880 		p[4] = 0x30;
881 		break;
882 	case TARGET_UA_INTLCK_CTRL_NO_CLEAR:
883 		p[4] = 0x20;
884 		break;
885 	default:	/* TARGET_UA_INTLCK_CTRL_CLEAR */
886 		p[4] = 0x00;
887 		break;
888 	}
889 	/*
890 	 * From spc4r17, section 7.4.6 Control mode Page
891 	 *
892 	 * Task Aborted Status (TAS) bit set to zero.
893 	 *
894 	 * A task aborted status (TAS) bit set to zero specifies that aborted
895 	 * tasks shall be terminated by the device server without any response
896 	 * to the application client. A TAS bit set to one specifies that tasks
897 	 * aborted by the actions of an I_T nexus other than the I_T nexus on
898 	 * which the command was received shall be completed with TASK ABORTED
899 	 * status (see SAM-4).
900 	 */
901 	p[5] = (dev->dev_attrib.emulate_tas) ? 0x40 : 0x00;
902 	/*
903 	 * From spc4r30, section 7.5.7 Control mode page
904 	 *
905 	 * Application Tag Owner (ATO) bit set to one.
906 	 *
907 	 * If the ATO bit is set to one the device server shall not modify the
908 	 * LOGICAL BLOCK APPLICATION TAG field and, depending on the protection
909 	 * type, shall not modify the contents of the LOGICAL BLOCK REFERENCE
910 	 * TAG field.
911 	 */
912 	if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
913 		if (dev->dev_attrib.pi_prot_type || sess->sess_prot_type)
914 			p[5] |= 0x80;
915 	}
916 
917 	p[8] = 0xff;
918 	p[9] = 0xff;
919 	p[11] = 30;
920 
921 out:
922 	return 12;
923 }
924 
spc_modesense_caching(struct se_cmd * cmd,u8 pc,u8 * p)925 static int spc_modesense_caching(struct se_cmd *cmd, u8 pc, u8 *p)
926 {
927 	struct se_device *dev = cmd->se_dev;
928 
929 	p[0] = 0x08;
930 	p[1] = 0x12;
931 
932 	/* No changeable values for now */
933 	if (pc == 1)
934 		goto out;
935 
936 	if (target_check_wce(dev))
937 		p[2] = 0x04; /* Write Cache Enable */
938 	p[12] = 0x20; /* Disabled Read Ahead */
939 
940 out:
941 	return 20;
942 }
943 
spc_modesense_informational_exceptions(struct se_cmd * cmd,u8 pc,unsigned char * p)944 static int spc_modesense_informational_exceptions(struct se_cmd *cmd, u8 pc, unsigned char *p)
945 {
946 	p[0] = 0x1c;
947 	p[1] = 0x0a;
948 
949 	/* No changeable values for now */
950 	if (pc == 1)
951 		goto out;
952 
953 out:
954 	return 12;
955 }
956 
957 static struct {
958 	uint8_t		page;
959 	uint8_t		subpage;
960 	int		(*emulate)(struct se_cmd *, u8, unsigned char *);
961 } modesense_handlers[] = {
962 	{ .page = 0x01, .subpage = 0x00, .emulate = spc_modesense_rwrecovery },
963 	{ .page = 0x08, .subpage = 0x00, .emulate = spc_modesense_caching },
964 	{ .page = 0x0a, .subpage = 0x00, .emulate = spc_modesense_control },
965 	{ .page = 0x1c, .subpage = 0x00, .emulate = spc_modesense_informational_exceptions },
966 };
967 
spc_modesense_write_protect(unsigned char * buf,int type)968 static void spc_modesense_write_protect(unsigned char *buf, int type)
969 {
970 	/*
971 	 * I believe that the WP bit (bit 7) in the mode header is the same for
972 	 * all device types..
973 	 */
974 	switch (type) {
975 	case TYPE_DISK:
976 	case TYPE_TAPE:
977 	default:
978 		buf[0] |= 0x80; /* WP bit */
979 		break;
980 	}
981 }
982 
spc_modesense_dpofua(unsigned char * buf,int type)983 static void spc_modesense_dpofua(unsigned char *buf, int type)
984 {
985 	switch (type) {
986 	case TYPE_DISK:
987 		buf[0] |= 0x10; /* DPOFUA bit */
988 		break;
989 	default:
990 		break;
991 	}
992 }
993 
spc_modesense_blockdesc(unsigned char * buf,u64 blocks,u32 block_size)994 static int spc_modesense_blockdesc(unsigned char *buf, u64 blocks, u32 block_size)
995 {
996 	*buf++ = 8;
997 	put_unaligned_be32(min(blocks, 0xffffffffull), buf);
998 	buf += 4;
999 	put_unaligned_be32(block_size, buf);
1000 	return 9;
1001 }
1002 
spc_modesense_long_blockdesc(unsigned char * buf,u64 blocks,u32 block_size)1003 static int spc_modesense_long_blockdesc(unsigned char *buf, u64 blocks, u32 block_size)
1004 {
1005 	if (blocks <= 0xffffffff)
1006 		return spc_modesense_blockdesc(buf + 3, blocks, block_size) + 3;
1007 
1008 	*buf++ = 1;		/* LONGLBA */
1009 	buf += 2;
1010 	*buf++ = 16;
1011 	put_unaligned_be64(blocks, buf);
1012 	buf += 12;
1013 	put_unaligned_be32(block_size, buf);
1014 
1015 	return 17;
1016 }
1017 
spc_emulate_modesense(struct se_cmd * cmd)1018 static sense_reason_t spc_emulate_modesense(struct se_cmd *cmd)
1019 {
1020 	struct se_device *dev = cmd->se_dev;
1021 	char *cdb = cmd->t_task_cdb;
1022 	unsigned char buf[SE_MODE_PAGE_BUF], *rbuf;
1023 	int type = dev->transport->get_device_type(dev);
1024 	int ten = (cmd->t_task_cdb[0] == MODE_SENSE_10);
1025 	bool dbd = !!(cdb[1] & 0x08);
1026 	bool llba = ten ? !!(cdb[1] & 0x10) : false;
1027 	u8 pc = cdb[2] >> 6;
1028 	u8 page = cdb[2] & 0x3f;
1029 	u8 subpage = cdb[3];
1030 	int length = 0;
1031 	int ret;
1032 	int i;
1033 
1034 	memset(buf, 0, SE_MODE_PAGE_BUF);
1035 
1036 	/*
1037 	 * Skip over MODE DATA LENGTH + MEDIUM TYPE fields to byte 3 for
1038 	 * MODE_SENSE_10 and byte 2 for MODE_SENSE (6).
1039 	 */
1040 	length = ten ? 3 : 2;
1041 
1042 	/* DEVICE-SPECIFIC PARAMETER */
1043 	if (cmd->se_lun->lun_access_ro || target_lun_is_rdonly(cmd))
1044 		spc_modesense_write_protect(&buf[length], type);
1045 
1046 	/*
1047 	 * SBC only allows us to enable FUA and DPO together.  Fortunately
1048 	 * DPO is explicitly specified as a hint, so a noop is a perfectly
1049 	 * valid implementation.
1050 	 */
1051 	if (target_check_fua(dev))
1052 		spc_modesense_dpofua(&buf[length], type);
1053 
1054 	++length;
1055 
1056 	/* BLOCK DESCRIPTOR */
1057 
1058 	/*
1059 	 * For now we only include a block descriptor for disk (SBC)
1060 	 * devices; other command sets use a slightly different format.
1061 	 */
1062 	if (!dbd && type == TYPE_DISK) {
1063 		u64 blocks = dev->transport->get_blocks(dev);
1064 		u32 block_size = dev->dev_attrib.block_size;
1065 
1066 		if (ten) {
1067 			if (llba) {
1068 				length += spc_modesense_long_blockdesc(&buf[length],
1069 								       blocks, block_size);
1070 			} else {
1071 				length += 3;
1072 				length += spc_modesense_blockdesc(&buf[length],
1073 								  blocks, block_size);
1074 			}
1075 		} else {
1076 			length += spc_modesense_blockdesc(&buf[length], blocks,
1077 							  block_size);
1078 		}
1079 	} else {
1080 		if (ten)
1081 			length += 4;
1082 		else
1083 			length += 1;
1084 	}
1085 
1086 	if (page == 0x3f) {
1087 		if (subpage != 0x00 && subpage != 0xff) {
1088 			pr_warn("MODE_SENSE: Invalid subpage code: 0x%02x\n", subpage);
1089 			return TCM_INVALID_CDB_FIELD;
1090 		}
1091 
1092 		for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i) {
1093 			/*
1094 			 * Tricky way to say all subpage 00h for
1095 			 * subpage==0, all subpages for subpage==0xff
1096 			 * (and we just checked above that those are
1097 			 * the only two possibilities).
