xref: /openbmc/linux/drivers/spi/spi-sun6i.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23 
24 #include <linux/spi/spi.h>
25 
26 #define SUN6I_FIFO_DEPTH		128
27 
28 #define SUN6I_GBL_CTL_REG		0x04
29 #define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
30 #define SUN6I_GBL_CTL_MASTER			BIT(1)
31 #define SUN6I_GBL_CTL_TP			BIT(7)
32 #define SUN6I_GBL_CTL_RST			BIT(31)
33 
34 #define SUN6I_TFR_CTL_REG		0x08
35 #define SUN6I_TFR_CTL_CPHA			BIT(0)
36 #define SUN6I_TFR_CTL_CPOL			BIT(1)
37 #define SUN6I_TFR_CTL_SPOL			BIT(2)
38 #define SUN6I_TFR_CTL_CS_MASK			0x30
39 #define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
40 #define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
41 #define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
42 #define SUN6I_TFR_CTL_DHB			BIT(8)
43 #define SUN6I_TFR_CTL_FBS			BIT(12)
44 #define SUN6I_TFR_CTL_XCH			BIT(31)
45 
46 #define SUN6I_INT_CTL_REG		0x10
47 #define SUN6I_INT_CTL_RF_OVF			BIT(8)
48 #define SUN6I_INT_CTL_TC			BIT(12)
49 
50 #define SUN6I_INT_STA_REG		0x14
51 
52 #define SUN6I_FIFO_CTL_REG		0x18
53 #define SUN6I_FIFO_CTL_RF_RST			BIT(15)
54 #define SUN6I_FIFO_CTL_TF_RST			BIT(31)
55 
56 #define SUN6I_FIFO_STA_REG		0x1c
57 #define SUN6I_FIFO_STA_RF_CNT_MASK		0x7f
58 #define SUN6I_FIFO_STA_RF_CNT_BITS		0
59 #define SUN6I_FIFO_STA_TF_CNT_MASK		0x7f
60 #define SUN6I_FIFO_STA_TF_CNT_BITS		16
61 
62 #define SUN6I_CLK_CTL_REG		0x24
63 #define SUN6I_CLK_CTL_CDR2_MASK			0xff
64 #define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
65 #define SUN6I_CLK_CTL_CDR1_MASK			0xf
66 #define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
67 #define SUN6I_CLK_CTL_DRS			BIT(12)
68 
69 #define SUN6I_BURST_CNT_REG		0x30
70 #define SUN6I_BURST_CNT(cnt)			((cnt) & 0xffffff)
71 
72 #define SUN6I_XMIT_CNT_REG		0x34
73 #define SUN6I_XMIT_CNT(cnt)			((cnt) & 0xffffff)
74 
75 #define SUN6I_BURST_CTL_CNT_REG		0x38
76 #define SUN6I_BURST_CTL_CNT_STC(cnt)		((cnt) & 0xffffff)
77 
78 #define SUN6I_TXDATA_REG		0x200
79 #define SUN6I_RXDATA_REG		0x300
80 
81 struct sun6i_spi {
82 	struct spi_master	*master;
83 	void __iomem		*base_addr;
84 	struct clk		*hclk;
85 	struct clk		*mclk;
86 	struct reset_control	*rstc;
87 
88 	struct completion	done;
89 
90 	const u8		*tx_buf;
91 	u8			*rx_buf;
92 	int			len;
93 };
94 
95 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
96 {
97 	return readl(sspi->base_addr + reg);
98 }
99 
100 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
101 {
102 	writel(value, sspi->base_addr + reg);
103 }
104 
105 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
106 {
107 	u32 reg, cnt;
108 	u8 byte;
109 
110 	/* See how much data is available */
111 	reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
112 	reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
113 	cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
114 
115 	if (len > cnt)
116 		len = cnt;
117 
118 	while (len--) {
119 		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
120 		if (sspi->rx_buf)
121 			*sspi->rx_buf++ = byte;
122 	}
123 }
124 
125 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
126 {
127 	u8 byte;
128 
129 	if (len > sspi->len)
130 		len = sspi->len;
131 
132 	while (len--) {
133 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
134 		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
135 		sspi->len--;
136 	}
137 }
138 
139 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
140 {
141 	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
142 	u32 reg;
143 
144 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
145 	reg &= ~SUN6I_TFR_CTL_CS_MASK;
146 	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
147 
148 	if (enable)
149 		reg |= SUN6I_TFR_CTL_CS_LEVEL;
150 	else
151 		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
152 
153 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
154 }
155 
156 
157 static int sun6i_spi_transfer_one(struct spi_master *master,
158 				  struct spi_device *spi,
159 				  struct spi_transfer *tfr)
160 {
161 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
162 	unsigned int mclk_rate, div, timeout;
163 	unsigned int tx_len = 0;
164 	int ret = 0;
165 	u32 reg;
166 
167 	/* We don't support transfer larger than the FIFO */
168 	if (tfr->len > SUN6I_FIFO_DEPTH)
169 		return -EINVAL;
170 
171 	reinit_completion(&sspi->done);
172 	sspi->tx_buf = tfr->tx_buf;
173 	sspi->rx_buf = tfr->rx_buf;
174 	sspi->len = tfr->len;
175 
176 	/* Clear pending interrupts */
177 	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
178 
179 	/* Reset FIFO */
180 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
181 			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
182 
183 	/*
184 	 * Setup the transfer control register: Chip Select,
185 	 * polarities, etc.
