xref: /openbmc/linux/drivers/spi/spi-sun6i.c (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/reset.h>
24 
25 #include <linux/spi/spi.h>
26 
27 #define SUN6I_FIFO_DEPTH		128
28 #define SUN8I_FIFO_DEPTH		64
29 
30 #define SUN6I_GBL_CTL_REG		0x04
31 #define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
32 #define SUN6I_GBL_CTL_MASTER			BIT(1)
33 #define SUN6I_GBL_CTL_TP			BIT(7)
34 #define SUN6I_GBL_CTL_RST			BIT(31)
35 
36 #define SUN6I_TFR_CTL_REG		0x08
37 #define SUN6I_TFR_CTL_CPHA			BIT(0)
38 #define SUN6I_TFR_CTL_CPOL			BIT(1)
39 #define SUN6I_TFR_CTL_SPOL			BIT(2)
40 #define SUN6I_TFR_CTL_CS_MASK			0x30
41 #define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
42 #define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
43 #define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
44 #define SUN6I_TFR_CTL_DHB			BIT(8)
45 #define SUN6I_TFR_CTL_FBS			BIT(12)
46 #define SUN6I_TFR_CTL_XCH			BIT(31)
47 
48 #define SUN6I_INT_CTL_REG		0x10
49 #define SUN6I_INT_CTL_RF_RDY			BIT(0)
50 #define SUN6I_INT_CTL_TF_ERQ			BIT(4)
51 #define SUN6I_INT_CTL_RF_OVF			BIT(8)
52 #define SUN6I_INT_CTL_TC			BIT(12)
53 
54 #define SUN6I_INT_STA_REG		0x14
55 
56 #define SUN6I_FIFO_CTL_REG		0x18
57 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
58 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
59 #define SUN6I_FIFO_CTL_RF_RST			BIT(15)
60 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
61 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
62 #define SUN6I_FIFO_CTL_TF_RST			BIT(31)
63 
64 #define SUN6I_FIFO_STA_REG		0x1c
65 #define SUN6I_FIFO_STA_RF_CNT_MASK		0x7f
66 #define SUN6I_FIFO_STA_RF_CNT_BITS		0
67 #define SUN6I_FIFO_STA_TF_CNT_MASK		0x7f
68 #define SUN6I_FIFO_STA_TF_CNT_BITS		16
69 
70 #define SUN6I_CLK_CTL_REG		0x24
71 #define SUN6I_CLK_CTL_CDR2_MASK			0xff
72 #define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
73 #define SUN6I_CLK_CTL_CDR1_MASK			0xf
74 #define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
75 #define SUN6I_CLK_CTL_DRS			BIT(12)
76 
77 #define SUN6I_MAX_XFER_SIZE		0xffffff
78 
79 #define SUN6I_BURST_CNT_REG		0x30
80 #define SUN6I_BURST_CNT(cnt)			((cnt) & SUN6I_MAX_XFER_SIZE)
81 
82 #define SUN6I_XMIT_CNT_REG		0x34
83 #define SUN6I_XMIT_CNT(cnt)			((cnt) & SUN6I_MAX_XFER_SIZE)
84 
85 #define SUN6I_BURST_CTL_CNT_REG		0x38
86 #define SUN6I_BURST_CTL_CNT_STC(cnt)		((cnt) & SUN6I_MAX_XFER_SIZE)
87 
88 #define SUN6I_TXDATA_REG		0x200
89 #define SUN6I_RXDATA_REG		0x300
90 
91 struct sun6i_spi {
92 	struct spi_master	*master;
93 	void __iomem		*base_addr;
94 	struct clk		*hclk;
95 	struct clk		*mclk;
96 	struct reset_control	*rstc;
97 
98 	struct completion	done;
99 
100 	const u8		*tx_buf;
101 	u8			*rx_buf;
102 	int			len;
103 	unsigned long		fifo_depth;
104 };
105 
106 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
107 {
108 	return readl(sspi->base_addr + reg);
109 }
110 
111 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
112 {
113 	writel(value, sspi->base_addr + reg);
114 }
115 
116 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
117 {
118 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
119 
120 	reg >>= SUN6I_FIFO_STA_TF_CNT_BITS;
121 
122 	return reg & SUN6I_FIFO_STA_TF_CNT_MASK;
123 }
124 
125 static inline void sun6i_spi_enable_interrupt(struct sun6i_spi *sspi, u32 mask)
126 {
127 	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
128 
129 	reg |= mask;
130 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
131 }
132 
133 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
134 {
135 	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
136 
137 	reg &= ~mask;
138 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
139 }
140 
141 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
142 {
143 	u32 reg, cnt;
144 	u8 byte;
145 
146 	/* See how much data is available */
147 	reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
148 	reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
149 	cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
150 
151 	if (len > cnt)
152 		len = cnt;
