xref: /openbmc/linux/drivers/spi/spi-sun6i.c (revision cd99b9eb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 #include <linux/dmaengine.h>
22 
23 #include <linux/spi/spi.h>
24 
25 #define SUN6I_AUTOSUSPEND_TIMEOUT	2000
26 
27 #define SUN6I_FIFO_DEPTH		128
28 #define SUN8I_FIFO_DEPTH		64
29 
30 #define SUN6I_GBL_CTL_REG		0x04
31 #define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
32 #define SUN6I_GBL_CTL_MASTER			BIT(1)
33 #define SUN6I_GBL_CTL_TP			BIT(7)
34 #define SUN6I_GBL_CTL_RST			BIT(31)
35 
36 #define SUN6I_TFR_CTL_REG		0x08
37 #define SUN6I_TFR_CTL_CPHA			BIT(0)
38 #define SUN6I_TFR_CTL_CPOL			BIT(1)
39 #define SUN6I_TFR_CTL_SPOL			BIT(2)
40 #define SUN6I_TFR_CTL_CS_MASK			0x30
41 #define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
42 #define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
43 #define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
44 #define SUN6I_TFR_CTL_DHB			BIT(8)
45 #define SUN6I_TFR_CTL_SDC			BIT(11)
46 #define SUN6I_TFR_CTL_FBS			BIT(12)
47 #define SUN6I_TFR_CTL_SDM			BIT(13)
48 #define SUN6I_TFR_CTL_XCH			BIT(31)
49 
50 #define SUN6I_INT_CTL_REG		0x10
51 #define SUN6I_INT_CTL_RF_RDY			BIT(0)
52 #define SUN6I_INT_CTL_TF_ERQ			BIT(4)
53 #define SUN6I_INT_CTL_RF_OVF			BIT(8)
54 #define SUN6I_INT_CTL_TC			BIT(12)
55 
56 #define SUN6I_INT_STA_REG		0x14
57 
58 #define SUN6I_FIFO_CTL_REG		0x18
59 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
60 #define SUN6I_FIFO_CTL_RF_DRQ_EN		BIT(8)
61 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
62 #define SUN6I_FIFO_CTL_RF_RST			BIT(15)
63 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
64 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
65 #define SUN6I_FIFO_CTL_TF_DRQ_EN		BIT(24)
66 #define SUN6I_FIFO_CTL_TF_RST			BIT(31)
67 
68 #define SUN6I_FIFO_STA_REG		0x1c
69 #define SUN6I_FIFO_STA_RF_CNT_MASK		GENMASK(7, 0)
70 #define SUN6I_FIFO_STA_TF_CNT_MASK		GENMASK(23, 16)
71 
72 #define SUN6I_CLK_CTL_REG		0x24
73 #define SUN6I_CLK_CTL_CDR2_MASK			0xff
74 #define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
75 #define SUN6I_CLK_CTL_CDR1_MASK			0xf
76 #define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
77 #define SUN6I_CLK_CTL_DRS			BIT(12)
78 
79 #define SUN6I_MAX_XFER_SIZE		0xffffff
80 
81 #define SUN6I_BURST_CNT_REG		0x30
82 
83 #define SUN6I_XMIT_CNT_REG		0x34
84 
85 #define SUN6I_BURST_CTL_CNT_REG		0x38
86 #define SUN6I_BURST_CTL_CNT_STC_MASK		GENMASK(23, 0)
87 #define SUN6I_BURST_CTL_CNT_DRM			BIT(28)
88 #define SUN6I_BURST_CTL_CNT_QUAD_EN		BIT(29)
89 
90 #define SUN6I_TXDATA_REG		0x200
91 #define SUN6I_RXDATA_REG		0x300
92 
93 struct sun6i_spi_cfg {
94 	unsigned long		fifo_depth;
95 	bool			has_clk_ctl;
96 	u32			mode_bits;
97 };
98 
99 struct sun6i_spi {
100 	struct spi_master	*master;
101 	void __iomem		*base_addr;
102 	dma_addr_t		dma_addr_rx;
103 	dma_addr_t		dma_addr_tx;
104 	struct clk		*hclk;
105 	struct clk		*mclk;
106 	struct reset_control	*rstc;
107 
108 	struct completion	done;
109 
110 	const u8		*tx_buf;
111 	u8			*rx_buf;
112 	int			len;
113 	const struct sun6i_spi_cfg *cfg;
114 };
115 
116 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
117 {
118 	return readl(sspi->base_addr + reg);
119 }
120 
121 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
122 {
123 	writel(value, sspi->base_addr + reg);
124 }
125 
126 static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
127 {
128 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
129 
130 	return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
131 }
132 
133 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
134 {
135 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
136 
137 	return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
138 }
139 
140 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
141 {
142 	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
143 
144 	reg &= ~mask;
145 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
146 }
147 
148 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
149 {
150 	u32 len;
151 	u8 byte;
152 
153 	/* See how much data is available */
154 	len = sun6i_spi_get_rx_fifo_count(sspi);
155 
156 	while (len--) {
157 		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
