1 // SPDX-License-Identifier: GPL-2.0
2 /* Author: Dan Scally <djrscally@gmail.com> */
3 
4 #include <linux/acpi.h>
5 #include <linux/clkdev.h>
6 #include <linux/clk-provider.h>
7 #include <linux/device.h>
8 #include <linux/dmi.h>
9 #include <linux/gpio/consumer.h>
10 #include <linux/regulator/driver.h>
11 #include <linux/slab.h>
12 
13 #include "common.h"
14 
15 /*
16  * 82c0d13a-78c5-4244-9bb1-eb8b539a8d11
17  * This _DSM GUID allows controlling the sensor clk when it is not controlled
18  * through a GPIO.
19  */
20 static const guid_t img_clk_guid =
21 	GUID_INIT(0x82c0d13a, 0x78c5, 0x4244,
22 		  0x9b, 0xb1, 0xeb, 0x8b, 0x53, 0x9a, 0x8d, 0x11);
23 
skl_int3472_enable_clk(struct int3472_clock * clk,int enable)24 static void skl_int3472_enable_clk(struct int3472_clock *clk, int enable)
25 {
26 	struct int3472_discrete_device *int3472 = to_int3472_device(clk);
27 	union acpi_object args[3];
28 	union acpi_object argv4;
29 
30 	if (clk->ena_gpio) {
31 		gpiod_set_value_cansleep(clk->ena_gpio, enable);
32 		return;
33 	}
34 
35 	args[0].integer.type = ACPI_TYPE_INTEGER;
36 	args[0].integer.value = clk->imgclk_index;
37 	args[1].integer.type = ACPI_TYPE_INTEGER;
38 	args[1].integer.value = enable;
39 	args[2].integer.type = ACPI_TYPE_INTEGER;
40 	args[2].integer.value = 1;
41 
42 	argv4.type = ACPI_TYPE_PACKAGE;
43 	argv4.package.count = 3;
44 	argv4.package.elements = args;
45 
46 	acpi_evaluate_dsm(acpi_device_handle(int3472->adev), &img_clk_guid,
47 			  0, 1, &argv4);
48 }
49 
50 /*
51  * The regulators have to have .ops to be valid, but the only ops we actually
52  * support are .enable and .disable which are handled via .ena_gpiod. Pass an
53  * empty struct to clear the check without lying about capabilities.
54  */
55 static const struct regulator_ops int3472_gpio_regulator_ops;
56 
skl_int3472_clk_prepare(struct clk_hw * hw)57 static int skl_int3472_clk_prepare(struct clk_hw *hw)
58 {
59 	skl_int3472_enable_clk(to_int3472_clk(hw), 1);
60 	return 0;
61 }
62 
skl_int3472_clk_unprepare(struct clk_hw * hw)63 static void skl_int3472_clk_unprepare(struct clk_hw *hw)
64 {
65 	skl_int3472_enable_clk(to_int3472_clk(hw), 0);
66 }
67 
skl_int3472_clk_enable(struct clk_hw * hw)68 static int skl_int3472_clk_enable(struct clk_hw *hw)
69 {
70 	/*
71 	 * We're just turning a GPIO on to enable the clock, which operation
72 	 * has the potential to sleep. Given .enable() cannot sleep, but
73 	 * .prepare() can, we toggle the GPIO in .prepare() instead. Thus,
74 	 * nothing to do here.
75 	 */
76 	return 0;
77 }
78 
skl_int3472_clk_disable(struct clk_hw * hw)79 static void skl_int3472_clk_disable(struct clk_hw *hw)
80 {
81 	/* Likewise, nothing to do here... */
82 }
83 
skl_int3472_get_clk_frequency(struct int3472_discrete_device * int3472)84 static unsigned int skl_int3472_get_clk_frequency(struct int3472_discrete_device *int3472)
85 {
86 	union acpi_object *obj;
87 	unsigned int freq;
88 
89 	obj = skl_int3472_get_acpi_buffer(int3472->sensor, "SSDB");
90 	if (IS_ERR(obj))
91 		return 0; /* report rate as 0 on error */
92 
93 	if (obj->buffer.length < CIO2_SENSOR_SSDB_MCLKSPEED_OFFSET + sizeof(u32)) {
94 		dev_err(int3472->dev, "The buffer is too small\n");
95 		kfree(obj);
96 		return 0;
97 	}
98 
99 	freq = *(u32 *)(obj->buffer.pointer + CIO2_SENSOR_SSDB_MCLKSPEED_OFFSET);
100 
101 	kfree(obj);
102 	return freq;
103 }
104 
skl_int3472_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)105 static unsigned long skl_int3472_clk_recalc_rate(struct clk_hw *hw,
106 						 unsigned long parent_rate)
107 {
108 	struct int3472_clock *clk = to_int3472_clk(hw);
109 
110 	return clk->frequency;
111 }
112 
113 static const struct clk_ops skl_int3472_clock_ops = {
114 	.prepare = skl_int3472_clk_prepare,
115 	.unprepare = skl_int3472_clk_unprepare,
116 	.enable = skl_int3472_clk_enable,
117 	.disable = skl_int3472_clk_disable,
118 	.recalc_rate = skl_int3472_clk_recalc_rate,
119 };
120 
