xref: /openbmc/linux/drivers/spi/spi-sun6i.c (revision 6f4eaea2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 #include <linux/dmaengine.h>
22 
23 #include <linux/spi/spi.h>
24 
25 #define SUN6I_AUTOSUSPEND_TIMEOUT	2000
26 
27 #define SUN6I_FIFO_DEPTH		128
28 #define SUN8I_FIFO_DEPTH		64
29 
30 #define SUN6I_GBL_CTL_REG		0x04
31 #define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
32 #define SUN6I_GBL_CTL_MASTER			BIT(1)
33 #define SUN6I_GBL_CTL_TP			BIT(7)
34 #define SUN6I_GBL_CTL_RST			BIT(31)
35 
36 #define SUN6I_TFR_CTL_REG		0x08
37 #define SUN6I_TFR_CTL_CPHA			BIT(0)
38 #define SUN6I_TFR_CTL_CPOL			BIT(1)
39 #define SUN6I_TFR_CTL_SPOL			BIT(2)
40 #define SUN6I_TFR_CTL_CS_MASK			0x30
41 #define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
42 #define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
43 #define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
44 #define SUN6I_TFR_CTL_DHB			BIT(8)
45 #define SUN6I_TFR_CTL_FBS			BIT(12)
46 #define SUN6I_TFR_CTL_XCH			BIT(31)
47 
48 #define SUN6I_INT_CTL_REG		0x10
49 #define SUN6I_INT_CTL_RF_RDY			BIT(0)
50 #define SUN6I_INT_CTL_TF_ERQ			BIT(4)
51 #define SUN6I_INT_CTL_RF_OVF			BIT(8)
52 #define SUN6I_INT_CTL_TC			BIT(12)
53 
54 #define SUN6I_INT_STA_REG		0x14
55 
56 #define SUN6I_FIFO_CTL_REG		0x18
57 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
58 #define SUN6I_FIFO_CTL_RF_DRQ_EN		BIT(8)
59 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
60 #define SUN6I_FIFO_CTL_RF_RST			BIT(15)
61 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
62 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
63 #define SUN6I_FIFO_CTL_TF_DRQ_EN		BIT(24)
64 #define SUN6I_FIFO_CTL_TF_RST			BIT(31)
65 
66 #define SUN6I_FIFO_STA_REG		0x1c
67 #define SUN6I_FIFO_STA_RF_CNT_MASK		GENMASK(7, 0)
68 #define SUN6I_FIFO_STA_TF_CNT_MASK		GENMASK(23, 16)
69 
70 #define SUN6I_CLK_CTL_REG		0x24
71 #define SUN6I_CLK_CTL_CDR2_MASK			0xff
72 #define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
73 #define SUN6I_CLK_CTL_CDR1_MASK			0xf
74 #define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
75 #define SUN6I_CLK_CTL_DRS			BIT(12)
76 
77 #define SUN6I_MAX_XFER_SIZE		0xffffff
78 
79 #define SUN6I_BURST_CNT_REG		0x30
80 
81 #define SUN6I_XMIT_CNT_REG		0x34
82 
83 #define SUN6I_BURST_CTL_CNT_REG		0x38
84 
85 #define SUN6I_TXDATA_REG		0x200
86 #define SUN6I_RXDATA_REG		0x300
87 
88 struct sun6i_spi {
89 	struct spi_master	*master;
90 	void __iomem		*base_addr;
91 	dma_addr_t		dma_addr_rx;
92 	dma_addr_t		dma_addr_tx;
93 	struct clk		*hclk;
94 	struct clk		*mclk;
95 	struct reset_control	*rstc;
96 
97 	struct completion	done;
98 
99 	const u8		*tx_buf;
100 	u8			*rx_buf;
101 	int			len;
102 	unsigned long		fifo_depth;
103 };
104 
105 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
106 {
107 	return readl(sspi->base_addr + reg);
108 }
109 
110 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
111 {
112 	writel(value, sspi->base_addr + reg);
113 }
114 
115 static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
116 {
117 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
118 
119 	return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
120 }
121 
122 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
123 {
124 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
125 
126 	return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
127 }
128 
129 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
130 {
131 	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
132 
133 	reg &= ~mask;
134 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
135 }
136 
137 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
138 {
139 	u32 len;
140 	u8 byte;
141 
142 	/* See how much data is available */
143 	len = sun6i_spi_get_rx_fifo_count(sspi);
144 
145 	while (len--) {
146 		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
147 		if (sspi->rx_buf)
148 			*sspi->rx_buf++ = byte;
149 	}
150 }
151 
152 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
153 {
154 	u32 cnt;
