xref: /openbmc/linux/drivers/perf/riscv_pmu.c (revision 3ddc8b84)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V performance counter support.
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  *
7  * This implementation is based on old RISC-V perf and ARM perf event code
8  * which are in turn based on sparc64 and x86 code.
9  */
10 
11 #include <linux/cpumask.h>
12 #include <linux/irq.h>
13 #include <linux/irqdesc.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/printk.h>
16 #include <linux/smp.h>
17 #include <linux/sched_clock.h>
18 
19 #include <asm/sbi.h>
20 
21 static bool riscv_perf_user_access(struct perf_event *event)
22 {
23 	return ((event->attr.type == PERF_TYPE_HARDWARE) ||
24 		(event->attr.type == PERF_TYPE_HW_CACHE) ||
25 		(event->attr.type == PERF_TYPE_RAW)) &&
26 		!!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) &&
27 		(event->hw.idx != -1);
28 }
29 
30 void arch_perf_update_userpage(struct perf_event *event,
31 			       struct perf_event_mmap_page *userpg, u64 now)
32 {
33 	struct clock_read_data *rd;
34 	unsigned int seq;
35 	u64 ns;
36 
37 	userpg->cap_user_time = 0;
38 	userpg->cap_user_time_zero = 0;
39 	userpg->cap_user_time_short = 0;
40 	userpg->cap_user_rdpmc = riscv_perf_user_access(event);
41 
42 #ifdef CONFIG_RISCV_PMU
43 	/*
44 	 * The counters are 64-bit but the priv spec doesn't mandate all the
45 	 * bits to be implemented: that's why, counter width can vary based on
46 	 * the cpu vendor.
47 	 */
48 	if (userpg->cap_user_rdpmc)
49 		userpg->pmc_width = to_riscv_pmu(event->pmu)->ctr_get_width(event->hw.idx) + 1;
50 #endif
51 
52 	do {
53 		rd = sched_clock_read_begin(&seq);
54 
55 		userpg->time_mult = rd->mult;
56 		userpg->time_shift = rd->shift;
57 		userpg->time_zero = rd->epoch_ns;
58 		userpg->time_cycles = rd->epoch_cyc;
59 		userpg->time_mask = rd->sched_clock_mask;
60 
61 		/*
62 		 * Subtract the cycle base, such that software that
63 		 * doesn't know about cap_user_time_short still 'works'
64 		 * assuming no wraps.
65 		 */
66 		ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
67 		userpg->time_zero -= ns;
68 
69 	} while (sched_clock_read_retry(seq));
70 
71 	userpg->time_offset = userpg->time_zero - now;
72 
73 	/*
74 	 * time_shift is not expected to be greater than 31 due to
75 	 * the original published conversion algorithm shifting a
76 	 * 32-bit value (now specifies a 64-bit value) - refer
77 	 * perf_event_mmap_page documentation in perf_event.h.
78 	 */
79 	if (userpg->time_shift == 32) {
80 		userpg->time_shift = 31;
81 		userpg->time_mult >>= 1;
82 	}
83 
84 	/*
85 	 * Internal timekeeping for enabled/running/stopped times
86 	 * is always computed with the sched_clock.