153 
154 	while (len--) {
155 		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
156 		if (sspi->rx_buf)
157 			*sspi->rx_buf++ = byte;
158 	}
159 }
160 
161 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
162 {
163 	u32 cnt;
164 	u8 byte;
165 
166 	/* See how much data we can fit */
167 	cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
168 
169 	len = min3(len, (int)cnt, sspi->len);
170 
171 	while (len--) {
172 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
173 		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
174 		sspi->len--;
175 	}
176 }
177 
178 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
179 {
180 	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
181 	u32 reg;
182 
183 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
184 	reg &= ~SUN6I_TFR_CTL_CS_MASK;
185 	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
186 
187 	if (enable)
188 		reg |= SUN6I_TFR_CTL_CS_LEVEL;
189 	else
190 		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
191 
192 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
193 }
194 
195 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
196 {
197 	return SUN6I_MAX_XFER_SIZE - 1;
198 }
199 
200 static int sun6i_spi_transfer_one(struct spi_master *master,
201 				  struct spi_device *spi,
202 				  struct spi_transfer *tfr)
203 {
204 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
205 	unsigned int mclk_rate, div, timeout;
206 	unsigned int start, end, tx_time;
207 	unsigned int trig_level;
208 	unsigned int tx_len = 0;
209 	int ret = 0;
210 	u32 reg;
211 
212 	if (tfr->len > SUN6I_MAX_XFER_SIZE)
213 		return -EINVAL;
214 
215 	reinit_completion(&sspi->done);
216 	sspi->tx_buf = tfr->tx_buf;
217 	sspi->rx_buf = tfr->rx_buf;
218 	sspi->len = tfr->len;
219 
220 	/* Clear pending interrupts */
221 	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
222 
223 	/* Reset FIFO */
224 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
225 			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
226 
227 	/*
228 	 * Setup FIFO interrupt trigger level
229 	 * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
230 	 * value used in old generation of Allwinner SPI controller.
231 	 * (See spi-sun4i.c)
232 	 */
233 	trig_level = sspi->fifo_depth / 4 * 3;
234 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
235 			(trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
236 			(trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS));
237 
238 	/*
239 	 * Setup the transfer control register: Chip Select,
240 	 * polarities, etc.
241 	 */
242 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
243 
244 	if (spi->mode & SPI_CPOL)
245 		reg |= SUN6I_TFR_CTL_CPOL;
246 	else
247 		reg &= ~SUN6I_TFR_CTL_CPOL;
248 
249 	if (spi->mode & SPI_CPHA)
250 		reg |= SUN6I_TFR_CTL_CPHA;
251 	else
252 		reg &= ~SUN6I_TFR_CTL_CPHA;
253 
254 	if (spi->mode & SPI_LSB_FIRST)
255 		reg |= SUN6I_TFR_CTL_FBS;
256 	else
257 		reg &= ~SUN6I_TFR_CTL_FBS;
258 
259 	/*
260 	 * If it's a TX only transfer, we don't want to fill the RX
261 	 * FIFO with bogus data
262 	 */
263 	if (sspi->rx_buf)
264 		reg &= ~SUN6I_TFR_CTL_DHB;
265 	else
266 		reg |= SUN6I_TFR_CTL_DHB;
267 
268 	/* We want to control the chip select manually */
269 	reg |= SUN6I_TFR_CTL_CS_MANUAL;
270 
271 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
272 
273 	/* Ensure that we have a parent clock fast enough */
274 	mclk_rate = clk_get_rate(sspi->mclk);
275 	if (mclk_rate < (2 * tfr->speed_hz)) {
276 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
277 		mclk_rate = clk_get_rate(sspi->mclk);
278 	}
279 
280 	/*
281 	 * Setup clock divider.
282 	 *
283 	 * We have two choices there. Either we can use the clock
284 	 * divide rate 1, which is calculated thanks to this formula:
285 	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
286 	 * Or we can use CDR2, which is calculated with the formula:
287 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
288 	 * Wether we use the former or the latter is set through the
289 	 * DRS bit.
