xref: /openbmc/linux/drivers/spi/spi-sun6i.c (revision b34e08d5)
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23 #include <linux/workqueue.h>
24 
25 #include <linux/spi/spi.h>
26 
27 #define SUN6I_FIFO_DEPTH		128
28 
29 #define SUN6I_GBL_CTL_REG		0x04
30 #define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
31 #define SUN6I_GBL_CTL_MASTER			BIT(1)
32 #define SUN6I_GBL_CTL_TP			BIT(7)
33 #define SUN6I_GBL_CTL_RST			BIT(31)
34 
35 #define SUN6I_TFR_CTL_REG		0x08
36 #define SUN6I_TFR_CTL_CPHA			BIT(0)
37 #define SUN6I_TFR_CTL_CPOL			BIT(1)
38 #define SUN6I_TFR_CTL_SPOL			BIT(2)
39 #define SUN6I_TFR_CTL_CS_MASK			0x30
40 #define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
41 #define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
42 #define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
43 #define SUN6I_TFR_CTL_DHB			BIT(8)
44 #define SUN6I_TFR_CTL_FBS			BIT(12)
45 #define SUN6I_TFR_CTL_XCH			BIT(31)
46 
47 #define SUN6I_INT_CTL_REG		0x10
48 #define SUN6I_INT_CTL_RF_OVF			BIT(8)
49 #define SUN6I_INT_CTL_TC			BIT(12)
50 
51 #define SUN6I_INT_STA_REG		0x14
52 
53 #define SUN6I_FIFO_CTL_REG		0x18
54 #define SUN6I_FIFO_CTL_RF_RST			BIT(15)
55 #define SUN6I_FIFO_CTL_TF_RST			BIT(31)
56 
57 #define SUN6I_FIFO_STA_REG		0x1c
58 #define SUN6I_FIFO_STA_RF_CNT_MASK		0x7f
59 #define SUN6I_FIFO_STA_RF_CNT_BITS		0
60 #define SUN6I_FIFO_STA_TF_CNT_MASK		0x7f
61 #define SUN6I_FIFO_STA_TF_CNT_BITS		16
62 
63 #define SUN6I_CLK_CTL_REG		0x24
64 #define SUN6I_CLK_CTL_CDR2_MASK			0xff
65 #define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
66 #define SUN6I_CLK_CTL_CDR1_MASK			0xf
67 #define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
68 #define SUN6I_CLK_CTL_DRS			BIT(12)
69 
70 #define SUN6I_BURST_CNT_REG		0x30
71 #define SUN6I_BURST_CNT(cnt)			((cnt) & 0xffffff)
72 
73 #define SUN6I_XMIT_CNT_REG		0x34
74 #define SUN6I_XMIT_CNT(cnt)			((cnt) & 0xffffff)
75 
76 #define SUN6I_BURST_CTL_CNT_REG		0x38
77 #define SUN6I_BURST_CTL_CNT_STC(cnt)		((cnt) & 0xffffff)
78 
79 #define SUN6I_TXDATA_REG		0x200
80 #define SUN6I_RXDATA_REG		0x300
81 
82 struct sun6i_spi {
83 	struct spi_master	*master;
84 	void __iomem		*base_addr;
85 	struct clk		*hclk;
86 	struct clk		*mclk;
87 	struct reset_control	*rstc;
88 
89 	struct completion	done;
90 
91 	const u8		*tx_buf;
92 	u8			*rx_buf;
93 	int			len;
94 };
95 
96 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
97 {
98 	return readl(sspi->base_addr + reg);
99 }
100 
101 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
102 {
103 	writel(value, sspi->base_addr + reg);
104 }
105 
106 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
107 {
108 	u32 reg, cnt;
109 	u8 byte;
110 
111 	/* See how much data is available */
112 	reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
113 	reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
114 	cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
115 
116 	if (len > cnt)
117 		len = cnt;
118 
119 	while (len--) {
120 		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
121 		if (sspi->rx_buf)
122 			*sspi->rx_buf++ = byte;
123 	}
124 }
125 
126 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
127 {
128 	u8 byte;
129 
130 	if (len > sspi->len)
131 		len = sspi->len;
132 
133 	while (len--) {
134 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
135 		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
136 		sspi->len--;
137 	}
138 }
139 
140 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
141 {
142 	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
143 	u32 reg;
144 
145 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
146 	reg &= ~SUN6I_TFR_CTL_CS_MASK;
147 	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
148 
149 	if (enable)
150 		reg |= SUN6I_TFR_CTL_CS_LEVEL;
151 	else
152 		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
153 
154 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
155 }
156 
157 
158 static int sun6i_spi_transfer_one(struct spi_master *master,
159 				  struct spi_device *spi,
160 				  struct spi_transfer *tfr)
161 {
162 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
163 	unsigned int mclk_rate, div, timeout;
164 	unsigned int tx_len = 0;
165 	int ret = 0;
166 	u32 reg;
167 
168 	/* We don't support transfer larger than the FIFO */
169 	if (tfr->len > SUN6I_FIFO_DEPTH)
170 		return -EINVAL;
171 
172 	reinit_completion(&sspi->done);
173 	sspi->tx_buf = tfr->tx_buf;
174 	sspi->rx_buf = tfr->rx_buf;
175 	sspi->len = tfr->len;
176 
177 	/* Clear pending interrupts */
178 	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
179 
180 	/* Reset FIFO */
181 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
182 			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
183 
184 	/*
185 	 * Setup the transfer control register: Chip Select,
186 	 * polarities, etc.