155 	int len;
156 	u8 byte;
157 
158 	/* See how much data we can fit */
159 	cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
160 
161 	len = min((int)cnt, sspi->len);
162 
163 	while (len--) {
164 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
165 		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
166 		sspi->len--;
167 	}
168 }
169 
170 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
171 {
172 	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
173 	u32 reg;
174 
175 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
176 	reg &= ~SUN6I_TFR_CTL_CS_MASK;
177 	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
178 
179 	if (enable)
180 		reg |= SUN6I_TFR_CTL_CS_LEVEL;
181 	else
182 		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
183 
184 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
185 }
186 
187 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
188 {
189 	return SUN6I_MAX_XFER_SIZE - 1;
190 }
191 
192 static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
193 				 struct spi_transfer *tfr)
194 {
195 	struct dma_async_tx_descriptor *rxdesc, *txdesc;
196 	struct spi_master *master = sspi->master;
197 
198 	rxdesc = NULL;
199 	if (tfr->rx_buf) {
200 		struct dma_slave_config rxconf = {
201 			.direction = DMA_DEV_TO_MEM,
202 			.src_addr = sspi->dma_addr_rx,
203 			.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
204 			.src_maxburst = 8,
205 		};
206 
207 		dmaengine_slave_config(master->dma_rx, &rxconf);
208 
209 		rxdesc = dmaengine_prep_slave_sg(master->dma_rx,
210 						 tfr->rx_sg.sgl,
211 						 tfr->rx_sg.nents,
212 						 DMA_DEV_TO_MEM,
213 						 DMA_PREP_INTERRUPT);
214 		if (!rxdesc)
215 			return -EINVAL;
216 	}
217 
218 	txdesc = NULL;
219 	if (tfr->tx_buf) {
220 		struct dma_slave_config txconf = {
221 			.direction = DMA_MEM_TO_DEV,
222 			.dst_addr = sspi->dma_addr_tx,
223 			.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
224 			.dst_maxburst = 8,
225 		};
226 
227 		dmaengine_slave_config(master->dma_tx, &txconf);
228 
229 		txdesc = dmaengine_prep_slave_sg(master->dma_tx,
230 						 tfr->tx_sg.sgl,
231 						 tfr->tx_sg.nents,
232 						 DMA_MEM_TO_DEV,
233 						 DMA_PREP_INTERRUPT);
234 		if (!txdesc) {
235 			if (rxdesc)
236 				dmaengine_terminate_sync(master->dma_rx);
237 			return -EINVAL;
238 		}
239 	}
240 
241 	if (tfr->rx_buf) {
242 		dmaengine_submit(rxdesc);
243 		dma_async_issue_pending(master->dma_rx);
244 	}
245 
246 	if (tfr->tx_buf) {
247 		dmaengine_submit(txdesc);
248 		dma_async_issue_pending(master->dma_tx);
249 	}
250 
251 	return 0;
252 }
253 
254 static int sun6i_spi_transfer_one(struct spi_master *master,
255 				  struct spi_device *spi,
256 				  struct spi_transfer *tfr)
257 {
258 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
259 	unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
260 	unsigned int start, end, tx_time;
261 	unsigned int trig_level;
262 	unsigned int tx_len = 0, rx_len = 0;
263 	bool use_dma;
264 	int ret = 0;
265 	u32 reg;
266 
267 	if (tfr->len > SUN6I_MAX_XFER_SIZE)
268 		return -EINVAL;
269 
270 	reinit_completion(&sspi->done);
271 	sspi->tx_buf = tfr->tx_buf;
272 	sspi->rx_buf = tfr->rx_buf;
273 	sspi->len = tfr->len;
274 	use_dma = master->can_dma ? master->can_dma(master, spi, tfr) : false;
275 
276 	/* Clear pending interrupts */
277 	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
278 
279 	/* Reset FIFO */
280 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
281 			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
282 
283 	reg = 0;
284 
285 	if (!use_dma) {
286 		/*
287 		 * Setup FIFO interrupt trigger level
288 		 * Here we choose 3/4 of the full fifo depth, as it's
289 		 * the hardcoded value used in old generation of Allwinner
290 		 * SPI controller. (See spi-sun4i.c)
291 		 */
292 		trig_level = sspi->fifo_depth / 4 * 3;
293 	} else {
294 		/*
295 		 * Setup FIFO DMA request trigger level
296 		 * We choose 1/2 of the full fifo depth, that value will
297 		 * be used as DMA burst length.