skl_int3472_register_dsm_clock(struct int3472_discrete_device * int3472)121 int skl_int3472_register_dsm_clock(struct int3472_discrete_device *int3472)
122 {
123 	struct acpi_device *adev = int3472->adev;
124 	struct clk_init_data init = {
125 		.ops = &skl_int3472_clock_ops,
126 		.flags = CLK_GET_RATE_NOCACHE,
127 	};
128 	int ret;
129 
130 	if (int3472->clock.cl)
131 		return 0; /* A GPIO controlled clk has already been registered */
132 
133 	if (!acpi_check_dsm(adev->handle, &img_clk_guid, 0, BIT(1)))
134 		return 0; /* DSM clock control is not available */
135 
136 	init.name = kasprintf(GFP_KERNEL, "%s-clk", acpi_dev_name(adev));
137 	if (!init.name)
138 		return -ENOMEM;
139 
140 	int3472->clock.frequency = skl_int3472_get_clk_frequency(int3472);
141 	int3472->clock.clk_hw.init = &init;
142 	int3472->clock.clk = clk_register(&adev->dev, &int3472->clock.clk_hw);
143 	if (IS_ERR(int3472->clock.clk)) {
144 		ret = PTR_ERR(int3472->clock.clk);
145 		goto out_free_init_name;
146 	}
147 
148 	int3472->clock.cl = clkdev_create(int3472->clock.clk, NULL, int3472->sensor_name);
149 	if (!int3472->clock.cl) {
150 		ret = -ENOMEM;
151 		goto err_unregister_clk;
152 	}
153 
154 	kfree(init.name);
155 	return 0;
156 
157 err_unregister_clk:
158 	clk_unregister(int3472->clock.clk);
159 out_free_init_name:
160 	kfree(init.name);
161 	return ret;
162 }
163 
skl_int3472_register_gpio_clock(struct int3472_discrete_device * int3472,struct acpi_resource_gpio * agpio,u32 polarity)164 int skl_int3472_register_gpio_clock(struct int3472_discrete_device *int3472,
165 				    struct acpi_resource_gpio *agpio, u32 polarity)
166 {
167 	char *path = agpio->resource_source.string_ptr;
168 	struct clk_init_data init = {
169 		.ops = &skl_int3472_clock_ops,
170 		.flags = CLK_GET_RATE_NOCACHE,
171 	};
172 	int ret;
173 
174 	if (int3472->clock.cl)
175 		return -EBUSY;
176 
177 	int3472->clock.ena_gpio = acpi_get_and_request_gpiod(path, agpio->pin_table[0],
178 							     "int3472,clk-enable");
179 	if (IS_ERR(int3472->clock.ena_gpio)) {
180 		ret = PTR_ERR(int3472->clock.ena_gpio);
181 		int3472->clock.ena_gpio = NULL;
182 		return dev_err_probe(int3472->dev, ret, "getting clk-enable GPIO\n");
183 	}
184 
185 	if (polarity == GPIO_ACTIVE_LOW)
186 		gpiod_toggle_active_low(int3472->clock.ena_gpio);
187 
188 	/* Ensure the pin is in output mode and non-active state */
189 	gpiod_direction_output(int3472->clock.ena_gpio, 0);
190 
191 	init.name = kasprintf(GFP_KERNEL, "%s-clk",
192 			      acpi_dev_name(int3472->adev));
193 	if (!init.name) {
194 		ret = -ENOMEM;
195 		goto out_put_gpio;
196 	}
197 
198 	int3472->clock.frequency = skl_int3472_get_clk_frequency(int3472);
199 
200 	int3472->clock.clk_hw.init = &init;
201 	int3472->clock.clk = clk_register(&int3472->adev->dev,
202 					  &int3472->clock.clk_hw);
203 	if (IS_ERR(int3472->clock.clk)) {
204 		ret = PTR_ERR(int3472->clock.clk);
205 		goto out_free_init_name;
206 	}
207 
208 	int3472->clock.cl = clkdev_create(int3472->clock.clk, NULL,
209 					  int3472->sensor_name);
210 	if (!int3472->clock.cl) {
211 		ret = -ENOMEM;
212 		goto err_unregister_clk;
213 	}
214 
215 	kfree(init.name);
216 	return 0;
217 
218 err_unregister_clk:
219 	clk_unregister(int3472->clock.clk);
220 out_free_init_name:
221 	kfree(init.name);
222 out_put_gpio:
223 	gpiod_put(int3472->clock.ena_gpio);
224 
225 	return ret;
226 }
227 
skl_int3472_unregister_clock(struct int3472_discrete_device * int3472)228 void skl_int3472_unregister_clock(struct int3472_discrete_device *int3472)
229 {
230 	if (!int3472->clock.cl)
231 		return;
232 
233 	clkdev_drop(int3472->clock.cl);
234 	clk_unregister(int3472->clock.clk);
235 	gpiod_put(int3472->clock.ena_gpio);
236 }
237 
238 /*
239  * The INT3472 device is going to be the only supplier of a regulator for
240  * the sensor device. But unlike the clk framework the regulator framework
241  * does not allow matching by consumer-device-name only.