1098 			 */
1099 			if ((modesense_handlers[i].subpage & ~subpage) == 0) {
1100 				ret = modesense_handlers[i].emulate(cmd, pc, &buf[length]);
1101 				if (!ten && length + ret >= 255)
1102 					break;
1103 				length += ret;
1104 			}
1105 		}
1106 
1107 		goto set_length;
1108 	}
1109 
1110 	for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i)
1111 		if (modesense_handlers[i].page == page &&
1112 		    modesense_handlers[i].subpage == subpage) {
1113 			length += modesense_handlers[i].emulate(cmd, pc, &buf[length]);
1114 			goto set_length;
1115 		}
1116 
1117 	/*
1118 	 * We don't intend to implement:
1119 	 *  - obsolete page 03h "format parameters" (checked by Solaris)
1120 	 */
1121 	if (page != 0x03)
1122 		pr_err("MODE SENSE: unimplemented page/subpage: 0x%02x/0x%02x\n",
1123 		       page, subpage);
1124 
1125 	return TCM_UNKNOWN_MODE_PAGE;
1126 
1127 set_length:
1128 	if (ten)
1129 		put_unaligned_be16(length - 2, buf);
1130 	else
1131 		buf[0] = length - 1;
1132 
1133 	rbuf = transport_kmap_data_sg(cmd);
1134 	if (rbuf) {
1135 		memcpy(rbuf, buf, min_t(u32, SE_MODE_PAGE_BUF, cmd->data_length));
1136 		transport_kunmap_data_sg(cmd);
1137 	}
1138 
1139 	target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, length);
1140 	return 0;
1141 }
1142 
spc_emulate_modeselect(struct se_cmd * cmd)1143 static sense_reason_t spc_emulate_modeselect(struct se_cmd *cmd)
1144 {
1145 	char *cdb = cmd->t_task_cdb;
1146 	bool ten = cdb[0] == MODE_SELECT_10;
1147 	int off = ten ? 8 : 4;
1148 	bool pf = !!(cdb[1] & 0x10);
1149 	u8 page, subpage;
1150 	unsigned char *buf;
1151 	unsigned char tbuf[SE_MODE_PAGE_BUF];
1152 	int length;
1153 	sense_reason_t ret = 0;
1154 	int i;
1155 
1156 	if (!cmd->data_length) {
1157 		target_complete_cmd(cmd, SAM_STAT_GOOD);
1158 		return 0;
1159 	}
1160 
1161 	if (cmd->data_length < off + 2)
1162 		return TCM_PARAMETER_LIST_LENGTH_ERROR;
1163 
1164 	buf = transport_kmap_data_sg(cmd);
1165 	if (!buf)
1166 		return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1167 
1168 	if (!pf) {
1169 		ret = TCM_INVALID_CDB_FIELD;
1170 		goto out;
1171 	}
1172 
1173 	page = buf[off] & 0x3f;
1174 	subpage = buf[off] & 0x40 ? buf[off + 1] : 0;
1175 
1176 	for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i)
1177 		if (modesense_handlers[i].page == page &&
1178 		    modesense_handlers[i].subpage == subpage) {
1179 			memset(tbuf, 0, SE_MODE_PAGE_BUF);
1180 			length = modesense_handlers[i].emulate(cmd, 0, tbuf);
1181 			goto check_contents;
1182 		}
1183 
1184 	ret = TCM_UNKNOWN_MODE_PAGE;
1185 	goto out;
1186 
1187 check_contents:
1188 	if (cmd->data_length < off + length) {
1189 		ret = TCM_PARAMETER_LIST_LENGTH_ERROR;
1190 		goto out;
1191 	}
1192 
1193 	if (memcmp(buf + off, tbuf, length))
1194 		ret = TCM_INVALID_PARAMETER_LIST;
1195 
1196 out:
1197 	transport_kunmap_data_sg(cmd);
1198 
1199 	if (!ret)
1200 		target_complete_cmd(cmd, SAM_STAT_GOOD);
1201 	return ret;
1202 }
1203 
spc_emulate_request_sense(struct se_cmd * cmd)1204 static sense_reason_t spc_emulate_request_sense(struct se_cmd *cmd)
1205 {
1206 	unsigned char *cdb = cmd->t_task_cdb;
1207 	unsigned char *rbuf;
1208 	u8 ua_asc = 0, ua_ascq = 0;
1209 	unsigned char buf[SE_SENSE_BUF];
1210 	bool desc_format = target_sense_desc_format(cmd->se_dev);
1211 
1212 	memset(buf, 0, SE_SENSE_BUF);
1213 
1214 	if (cdb[1] & 0x01) {
1215 		pr_err("REQUEST_SENSE description emulation not"
1216 			" supported\n");
1217 		return TCM_INVALID_CDB_FIELD;
1218 	}
1219 
1220 	rbuf = transport_kmap_data_sg(cmd);
1221 	if (!rbuf)
1222 		return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1223 
1224 	if (!core_scsi3_ua_clear_for_request_sense(cmd, &ua_asc, &ua_ascq))
1225 		scsi_build_sense_buffer(desc_format, buf, UNIT_ATTENTION,
1226 					ua_asc, ua_ascq);
1227 	else
1228 		scsi_build_sense_buffer(desc_format, buf, NO_SENSE, 0x0, 0x0);
1229 
1230 	memcpy(rbuf, buf, min_t(u32, sizeof(buf), cmd->data_length));
1231 	transport_kunmap_data_sg(cmd);
1232 
1233 	target_complete_cmd(cmd, SAM_STAT_GOOD);
1234 	return 0;
1235 }
1236 
spc_emulate_report_luns(struct se_cmd * cmd)1237 sense_reason_t spc_emulate_report_luns(struct se_cmd *cmd)
1238 {
1239 	struct se_dev_entry *deve;
1240 	struct se_session *sess = cmd->se_sess;
1241 	struct se_node_acl *nacl;
1242 	struct scsi_lun slun;
1243 	unsigned char *buf;
1244 	u32 lun_count = 0, offset = 8;
1245 	__be32 len;
1246 
1247 	buf = transport_kmap_data_sg(cmd);
1248 	if (cmd->data_length && !buf)
1249 		return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1250 
1251 	/*
1252 	 * If no struct se_session pointer is present, this struct se_cmd is
1253 	 * coming via a target_core_mod PASSTHROUGH op, and not through
1254 	 * a $FABRIC_MOD.  In that case, report LUN=0 only.
1255 	 */
1256 	if (!sess)
1257 		goto done;
1258 
1259 	nacl = sess->se_node_acl;
1260 
1261 	rcu_read_lock();
1262 	hlist_for_each_entry_rcu(deve, &nacl->lun_entry_hlist, link) {
1263 		/*
1264 		 * We determine the correct LUN LIST LENGTH even once we
1265 		 * have reached the initial allocation length.
1266 		 * See SPC2-R20 7.19.
1267 		 */
1268 		lun_count++;
1269 		if (offset >= cmd->data_length)
1270 			continue;
1271 
1272 		int_to_scsilun(deve->mapped_lun, &slun);
1273 		memcpy(buf + offset, &slun,
1274 		       min(8u, cmd->data_length - offset));
1275 		offset += 8;
1276 	}
1277 	rcu_read_unlock();
1278 
1279 	/*
1280 	 * See SPC3 r07, page 159.
1281 	 */
1282 done:
1283 	/*
1284 	 * If no LUNs are accessible, report virtual LUN 0.