298 		 */
299 		trig_level = sspi->fifo_depth / 2;
300 
301 		if (tfr->tx_buf)
302 			reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
303 		if (tfr->rx_buf)
304 			reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
305 	}
306 
307 	reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
308 	       (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
309 
310 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
311 
312 	/*
313 	 * Setup the transfer control register: Chip Select,
314 	 * polarities, etc.
315 	 */
316 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
317 
318 	if (spi->mode & SPI_CPOL)
319 		reg |= SUN6I_TFR_CTL_CPOL;
320 	else
321 		reg &= ~SUN6I_TFR_CTL_CPOL;
322 
323 	if (spi->mode & SPI_CPHA)
324 		reg |= SUN6I_TFR_CTL_CPHA;
325 	else
326 		reg &= ~SUN6I_TFR_CTL_CPHA;
327 
328 	if (spi->mode & SPI_LSB_FIRST)
329 		reg |= SUN6I_TFR_CTL_FBS;
330 	else
331 		reg &= ~SUN6I_TFR_CTL_FBS;
332 
333 	/*
334 	 * If it's a TX only transfer, we don't want to fill the RX
335 	 * FIFO with bogus data
336 	 */
337 	if (sspi->rx_buf) {
338 		reg &= ~SUN6I_TFR_CTL_DHB;
339 		rx_len = tfr->len;
340 	} else {
341 		reg |= SUN6I_TFR_CTL_DHB;
342 	}
343 
344 	/* We want to control the chip select manually */
345 	reg |= SUN6I_TFR_CTL_CS_MANUAL;
346 
347 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
348 
349 	/* Ensure that we have a parent clock fast enough */
350 	mclk_rate = clk_get_rate(sspi->mclk);
351 	if (mclk_rate < (2 * tfr->speed_hz)) {
352 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
353 		mclk_rate = clk_get_rate(sspi->mclk);
354 	}
355 
356 	/*
357 	 * Setup clock divider.
358 	 *
359 	 * We have two choices there. Either we can use the clock
360 	 * divide rate 1, which is calculated thanks to this formula:
361 	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
362 	 * Or we can use CDR2, which is calculated with the formula:
363 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
364 	 * Wether we use the former or the latter is set through the
365 	 * DRS bit.
366 	 *
367 	 * First try CDR2, and if we can't reach the expected
368 	 * frequency, fall back to CDR1.
369 	 */
370 	div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
371 	div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
372 	if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
373 		reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
374 		tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
375 	} else {
376 		div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
377 		reg = SUN6I_CLK_CTL_CDR1(div);
378 		tfr->effective_speed_hz = mclk_rate / (1 << div);
379 	}
380 
381 	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
382 
383 	/* Setup the transfer now... */
384 	if (sspi->tx_buf)
385 		tx_len = tfr->len;
386 
387 	/* Setup the counters */
388 	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
389 	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
390 	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
391 
392 	if (!use_dma) {
393 		/* Fill the TX FIFO */
394 		sun6i_spi_fill_fifo(sspi);
395 	} else {
396 		ret = sun6i_spi_prepare_dma(sspi, tfr);
397 		if (ret) {
398 			dev_warn(&master->dev,
399 				 "%s: prepare DMA failed, ret=%d",
400 				 dev_name(&spi->dev), ret);
401 			return ret;
402 		}
403 	}
404 
405 	/* Enable the interrupts */
406 	reg = SUN6I_INT_CTL_TC;
407 
408 	if (!use_dma) {
409 		if (rx_len > sspi->fifo_depth)
410 			reg |= SUN6I_INT_CTL_RF_RDY;
411 		if (tx_len > sspi->fifo_depth)
412 			reg |= SUN6I_INT_CTL_TF_ERQ;
413 	}
414 
415 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
416 
417 	/* Start the transfer */
418 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
419 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
420 
421 	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
422 	start = jiffies;
423 	timeout = wait_for_completion_timeout(&sspi->done,
424 					      msecs_to_jiffies(tx_time));
425 	end = jiffies;
426 	if (!timeout) {
427 		dev_warn(&master->dev,
428 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
429 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
430 			 jiffies_to_msecs(end - start), tx_time);
431 		ret = -ETIMEDOUT;
432 	}
433 