290 	 *
291 	 * First try CDR2, and if we can't reach the expected
292 	 * frequency, fall back to CDR1.
293 	 */
294 	div = mclk_rate / (2 * tfr->speed_hz);
295 	if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
296 		if (div > 0)
297 			div--;
298 
299 		reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
300 	} else {
301 		div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
302 		reg = SUN6I_CLK_CTL_CDR1(div);
303 	}
304 
305 	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
306 
307 	/* Setup the transfer now... */
308 	if (sspi->tx_buf)
309 		tx_len = tfr->len;
310 
311 	/* Setup the counters */
312 	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
313 	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
314 	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
315 			SUN6I_BURST_CTL_CNT_STC(tx_len));
316 
317 	/* Fill the TX FIFO */
318 	sun6i_spi_fill_fifo(sspi, sspi->fifo_depth);
319 
320 	/* Enable the interrupts */
321 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
322 	sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TC |
323 					 SUN6I_INT_CTL_RF_RDY);
324 	if (tx_len > sspi->fifo_depth)
325 		sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
326 
327 	/* Start the transfer */
328 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
329 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
330 
331 	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
332 	start = jiffies;
333 	timeout = wait_for_completion_timeout(&sspi->done,
334 					      msecs_to_jiffies(tx_time));
335 	end = jiffies;
336 	if (!timeout) {
337 		dev_warn(&master->dev,
338 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
339 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
340 			 jiffies_to_msecs(end - start), tx_time);
341 		ret = -ETIMEDOUT;
342 		goto out;
343 	}
344 
345 out:
346 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
347 
348 	return ret;
349 }
350 
351 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
352 {
353 	struct sun6i_spi *sspi = dev_id;
354 	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
355 
356 	/* Transfer complete */
357 	if (status & SUN6I_INT_CTL_TC) {
358 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
359 		sun6i_spi_drain_fifo(sspi, sspi->fifo_depth);
360 		complete(&sspi->done);
361 		return IRQ_HANDLED;
362 	}
363 
364 	/* Receive FIFO 3/4 full */
365 	if (status & SUN6I_INT_CTL_RF_RDY) {
366 		sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
367 		/* Only clear the interrupt _after_ draining the FIFO */
368 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
369 		return IRQ_HANDLED;
370 	}
371 
372 	/* Transmit FIFO 3/4 empty */
373 	if (status & SUN6I_INT_CTL_TF_ERQ) {
374 		sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
375 
376 		if (!sspi->len)
377 			/* nothing left to transmit */
378 			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
379 
380 		/* Only clear the interrupt _after_ re-seeding the FIFO */
381 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
382 
383 		return IRQ_HANDLED;
384 	}
385 
386 	return IRQ_NONE;
387 }
388 
389 static int sun6i_spi_runtime_resume(struct device *dev)
390 {
391 	struct spi_master *master = dev_get_drvdata(dev);
392 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
393 	int ret;
394 
395 	ret = clk_prepare_enable(sspi->hclk);
396 	if (ret) {
397 		dev_err(dev, "Couldn't enable AHB clock\n");
398 		goto out;
399 	}
400 
401 	ret = clk_prepare_enable(sspi->mclk);
402 	if (ret) {
403 		dev_err(dev, "Couldn't enable module clock\n");
404 		goto err;
405 	}
406 
407 	ret = reset_control_deassert(sspi->rstc);
408 	if (ret) {
409 		dev_err(dev, "Couldn't deassert the device from reset\n");
410 		goto err2;
411 	}
412 
413 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
414 			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
415 
416 	return 0;
417 
418 err2:
419 	clk_disable_unprepare(sspi->mclk);
420 err:
421 	clk_disable_unprepare(sspi->hclk);
422 out:
423 	return ret;
424 }
425 
426 static int sun6i_spi_runtime_suspend(struct device *dev)
427 {
428 	struct spi_master *master = dev_get_drvdata(dev);
429 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
430 
431 	reset_control_assert(sspi->rstc);