1285 	 */
1286 	if (lun_count == 0) {
1287 		int_to_scsilun(0, &slun);
1288 		if (cmd->data_length > 8)
1289 			memcpy(buf + offset, &slun,
1290 			       min(8u, cmd->data_length - offset));
1291 		lun_count = 1;
1292 	}
1293 
1294 	if (buf) {
1295 		len = cpu_to_be32(lun_count * 8);
1296 		memcpy(buf, &len, min_t(int, sizeof len, cmd->data_length));
1297 		transport_kunmap_data_sg(cmd);
1298 	}
1299 
1300 	target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, 8 + lun_count * 8);
1301 	return 0;
1302 }
1303 EXPORT_SYMBOL(spc_emulate_report_luns);
1304 
1305 static sense_reason_t
spc_emulate_testunitready(struct se_cmd * cmd)1306 spc_emulate_testunitready(struct se_cmd *cmd)
1307 {
1308 	target_complete_cmd(cmd, SAM_STAT_GOOD);
1309 	return 0;
1310 }
1311 
set_dpofua_usage_bits(u8 * usage_bits,struct se_device * dev)1312 static void set_dpofua_usage_bits(u8 *usage_bits, struct se_device *dev)
1313 {
1314 	if (!target_check_fua(dev))
1315 		usage_bits[1] &= ~0x18;
1316 	else
1317 		usage_bits[1] |= 0x18;
1318 }
1319 
set_dpofua_usage_bits32(u8 * usage_bits,struct se_device * dev)1320 static void set_dpofua_usage_bits32(u8 *usage_bits, struct se_device *dev)
1321 {
1322 	if (!target_check_fua(dev))
1323 		usage_bits[10] &= ~0x18;
1324 	else
1325 		usage_bits[10] |= 0x18;
1326 }
1327 
1328 static struct target_opcode_descriptor tcm_opcode_read6 = {
1329 	.support = SCSI_SUPPORT_FULL,
1330 	.opcode = READ_6,
1331 	.cdb_size = 6,
1332 	.usage_bits = {READ_6, 0x1f, 0xff, 0xff,
1333 		       0xff, SCSI_CONTROL_MASK},
1334 };
1335 
1336 static struct target_opcode_descriptor tcm_opcode_read10 = {
1337 	.support = SCSI_SUPPORT_FULL,
1338 	.opcode = READ_10,
1339 	.cdb_size = 10,
1340 	.usage_bits = {READ_10, 0xf8, 0xff, 0xff,
1341 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1342 		       0xff, SCSI_CONTROL_MASK},
1343 	.update_usage_bits = set_dpofua_usage_bits,
1344 };
1345 
1346 static struct target_opcode_descriptor tcm_opcode_read12 = {
1347 	.support = SCSI_SUPPORT_FULL,
1348 	.opcode = READ_12,
1349 	.cdb_size = 12,
1350 	.usage_bits = {READ_12, 0xf8, 0xff, 0xff,
1351 		       0xff, 0xff, 0xff, 0xff,
1352 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1353 	.update_usage_bits = set_dpofua_usage_bits,
1354 };
1355 
1356 static struct target_opcode_descriptor tcm_opcode_read16 = {
1357 	.support = SCSI_SUPPORT_FULL,
1358 	.opcode = READ_16,
1359 	.cdb_size = 16,
1360 	.usage_bits = {READ_16, 0xf8, 0xff, 0xff,
1361 		       0xff, 0xff, 0xff, 0xff,
1362 		       0xff, 0xff, 0xff, 0xff,
1363 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1364 	.update_usage_bits = set_dpofua_usage_bits,
1365 };
1366 
1367 static struct target_opcode_descriptor tcm_opcode_write6 = {
1368 	.support = SCSI_SUPPORT_FULL,
1369 	.opcode = WRITE_6,
1370 	.cdb_size = 6,
1371 	.usage_bits = {WRITE_6, 0x1f, 0xff, 0xff,
1372 		       0xff, SCSI_CONTROL_MASK},
1373 };
1374 
1375 static struct target_opcode_descriptor tcm_opcode_write10 = {
1376 	.support = SCSI_SUPPORT_FULL,
1377 	.opcode = WRITE_10,
1378 	.cdb_size = 10,
1379 	.usage_bits = {WRITE_10, 0xf8, 0xff, 0xff,
1380 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1381 		       0xff, SCSI_CONTROL_MASK},
1382 	.update_usage_bits = set_dpofua_usage_bits,
1383 };
1384 
1385 static struct target_opcode_descriptor tcm_opcode_write_verify10 = {
1386 	.support = SCSI_SUPPORT_FULL,
1387 	.opcode = WRITE_VERIFY,
1388 	.cdb_size = 10,
1389 	.usage_bits = {WRITE_VERIFY, 0xf0, 0xff, 0xff,
1390 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1391 		       0xff, SCSI_CONTROL_MASK},
1392 	.update_usage_bits = set_dpofua_usage_bits,
1393 };
1394 
1395 static struct target_opcode_descriptor tcm_opcode_write12 = {
1396 	.support = SCSI_SUPPORT_FULL,
1397 	.opcode = WRITE_12,
1398 	.cdb_size = 12,
1399 	.usage_bits = {WRITE_12, 0xf8, 0xff, 0xff,
1400 		       0xff, 0xff, 0xff, 0xff,
1401 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1402 	.update_usage_bits = set_dpofua_usage_bits,
1403 };
1404 
1405 static struct target_opcode_descriptor tcm_opcode_write16 = {
1406 	.support = SCSI_SUPPORT_FULL,
1407 	.opcode = WRITE_16,
1408 	.cdb_size = 16,
1409 	.usage_bits = {WRITE_16, 0xf8, 0xff, 0xff,
1410 		       0xff, 0xff, 0xff, 0xff,
1411 		       0xff, 0xff, 0xff, 0xff,
1412 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1413 	.update_usage_bits = set_dpofua_usage_bits,
1414 };
1415 
1416 static struct target_opcode_descriptor tcm_opcode_write_verify16 = {
1417 	.support = SCSI_SUPPORT_FULL,
1418 	.opcode = WRITE_VERIFY_16,
1419 	.cdb_size = 16,
1420 	.usage_bits = {WRITE_VERIFY_16, 0xf0, 0xff, 0xff,
1421 		       0xff, 0xff, 0xff, 0xff,
1422 		       0xff, 0xff, 0xff, 0xff,
1423 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1424 	.update_usage_bits = set_dpofua_usage_bits,
1425 };
1426 
tcm_is_ws_enabled(struct target_opcode_descriptor * descr,struct se_cmd * cmd)1427 static bool tcm_is_ws_enabled(struct target_opcode_descriptor *descr,
1428 			      struct se_cmd *cmd)
1429 {
1430 	struct exec_cmd_ops *ops = cmd->protocol_data;
1431 	struct se_device *dev = cmd->se_dev;
1432 
1433 	return (dev->dev_attrib.emulate_tpws && !!ops->execute_unmap) ||
1434 	       !!ops->execute_write_same;
1435 }
1436 
1437 static struct target_opcode_descriptor tcm_opcode_write_same32 = {
1438 	.support = SCSI_SUPPORT_FULL,
1439 	.serv_action_valid = 1,
1440 	.opcode = VARIABLE_LENGTH_CMD,
1441 	.service_action = WRITE_SAME_32,
1442 	.cdb_size = 32,
1443 	.usage_bits = {VARIABLE_LENGTH_CMD, SCSI_CONTROL_MASK, 0x00, 0x00,
1444 		       0x00, 0x00, SCSI_GROUP_NUMBER_MASK, 0x18,
1445 		       0x00, WRITE_SAME_32, 0xe8, 0x00,
1446 		       0xff, 0xff, 0xff, 0xff,
1447 		       0xff, 0xff, 0xff, 0xff,
1448 		       0x00, 0x00, 0x00, 0x00,
1449 		       0x00, 0x00, 0x00, 0x00,
1450 		       0xff, 0xff, 0xff, 0xff},
1451 	.enabled = tcm_is_ws_enabled,
1452 	.update_usage_bits = set_dpofua_usage_bits32,
1453 };
1454 
tcm_is_caw_enabled(struct target_opcode_descriptor * descr,struct se_cmd * cmd)1455 static bool tcm_is_caw_enabled(struct target_opcode_descriptor *descr,
1456 			       struct se_cmd *cmd)
1457 {
1458 	struct se_device *dev = cmd->se_dev;
1459 
1460 	return dev->dev_attrib.emulate_caw;
1461 }
1462 
1463 static struct target_opcode_descriptor tcm_opcode_compare_write = {
1464 	.support = SCSI_SUPPORT_FULL,
1465 	.opcode = COMPARE_AND_WRITE,
1466 	.cdb_size = 16,
1467 	.usage_bits = {COMPARE_AND_WRITE, 0x18, 0xff, 0xff,
1468 		       0xff, 0xff, 0xff, 0xff,
1469 		       0xff, 0xff, 0x00, 0x00,
1470 		       0x00, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1471 	.enabled = tcm_is_caw_enabled,
1472 	.update_usage_bits = set_dpofua_usage_bits,
1473 };
1474 
1475 static struct target_opcode_descriptor tcm_opcode_read_capacity = {
1476 	.support = SCSI_SUPPORT_FULL,
1477 	.opcode = READ_CAPACITY,
1478 	.cdb_size = 10,
1479 	.usage_bits = {READ_CAPACITY, 0x00, 0xff, 0xff,
1480 		       0xff, 0xff, 0x00, 0x00,
1481 		       0x01, SCSI_CONTROL_MASK},
1482 };
1483 
1484 static struct target_opcode_descriptor tcm_opcode_read_capacity16 = {