186 	 */
187 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
188 
189 	if (spi->mode & SPI_CPOL)
190 		reg |= SUN6I_TFR_CTL_CPOL;
191 	else
192 		reg &= ~SUN6I_TFR_CTL_CPOL;
193 
194 	if (spi->mode & SPI_CPHA)
195 		reg |= SUN6I_TFR_CTL_CPHA;
196 	else
197 		reg &= ~SUN6I_TFR_CTL_CPHA;
198 
199 	if (spi->mode & SPI_LSB_FIRST)
200 		reg |= SUN6I_TFR_CTL_FBS;
201 	else
202 		reg &= ~SUN6I_TFR_CTL_FBS;
203 
204 	/*
205 	 * If it's a TX only transfer, we don't want to fill the RX
206 	 * FIFO with bogus data
207 	 */
208 	if (sspi->rx_buf)
209 		reg &= ~SUN6I_TFR_CTL_DHB;
210 	else
211 		reg |= SUN6I_TFR_CTL_DHB;
212 
213 	/* We want to control the chip select manually */
214 	reg |= SUN6I_TFR_CTL_CS_MANUAL;
215 
216 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
217 
218 	/* Ensure that we have a parent clock fast enough */
219 	mclk_rate = clk_get_rate(sspi->mclk);
220 	if (mclk_rate < (2 * spi->max_speed_hz)) {
221 		clk_set_rate(sspi->mclk, 2 * spi->max_speed_hz);
222 		mclk_rate = clk_get_rate(sspi->mclk);
223 	}
224 
225 	/*
226 	 * Setup clock divider.
227 	 *
228 	 * We have two choices there. Either we can use the clock
229 	 * divide rate 1, which is calculated thanks to this formula:
230 	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
231 	 * Or we can use CDR2, which is calculated with the formula:
232 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
233 	 * Wether we use the former or the latter is set through the
234 	 * DRS bit.
235 	 *
236 	 * First try CDR2, and if we can't reach the expected
237 	 * frequency, fall back to CDR1.
238 	 */
239 	div = mclk_rate / (2 * spi->max_speed_hz);
240 	if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
241 		if (div > 0)
242 			div--;
243 
244 		reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
245 	} else {
246 		div = ilog2(mclk_rate) - ilog2(spi->max_speed_hz);
247 		reg = SUN6I_CLK_CTL_CDR1(div);
248 	}
249 
250 	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
251 
252 	/* Setup the transfer now... */
253 	if (sspi->tx_buf)
254 		tx_len = tfr->len;
255 
256 	/* Setup the counters */
257 	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
258 	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
259 	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
260 			SUN6I_BURST_CTL_CNT_STC(tx_len));
261 
262 	/* Fill the TX FIFO */
263 	sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
264 
265 	/* Enable the interrupts */
266 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
267 
268 	/* Start the transfer */
269 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
270 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
271 
272 	timeout = wait_for_completion_timeout(&sspi->done,
273 					      msecs_to_jiffies(1000));
274 	if (!timeout) {
275 		ret = -ETIMEDOUT;
276 		goto out;
277 	}
278 
279 	sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
280 
281 out:
282 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
283 
284 	return ret;
285 }
286 
287 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
288 {
289 	struct sun6i_spi *sspi = dev_id;
290 	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
291 
292 	/* Transfer complete */
293 	if (status & SUN6I_INT_CTL_TC) {
294 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
295 		complete(&sspi->done);
296 		return IRQ_HANDLED;
297 	}
298 
299 	return IRQ_NONE;
300 }
301 
302 static int sun6i_spi_runtime_resume(struct device *dev)
303 {
304 	struct spi_master *master = dev_get_drvdata(dev);
305 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
306 	int ret;
307 
308 	ret = clk_prepare_enable(sspi->hclk);
309 	if (ret) {
310 		dev_err(dev, "Couldn't enable AHB clock\n");
311 		goto out;
312 	}
313 
314 	ret = clk_prepare_enable(sspi->mclk);
315 	if (ret) {
316 		dev_err(dev, "Couldn't enable module clock\n");
317 		goto err;
318 	}
319 
320 	ret = reset_control_deassert(sspi->rstc);
321 	if (ret) {
322 		dev_err(dev, "Couldn't deassert the device from reset\n");
323 		goto err2;
324 	}
325 
326 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
327 			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
328 
329 	return 0;
330 
331 err2:
332 	clk_disable_unprepare(sspi->mclk);
333 err:
334 	clk_disable_unprepare(sspi->hclk);