158 		if (sspi->rx_buf)
159 			*sspi->rx_buf++ = byte;
160 	}
161 }
162 
163 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
164 {
165 	u32 cnt;
166 	int len;
167 	u8 byte;
168 
169 	/* See how much data we can fit */
170 	cnt = sspi->cfg->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
171 
172 	len = min((int)cnt, sspi->len);
173 
174 	while (len--) {
175 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
176 		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
177 		sspi->len--;
178 	}
179 }
180 
181 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
182 {
183 	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
184 	u32 reg;
185 
186 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
187 	reg &= ~SUN6I_TFR_CTL_CS_MASK;
188 	reg |= SUN6I_TFR_CTL_CS(spi_get_chipselect(spi, 0));
189 
190 	if (enable)
191 		reg |= SUN6I_TFR_CTL_CS_LEVEL;
192 	else
193 		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
194 
195 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
196 }
197 
198 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
199 {
200 	return SUN6I_MAX_XFER_SIZE - 1;
201 }
202 
203 static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
204 				 struct spi_transfer *tfr)
205 {
206 	struct dma_async_tx_descriptor *rxdesc, *txdesc;
207 	struct spi_master *master = sspi->master;
208 
209 	rxdesc = NULL;
210 	if (tfr->rx_buf) {
211 		struct dma_slave_config rxconf = {
212 			.direction = DMA_DEV_TO_MEM,
213 			.src_addr = sspi->dma_addr_rx,
214 			.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
215 			.src_maxburst = 8,
216 		};
217 
218 		dmaengine_slave_config(master->dma_rx, &rxconf);
219 
220 		rxdesc = dmaengine_prep_slave_sg(master->dma_rx,
221 						 tfr->rx_sg.sgl,
222 						 tfr->rx_sg.nents,
223 						 DMA_DEV_TO_MEM,
224 						 DMA_PREP_INTERRUPT);
225 		if (!rxdesc)
226 			return -EINVAL;
227 	}
228 
229 	txdesc = NULL;
230 	if (tfr->tx_buf) {
231 		struct dma_slave_config txconf = {
232 			.direction = DMA_MEM_TO_DEV,
233 			.dst_addr = sspi->dma_addr_tx,
234 			.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
235 			.dst_maxburst = 8,
236 		};
237 
238 		dmaengine_slave_config(master->dma_tx, &txconf);
239 
240 		txdesc = dmaengine_prep_slave_sg(master->dma_tx,
241 						 tfr->tx_sg.sgl,
242 						 tfr->tx_sg.nents,
243 						 DMA_MEM_TO_DEV,
244 						 DMA_PREP_INTERRUPT);
245 		if (!txdesc) {
246 			if (rxdesc)
247 				dmaengine_terminate_sync(master->dma_rx);
248 			return -EINVAL;
249 		}
250 	}
251 
252 	if (tfr->rx_buf) {
253 		dmaengine_submit(rxdesc);
254 		dma_async_issue_pending(master->dma_rx);
255 	}
256 
257 	if (tfr->tx_buf) {
258 		dmaengine_submit(txdesc);
259 		dma_async_issue_pending(master->dma_tx);
260 	}
261 
262 	return 0;
263 }
264 
265 static int sun6i_spi_transfer_one(struct spi_master *master,
266 				  struct spi_device *spi,
267 				  struct spi_transfer *tfr)
268 {
269 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
270 	unsigned int div, div_cdr1, div_cdr2, timeout;
271 	unsigned int start, end, tx_time;
272 	unsigned int trig_level;
273 	unsigned int tx_len = 0, rx_len = 0, nbits = 0;
274 	bool use_dma;
275 	int ret = 0;
276 	u32 reg;
277 
278 	if (tfr->len > SUN6I_MAX_XFER_SIZE)
279 		return -EINVAL;
280 
281 	reinit_completion(&sspi->done);
282 	sspi->tx_buf = tfr->tx_buf;
283 	sspi->rx_buf = tfr->rx_buf;
284 	sspi->len = tfr->len;
285 	use_dma = master->can_dma ? master->can_dma(master, spi, tfr) : false;
286 
287 	/* Clear pending interrupts */
288 	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
289 
290 	/* Reset FIFO */
291 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
292 			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
293 
294 	reg = 0;
295 
296 	if (!use_dma) {
297 		/*
298 		 * Setup FIFO interrupt trigger level
299 		 * Here we choose 3/4 of the full fifo depth, as it's
300 		 * the hardcoded value used in old generation of Allwinner
301 		 * SPI controller. (See spi-sun4i.c)
302 		 */
303 		trig_level = sspi->cfg->fifo_depth / 4 * 3;
304 	} else {
305 		/*
306 		 * Setup FIFO DMA request trigger level
307 		 * We choose 1/2 of the full fifo depth, that value will
308 		 * be used as DMA burst length.