1485 	.support = SCSI_SUPPORT_FULL,
1486 	.serv_action_valid = 1,
1487 	.opcode = SERVICE_ACTION_IN_16,
1488 	.service_action = SAI_READ_CAPACITY_16,
1489 	.cdb_size = 16,
1490 	.usage_bits = {SERVICE_ACTION_IN_16, SAI_READ_CAPACITY_16, 0x00, 0x00,
1491 		       0x00, 0x00, 0x00, 0x00,
1492 		       0x00, 0x00, 0xff, 0xff,
1493 		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1494 };
1495 
tcm_is_rep_ref_enabled(struct target_opcode_descriptor * descr,struct se_cmd * cmd)1496 static bool tcm_is_rep_ref_enabled(struct target_opcode_descriptor *descr,
1497 				   struct se_cmd *cmd)
1498 {
1499 	struct se_device *dev = cmd->se_dev;
1500 
1501 	spin_lock(&dev->t10_alua.lba_map_lock);
1502 	if (list_empty(&dev->t10_alua.lba_map_list)) {
1503 		spin_unlock(&dev->t10_alua.lba_map_lock);
1504 		return false;
1505 	}
1506 	spin_unlock(&dev->t10_alua.lba_map_lock);
1507 	return true;
1508 }
1509 
1510 static struct target_opcode_descriptor tcm_opcode_read_report_refferals = {
1511 	.support = SCSI_SUPPORT_FULL,
1512 	.serv_action_valid = 1,
1513 	.opcode = SERVICE_ACTION_IN_16,
1514 	.service_action = SAI_REPORT_REFERRALS,
1515 	.cdb_size = 16,
1516 	.usage_bits = {SERVICE_ACTION_IN_16, SAI_REPORT_REFERRALS, 0x00, 0x00,
1517 		       0x00, 0x00, 0x00, 0x00,
1518 		       0x00, 0x00, 0xff, 0xff,
1519 		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1520 	.enabled = tcm_is_rep_ref_enabled,
1521 };
1522 
1523 static struct target_opcode_descriptor tcm_opcode_sync_cache = {
1524 	.support = SCSI_SUPPORT_FULL,
1525 	.opcode = SYNCHRONIZE_CACHE,
1526 	.cdb_size = 10,
1527 	.usage_bits = {SYNCHRONIZE_CACHE, 0x02, 0xff, 0xff,
1528 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1529 		       0xff, SCSI_CONTROL_MASK},
1530 };
1531 
1532 static struct target_opcode_descriptor tcm_opcode_sync_cache16 = {
1533 	.support = SCSI_SUPPORT_FULL,
1534 	.opcode = SYNCHRONIZE_CACHE_16,
1535 	.cdb_size = 16,
1536 	.usage_bits = {SYNCHRONIZE_CACHE_16, 0x02, 0xff, 0xff,
1537 		       0xff, 0xff, 0xff, 0xff,
1538 		       0xff, 0xff, 0xff, 0xff,
1539 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1540 };
1541 
tcm_is_unmap_enabled(struct target_opcode_descriptor * descr,struct se_cmd * cmd)1542 static bool tcm_is_unmap_enabled(struct target_opcode_descriptor *descr,
1543 				 struct se_cmd *cmd)
1544 {
1545 	struct exec_cmd_ops *ops = cmd->protocol_data;
1546 	struct se_device *dev = cmd->se_dev;
1547 
1548 	return ops->execute_unmap && dev->dev_attrib.emulate_tpu;
1549 }
1550 
1551 static struct target_opcode_descriptor tcm_opcode_unmap = {
1552 	.support = SCSI_SUPPORT_FULL,
1553 	.opcode = UNMAP,
1554 	.cdb_size = 10,
1555 	.usage_bits = {UNMAP, 0x00, 0x00, 0x00,
1556 		       0x00, 0x00, SCSI_GROUP_NUMBER_MASK, 0xff,
1557 		       0xff, SCSI_CONTROL_MASK},
1558 	.enabled = tcm_is_unmap_enabled,
1559 };
1560 
1561 static struct target_opcode_descriptor tcm_opcode_write_same = {
1562 	.support = SCSI_SUPPORT_FULL,
1563 	.opcode = WRITE_SAME,
1564 	.cdb_size = 10,
1565 	.usage_bits = {WRITE_SAME, 0xe8, 0xff, 0xff,
1566 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1567 		       0xff, SCSI_CONTROL_MASK},
1568 	.enabled = tcm_is_ws_enabled,
1569 };
1570 
1571 static struct target_opcode_descriptor tcm_opcode_write_same16 = {
1572 	.support = SCSI_SUPPORT_FULL,
1573 	.opcode = WRITE_SAME_16,
1574 	.cdb_size = 16,
1575 	.usage_bits = {WRITE_SAME_16, 0xe8, 0xff, 0xff,
1576 		       0xff, 0xff, 0xff, 0xff,
1577 		       0xff, 0xff, 0xff, 0xff,
1578 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1579 	.enabled = tcm_is_ws_enabled,
1580 };
1581 
1582 static struct target_opcode_descriptor tcm_opcode_verify = {
1583 	.support = SCSI_SUPPORT_FULL,
1584 	.opcode = VERIFY,
1585 	.cdb_size = 10,
1586 	.usage_bits = {VERIFY, 0x00, 0xff, 0xff,
1587 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1588 		       0xff, SCSI_CONTROL_MASK},
1589 };
1590 
1591 static struct target_opcode_descriptor tcm_opcode_verify16 = {
1592 	.support = SCSI_SUPPORT_FULL,
1593 	.opcode = VERIFY_16,
1594 	.cdb_size = 16,
1595 	.usage_bits = {VERIFY_16, 0x00, 0xff, 0xff,
1596 		       0xff, 0xff, 0xff, 0xff,
1597 		       0xff, 0xff, 0xff, 0xff,
1598 		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1599 };
1600 
1601 static struct target_opcode_descriptor tcm_opcode_start_stop = {
1602 	.support = SCSI_SUPPORT_FULL,
1603 	.opcode = START_STOP,
1604 	.cdb_size = 6,
1605 	.usage_bits = {START_STOP, 0x01, 0x00, 0x00,
1606 		       0x01, SCSI_CONTROL_MASK},
1607 };
1608 
1609 static struct target_opcode_descriptor tcm_opcode_mode_select = {
1610 	.support = SCSI_SUPPORT_FULL,
1611 	.opcode = MODE_SELECT,
1612 	.cdb_size = 6,
1613 	.usage_bits = {MODE_SELECT, 0x10, 0x00, 0x00,
1614 		       0xff, SCSI_CONTROL_MASK},
1615 };
1616 
1617 static struct target_opcode_descriptor tcm_opcode_mode_select10 = {
1618 	.support = SCSI_SUPPORT_FULL,
1619 	.opcode = MODE_SELECT_10,
1620 	.cdb_size = 10,
1621 	.usage_bits = {MODE_SELECT_10, 0x10, 0x00, 0x00,
1622 		       0x00, 0x00, 0x00, 0xff,
1623 		       0xff, SCSI_CONTROL_MASK},
1624 };
1625 
1626 static struct target_opcode_descriptor tcm_opcode_mode_sense = {
1627 	.support = SCSI_SUPPORT_FULL,
1628 	.opcode = MODE_SENSE,
1629 	.cdb_size = 6,
1630 	.usage_bits = {MODE_SENSE, 0x08, 0xff, 0xff,
1631 		       0xff, SCSI_CONTROL_MASK},
1632 };
1633 
1634 static struct target_opcode_descriptor tcm_opcode_mode_sense10 = {
1635 	.support = SCSI_SUPPORT_FULL,
1636 	.opcode = MODE_SENSE_10,
1637 	.cdb_size = 10,
1638 	.usage_bits = {MODE_SENSE_10, 0x18, 0xff, 0xff,
1639 		       0x00, 0x00, 0x00, 0xff,
1640 		       0xff, SCSI_CONTROL_MASK},
1641 };
1642 
1643 static struct target_opcode_descriptor tcm_opcode_pri_read_keys = {
1644 	.support = SCSI_SUPPORT_FULL,
1645 	.serv_action_valid = 1,
1646 	.opcode = PERSISTENT_RESERVE_IN,
1647 	.service_action = PRI_READ_KEYS,
1648 	.cdb_size = 10,
1649 	.usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_KEYS, 0x00, 0x00,
1650 		       0x00, 0x00, 0x00, 0xff,
1651 		       0xff, SCSI_CONTROL_MASK},
1652 };
1653 
1654 static struct target_opcode_descriptor tcm_opcode_pri_read_resrv = {
1655 	.support = SCSI_SUPPORT_FULL,
1656 	.serv_action_valid = 1,
1657 	.opcode = PERSISTENT_RESERVE_IN,
1658 	.service_action = PRI_READ_RESERVATION,
1659 	.cdb_size = 10,
1660 	.usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_RESERVATION, 0x00, 0x00,
1661 		       0x00, 0x00, 0x00, 0xff,
1662 		       0xff, SCSI_CONTROL_MASK},
1663 };
1664 
tcm_is_pr_enabled(struct target_opcode_descriptor * descr,struct se_cmd * cmd)1665 static bool tcm_is_pr_enabled(struct target_opcode_descriptor *descr,
1666 			      struct se_cmd *cmd)
1667 {
1668 	struct se_device *dev = cmd->se_dev;
1669 
1670 	if (!dev->dev_attrib.emulate_pr)
1671 		return false;
1672 
1673 	if (!(dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH_PGR))
1674 		return true;
1675 
1676 	switch (descr->opcode) {
1677 	case RESERVE:
1678 	case RESERVE_10:
1679 	case RELEASE:
1680 	case RELEASE_10:
1681 		/*
1682 		 * The pr_ops which are used by the backend modules don't
1683 		 * support these commands.