434 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
435 
436 	if (ret && use_dma) {
437 		dmaengine_terminate_sync(master->dma_rx);
438 		dmaengine_terminate_sync(master->dma_tx);
439 	}
440 
441 	return ret;
442 }
443 
444 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
445 {
446 	struct sun6i_spi *sspi = dev_id;
447 	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
448 
449 	/* Transfer complete */
450 	if (status & SUN6I_INT_CTL_TC) {
451 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
452 		sun6i_spi_drain_fifo(sspi);
453 		complete(&sspi->done);
454 		return IRQ_HANDLED;
455 	}
456 
457 	/* Receive FIFO 3/4 full */
458 	if (status & SUN6I_INT_CTL_RF_RDY) {
459 		sun6i_spi_drain_fifo(sspi);
460 		/* Only clear the interrupt _after_ draining the FIFO */
461 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
462 		return IRQ_HANDLED;
463 	}
464 
465 	/* Transmit FIFO 3/4 empty */
466 	if (status & SUN6I_INT_CTL_TF_ERQ) {
467 		sun6i_spi_fill_fifo(sspi);
468 
469 		if (!sspi->len)
470 			/* nothing left to transmit */
471 			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
472 
473 		/* Only clear the interrupt _after_ re-seeding the FIFO */
474 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
475 
476 		return IRQ_HANDLED;
477 	}
478 
479 	return IRQ_NONE;
480 }
481 
482 static int sun6i_spi_runtime_resume(struct device *dev)
483 {
484 	struct spi_master *master = dev_get_drvdata(dev);
485 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
486 	int ret;
487 
488 	ret = clk_prepare_enable(sspi->hclk);
489 	if (ret) {
490 		dev_err(dev, "Couldn't enable AHB clock\n");
491 		goto out;
492 	}
493 
494 	ret = clk_prepare_enable(sspi->mclk);
495 	if (ret) {
496 		dev_err(dev, "Couldn't enable module clock\n");
497 		goto err;
498 	}
499 
500 	ret = reset_control_deassert(sspi->rstc);
501 	if (ret) {
502 		dev_err(dev, "Couldn't deassert the device from reset\n");
503 		goto err2;
504 	}
505 
506 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
507 			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
508 
509 	return 0;
510 
511 err2:
512 	clk_disable_unprepare(sspi->mclk);
513 err:
514 	clk_disable_unprepare(sspi->hclk);
515 out:
516 	return ret;
517 }
518 
519 static int sun6i_spi_runtime_suspend(struct device *dev)
520 {
521 	struct spi_master *master = dev_get_drvdata(dev);
522 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
523 
524 	reset_control_assert(sspi->rstc);
525 	clk_disable_unprepare(sspi->mclk);
526 	clk_disable_unprepare(sspi->hclk);
527 
528 	return 0;
529 }
530 
531 static bool sun6i_spi_can_dma(struct spi_master *master,
532 			      struct spi_device *spi,
533 			      struct spi_transfer *xfer)
534 {
535 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
536 
537 	/*
538 	 * If the number of spi words to transfer is less or equal than
539 	 * the fifo length we can just fill the fifo and wait for a single
540 	 * irq, so don't bother setting up dma
541 	 */
542 	return xfer->len > sspi->fifo_depth;
543 }
544 
545 static int sun6i_spi_probe(struct platform_device *pdev)
546 {
547 	struct spi_master *master;
548 	struct sun6i_spi *sspi;
549 	struct resource *mem;
550 	int ret = 0, irq;
551 
552 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
553 	if (!master) {
554 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
555 		return -ENOMEM;
556 	}
557 
558 	platform_set_drvdata(pdev, master);
559 	sspi = spi_master_get_devdata(master);
560 
561 	sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
562 	if (IS_ERR(sspi->base_addr)) {
563 		ret = PTR_ERR(sspi->base_addr);
564 		goto err_free_master;
565 	}
566 
567 	irq = platform_get_irq(pdev, 0);
568 	if (irq < 0) {
569 		ret = -ENXIO;
570 		goto err_free_master;
571 	}
572 
573 	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
574 			       0, "sun6i-spi", sspi);
575 	if (ret) {
576 		dev_err(&pdev->dev, "Cannot request IRQ\n");
577 		goto err_free_master;
578 	}
579 
580 	sspi->master = master;
581 	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
582 
583 	master->max_speed_hz = 100 * 1000 * 1000;
584 	master->min_speed_hz = 3 * 1000;
585 	master->use_gpio_descriptors = true;
586 	master->set_cs = sun6i_spi_set_cs;
587 	master->transfer_one = sun6i_spi_transfer_one;