309 		 */
310 		trig_level = sspi->cfg->fifo_depth / 2;
311 
312 		if (tfr->tx_buf)
313 			reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
314 		if (tfr->rx_buf)
315 			reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
316 	}
317 
318 	reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
319 	       (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
320 
321 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
322 
323 	/*
324 	 * Setup the transfer control register: Chip Select,
325 	 * polarities, etc.
326 	 */
327 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
328 
329 	if (spi->mode & SPI_CPOL)
330 		reg |= SUN6I_TFR_CTL_CPOL;
331 	else
332 		reg &= ~SUN6I_TFR_CTL_CPOL;
333 
334 	if (spi->mode & SPI_CPHA)
335 		reg |= SUN6I_TFR_CTL_CPHA;
336 	else
337 		reg &= ~SUN6I_TFR_CTL_CPHA;
338 
339 	if (spi->mode & SPI_LSB_FIRST)
340 		reg |= SUN6I_TFR_CTL_FBS;
341 	else
342 		reg &= ~SUN6I_TFR_CTL_FBS;
343 
344 	/*
345 	 * If it's a TX only transfer, we don't want to fill the RX
346 	 * FIFO with bogus data
347 	 */
348 	if (sspi->rx_buf) {
349 		reg &= ~SUN6I_TFR_CTL_DHB;
350 		rx_len = tfr->len;
351 	} else {
352 		reg |= SUN6I_TFR_CTL_DHB;
353 	}
354 
355 	/* We want to control the chip select manually */
356 	reg |= SUN6I_TFR_CTL_CS_MANUAL;
357 
358 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
359 
360 	if (sspi->cfg->has_clk_ctl) {
361 		unsigned int mclk_rate = clk_get_rate(sspi->mclk);
362 
363 		/* Ensure that we have a parent clock fast enough */
364 		if (mclk_rate < (2 * tfr->speed_hz)) {
365 			clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
366 			mclk_rate = clk_get_rate(sspi->mclk);
367 		}
368 
369 		/*
370 		 * Setup clock divider.
371 		 *
372 		 * We have two choices there. Either we can use the clock
373 		 * divide rate 1, which is calculated thanks to this formula:
374 		 * SPI_CLK = MOD_CLK / (2 ^ cdr)
375 		 * Or we can use CDR2, which is calculated with the formula:
376 		 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
377 		 * Wether we use the former or the latter is set through the
378 		 * DRS bit.
379 		 *
380 		 * First try CDR2, and if we can't reach the expected
381 		 * frequency, fall back to CDR1.
382 		 */
383 		div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
384 		div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
385 		if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
386 			reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
387 			tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
388 		} else {
389 			div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
390 			reg = SUN6I_CLK_CTL_CDR1(div);
391 			tfr->effective_speed_hz = mclk_rate / (1 << div);
392 		}
393 
394 		sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
395 	} else {
396 		clk_set_rate(sspi->mclk, tfr->speed_hz);
397 		tfr->effective_speed_hz = clk_get_rate(sspi->mclk);
398 
399 		/*
400 		 * Configure work mode.