1684 		 */
1685 		return false;
1686 	case PERSISTENT_RESERVE_OUT:
1687 		switch (descr->service_action) {
1688 		case PRO_REGISTER_AND_MOVE:
1689 		case PRO_REPLACE_LOST_RESERVATION:
1690 			/*
1691 			 * The backend modules don't have access to ports and
1692 			 * I_T nexuses so they can't handle these type of
1693 			 * requests.
1694 			 */
1695 			return false;
1696 		}
1697 		break;
1698 	case PERSISTENT_RESERVE_IN:
1699 		if (descr->service_action == PRI_READ_FULL_STATUS)
1700 			return false;
1701 		break;
1702 	}
1703 
1704 	return true;
1705 }
1706 
1707 static struct target_opcode_descriptor tcm_opcode_pri_read_caps = {
1708 	.support = SCSI_SUPPORT_FULL,
1709 	.serv_action_valid = 1,
1710 	.opcode = PERSISTENT_RESERVE_IN,
1711 	.service_action = PRI_REPORT_CAPABILITIES,
1712 	.cdb_size = 10,
1713 	.usage_bits = {PERSISTENT_RESERVE_IN, PRI_REPORT_CAPABILITIES, 0x00, 0x00,
1714 		       0x00, 0x00, 0x00, 0xff,
1715 		       0xff, SCSI_CONTROL_MASK},
1716 	.enabled = tcm_is_pr_enabled,
1717 };
1718 
1719 static struct target_opcode_descriptor tcm_opcode_pri_read_full_status = {
1720 	.support = SCSI_SUPPORT_FULL,
1721 	.serv_action_valid = 1,
1722 	.opcode = PERSISTENT_RESERVE_IN,
1723 	.service_action = PRI_READ_FULL_STATUS,
1724 	.cdb_size = 10,
1725 	.usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_FULL_STATUS, 0x00, 0x00,
1726 		       0x00, 0x00, 0x00, 0xff,
1727 		       0xff, SCSI_CONTROL_MASK},
1728 	.enabled = tcm_is_pr_enabled,
1729 };
1730 
1731 static struct target_opcode_descriptor tcm_opcode_pro_register = {
1732 	.support = SCSI_SUPPORT_FULL,
1733 	.serv_action_valid = 1,
1734 	.opcode = PERSISTENT_RESERVE_OUT,
1735 	.service_action = PRO_REGISTER,
1736 	.cdb_size = 10,
1737 	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_REGISTER, 0xff, 0x00,
1738 		       0x00, 0xff, 0xff, 0xff,
1739 		       0xff, SCSI_CONTROL_MASK},
1740 	.enabled = tcm_is_pr_enabled,
1741 };
1742 
1743 static struct target_opcode_descriptor tcm_opcode_pro_reserve = {
1744 	.support = SCSI_SUPPORT_FULL,
1745 	.serv_action_valid = 1,
1746 	.opcode = PERSISTENT_RESERVE_OUT,
1747 	.service_action = PRO_RESERVE,
1748 	.cdb_size = 10,
1749 	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_RESERVE, 0xff, 0x00,
1750 		       0x00, 0xff, 0xff, 0xff,
1751 		       0xff, SCSI_CONTROL_MASK},
1752 	.enabled = tcm_is_pr_enabled,
1753 };
1754 
1755 static struct target_opcode_descriptor tcm_opcode_pro_release = {
1756 	.support = SCSI_SUPPORT_FULL,
1757 	.serv_action_valid = 1,
1758 	.opcode = PERSISTENT_RESERVE_OUT,
1759 	.service_action = PRO_RELEASE,
1760 	.cdb_size = 10,
1761 	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_RELEASE, 0xff, 0x00,
1762 		       0x00, 0xff, 0xff, 0xff,
1763 		       0xff, SCSI_CONTROL_MASK},
1764 	.enabled = tcm_is_pr_enabled,
1765 };
1766 
1767 static struct target_opcode_descriptor tcm_opcode_pro_clear = {
1768 	.support = SCSI_SUPPORT_FULL,
1769 	.serv_action_valid = 1,
1770 	.opcode = PERSISTENT_RESERVE_OUT,
1771 	.service_action = PRO_CLEAR,
1772 	.cdb_size = 10,
1773 	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_CLEAR, 0xff, 0x00,
1774 		       0x00, 0xff, 0xff, 0xff,
1775 		       0xff, SCSI_CONTROL_MASK},
1776 	.enabled = tcm_is_pr_enabled,
1777 };
1778 
1779 static struct target_opcode_descriptor tcm_opcode_pro_preempt = {
1780 	.support = SCSI_SUPPORT_FULL,
1781 	.serv_action_valid = 1,
1782 	.opcode = PERSISTENT_RESERVE_OUT,
1783 	.service_action = PRO_PREEMPT,
1784 	.cdb_size = 10,
1785 	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_PREEMPT, 0xff, 0x00,
1786 		       0x00, 0xff, 0xff, 0xff,
1787 		       0xff, SCSI_CONTROL_MASK},
1788 	.enabled = tcm_is_pr_enabled,
1789 };
1790 
1791 static struct target_opcode_descriptor tcm_opcode_pro_preempt_abort = {
1792 	.support = SCSI_SUPPORT_FULL,
1793 	.serv_action_valid = 1,
1794 	.opcode = PERSISTENT_RESERVE_OUT,
1795 	.service_action = PRO_PREEMPT_AND_ABORT,
1796 	.cdb_size = 10,
1797 	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_PREEMPT_AND_ABORT, 0xff, 0x00,
1798 		       0x00, 0xff, 0xff, 0xff,
1799 		       0xff, SCSI_CONTROL_MASK},
1800 	.enabled = tcm_is_pr_enabled,
1801 };
1802 
1803 static struct target_opcode_descriptor tcm_opcode_pro_reg_ign_exist = {
1804 	.support = SCSI_SUPPORT_FULL,
1805 	.serv_action_valid = 1,
1806 	.opcode = PERSISTENT_RESERVE_OUT,
1807 	.service_action = PRO_REGISTER_AND_IGNORE_EXISTING_KEY,
1808 	.cdb_size = 10,
1809 	.usage_bits = {
1810 		PERSISTENT_RESERVE_OUT, PRO_REGISTER_AND_IGNORE_EXISTING_KEY,
1811 		0xff, 0x00,
1812 		0x00, 0xff, 0xff, 0xff,
1813 		0xff, SCSI_CONTROL_MASK},
1814 	.enabled = tcm_is_pr_enabled,
1815 };
1816 
1817 static struct target_opcode_descriptor tcm_opcode_pro_register_move = {
1818 	.support = SCSI_SUPPORT_FULL,
1819 	.serv_action_valid = 1,
1820 	.opcode = PERSISTENT_RESERVE_OUT,
1821 	.service_action = PRO_REGISTER_AND_MOVE,
1822 	.cdb_size = 10,
1823 	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_REGISTER_AND_MOVE, 0xff, 0x00,
1824 		       0x00, 0xff, 0xff, 0xff,
1825 		       0xff, SCSI_CONTROL_MASK},
1826 	.enabled = tcm_is_pr_enabled,
1827 };
1828 
1829 static struct target_opcode_descriptor tcm_opcode_release = {
1830 	.support = SCSI_SUPPORT_FULL,
1831 	.opcode = RELEASE,
1832 	.cdb_size = 6,
1833 	.usage_bits = {RELEASE, 0x00, 0x00, 0x00,
1834 		       0x00, SCSI_CONTROL_MASK},
1835 	.enabled = tcm_is_pr_enabled,
1836 };
1837 
1838 static struct target_opcode_descriptor tcm_opcode_release10 = {
1839 	.support = SCSI_SUPPORT_FULL,
1840 	.opcode = RELEASE_10,
1841 	.cdb_size = 10,
1842 	.usage_bits = {RELEASE_10, 0x00, 0x00, 0x00,
1843 		       0x00, 0x00, 0x00, 0xff,
1844 		       0xff, SCSI_CONTROL_MASK},
1845 	.enabled = tcm_is_pr_enabled,
1846 };
1847 
1848 static struct target_opcode_descriptor tcm_opcode_reserve = {
1849 	.support = SCSI_SUPPORT_FULL,