87 	 */
88 	userpg->cap_user_time = 1;
89 	userpg->cap_user_time_zero = 1;
90 	userpg->cap_user_time_short = 1;
91 }
92 
93 static unsigned long csr_read_num(int csr_num)
94 {
95 #define switchcase_csr_read(__csr_num, __val)		{\
96 	case __csr_num:					\
97 		__val = csr_read(__csr_num);		\
98 		break; }
99 #define switchcase_csr_read_2(__csr_num, __val)		{\
100 	switchcase_csr_read(__csr_num + 0, __val)	 \
101 	switchcase_csr_read(__csr_num + 1, __val)}
102 #define switchcase_csr_read_4(__csr_num, __val)		{\
103 	switchcase_csr_read_2(__csr_num + 0, __val)	 \
104 	switchcase_csr_read_2(__csr_num + 2, __val)}
105 #define switchcase_csr_read_8(__csr_num, __val)		{\
106 	switchcase_csr_read_4(__csr_num + 0, __val)	 \
107 	switchcase_csr_read_4(__csr_num + 4, __val)}
108 #define switchcase_csr_read_16(__csr_num, __val)	{\
109 	switchcase_csr_read_8(__csr_num + 0, __val)	 \
110 	switchcase_csr_read_8(__csr_num + 8, __val)}
111 #define switchcase_csr_read_32(__csr_num, __val)	{\
112 	switchcase_csr_read_16(__csr_num + 0, __val)	 \
113 	switchcase_csr_read_16(__csr_num + 16, __val)}
114 
115 	unsigned long ret = 0;
116 
117 	switch (csr_num) {
118 	switchcase_csr_read_32(CSR_CYCLE, ret)
119 	switchcase_csr_read_32(CSR_CYCLEH, ret)
120 	default :
121 		break;
122 	}
123 
124 	return ret;
125 #undef switchcase_csr_read_32
126 #undef switchcase_csr_read_16
127 #undef switchcase_csr_read_8
128 #undef switchcase_csr_read_4
129 #undef switchcase_csr_read_2
130 #undef switchcase_csr_read
131 }
132 
133 /*
134  * Read the CSR of a corresponding counter.
135  */
136 unsigned long riscv_pmu_ctr_read_csr(unsigned long csr)
137 {
138 	if (csr < CSR_CYCLE || csr > CSR_HPMCOUNTER31H ||
139 	   (csr > CSR_HPMCOUNTER31 && csr < CSR_CYCLEH)) {
140 		pr_err("Invalid performance counter csr %lx\n", csr);
141 		return -EINVAL;
142 	}
143 
144 	return csr_read_num(csr);
145 }
146 
147 u64 riscv_pmu_ctr_get_width_mask(struct perf_event *event)
148 {
149 	int cwidth;
150 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
151 	struct hw_perf_event *hwc = &event->hw;
152 
153 	if (!rvpmu->ctr_get_width)
154 	/**
155 	 * If the pmu driver doesn't support counter width, set it to default
156 	 * maximum allowed by the specification.
157 	 */
158 		cwidth = 63;
159 	else {
160 		if (hwc->idx == -1)
161 			/* Handle init case where idx is not initialized yet */
162 			cwidth = rvpmu->ctr_get_width(0);
163 		else
164 			cwidth = rvpmu->ctr_get_width(hwc->idx);
165 	}
166 
167 	return GENMASK_ULL(cwidth, 0);
168 }
169 
170 u64 riscv_pmu_event_update(struct perf_event *event)
171 {
172 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
173 	struct hw_perf_event *hwc = &event->hw;
174 	u64 prev_raw_count, new_raw_count;
175 	unsigned long cmask;
176 	u64 oldval, delta;
177 
178 	if (!rvpmu->ctr_read)
179 		return 0;
180 
181 	cmask = riscv_pmu_ctr_get_width_mask(event);
182 
183 	do {
184 		prev_raw_count = local64_read(&hwc->prev_count);
185 		new_raw_count = rvpmu->ctr_read(event);
186 		oldval = local64_cmpxchg(&hwc->prev_count, prev_raw_count,
187 					 new_raw_count);
188 	} while (oldval != prev_raw_count);
189 
190 	delta = (new_raw_count - prev_raw_count) & cmask;
191 	local64_add(delta, &event->count);
192 	local64_sub(delta, &hwc->period_left);
193 
194 	return delta;
195 }
196 
197 void riscv_pmu_stop(struct perf_event *event, int flags)
198 {
199 	struct hw_perf_event *hwc = &event->hw;
200 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
201 
202 	WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
203 
204 	if (!(hwc->state & PERF_HES_STOPPED)) {
205 		if (rvpmu->ctr_stop) {
206 			rvpmu->ctr_stop(event, 0);
207 			hwc->state |= PERF_HES_STOPPED;
208 		}
209 		riscv_pmu_event_update(event);
210 		hwc->state |= PERF_HES_UPTODATE;
211 	}
212 }
213 
214 int riscv_pmu_event_set_period(struct perf_event *event)
215 {
216 	struct hw_perf_event *hwc = &event->hw;
217 	s64 left = local64_read(&hwc->period_left);
218 	s64 period = hwc->sample_period;
219 	int overflow = 0;
220 	uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
221 
222 	if (unlikely(left <= -period)) {
223 		left = period;
224 		local64_set(&hwc->period_left, left);
225 		hwc->last_period = period;
226 		overflow = 1;
227 	}
228 
229 	if (unlikely(left <= 0)) {
230 		left += period;
231 		local64_set(&hwc->period_left, left);
232 		hwc->last_period = period;
233 		overflow = 1;
234 	}
235 
236 	/*
237 	 * Limit the maximum period to prevent the counter value
238 	 * from overtaking the one we are about to program. In
239 	 * effect we are reducing max_period to account for
240 	 * interrupt latency (and we are being very conservative).