401 		 *
402 		 * There are three work modes depending on the controller clock
403 		 * frequency:
404 		 * - normal sample mode           : CLK <= 24MHz SDM=1 SDC=0
405 		 * - delay half-cycle sample mode : CLK <= 40MHz SDM=0 SDC=0
406 		 * - delay one-cycle sample mode  : CLK >= 80MHz SDM=0 SDC=1
407 		 */
408 		reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
409 		reg &= ~(SUN6I_TFR_CTL_SDM | SUN6I_TFR_CTL_SDC);
410 
411 		if (tfr->effective_speed_hz <= 24000000)
412 			reg |= SUN6I_TFR_CTL_SDM;
413 		else if (tfr->effective_speed_hz >= 80000000)
414 			reg |= SUN6I_TFR_CTL_SDC;
415 
416 		sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
417 	}
418 
419 	/* Finally enable the bus - doing so before might raise SCK to HIGH */
420 	reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
421 	reg |= SUN6I_GBL_CTL_BUS_ENABLE;
422 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
423 
424 	/* Setup the transfer now... */
425 	if (sspi->tx_buf) {
426 		tx_len = tfr->len;
427 		nbits = tfr->tx_nbits;
428 	} else if (tfr->rx_buf) {
429 		nbits = tfr->rx_nbits;
430 	}
431 
432 	switch (nbits) {
433 	case SPI_NBITS_DUAL:
434 		reg = SUN6I_BURST_CTL_CNT_DRM;
435 		break;
436 	case SPI_NBITS_QUAD:
437 		reg = SUN6I_BURST_CTL_CNT_QUAD_EN;
438 		break;
439 	case SPI_NBITS_SINGLE:
440 	default:
441 		reg = FIELD_PREP(SUN6I_BURST_CTL_CNT_STC_MASK, tx_len);
442 	}
443 
444 	/* Setup the counters */
445 	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, reg);
446 	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
447 	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
448 
449 	if (!use_dma) {
450 		/* Fill the TX FIFO */
451 		sun6i_spi_fill_fifo(sspi);
452 	} else {
453 		ret = sun6i_spi_prepare_dma(sspi, tfr);
454 		if (ret) {
455 			dev_warn(&master->dev,
456 				 "%s: prepare DMA failed, ret=%d",
457 				 dev_name(&spi->dev), ret);
458 			return ret;
459 		}
460 	}
461 
462 	/* Enable the interrupts */
463 	reg = SUN6I_INT_CTL_TC;
464 
465 	if (!use_dma) {
466 		if (rx_len > sspi->cfg->fifo_depth)
467 			reg |= SUN6I_INT_CTL_RF_RDY;
468 		if (tx_len > sspi->cfg->fifo_depth)
469 			reg |= SUN6I_INT_CTL_TF_ERQ;
470 	}
471 
472 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
473 
474 	/* Start the transfer */
475 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
476 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
477 
478 	tx_time = spi_controller_xfer_timeout(master, tfr);
479 	start = jiffies;
480 	timeout = wait_for_completion_timeout(&sspi->done,
481 					      msecs_to_jiffies(tx_time));
482 	end = jiffies;
483 	if (!timeout) {
484 		dev_warn(&master->dev,
485 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
486 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
487 			 jiffies_to_msecs(end - start), tx_time);
488 		ret = -ETIMEDOUT;
489 	}
490 
491 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
492 
493 	if (ret && use_dma) {
494 		dmaengine_terminate_sync(master->dma_rx);
495 		dmaengine_terminate_sync(master->dma_tx);
496 	}
497 
498 	return ret;
499 }
500 
501 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
502 {
503 	struct sun6i_spi *sspi = dev_id;
504 	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
505 
506 	/* Transfer complete */
507 	if (status & SUN6I_INT_CTL_TC) {
508 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
509 		sun6i_spi_drain_fifo(sspi);
510 		complete(&sspi->done);
511 		return IRQ_HANDLED;
512 	}
513 
514 	/* Receive FIFO 3/4 full */
515 	if (status & SUN6I_INT_CTL_RF_RDY) {
516 		sun6i_spi_drain_fifo(sspi);
517 		/* Only clear the interrupt _after_ draining the FIFO */
518 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
519 		return IRQ_HANDLED;
520 	}
521 
522 	/* Transmit FIFO 3/4 empty */
523 	if (status & SUN6I_INT_CTL_TF_ERQ) {
524 		sun6i_spi_fill_fifo(sspi);
525 
526 		if (!sspi->len)
527 			/* nothing left to transmit */
528 			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
529 