1850 	.opcode = RESERVE,
1851 	.cdb_size = 6,
1852 	.usage_bits = {RESERVE, 0x00, 0x00, 0x00,
1853 		       0x00, SCSI_CONTROL_MASK},
1854 	.enabled = tcm_is_pr_enabled,
1855 };
1856 
1857 static struct target_opcode_descriptor tcm_opcode_reserve10 = {
1858 	.support = SCSI_SUPPORT_FULL,
1859 	.opcode = RESERVE_10,
1860 	.cdb_size = 10,
1861 	.usage_bits = {RESERVE_10, 0x00, 0x00, 0x00,
1862 		       0x00, 0x00, 0x00, 0xff,
1863 		       0xff, SCSI_CONTROL_MASK},
1864 	.enabled = tcm_is_pr_enabled,
1865 };
1866 
1867 static struct target_opcode_descriptor tcm_opcode_request_sense = {
1868 	.support = SCSI_SUPPORT_FULL,
1869 	.opcode = REQUEST_SENSE,
1870 	.cdb_size = 6,
1871 	.usage_bits = {REQUEST_SENSE, 0x00, 0x00, 0x00,
1872 		       0xff, SCSI_CONTROL_MASK},
1873 };
1874 
1875 static struct target_opcode_descriptor tcm_opcode_inquiry = {
1876 	.support = SCSI_SUPPORT_FULL,
1877 	.opcode = INQUIRY,
1878 	.cdb_size = 6,
1879 	.usage_bits = {INQUIRY, 0x01, 0xff, 0xff,
1880 		       0xff, SCSI_CONTROL_MASK},
1881 };
1882 
tcm_is_3pc_enabled(struct target_opcode_descriptor * descr,struct se_cmd * cmd)1883 static bool tcm_is_3pc_enabled(struct target_opcode_descriptor *descr,
1884 			       struct se_cmd *cmd)
1885 {
1886 	struct se_device *dev = cmd->se_dev;
1887 
1888 	return dev->dev_attrib.emulate_3pc;
1889 }
1890 
1891 static struct target_opcode_descriptor tcm_opcode_extended_copy_lid1 = {
1892 	.support = SCSI_SUPPORT_FULL,
1893 	.serv_action_valid = 1,
1894 	.opcode = EXTENDED_COPY,
1895 	.cdb_size = 16,
1896 	.usage_bits = {EXTENDED_COPY, 0x00, 0x00, 0x00,
1897 		       0x00, 0x00, 0x00, 0x00,
1898 		       0x00, 0x00, 0xff, 0xff,
1899 		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1900 	.enabled = tcm_is_3pc_enabled,
1901 };
1902 
1903 static struct target_opcode_descriptor tcm_opcode_rcv_copy_res_op_params = {
1904 	.support = SCSI_SUPPORT_FULL,
1905 	.serv_action_valid = 1,
1906 	.opcode = RECEIVE_COPY_RESULTS,
1907 	.service_action = RCR_SA_OPERATING_PARAMETERS,
1908 	.cdb_size = 16,
1909 	.usage_bits = {RECEIVE_COPY_RESULTS, RCR_SA_OPERATING_PARAMETERS,
1910 		       0x00, 0x00,
1911 		       0x00, 0x00, 0x00, 0x00,
1912 		       0x00, 0x00, 0xff, 0xff,
1913 		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1914 	.enabled = tcm_is_3pc_enabled,
1915 };
1916 
1917 static struct target_opcode_descriptor tcm_opcode_report_luns = {
1918 	.support = SCSI_SUPPORT_FULL,
1919 	.opcode = REPORT_LUNS,
1920 	.cdb_size = 12,
1921 	.usage_bits = {REPORT_LUNS, 0x00, 0xff, 0x00,
1922 		       0x00, 0x00, 0xff, 0xff,
1923 		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1924 };
1925 
1926 static struct target_opcode_descriptor tcm_opcode_test_unit_ready = {
1927 	.support = SCSI_SUPPORT_FULL,
1928 	.opcode = TEST_UNIT_READY,
1929 	.cdb_size = 6,
1930 	.usage_bits = {TEST_UNIT_READY, 0x00, 0x00, 0x00,
1931 		       0x00, SCSI_CONTROL_MASK},
1932 };
1933 
1934 static struct target_opcode_descriptor tcm_opcode_report_target_pgs = {
1935 	.support = SCSI_SUPPORT_FULL,
1936 	.serv_action_valid = 1,
1937 	.opcode = MAINTENANCE_IN,
1938 	.service_action = MI_REPORT_TARGET_PGS,
1939 	.cdb_size = 12,
1940 	.usage_bits = {MAINTENANCE_IN, 0xE0 | MI_REPORT_TARGET_PGS, 0x00, 0x00,
1941 		       0x00, 0x00, 0xff, 0xff,
1942 		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1943 };
1944 
spc_rsoc_enabled(struct target_opcode_descriptor * descr,struct se_cmd * cmd)1945 static bool spc_rsoc_enabled(struct target_opcode_descriptor *descr,
1946 			     struct se_cmd *cmd)
1947 {
1948 	struct se_device *dev = cmd->se_dev;
1949 
1950 	return dev->dev_attrib.emulate_rsoc;
1951 }
1952 
1953 static struct target_opcode_descriptor tcm_opcode_report_supp_opcodes = {
1954 	.support = SCSI_SUPPORT_FULL,
1955 	.serv_action_valid = 1,
1956 	.opcode = MAINTENANCE_IN,
1957 	.service_action = MI_REPORT_SUPPORTED_OPERATION_CODES,
1958 	.cdb_size = 12,
1959 	.usage_bits = {MAINTENANCE_IN, MI_REPORT_SUPPORTED_OPERATION_CODES,
1960 		       0x87, 0xff,
1961 		       0xff, 0xff, 0xff, 0xff,
1962 		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1963 	.enabled = spc_rsoc_enabled,
1964 };
1965 
tcm_is_set_tpg_enabled(struct target_opcode_descriptor * descr,struct se_cmd * cmd)1966 static bool tcm_is_set_tpg_enabled(struct target_opcode_descriptor *descr,
1967 				   struct se_cmd *cmd)
1968 {
1969 	struct t10_alua_tg_pt_gp *l_tg_pt_gp;
1970 	struct se_lun *l_lun = cmd->se_lun;
1971 
1972 	rcu_read_lock();
1973 	l_tg_pt_gp = rcu_dereference(l_lun->lun_tg_pt_gp);
1974 	if (!l_tg_pt_gp) {
1975 		rcu_read_unlock();
1976 		return false;
1977 	}
1978 	if (!(l_tg_pt_gp->tg_pt_gp_alua_access_type & TPGS_EXPLICIT_ALUA)) {
1979 		rcu_read_unlock();
1980 		return false;
1981 	}
1982 	rcu_read_unlock();
1983 
1984 	return true;
1985 }
1986 
1987 static struct target_opcode_descriptor tcm_opcode_set_tpg = {
1988 	.support = SCSI_SUPPORT_FULL,
1989 	.serv_action_valid = 1,
1990 	.opcode = MAINTENANCE_OUT,
1991 	.service_action = MO_SET_TARGET_PGS,
1992 	.cdb_size = 12,
1993 	.usage_bits = {MAINTENANCE_OUT, MO_SET_TARGET_PGS, 0x00, 0x00,
1994 		       0x00, 0x00, 0xff, 0xff,
1995 		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1996 	.enabled = tcm_is_set_tpg_enabled,
1997 };
1998 
1999 static struct target_opcode_descriptor *tcm_supported_opcodes[] = {
2000 	&tcm_opcode_read6,
2001 	&tcm_opcode_read10,
2002 	&tcm_opcode_read12,
2003 	&tcm_opcode_read16,
2004 	&tcm_opcode_write6,
2005 	&tcm_opcode_write10,
2006 	&tcm_opcode_write_verify10,
2007 	&tcm_opcode_write12,
2008 	&tcm_opcode_write16,
2009 	&tcm_opcode_write_verify16,
2010 	&tcm_opcode_write_same32,
2011 	&tcm_opcode_compare_write,
2012 	&tcm_opcode_read_capacity,
2013 	&tcm_opcode_read_capacity16,
2014 	&tcm_opcode_read_report_refferals,
2015 	&tcm_opcode_sync_cache,
2016 	&tcm_opcode_sync_cache16,
