xref: /openbmc/linux/drivers/spi/spi-sun6i.c (revision 23c2b932)
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23 
24 #include <linux/spi/spi.h>
25 
26 #define SUN6I_FIFO_DEPTH		128
27 
28 #define SUN6I_GBL_CTL_REG		0x04
29 #define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
30 #define SUN6I_GBL_CTL_MASTER			BIT(1)
31 #define SUN6I_GBL_CTL_TP			BIT(7)
32 #define SUN6I_GBL_CTL_RST			BIT(31)
33 
34 #define SUN6I_TFR_CTL_REG		0x08
35 #define SUN6I_TFR_CTL_CPHA			BIT(0)
36 #define SUN6I_TFR_CTL_CPOL			BIT(1)
37 #define SUN6I_TFR_CTL_SPOL			BIT(2)
38 #define SUN6I_TFR_CTL_CS_MASK			0x30
39 #define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
40 #define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
41 #define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
42 #define SUN6I_TFR_CTL_DHB			BIT(8)
43 #define SUN6I_TFR_CTL_FBS			BIT(12)
44 #define SUN6I_TFR_CTL_XCH			BIT(31)
45 
46 #define SUN6I_INT_CTL_REG		0x10
47 #define SUN6I_INT_CTL_RF_OVF			BIT(8)
48 #define SUN6I_INT_CTL_TC			BIT(12)
49 
50 #define SUN6I_INT_STA_REG		0x14
51 
52 #define SUN6I_FIFO_CTL_REG		0x18
53 #define SUN6I_FIFO_CTL_RF_RST			BIT(15)
54 #define SUN6I_FIFO_CTL_TF_RST			BIT(31)
55 
56 #define SUN6I_FIFO_STA_REG		0x1c
57 #define SUN6I_FIFO_STA_RF_CNT_MASK		0x7f
58 #define SUN6I_FIFO_STA_RF_CNT_BITS		0
59 #define SUN6I_FIFO_STA_TF_CNT_MASK		0x7f
60 #define SUN6I_FIFO_STA_TF_CNT_BITS		16
61 
62 #define SUN6I_CLK_CTL_REG		0x24
63 #define SUN6I_CLK_CTL_CDR2_MASK			0xff
64 #define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
65 #define SUN6I_CLK_CTL_CDR1_MASK			0xf
66 #define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
67 #define SUN6I_CLK_CTL_DRS			BIT(12)
68 
69 #define SUN6I_BURST_CNT_REG		0x30
70 #define SUN6I_BURST_CNT(cnt)			((cnt) & 0xffffff)
71 
72 #define SUN6I_XMIT_CNT_REG		0x34
73 #define SUN6I_XMIT_CNT(cnt)			((cnt) & 0xffffff)
74 
75 #define SUN6I_BURST_CTL_CNT_REG		0x38
76 #define SUN6I_BURST_CTL_CNT_STC(cnt)		((cnt) & 0xffffff)
77 
78 #define SUN6I_TXDATA_REG		0x200
79 #define SUN6I_RXDATA_REG		0x300
80 
81 struct sun6i_spi {
82 	struct spi_master	*master;
83 	void __iomem		*base_addr;
84 	struct clk		*hclk;
85 	struct clk		*mclk;
86 	struct reset_control	*rstc;
87 
88 	struct completion	done;
89 
90 	const u8		*tx_buf;
91 	u8			*rx_buf;
92 	int			len;
93 };
94 
95 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
96 {
97 	return readl(sspi->base_addr + reg);
98 }
99 
100 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
101 {
102 	writel(value, sspi->base_addr + reg);
103 }
104 
105 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
106 {
107 	u32 reg, cnt;
108 	u8 byte;
109 
110 	/* See how much data is available */
111 	reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
112 	reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
113 	cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
114 
115 	if (len > cnt)
116 		len = cnt;
117 
118 	while (len--) {
119 		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
120 		if (sspi->rx_buf)
121 			*sspi->rx_buf++ = byte;
122 	}
123 }
124 
125 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
126 {
127 	u8 byte;
128 
129 	if (len > sspi->len)
130 		len = sspi->len;
131 
132 	while (len--) {
133 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
134 		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
135 		sspi->len--;
136 	}
137 }
138 
139 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
140 {
141 	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
142 	u32 reg;
143 
144 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
145 	reg &= ~SUN6I_TFR_CTL_CS_MASK;
146 	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
147 
148 	if (enable)
149 		reg |= SUN6I_TFR_CTL_CS_LEVEL;
150 	else
151 		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
152 
153 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
154 }
155 
156 
157 static int sun6i_spi_transfer_one(struct spi_master *master,
158 				  struct spi_device *spi,
159 				  struct spi_transfer *tfr)
160 {
161 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
162 	unsigned int mclk_rate, div, timeout;
163 	unsigned int start, end, tx_time;
164 	unsigned int tx_len = 0;
165 	int ret = 0;
166 	u32 reg;
167 
168 	/* We don't support transfer larger than the FIFO */
169 	if (tfr->len > SUN6I_FIFO_DEPTH)
170 		return -EINVAL;
171 
172 	reinit_completion(&sspi->done);
173 	sspi->tx_buf = tfr->tx_buf;
174 	sspi->rx_buf = tfr->rx_buf;
175 	sspi->len = tfr->len;
176 
177 	/* Clear pending interrupts */
178 	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
179 
180 	/* Reset FIFO */
181 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
182 			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
183 
184 	/*
185 	 * Setup the transfer control register: Chip Select,
186 	 * polarities, etc.