530 		/* Only clear the interrupt _after_ re-seeding the FIFO */
531 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
532 
533 		return IRQ_HANDLED;
534 	}
535 
536 	return IRQ_NONE;
537 }
538 
539 static int sun6i_spi_runtime_resume(struct device *dev)
540 {
541 	struct spi_master *master = dev_get_drvdata(dev);
542 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
543 	int ret;
544 
545 	ret = clk_prepare_enable(sspi->hclk);
546 	if (ret) {
547 		dev_err(dev, "Couldn't enable AHB clock\n");
548 		goto out;
549 	}
550 
551 	ret = clk_prepare_enable(sspi->mclk);
552 	if (ret) {
553 		dev_err(dev, "Couldn't enable module clock\n");
554 		goto err;
555 	}
556 
557 	ret = reset_control_deassert(sspi->rstc);
558 	if (ret) {
559 		dev_err(dev, "Couldn't deassert the device from reset\n");
560 		goto err2;
561 	}
562 
563 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
564 			SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
565 
566 	return 0;
567 
568 err2:
569 	clk_disable_unprepare(sspi->mclk);
570 err:
571 	clk_disable_unprepare(sspi->hclk);
572 out:
573 	return ret;
574 }
575 
576 static int sun6i_spi_runtime_suspend(struct device *dev)
577 {
578 	struct spi_master *master = dev_get_drvdata(dev);
579 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
580 
581 	reset_control_assert(sspi->rstc);
582 	clk_disable_unprepare(sspi->mclk);
583 	clk_disable_unprepare(sspi->hclk);
584 
585 	return 0;
586 }
587 
588 static bool sun6i_spi_can_dma(struct spi_master *master,
589 			      struct spi_device *spi,
590 			      struct spi_transfer *xfer)
591 {
592 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
593 
594 	/*
595 	 * If the number of spi words to transfer is less or equal than
596 	 * the fifo length we can just fill the fifo and wait for a single
597 	 * irq, so don't bother setting up dma
598 	 */
599 	return xfer->len > sspi->cfg->fifo_depth;
600 }
601 
602 static int sun6i_spi_probe(struct platform_device *pdev)
603 {
604 	struct spi_master *master;
605 	struct sun6i_spi *sspi;
606 	struct resource *mem;
607 	int ret = 0, irq;
608 
609 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
610 	if (!master) {
611 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
612 		return -ENOMEM;
613 	}
614 
615 	platform_set_drvdata(pdev, master);
616 	sspi = spi_master_get_devdata(master);
617 
618 	sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
619 	if (IS_ERR(sspi->base_addr)) {
620 		ret = PTR_ERR(sspi->base_addr);
621 		goto err_free_master;
622 	}
623 
624 	irq = platform_get_irq(pdev, 0);
625 	if (irq < 0) {
626 		ret = -ENXIO;
627 		goto err_free_master;
628 	}
629 
630 	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
631 			       0, "sun6i-spi", sspi);
632 	if (ret) {
633 		dev_err(&pdev->dev, "Cannot request IRQ\n");
634 		goto err_free_master;
635 	}
636 
637 	sspi->master = master;
638 	sspi->cfg = of_device_get_match_data(&pdev->dev);
639 
640 	master->max_speed_hz = 100 * 1000 * 1000;
641 	master->min_speed_hz = 3 * 1000;
642 	master->use_gpio_descriptors = true;
643 	master->set_cs = sun6i_spi_set_cs;
644 	master->transfer_one = sun6i_spi_transfer_one;
645 	master->num_chipselect = 4;
646 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
647 			    sspi->cfg->mode_bits;
648 	master->bits_per_word_mask = SPI_BPW_MASK(8);
649 	master->dev.of_node = pdev->dev.of_node;
650 	master->auto_runtime_pm = true;
651 	master->max_transfer_size = sun6i_spi_max_transfer_size;
652 
653 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
654 	if (IS_ERR(sspi->hclk)) {
655 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
656 		ret = PTR_ERR(sspi->hclk);
657 		goto err_free_master;
658 	}
659 
660 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
661 	if (IS_ERR(sspi->mclk)) {
662 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
663 		ret = PTR_ERR(sspi->mclk);
664 		goto err_free_master;
665 	}
666 
667 	init_completion(&sspi->done);
668 
669 	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