2017 	&tcm_opcode_unmap,
2018 	&tcm_opcode_write_same,
2019 	&tcm_opcode_write_same16,
2020 	&tcm_opcode_verify,
2021 	&tcm_opcode_verify16,
2022 	&tcm_opcode_start_stop,
2023 	&tcm_opcode_mode_select,
2024 	&tcm_opcode_mode_select10,
2025 	&tcm_opcode_mode_sense,
2026 	&tcm_opcode_mode_sense10,
2027 	&tcm_opcode_pri_read_keys,
2028 	&tcm_opcode_pri_read_resrv,
2029 	&tcm_opcode_pri_read_caps,
2030 	&tcm_opcode_pri_read_full_status,
2031 	&tcm_opcode_pro_register,
2032 	&tcm_opcode_pro_reserve,
2033 	&tcm_opcode_pro_release,
2034 	&tcm_opcode_pro_clear,
2035 	&tcm_opcode_pro_preempt,
2036 	&tcm_opcode_pro_preempt_abort,
2037 	&tcm_opcode_pro_reg_ign_exist,
2038 	&tcm_opcode_pro_register_move,
2039 	&tcm_opcode_release,
2040 	&tcm_opcode_release10,
2041 	&tcm_opcode_reserve,
2042 	&tcm_opcode_reserve10,
2043 	&tcm_opcode_request_sense,
2044 	&tcm_opcode_inquiry,
2045 	&tcm_opcode_extended_copy_lid1,
2046 	&tcm_opcode_rcv_copy_res_op_params,
2047 	&tcm_opcode_report_luns,
2048 	&tcm_opcode_test_unit_ready,
2049 	&tcm_opcode_report_target_pgs,
2050 	&tcm_opcode_report_supp_opcodes,
2051 	&tcm_opcode_set_tpg,
2052 };
2053 
2054 static int
spc_rsoc_encode_command_timeouts_descriptor(unsigned char * buf,u8 ctdp,struct target_opcode_descriptor * descr)2055 spc_rsoc_encode_command_timeouts_descriptor(unsigned char *buf, u8 ctdp,
2056 				struct target_opcode_descriptor *descr)
2057 {
2058 	if (!ctdp)
2059 		return 0;
2060 
2061 	put_unaligned_be16(0xa, buf);
2062 	buf[3] = descr->specific_timeout;
2063 	put_unaligned_be32(descr->nominal_timeout, &buf[4]);
2064 	put_unaligned_be32(descr->recommended_timeout, &buf[8]);
2065 
2066 	return 12;
2067 }
2068 
2069 static int
spc_rsoc_encode_command_descriptor(unsigned char * buf,u8 ctdp,struct target_opcode_descriptor * descr)2070 spc_rsoc_encode_command_descriptor(unsigned char *buf, u8 ctdp,
2071 				   struct target_opcode_descriptor *descr)
2072 {
2073 	int td_size = 0;
2074 
2075 	buf[0] = descr->opcode;
2076 
2077 	put_unaligned_be16(descr->service_action, &buf[2]);
2078 
2079 	buf[5] = (ctdp << 1) | descr->serv_action_valid;
2080 	put_unaligned_be16(descr->cdb_size, &buf[6]);
2081 
2082 	td_size = spc_rsoc_encode_command_timeouts_descriptor(&buf[8], ctdp,
2083 							      descr);
2084 
2085 	return 8 + td_size;
2086 }
2087 
2088 static int
spc_rsoc_encode_one_command_descriptor(unsigned char * buf,u8 ctdp,struct target_opcode_descriptor * descr,struct se_device * dev)2089 spc_rsoc_encode_one_command_descriptor(unsigned char *buf, u8 ctdp,
2090 				       struct target_opcode_descriptor *descr,
2091 				       struct se_device *dev)
2092 {
2093 	int td_size = 0;
2094 
2095 	if (!descr) {
2096 		buf[1] = (ctdp << 7) | SCSI_SUPPORT_NOT_SUPPORTED;
2097 		return 2;
2098 	}
2099 
2100 	buf[1] = (ctdp << 7) | SCSI_SUPPORT_FULL;
2101 	put_unaligned_be16(descr->cdb_size, &buf[2]);
2102 	memcpy(&buf[4], descr->usage_bits, descr->cdb_size);
2103 	if (descr->update_usage_bits)
2104 		descr->update_usage_bits(&buf[4], dev);
2105 
2106 	td_size = spc_rsoc_encode_command_timeouts_descriptor(
2107 			&buf[4 + descr->cdb_size], ctdp, descr);
2108 
2109 	return 4 + descr->cdb_size + td_size;
2110 }
2111 
2112 static sense_reason_t
spc_rsoc_get_descr(struct se_cmd * cmd,struct target_opcode_descriptor ** opcode)2113 spc_rsoc_get_descr(struct se_cmd *cmd, struct target_opcode_descriptor **opcode)
2114 {
2115 	struct target_opcode_descriptor *descr;
2116 	struct se_session *sess = cmd->se_sess;
2117 	unsigned char *cdb = cmd->t_task_cdb;
2118 	u8 opts = cdb[2] & 0x3;
2119 	u8 requested_opcode;
2120 	u16 requested_sa;
2121 	int i;
2122 
2123 	requested_opcode = cdb[3];
2124 	requested_sa = ((u16)cdb[4]) << 8 | cdb[5];
2125 	*opcode = NULL;
2126 
2127 	if (opts > 3) {
2128 		pr_debug("TARGET_CORE[%s]: Invalid REPORT SUPPORTED OPERATION CODES"
2129 			" with unsupported REPORTING OPTIONS %#x for 0x%08llx from %s\n",
2130 			cmd->se_tfo->fabric_name, opts,
2131 			cmd->se_lun->unpacked_lun,
2132 			sess->se_node_acl->initiatorname);
2133 		return TCM_INVALID_CDB_FIELD;
2134 	}
2135 
2136 	for (i = 0; i < ARRAY_SIZE(tcm_supported_opcodes); i++) {
2137 		descr = tcm_supported_opcodes[i];
2138 		if (descr->opcode != requested_opcode)
2139 			continue;
2140 
2141 		switch (opts) {
2142 		case 0x1:
2143 			/*
2144 			 * If the REQUESTED OPERATION CODE field specifies an
2145 			 * operation code for which the device server implements
2146 			 * service actions, then the device server shall
2147 			 * terminate the command with CHECK CONDITION status,
2148 			 * with the sense key set to ILLEGAL REQUEST, and the
2149 			 * additional sense code set to INVALID FIELD IN CDB
2150 			 */
2151 			if (descr->serv_action_valid)
2152 				return TCM_INVALID_CDB_FIELD;
2153 
2154 			if (!descr->enabled || descr->enabled(descr, cmd))
2155 				*opcode = descr;
2156 			break;
2157 		case 0x2:
2158 			/*
2159 			 * If the REQUESTED OPERATION CODE field specifies an
2160 			 * operation code for which the device server does not
2161 			 * implement service actions, then the device server
2162 			 * shall terminate the command with CHECK CONDITION
2163 			 * status, with the sense key set to ILLEGAL REQUEST,
2164 			 * and the additional sense code set to INVALID FIELD IN CDB.
2165 			 */
2166 			if (descr->serv_action_valid &&
2167 			    descr->service_action == requested_sa) {
2168 				if (!descr->enabled || descr->enabled(descr,
2169 								      cmd))
2170 					*opcode = descr;
2171 			} else if (!descr->serv_action_valid)
2172 				return TCM_INVALID_CDB_FIELD;
2173 			break;
2174 		case 0x3:
2175 			/*
2176 			 * The command support data for the operation code and
2177 			 * service action a specified in the REQUESTED OPERATION
2178 			 * CODE field and REQUESTED SERVICE ACTION field shall
2179 			 * be returned in the one_command parameter data format.