187 	 */
188 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
189 
190 	if (spi->mode & SPI_CPOL)
191 		reg |= SUN6I_TFR_CTL_CPOL;
192 	else
193 		reg &= ~SUN6I_TFR_CTL_CPOL;
194 
195 	if (spi->mode & SPI_CPHA)
196 		reg |= SUN6I_TFR_CTL_CPHA;
197 	else
198 		reg &= ~SUN6I_TFR_CTL_CPHA;
199 
200 	if (spi->mode & SPI_LSB_FIRST)
201 		reg |= SUN6I_TFR_CTL_FBS;
202 	else
203 		reg &= ~SUN6I_TFR_CTL_FBS;
204 
205 	/*
206 	 * If it's a TX only transfer, we don't want to fill the RX
207 	 * FIFO with bogus data
208 	 */
209 	if (sspi->rx_buf)
210 		reg &= ~SUN6I_TFR_CTL_DHB;
211 	else
212 		reg |= SUN6I_TFR_CTL_DHB;
213 
214 	/* We want to control the chip select manually */
215 	reg |= SUN6I_TFR_CTL_CS_MANUAL;
216 
217 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
218 
219 	/* Ensure that we have a parent clock fast enough */
220 	mclk_rate = clk_get_rate(sspi->mclk);
221 	if (mclk_rate < (2 * tfr->speed_hz)) {
222 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
223 		mclk_rate = clk_get_rate(sspi->mclk);
224 	}
225 
226 	/*
227 	 * Setup clock divider.
228 	 *
229 	 * We have two choices there. Either we can use the clock
230 	 * divide rate 1, which is calculated thanks to this formula:
231 	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
232 	 * Or we can use CDR2, which is calculated with the formula:
233 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
234 	 * Wether we use the former or the latter is set through the
235 	 * DRS bit.
236 	 *
237 	 * First try CDR2, and if we can't reach the expected
238 	 * frequency, fall back to CDR1.
239 	 */
240 	div = mclk_rate / (2 * tfr->speed_hz);
241 	if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
242 		if (div > 0)
243 			div--;
244 
245 		reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
246 	} else {
247 		div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
248 		reg = SUN6I_CLK_CTL_CDR1(div);
249 	}
250 
251 	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
252 
253 	/* Setup the transfer now... */
254 	if (sspi->tx_buf)
255 		tx_len = tfr->len;
256 
257 	/* Setup the counters */
258 	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
259 	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
260 	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
261 			SUN6I_BURST_CTL_CNT_STC(tx_len));
262 
263 	/* Fill the TX FIFO */
264 	sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
265 
266 	/* Enable the interrupts */
267 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
268 
269 	/* Start the transfer */
270 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
271 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
272 
273 	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
274 	start = jiffies;
275 	timeout = wait_for_completion_timeout(&sspi->done,
276 					      msecs_to_jiffies(tx_time));
277 	end = jiffies;
278 	if (!timeout) {
279 		dev_warn(&master->dev,
280 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
281 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
282 			 jiffies_to_msecs(end - start), tx_time);
283 		ret = -ETIMEDOUT;
284 		goto out;
285 	}
286 
287 	sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
288 
289 out:
290 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
291 
292 	return ret;
293 }
294 
295 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
296 {
297 	struct sun6i_spi *sspi = dev_id;
298 	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
299 
300 	/* Transfer complete */
301 	if (status & SUN6I_INT_CTL_TC) {
302 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
303 		complete(&sspi->done);
304 		return IRQ_HANDLED;
305 	}
306 
307 	return IRQ_NONE;
308 }
309 
310 static int sun6i_spi_runtime_resume(struct device *dev)
311 {
312 	struct spi_master *master = dev_get_drvdata(dev);
313 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
314 	int ret;
315 
316 	ret = clk_prepare_enable(sspi->hclk);
317 	if (ret) {
318 		dev_err(dev, "Couldn't enable AHB clock\n");
319 		goto out;
320 	}
321 
322 	ret = clk_prepare_enable(sspi->mclk);
323 	if (ret) {
324 		dev_err(dev, "Couldn't enable module clock\n");
325 		goto err;
326 	}
327 
328 	ret = reset_control_deassert(sspi->rstc);
329 	if (ret) {
330 		dev_err(dev, "Couldn't deassert the device from reset\n");
331 		goto err2;
332 	}
333 
334 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