670 	if (IS_ERR(sspi->rstc)) {
671 		dev_err(&pdev->dev, "Couldn't get reset controller\n");
672 		ret = PTR_ERR(sspi->rstc);
673 		goto err_free_master;
674 	}
675 
676 	master->dma_tx = dma_request_chan(&pdev->dev, "tx");
677 	if (IS_ERR(master->dma_tx)) {
678 		/* Check tx to see if we need defer probing driver */
679 		if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
680 			ret = -EPROBE_DEFER;
681 			goto err_free_master;
682 		}
683 		dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
684 		master->dma_tx = NULL;
685 	}
686 
687 	master->dma_rx = dma_request_chan(&pdev->dev, "rx");
688 	if (IS_ERR(master->dma_rx)) {
689 		if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
690 			ret = -EPROBE_DEFER;
691 			goto err_free_dma_tx;
692 		}
693 		dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
694 		master->dma_rx = NULL;
695 	}
696 
697 	if (master->dma_tx && master->dma_rx) {
698 		sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
699 		sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
700 		master->can_dma = sun6i_spi_can_dma;
701 	}
702 
703 	/*
704 	 * This wake-up/shutdown pattern is to be able to have the
705 	 * device woken up, even if runtime_pm is disabled
706 	 */
707 	ret = sun6i_spi_runtime_resume(&pdev->dev);
708 	if (ret) {
709 		dev_err(&pdev->dev, "Couldn't resume the device\n");
710 		goto err_free_dma_rx;
711 	}
712 
713 	pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
714 	pm_runtime_use_autosuspend(&pdev->dev);
715 	pm_runtime_set_active(&pdev->dev);
716 	pm_runtime_enable(&pdev->dev);
717 
718 	ret = devm_spi_register_master(&pdev->dev, master);
719 	if (ret) {
720 		dev_err(&pdev->dev, "cannot register SPI master\n");
721 		goto err_pm_disable;
722 	}
723 
724 	return 0;
725 
726 err_pm_disable:
727 	pm_runtime_disable(&pdev->dev);
728 	sun6i_spi_runtime_suspend(&pdev->dev);
729 err_free_dma_rx:
730 	if (master->dma_rx)
731 		dma_release_channel(master->dma_rx);
732 err_free_dma_tx:
733 	if (master->dma_tx)
734 		dma_release_channel(master->dma_tx);
735 err_free_master:
736 	spi_master_put(master);
737 	return ret;
738 }
739 
740 static void sun6i_spi_remove(struct platform_device *pdev)
741 {
742 	struct spi_master *master = platform_get_drvdata(pdev);
743 
744 	pm_runtime_force_suspend(&pdev->dev);
745 
746 	if (master->dma_tx)
747 		dma_release_channel(master->dma_tx);
748 	if (master->dma_rx)
749 		dma_release_channel(master->dma_rx);
750 }
751 
752 static const struct sun6i_spi_cfg sun6i_a31_spi_cfg = {
753 	.fifo_depth	= SUN6I_FIFO_DEPTH,
754 	.has_clk_ctl	= true,
755 };
756 
757 static const struct sun6i_spi_cfg sun8i_h3_spi_cfg = {
758 	.fifo_depth	= SUN8I_FIFO_DEPTH,
759 	.has_clk_ctl	= true,
760 };
761 
762 static const struct sun6i_spi_cfg sun50i_r329_spi_cfg = {
763 	.fifo_depth	= SUN8I_FIFO_DEPTH,
764 	.mode_bits	= SPI_RX_DUAL | SPI_TX_DUAL | SPI_RX_QUAD | SPI_TX_QUAD,
765 };
766 
767 static const struct of_device_id sun6i_spi_match[] = {
768 	{ .compatible = "allwinner,sun6i-a31-spi", .data = &sun6i_a31_spi_cfg },
769 	{ .compatible = "allwinner,sun8i-h3-spi",  .data = &sun8i_h3_spi_cfg },
770 	{
771 		.compatible = "allwinner,sun50i-r329-spi",
772 		.data = &sun50i_r329_spi_cfg
773 	},
774 	{}
775 };
776 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
777 
778 static const struct dev_pm_ops sun6i_spi_pm_ops = {
779 	.runtime_resume		= sun6i_spi_runtime_resume,
780 	.runtime_suspend	= sun6i_spi_runtime_suspend,
781 };
782 
783 static struct platform_driver sun6i_spi_driver = {
784 	.probe	= sun6i_spi_probe,
785 	.remove_new = sun6i_spi_remove,
786 	.driver	= {
787 		.name		= "sun6i-spi",
788 		.of_match_table	= sun6i_spi_match,
789 		.pm		= &sun6i_spi_pm_ops,
790 	},
791 };
792 module_platform_driver(sun6i_spi_driver);
793 
794 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
795 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
796 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
797 MODULE_LICENSE("GPL");
798