432 	clk_disable_unprepare(sspi->mclk);
433 	clk_disable_unprepare(sspi->hclk);
434 
435 	return 0;
436 }
437 
438 static int sun6i_spi_probe(struct platform_device *pdev)
439 {
440 	struct spi_master *master;
441 	struct sun6i_spi *sspi;
442 	struct resource	*res;
443 	int ret = 0, irq;
444 
445 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
446 	if (!master) {
447 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
448 		return -ENOMEM;
449 	}
450 
451 	platform_set_drvdata(pdev, master);
452 	sspi = spi_master_get_devdata(master);
453 
454 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
455 	sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
456 	if (IS_ERR(sspi->base_addr)) {
457 		ret = PTR_ERR(sspi->base_addr);
458 		goto err_free_master;
459 	}
460 
461 	irq = platform_get_irq(pdev, 0);
462 	if (irq < 0) {
463 		dev_err(&pdev->dev, "No spi IRQ specified\n");
464 		ret = -ENXIO;
465 		goto err_free_master;
466 	}
467 
468 	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
469 			       0, "sun6i-spi", sspi);
470 	if (ret) {
471 		dev_err(&pdev->dev, "Cannot request IRQ\n");
472 		goto err_free_master;
473 	}
474 
475 	sspi->master = master;
476 	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
477 
478 	master->max_speed_hz = 100 * 1000 * 1000;
479 	master->min_speed_hz = 3 * 1000;
480 	master->set_cs = sun6i_spi_set_cs;
481 	master->transfer_one = sun6i_spi_transfer_one;
482 	master->num_chipselect = 4;
483 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
484 	master->bits_per_word_mask = SPI_BPW_MASK(8);
485 	master->dev.of_node = pdev->dev.of_node;
486 	master->auto_runtime_pm = true;
487 	master->max_transfer_size = sun6i_spi_max_transfer_size;
488 
489 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
490 	if (IS_ERR(sspi->hclk)) {
491 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
492 		ret = PTR_ERR(sspi->hclk);
493 		goto err_free_master;
494 	}
495 
496 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
497 	if (IS_ERR(sspi->mclk)) {
498 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
499 		ret = PTR_ERR(sspi->mclk);
500 		goto err_free_master;
501 	}
502 
503 	init_completion(&sspi->done);
504 
505 	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
506 	if (IS_ERR(sspi->rstc)) {
507 		dev_err(&pdev->dev, "Couldn't get reset controller\n");
508 		ret = PTR_ERR(sspi->rstc);
509 		goto err_free_master;
510 	}
511 
512 	/*
513 	 * This wake-up/shutdown pattern is to be able to have the
514 	 * device woken up, even if runtime_pm is disabled
515 	 */
516 	ret = sun6i_spi_runtime_resume(&pdev->dev);
517 	if (ret) {
518 		dev_err(&pdev->dev, "Couldn't resume the device\n");
519 		goto err_free_master;
520 	}
521 
522 	pm_runtime_set_active(&pdev->dev);
523 	pm_runtime_enable(&pdev->dev);
524 	pm_runtime_idle(&pdev->dev);
525 
526 	ret = devm_spi_register_master(&pdev->dev, master);
527 	if (ret) {
528 		dev_err(&pdev->dev, "cannot register SPI master\n");
529 		goto err_pm_disable;
530 	}
531 
532 	return 0;
533 
534 err_pm_disable:
535 	pm_runtime_disable(&pdev->dev);
536 	sun6i_spi_runtime_suspend(&pdev->dev);
537 err_free_master:
538 	spi_master_put(master);
539 	return ret;
540 }
541 
542 static int sun6i_spi_remove(struct platform_device *pdev)
543 {
544 	pm_runtime_force_suspend(&pdev->dev);
545 
546 	return 0;
547 }
548 
549 static const struct of_device_id sun6i_spi_match[] = {
550 	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
551 	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
552 	{}
553 };
554 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
555 
556 static const struct dev_pm_ops sun6i_spi_pm_ops = {
557 	.runtime_resume		= sun6i_spi_runtime_resume,
558 	.runtime_suspend	= sun6i_spi_runtime_suspend,
559 };
560 
561 static struct platform_driver sun6i_spi_driver = {
562 	.probe	= sun6i_spi_probe,
563 	.remove	= sun6i_spi_remove,
564 	.driver	= {
565 		.name		= "sun6i-spi",
566 		.of_match_table	= sun6i_spi_match,
567 		.pm		= &sun6i_spi_pm_ops,
568 	},
569 };
570 module_platform_driver(sun6i_spi_driver);
571 
572 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
573 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
574 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
575 MODULE_LICENSE("GPL");
576