335 			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
336 
337 	return 0;
338 
339 err2:
340 	clk_disable_unprepare(sspi->mclk);
341 err:
342 	clk_disable_unprepare(sspi->hclk);
343 out:
344 	return ret;
345 }
346 
347 static int sun6i_spi_runtime_suspend(struct device *dev)
348 {
349 	struct spi_master *master = dev_get_drvdata(dev);
350 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
351 
352 	reset_control_assert(sspi->rstc);
353 	clk_disable_unprepare(sspi->mclk);
354 	clk_disable_unprepare(sspi->hclk);
355 
356 	return 0;
357 }
358 
359 static int sun6i_spi_probe(struct platform_device *pdev)
360 {
361 	struct spi_master *master;
362 	struct sun6i_spi *sspi;
363 	struct resource	*res;
364 	int ret = 0, irq;
365 
366 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
367 	if (!master) {
368 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
369 		return -ENOMEM;
370 	}
371 
372 	platform_set_drvdata(pdev, master);
373 	sspi = spi_master_get_devdata(master);
374 
375 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
376 	sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
377 	if (IS_ERR(sspi->base_addr)) {
378 		ret = PTR_ERR(sspi->base_addr);
379 		goto err_free_master;
380 	}
381 
382 	irq = platform_get_irq(pdev, 0);
383 	if (irq < 0) {
384 		dev_err(&pdev->dev, "No spi IRQ specified\n");
385 		ret = -ENXIO;
386 		goto err_free_master;
387 	}
388 
389 	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
390 			       0, "sun6i-spi", sspi);
391 	if (ret) {
392 		dev_err(&pdev->dev, "Cannot request IRQ\n");
393 		goto err_free_master;
394 	}
395 
396 	sspi->master = master;
397 	master->set_cs = sun6i_spi_set_cs;
398 	master->transfer_one = sun6i_spi_transfer_one;
399 	master->num_chipselect = 4;
400 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
401 	master->bits_per_word_mask = SPI_BPW_MASK(8);
402 	master->dev.of_node = pdev->dev.of_node;
403 	master->auto_runtime_pm = true;
404 
405 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
406 	if (IS_ERR(sspi->hclk)) {
407 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
408 		ret = PTR_ERR(sspi->hclk);
409 		goto err_free_master;
410 	}
411 
412 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
413 	if (IS_ERR(sspi->mclk)) {
414 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
415 		ret = PTR_ERR(sspi->mclk);
416 		goto err_free_master;
417 	}
418 
419 	init_completion(&sspi->done);
420 
421 	sspi->rstc = devm_reset_control_get(&pdev->dev, NULL);
422 	if (IS_ERR(sspi->rstc)) {
423 		dev_err(&pdev->dev, "Couldn't get reset controller\n");
424 		ret = PTR_ERR(sspi->rstc);
425 		goto err_free_master;
426 	}
427 
428 	/*
429 	 * This wake-up/shutdown pattern is to be able to have the
430 	 * device woken up, even if runtime_pm is disabled
431 	 */
432 	ret = sun6i_spi_runtime_resume(&pdev->dev);
433 	if (ret) {
434 		dev_err(&pdev->dev, "Couldn't resume the device\n");
435 		goto err_free_master;
436 	}
437 
438 	pm_runtime_set_active(&pdev->dev);
439 	pm_runtime_enable(&pdev->dev);
440 	pm_runtime_idle(&pdev->dev);
441 
442 	ret = devm_spi_register_master(&pdev->dev, master);
443 	if (ret) {
444 		dev_err(&pdev->dev, "cannot register SPI master\n");
445 		goto err_pm_disable;
446 	}
447 
448 	return 0;
449 
450 err_pm_disable:
451 	pm_runtime_disable(&pdev->dev);
452 	sun6i_spi_runtime_suspend(&pdev->dev);
453 err_free_master:
454 	spi_master_put(master);
455 	return ret;
456 }
457 
458 static int sun6i_spi_remove(struct platform_device *pdev)
459 {
460 	pm_runtime_disable(&pdev->dev);
461 
462 	return 0;
463 }
464 
465 static const struct of_device_id sun6i_spi_match[] = {
466 	{ .compatible = "allwinner,sun6i-a31-spi", },
467 	{}
468 };
469 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
470 
471 static const struct dev_pm_ops sun6i_spi_pm_ops = {
472 	.runtime_resume		= sun6i_spi_runtime_resume,
473 	.runtime_suspend	= sun6i_spi_runtime_suspend,
474 };
475 
476 static struct platform_driver sun6i_spi_driver = {
477 	.probe	= sun6i_spi_probe,
478 	.remove	= sun6i_spi_remove,
479 	.driver	= {
480 		.name		= "sun6i-spi",
481 		.of_match_table	= sun6i_spi_match,
482 		.pm		= &sun6i_spi_pm_ops,
483 	},
484 };
485 module_platform_driver(sun6i_spi_driver);
486 
487 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
488 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
489 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
490 MODULE_LICENSE("GPL");
491