187 	 */
188 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
189 
190 	if (spi->mode & SPI_CPOL)
191 		reg |= SUN6I_TFR_CTL_CPOL;
192 	else
193 		reg &= ~SUN6I_TFR_CTL_CPOL;
194 
195 	if (spi->mode & SPI_CPHA)
196 		reg |= SUN6I_TFR_CTL_CPHA;
197 	else
198 		reg &= ~SUN6I_TFR_CTL_CPHA;
199 
200 	if (spi->mode & SPI_LSB_FIRST)
201 		reg |= SUN6I_TFR_CTL_FBS;
202 	else
203 		reg &= ~SUN6I_TFR_CTL_FBS;
204 
205 	/*
206 	 * If it's a TX only transfer, we don't want to fill the RX
207 	 * FIFO with bogus data
208 	 */
209 	if (sspi->rx_buf)
210 		reg &= ~SUN6I_TFR_CTL_DHB;
211 	else
212 		reg |= SUN6I_TFR_CTL_DHB;
213 
214 	/* We want to control the chip select manually */
215 	reg |= SUN6I_TFR_CTL_CS_MANUAL;
216 
217 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
218 
219 	/* Ensure that we have a parent clock fast enough */
220 	mclk_rate = clk_get_rate(sspi->mclk);
221 	if (mclk_rate < (2 * spi->max_speed_hz)) {
222 		clk_set_rate(sspi->mclk, 2 * spi->max_speed_hz);
223 		mclk_rate = clk_get_rate(sspi->mclk);
224 	}
225 
226 	/*
227 	 * Setup clock divider.
228 	 *
229 	 * We have two choices there. Either we can use the clock
230 	 * divide rate 1, which is calculated thanks to this formula:
231 	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
232 	 * Or we can use CDR2, which is calculated with the formula:
233 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
234 	 * Wether we use the former or the latter is set through the
235 	 * DRS bit.
236 	 *
237 	 * First try CDR2, and if we can't reach the expected
238 	 * frequency, fall back to CDR1.
239 	 */
240 	div = mclk_rate / (2 * spi->max_speed_hz);
241 	if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
242 		if (div > 0)
243 			div--;
244 
245 		reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
246 	} else {
247 		div = ilog2(mclk_rate) - ilog2(spi->max_speed_hz);
248 		reg = SUN6I_CLK_CTL_CDR1(div);
249 	}
250 
251 	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
252 
253 	/* Setup the transfer now... */
254 	if (sspi->tx_buf)
255 		tx_len = tfr->len;
256 
257 	/* Setup the counters */
258 	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
259 	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
260 	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
261 			SUN6I_BURST_CTL_CNT_STC(tx_len));
262 
263 	/* Fill the TX FIFO */
264 	sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
265 
266 	/* Enable the interrupts */
267 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
268 
269 	/* Start the transfer */
270 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
271 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
272 
273 	timeout = wait_for_completion_timeout(&sspi->done,
274 					      msecs_to_jiffies(1000));
275 	if (!timeout) {
276 		ret = -ETIMEDOUT;
277 		goto out;
278 	}
279 
280 	sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
281 
282 out:
283 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
284 
285 	return ret;
286 }
287 
288 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
289 {
290 	struct sun6i_spi *sspi = dev_id;
291 	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
292 
293 	/* Transfer complete */
294 	if (status & SUN6I_INT_CTL_TC) {
295 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
296 		complete(&sspi->done);
297 		return IRQ_HANDLED;
298 	}
299 
300 	return IRQ_NONE;
301 }
302 
303 static int sun6i_spi_runtime_resume(struct device *dev)
304 {
305 	struct spi_master *master = dev_get_drvdata(dev);
306 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
307 	int ret;
308 
309 	ret = clk_prepare_enable(sspi->hclk);
310 	if (ret) {
311 		dev_err(dev, "Couldn't enable AHB clock\n");
312 		goto out;
313 	}
314 
315 	ret = clk_prepare_enable(sspi->mclk);
316 	if (ret) {
317 		dev_err(dev, "Couldn't enable module clock\n");
318 		goto err;
319 	}
320 
321 	ret = reset_control_deassert(sspi->rstc);
322 	if (ret) {
323 		dev_err(dev, "Couldn't deassert the device from reset\n");
324 		goto err2;
325 	}
326 
327 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
328 			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
329 
330 	return 0;
331 
332 err2:
333 	clk_disable_unprepare(sspi->mclk);
334 err:
335 	clk_disable_unprepare(sspi->hclk);
336 out:
337 	return ret;
338 }
339 
340 static int sun6i_spi_runtime_suspend(struct device *dev)
341 {
342 	struct spi_master *master = dev_get_drvdata(dev);
343 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
344 
345 	reset_control_assert(sspi->rstc);
346 	clk_disable_unprepare(sspi->mclk);
347 	clk_disable_unprepare(sspi->hclk);
348 
349 	return 0;
350 }
351 
352 static int sun6i_spi_probe(struct platform_device *pdev)
353 {
354 	struct spi_master *master;
355 	struct sun6i_spi *sspi;
356 	struct resource	*res;
357 	int ret = 0, irq;
358 
359 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
360 	if (!master) {
361 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
362 		return -ENOMEM;
363 	}
364 
365 	platform_set_drvdata(pdev, master);
366 	sspi = spi_master_get_devdata(master);
367 
368 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
369 	sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
370 	if (IS_ERR(sspi->base_addr)) {
371 		ret = PTR_ERR(sspi->base_addr);
372 		goto err_free_master;
373 	}
374 
375 	irq = platform_get_irq(pdev, 0);
376 	if (irq < 0) {
377 		dev_err(&pdev->dev, "No spi IRQ specified\n");
378 		ret = -ENXIO;
379 		goto err_free_master;
380 	}
381 
382 	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
383 			       0, "sun6i-spi", sspi);
384 	if (ret) {
385 		dev_err(&pdev->dev, "Cannot request IRQ\n");
386 		goto err_free_master;
387 	}
388 
389 	sspi->master = master;
390 	master->set_cs = sun6i_spi_set_cs;
391 	master->transfer_one = sun6i_spi_transfer_one;
392 	master->num_chipselect = 4;
393 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
394 	master->bits_per_word_mask = SPI_BPW_MASK(8);
395 	master->dev.of_node = pdev->dev.of_node;
396 	master->auto_runtime_pm = true;
397 
398 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
399 	if (IS_ERR(sspi->hclk)) {
400 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
401 		ret = PTR_ERR(sspi->hclk);
402 		goto err_free_master;
403 	}
404 
405 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
406 	if (IS_ERR(sspi->mclk)) {
407 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
408 		ret = PTR_ERR(sspi->mclk);
409 		goto err_free_master;
410 	}
411 
412 	init_completion(&sspi->done);
413 
414 	sspi->rstc = devm_reset_control_get(&pdev->dev, NULL);
415 	if (IS_ERR(sspi->rstc)) {
416 		dev_err(&pdev->dev, "Couldn't get reset controller\n");
417 		ret = PTR_ERR(sspi->rstc);
418 		goto err_free_master;
419 	}
420 
421 	/*
422 	 * This wake-up/shutdown pattern is to be able to have the
423 	 * device woken up, even if runtime_pm is disabled
424 	 */
425 	ret = sun6i_spi_runtime_resume(&pdev->dev);
426 	if (ret) {
427 		dev_err(&pdev->dev, "Couldn't resume the device\n");
428 		goto err_free_master;
429 	}
430 
431 	pm_runtime_set_active(&pdev->dev);
432 	pm_runtime_enable(&pdev->dev);
433 	pm_runtime_idle(&pdev->dev);
434 
435 	ret = devm_spi_register_master(&pdev->dev, master);
436 	if (ret) {
437 		dev_err(&pdev->dev, "cannot register SPI master\n");
438 		goto err_pm_disable;
439 	}
440 
441 	return 0;
442 
443 err_pm_disable:
444 	pm_runtime_disable(&pdev->dev);
445 	sun6i_spi_runtime_suspend(&pdev->dev);
446 err_free_master:
447 	spi_master_put(master);
448 	return ret;
449 }
450 
451 static int sun6i_spi_remove(struct platform_device *pdev)
452 {
453 	pm_runtime_disable(&pdev->dev);
454 
455 	return 0;
456 }
457 
458 static const struct of_device_id sun6i_spi_match[] = {
459 	{ .compatible = "allwinner,sun6i-a31-spi", },
460 	{}
461 };
462 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
463 
464 static const struct dev_pm_ops sun6i_spi_pm_ops = {
465 	.runtime_resume		= sun6i_spi_runtime_resume,
466 	.runtime_suspend	= sun6i_spi_runtime_suspend,
467 };
468 
469 static struct platform_driver sun6i_spi_driver = {
470 	.probe	= sun6i_spi_probe,
471 	.remove	= sun6i_spi_remove,
472 	.driver	= {
473 		.name		= "sun6i-spi",
474 		.owner		= THIS_MODULE,
475 		.of_match_table	= sun6i_spi_match,
476 		.pm		= &sun6i_spi_pm_ops,
477 	},
478 };
479 module_platform_driver(sun6i_spi_driver);
480 
481 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
482 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
483 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
484 MODULE_LICENSE("GPL");
485