242  *
243  * Ideally all sensor drivers would use "avdd" as supply-id. But for drivers
244  * where this cannot be changed because another supply-id is already used in
245  * e.g. DeviceTree files an alias for the other supply-id can be added here.
246  *
247  * Do not forget to update GPIO_REGULATOR_SUPPLY_MAP_COUNT when changing this.
248  */
249 static const char * const skl_int3472_regulator_map_supplies[] = {
250 	"avdd",
251 	"AVDD",
252 };
253 
254 static_assert(ARRAY_SIZE(skl_int3472_regulator_map_supplies) ==
255 	      GPIO_REGULATOR_SUPPLY_MAP_COUNT);
256 
257 /*
258  * On some models there is a single GPIO regulator which is shared between
259  * sensors and only listed in the ACPI resources of one sensor.
260  * This DMI table contains the name of the second sensor. This is used to add
261  * entries for the second sensor to the supply_map.
262  */
263 static const struct dmi_system_id skl_int3472_regulator_second_sensor[] = {
264 	{
265 		/* Lenovo Miix 510-12IKB */
266 		.matches = {
267 			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
268 			DMI_MATCH(DMI_PRODUCT_VERSION, "MIIX 510-12IKB"),
269 		},
270 		.driver_data = "i2c-OVTI2680:00",
271 	},
272 	{ }
273 };
274 
skl_int3472_register_regulator(struct int3472_discrete_device * int3472,struct acpi_resource_gpio * agpio)275 int skl_int3472_register_regulator(struct int3472_discrete_device *int3472,
276 				   struct acpi_resource_gpio *agpio)
277 {
278 	char *path = agpio->resource_source.string_ptr;
279 	struct regulator_init_data init_data = { };
280 	struct regulator_config cfg = { };
281 	const char *second_sensor = NULL;
282 	const struct dmi_system_id *id;
283 	int i, j, ret;
284 
285 	id = dmi_first_match(skl_int3472_regulator_second_sensor);
286 	if (id)
287 		second_sensor = id->driver_data;
288 
289 	for (i = 0, j = 0; i < ARRAY_SIZE(skl_int3472_regulator_map_supplies); i++) {
290 		int3472->regulator.supply_map[j].supply = skl_int3472_regulator_map_supplies[i];
291 		int3472->regulator.supply_map[j].dev_name = int3472->sensor_name;
292 		j++;
293 
294 		if (second_sensor) {
295 			int3472->regulator.supply_map[j].supply =
296 				skl_int3472_regulator_map_supplies[i];
297 			int3472->regulator.supply_map[j].dev_name = second_sensor;
298 			j++;
299 		}
300 	}
301 
302 	init_data.constraints.valid_ops_mask = REGULATOR_CHANGE_STATUS;
303 	init_data.consumer_supplies = int3472->regulator.supply_map;
304 	init_data.num_consumer_supplies = j;
305 
306 	snprintf(int3472->regulator.regulator_name,
307 		 sizeof(int3472->regulator.regulator_name), "%s-regulator",
308 		 acpi_dev_name(int3472->adev));
309 	snprintf(int3472->regulator.supply_name,
310 		 GPIO_REGULATOR_SUPPLY_NAME_LENGTH, "supply-0");
311 
312 	int3472->regulator.rdesc = INT3472_REGULATOR(
313 						int3472->regulator.regulator_name,
314 						int3472->regulator.supply_name,
315 						&int3472_gpio_regulator_ops);
316 
317 	int3472->regulator.gpio = acpi_get_and_request_gpiod(path, agpio->pin_table[0],
318 							     "int3472,regulator");
319 	if (IS_ERR(int3472->regulator.gpio)) {
320 		ret = PTR_ERR(int3472->regulator.gpio);
321 		int3472->regulator.gpio = NULL;
322 		return dev_err_probe(int3472->dev, ret, "getting regulator GPIO\n");
323 	}
324 
325 	/* Ensure the pin is in output mode and non-active state */
326 	gpiod_direction_output(int3472->regulator.gpio, 0);
327 
328 	cfg.dev = &int3472->adev->dev;
329 	cfg.init_data = &init_data;
330 	cfg.ena_gpiod = int3472->regulator.gpio;
331 
332 	int3472->regulator.rdev = regulator_register(int3472->dev,
333 						     &int3472->regulator.rdesc,
334 						     &cfg);
335 	if (IS_ERR(int3472->regulator.rdev)) {
336 		ret = PTR_ERR(int3472->regulator.rdev);
337 		goto err_free_gpio;
338 	}
339 
340 	return 0;
341 
342 err_free_gpio:
343 	gpiod_put(int3472->regulator.gpio);
344 
345 	return ret;
346 }
347 
skl_int3472_unregister_regulator(struct int3472_discrete_device * int3472)348 void skl_int3472_unregister_regulator(struct int3472_discrete_device *int3472)
349 {
350 	regulator_unregister(int3472->regulator.rdev);
351 	gpiod_put(int3472->regulator.gpio);
352 }
353