2180 			 */
2181 			if (descr->service_action == requested_sa)
2182 				if (!descr->enabled || descr->enabled(descr,
2183 								      cmd))
2184 					*opcode = descr;
2185 			break;
2186 		}
2187 	}
2188 
2189 	return 0;
2190 }
2191 
2192 static sense_reason_t
spc_emulate_report_supp_op_codes(struct se_cmd * cmd)2193 spc_emulate_report_supp_op_codes(struct se_cmd *cmd)
2194 {
2195 	int descr_num = ARRAY_SIZE(tcm_supported_opcodes);
2196 	struct target_opcode_descriptor *descr = NULL;
2197 	unsigned char *cdb = cmd->t_task_cdb;
2198 	u8 rctd = (cdb[2] >> 7) & 0x1;
2199 	unsigned char *buf = NULL;
2200 	int response_length = 0;
2201 	u8 opts = cdb[2] & 0x3;
2202 	unsigned char *rbuf;
2203 	sense_reason_t ret = 0;
2204 	int i;
2205 
2206 	if (!cmd->se_dev->dev_attrib.emulate_rsoc)
2207 		return TCM_UNSUPPORTED_SCSI_OPCODE;
2208 
2209 	rbuf = transport_kmap_data_sg(cmd);
2210 	if (cmd->data_length && !rbuf) {
2211 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2212 		goto out;
2213 	}
2214 
2215 	if (opts == 0)
2216 		response_length = 4 + (8 + rctd * 12) * descr_num;
2217 	else {
2218 		ret = spc_rsoc_get_descr(cmd, &descr);
2219 		if (ret)
2220 			goto out;
2221 
2222 		if (descr)
2223 			response_length = 4 + descr->cdb_size + rctd * 12;
2224 		else
2225 			response_length = 2;
2226 	}
2227 
2228 	buf = kzalloc(response_length, GFP_KERNEL);
2229 	if (!buf) {
2230 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2231 		goto out;
2232 	}
2233 	response_length = 0;
2234 
2235 	if (opts == 0) {
2236 		response_length += 4;
2237 
2238 		for (i = 0; i < ARRAY_SIZE(tcm_supported_opcodes); i++) {
2239 			descr = tcm_supported_opcodes[i];
2240 			if (descr->enabled && !descr->enabled(descr, cmd))
2241 				continue;
2242 
2243 			response_length += spc_rsoc_encode_command_descriptor(
2244 					&buf[response_length], rctd, descr);
2245 		}
2246 		put_unaligned_be32(response_length - 3, buf);
2247 	} else {
2248 		response_length = spc_rsoc_encode_one_command_descriptor(
2249 				&buf[response_length], rctd, descr,
2250 				cmd->se_dev);
2251 	}
2252 
2253 	memcpy(rbuf, buf, min_t(u32, response_length, cmd->data_length));
2254 out:
2255 	kfree(buf);
2256 	transport_kunmap_data_sg(cmd);
2257 
2258 	if (!ret)
2259 		target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, response_length);
2260 	return ret;
2261 }
2262 
2263 sense_reason_t
spc_parse_cdb(struct se_cmd * cmd,unsigned int * size)2264 spc_parse_cdb(struct se_cmd *cmd, unsigned int *size)
2265 {
2266 	struct se_device *dev = cmd->se_dev;
2267 	unsigned char *cdb = cmd->t_task_cdb;
2268 
2269 	switch (cdb[0]) {
2270 	case RESERVE:
2271 	case RESERVE_10:
2272 	case RELEASE:
2273 	case RELEASE_10:
2274 		if (!dev->dev_attrib.emulate_pr)
2275 			return TCM_UNSUPPORTED_SCSI_OPCODE;
2276 
2277 		if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH_PGR)
2278 			return TCM_UNSUPPORTED_SCSI_OPCODE;
2279 		break;
2280 	case PERSISTENT_RESERVE_IN:
2281 	case PERSISTENT_RESERVE_OUT:
2282 		if (!dev->dev_attrib.emulate_pr)
2283 			return TCM_UNSUPPORTED_SCSI_OPCODE;
2284 		break;
2285 	}
2286 
2287 	switch (cdb[0]) {
2288 	case MODE_SELECT:
2289 		*size = cdb[4];
2290 		cmd->execute_cmd = spc_emulate_modeselect;
2291 		break;
2292 	case MODE_SELECT_10:
2293 		*size = get_unaligned_be16(&cdb[7]);
2294 		cmd->execute_cmd = spc_emulate_modeselect;
2295 		break;
2296 	case MODE_SENSE:
2297 		*size = cdb[4];
2298 		cmd->execute_cmd = spc_emulate_modesense;
2299 		break;
2300 	case MODE_SENSE_10:
2301 		*size = get_unaligned_be16(&cdb[7]);
2302 		cmd->execute_cmd = spc_emulate_modesense;
2303 		break;
2304 	case LOG_SELECT:
2305 	case LOG_SENSE:
2306 		*size = get_unaligned_be16(&cdb[7]);
2307 		break;
2308 	case PERSISTENT_RESERVE_IN:
2309 		*size = get_unaligned_be16(&cdb[7]);
2310 		cmd->execute_cmd = target_scsi3_emulate_pr_in;
2311 		break;
2312 	case PERSISTENT_RESERVE_OUT:
2313 		*size = get_unaligned_be32(&cdb[5]);
2314 		cmd->execute_cmd = target_scsi3_emulate_pr_out;
2315 		break;
2316 	case RELEASE:
2317 	case RELEASE_10:
2318 		if (cdb[0] == RELEASE_10)
2319 			*size = get_unaligned_be16(&cdb[7]);
2320 		else
2321 			*size = cmd->data_length;
2322 
2323 		cmd->execute_cmd = target_scsi2_reservation_release;
2324 		break;
2325 	case RESERVE:
2326 	case RESERVE_10:
2327 		/*
2328 		 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2329 		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2330 		 */
2331 		if (cdb[0] == RESERVE_10)
2332 			*size = get_unaligned_be16(&cdb[7]);
2333 		else
2334 			*size = cmd->data_length;
2335 
2336 		cmd->execute_cmd = target_scsi2_reservation_reserve;
2337 		break;
2338 	case REQUEST_SENSE:
2339 		*size = cdb[4];
2340 		cmd->execute_cmd = spc_emulate_request_sense;
2341 		break;
2342 	case INQUIRY:
2343 		*size = get_unaligned_be16(&cdb[3]);
2344 
2345 		/*
2346 		 * Do implicit HEAD_OF_QUEUE processing for INQUIRY.
2347 		 * See spc4r17 section 5.3
2348 		 */
2349 		cmd->sam_task_attr = TCM_HEAD_TAG;
2350 		cmd->execute_cmd = spc_emulate_inquiry;
2351 		break;
2352 	case SECURITY_PROTOCOL_IN:
2353 	case SECURITY_PROTOCOL_OUT:
2354 		*size = get_unaligned_be32(&cdb[6]);
2355 		break;
2356 	case EXTENDED_COPY:
2357 		*size = get_unaligned_be32(&cdb[10]);
2358 		cmd->execute_cmd = target_do_xcopy;
2359 		break;
2360 	case RECEIVE_COPY_RESULTS:
2361 		*size = get_unaligned_be32(&cdb[10]);
2362 		cmd->execute_cmd = target_do_receive_copy_results;
2363 		break;
2364 	case READ_ATTRIBUTE:
2365 	case WRITE_ATTRIBUTE:
2366 		*size = get_unaligned_be32(&cdb[10]);
2367 		break;
2368 	case RECEIVE_DIAGNOSTIC:
2369 	case SEND_DIAGNOSTIC:
2370 		*size = get_unaligned_be16(&cdb[3]);
2371 		break;
2372 	case WRITE_BUFFER:
2373 		*size = get_unaligned_be24(&cdb[6]);
2374 		break;
2375 	case REPORT_LUNS:
2376 		cmd->execute_cmd = spc_emulate_report_luns;
2377 		*size = get_unaligned_be32(&cdb[6]);
2378 		/*
2379 		 * Do implicit HEAD_OF_QUEUE processing for REPORT_LUNS
2380 		 * See spc4r17 section 5.3
2381 		 */
2382 		cmd->sam_task_attr = TCM_HEAD_TAG;
2383 		break;
2384 	case TEST_UNIT_READY:
2385 		cmd->execute_cmd = spc_emulate_testunitready;
2386 		*size = 0;
2387 		break;
2388 	case MAINTENANCE_IN:
2389 		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2390 			/*
2391 			 * MAINTENANCE_IN from SCC-2
2392 			 * Check for emulated MI_REPORT_TARGET_PGS
2393 			 */
2394 			if ((cdb[1] & 0x1f) == MI_REPORT_TARGET_PGS) {
2395 				cmd->execute_cmd =
2396 					target_emulate_report_target_port_groups;
2397 			}
2398 			if ((cdb[1] & 0x1f) ==
2399 			    MI_REPORT_SUPPORTED_OPERATION_CODES)
2400 				cmd->execute_cmd =
2401 					spc_emulate_report_supp_op_codes;
2402 			*size = get_unaligned_be32(&cdb[6]);
2403 		} else {
2404 			/*
2405 			 * GPCMD_SEND_KEY from multi media commands
2406 			 */
2407 			*size = get_unaligned_be16(&cdb[8]);
2408 		}
2409 		break;
2410 	case MAINTENANCE_OUT:
2411 		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2412 			/*
2413 			 * MAINTENANCE_OUT from SCC-2
2414 			 * Check for emulated MO_SET_TARGET_PGS.
2415 			 */
2416 			if (cdb[1] == MO_SET_TARGET_PGS) {
2417 				cmd->execute_cmd =
2418 					target_emulate_set_target_port_groups;
2419 			}
2420 			*size = get_unaligned_be32(&cdb[6]);
2421 		} else {
2422 			/*
2423 			 * GPCMD_SEND_KEY from multi media commands
2424 			 */
2425 			*size = get_unaligned_be16(&cdb[8]);
2426 		}
2427 		break;
2428 	default:
2429 		return TCM_UNSUPPORTED_SCSI_OPCODE;
2430 	}
2431 
2432 	return 0;
2433 }
2434 EXPORT_SYMBOL(spc_parse_cdb);
2435