335 out:
336 	return ret;
337 }
338 
339 static int sun6i_spi_runtime_suspend(struct device *dev)
340 {
341 	struct spi_master *master = dev_get_drvdata(dev);
342 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
343 
344 	reset_control_assert(sspi->rstc);
345 	clk_disable_unprepare(sspi->mclk);
346 	clk_disable_unprepare(sspi->hclk);
347 
348 	return 0;
349 }
350 
351 static int sun6i_spi_probe(struct platform_device *pdev)
352 {
353 	struct spi_master *master;
354 	struct sun6i_spi *sspi;
355 	struct resource	*res;
356 	int ret = 0, irq;
357 
358 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
359 	if (!master) {
360 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
361 		return -ENOMEM;
362 	}
363 
364 	platform_set_drvdata(pdev, master);
365 	sspi = spi_master_get_devdata(master);
366 
367 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
368 	sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
369 	if (IS_ERR(sspi->base_addr)) {
370 		ret = PTR_ERR(sspi->base_addr);
371 		goto err_free_master;
372 	}
373 
374 	irq = platform_get_irq(pdev, 0);
375 	if (irq < 0) {
376 		dev_err(&pdev->dev, "No spi IRQ specified\n");
377 		ret = -ENXIO;
378 		goto err_free_master;
379 	}
380 
381 	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
382 			       0, "sun6i-spi", sspi);
383 	if (ret) {
384 		dev_err(&pdev->dev, "Cannot request IRQ\n");
385 		goto err_free_master;
386 	}
387 
388 	sspi->master = master;
389 	master->set_cs = sun6i_spi_set_cs;
390 	master->transfer_one = sun6i_spi_transfer_one;
391 	master->num_chipselect = 4;
392 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
393 	master->bits_per_word_mask = SPI_BPW_MASK(8);
394 	master->dev.of_node = pdev->dev.of_node;
395 	master->auto_runtime_pm = true;
396 
397 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
398 	if (IS_ERR(sspi->hclk)) {
399 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
400 		ret = PTR_ERR(sspi->hclk);
401 		goto err_free_master;
402 	}
403 
404 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
405 	if (IS_ERR(sspi->mclk)) {
406 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
407 		ret = PTR_ERR(sspi->mclk);
408 		goto err_free_master;
409 	}
410 
411 	init_completion(&sspi->done);
412 
413 	sspi->rstc = devm_reset_control_get(&pdev->dev, NULL);
414 	if (IS_ERR(sspi->rstc)) {
415 		dev_err(&pdev->dev, "Couldn't get reset controller\n");
416 		ret = PTR_ERR(sspi->rstc);
417 		goto err_free_master;
418 	}
419 
420 	/*
421 	 * This wake-up/shutdown pattern is to be able to have the
422 	 * device woken up, even if runtime_pm is disabled
423 	 */
424 	ret = sun6i_spi_runtime_resume(&pdev->dev);
425 	if (ret) {
426 		dev_err(&pdev->dev, "Couldn't resume the device\n");
427 		goto err_free_master;
428 	}
429 
430 	pm_runtime_set_active(&pdev->dev);
431 	pm_runtime_enable(&pdev->dev);
432 	pm_runtime_idle(&pdev->dev);
433 
434 	ret = devm_spi_register_master(&pdev->dev, master);
435 	if (ret) {
436 		dev_err(&pdev->dev, "cannot register SPI master\n");
437 		goto err_pm_disable;
438 	}
439 
440 	return 0;
441 
442 err_pm_disable:
443 	pm_runtime_disable(&pdev->dev);
444 	sun6i_spi_runtime_suspend(&pdev->dev);
445 err_free_master:
446 	spi_master_put(master);
447 	return ret;
448 }
449 
450 static int sun6i_spi_remove(struct platform_device *pdev)
451 {
452 	pm_runtime_disable(&pdev->dev);
453 
454 	return 0;
455 }
456 
457 static const struct of_device_id sun6i_spi_match[] = {
458 	{ .compatible = "allwinner,sun6i-a31-spi", },
459 	{}
460 };
461 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
462 
463 static const struct dev_pm_ops sun6i_spi_pm_ops = {
464 	.runtime_resume		= sun6i_spi_runtime_resume,
465 	.runtime_suspend	= sun6i_spi_runtime_suspend,
466 };
467 
468 static struct platform_driver sun6i_spi_driver = {
469 	.probe	= sun6i_spi_probe,
470 	.remove	= sun6i_spi_remove,
471 	.driver	= {
472 		.name		= "sun6i-spi",
473 		.of_match_table	= sun6i_spi_match,
474 		.pm		= &sun6i_spi_pm_ops,
475 	},
476 };
477 module_platform_driver(sun6i_spi_driver);
478 
479 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
480 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
481 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
482 MODULE_LICENSE("GPL");
483