588 	master->num_chipselect = 4;
589 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
590 	master->bits_per_word_mask = SPI_BPW_MASK(8);
591 	master->dev.of_node = pdev->dev.of_node;
592 	master->auto_runtime_pm = true;
593 	master->max_transfer_size = sun6i_spi_max_transfer_size;
594 
595 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
596 	if (IS_ERR(sspi->hclk)) {
597 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
598 		ret = PTR_ERR(sspi->hclk);
599 		goto err_free_master;
600 	}
601 
602 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
603 	if (IS_ERR(sspi->mclk)) {
604 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
605 		ret = PTR_ERR(sspi->mclk);
606 		goto err_free_master;
607 	}
608 
609 	init_completion(&sspi->done);
610 
611 	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
612 	if (IS_ERR(sspi->rstc)) {
613 		dev_err(&pdev->dev, "Couldn't get reset controller\n");
614 		ret = PTR_ERR(sspi->rstc);
615 		goto err_free_master;
616 	}
617 
618 	master->dma_tx = dma_request_chan(&pdev->dev, "tx");
619 	if (IS_ERR(master->dma_tx)) {
620 		/* Check tx to see if we need defer probing driver */
621 		if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
622 			ret = -EPROBE_DEFER;
623 			goto err_free_master;
624 		}
625 		dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
626 		master->dma_tx = NULL;
627 	}
628 
629 	master->dma_rx = dma_request_chan(&pdev->dev, "rx");
630 	if (IS_ERR(master->dma_rx)) {
631 		if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
632 			ret = -EPROBE_DEFER;
633 			goto err_free_dma_tx;
634 		}
635 		dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
636 		master->dma_rx = NULL;
637 	}
638 
639 	if (master->dma_tx && master->dma_rx) {
640 		sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
641 		sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
642 		master->can_dma = sun6i_spi_can_dma;
643 	}
644 
645 	/*
646 	 * This wake-up/shutdown pattern is to be able to have the
647 	 * device woken up, even if runtime_pm is disabled
648 	 */
649 	ret = sun6i_spi_runtime_resume(&pdev->dev);
650 	if (ret) {
651 		dev_err(&pdev->dev, "Couldn't resume the device\n");
652 		goto err_free_dma_rx;
653 	}
654 
655 	pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
656 	pm_runtime_use_autosuspend(&pdev->dev);
657 	pm_runtime_set_active(&pdev->dev);
658 	pm_runtime_enable(&pdev->dev);
659 
660 	ret = devm_spi_register_master(&pdev->dev, master);
661 	if (ret) {
662 		dev_err(&pdev->dev, "cannot register SPI master\n");
663 		goto err_pm_disable;
664 	}
665 
666 	return 0;
667 
668 err_pm_disable:
669 	pm_runtime_disable(&pdev->dev);
670 	sun6i_spi_runtime_suspend(&pdev->dev);
671 err_free_dma_rx:
672 	if (master->dma_rx)
673 		dma_release_channel(master->dma_rx);
674 err_free_dma_tx:
675 	if (master->dma_tx)
676 		dma_release_channel(master->dma_tx);
677 err_free_master:
678 	spi_master_put(master);
679 	return ret;
680 }
681 
682 static int sun6i_spi_remove(struct platform_device *pdev)
683 {
684 	struct spi_master *master = platform_get_drvdata(pdev);
685 
686 	pm_runtime_force_suspend(&pdev->dev);
687 
688 	if (master->dma_tx)
689 		dma_release_channel(master->dma_tx);
690 	if (master->dma_rx)
691 		dma_release_channel(master->dma_rx);
692 	return 0;
693 }
694 
695 static const struct of_device_id sun6i_spi_match[] = {
696 	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
697 	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
698 	{}
699 };
700 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
701 
702 static const struct dev_pm_ops sun6i_spi_pm_ops = {
703 	.runtime_resume		= sun6i_spi_runtime_resume,
704 	.runtime_suspend	= sun6i_spi_runtime_suspend,
705 };
706 
707 static struct platform_driver sun6i_spi_driver = {
708 	.probe	= sun6i_spi_probe,
709 	.remove	= sun6i_spi_remove,
710 	.driver	= {
711 		.name		= "sun6i-spi",
712 		.of_match_table	= sun6i_spi_match,
713 		.pm		= &sun6i_spi_pm_ops,
714 	},
715 };
716 module_platform_driver(sun6i_spi_driver);
717 
718 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
719 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
720 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
721 MODULE_LICENSE("GPL");
722