241 	 */
242 	if (left > (max_period >> 1))
243 		left = (max_period >> 1);
244 
245 	local64_set(&hwc->prev_count, (u64)-left);
246 
247 	perf_event_update_userpage(event);
248 
249 	return overflow;
250 }
251 
252 void riscv_pmu_start(struct perf_event *event, int flags)
253 {
254 	struct hw_perf_event *hwc = &event->hw;
255 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
256 	uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
257 	u64 init_val;
258 
259 	if (flags & PERF_EF_RELOAD)
260 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
261 
262 	hwc->state = 0;
263 	riscv_pmu_event_set_period(event);
264 	init_val = local64_read(&hwc->prev_count) & max_period;
265 	rvpmu->ctr_start(event, init_val);
266 	perf_event_update_userpage(event);
267 }
268 
269 static int riscv_pmu_add(struct perf_event *event, int flags)
270 {
271 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
272 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
273 	struct hw_perf_event *hwc = &event->hw;
274 	int idx;
275 
276 	idx = rvpmu->ctr_get_idx(event);
277 	if (idx < 0)
278 		return idx;
279 
280 	hwc->idx = idx;
281 	cpuc->events[idx] = event;
282 	cpuc->n_events++;
283 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
284 	if (flags & PERF_EF_START)
285 		riscv_pmu_start(event, PERF_EF_RELOAD);
286 
287 	/* Propagate our changes to the userspace mapping. */
288 	perf_event_update_userpage(event);
289 
290 	return 0;
291 }
292 
293 static void riscv_pmu_del(struct perf_event *event, int flags)
294 {
295 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
296 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
297 	struct hw_perf_event *hwc = &event->hw;
298 
299 	riscv_pmu_stop(event, PERF_EF_UPDATE);
300 	cpuc->events[hwc->idx] = NULL;
301 	/* The firmware need to reset the counter mapping */
302 	if (rvpmu->ctr_stop)
303 		rvpmu->ctr_stop(event, RISCV_PMU_STOP_FLAG_RESET);
304 	cpuc->n_events--;
305 	if (rvpmu->ctr_clear_idx)
306 		rvpmu->ctr_clear_idx(event);
307 	perf_event_update_userpage(event);
308 	hwc->idx = -1;
309 }
310 
311 static void riscv_pmu_read(struct perf_event *event)
312 {
313 	riscv_pmu_event_update(event);
314 }
315 
316 static int riscv_pmu_event_init(struct perf_event *event)
317 {
318 	struct hw_perf_event *hwc = &event->hw;
319 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
320 	int mapped_event;
321 	u64 event_config = 0;
322 	uint64_t cmask;
323 
324 	hwc->flags = 0;
325 	mapped_event = rvpmu->event_map(event, &event_config);
326 	if (mapped_event < 0) {
327 		pr_debug("event %x:%llx not supported\n", event->attr.type,
328 			 event->attr.config);
329 		return mapped_event;
330 	}
331 
332 	/*
333 	 * idx is set to -1 because the index of a general event should not be
334 	 * decided until binding to some counter in pmu->add().
335 	 * config will contain the information about counter CSR
336 	 * the idx will contain the counter index
337 	 */
338 	hwc->config = event_config;
339 	hwc->idx = -1;
340 	hwc->event_base = mapped_event;
341 
342 	if (rvpmu->event_init)
343 		rvpmu->event_init(event);
344 
345 	if (!is_sampling_event(event)) {
346 		/*
347 		 * For non-sampling runs, limit the sample_period to half
348 		 * of the counter width. That way, the new counter value
349 		 * is far less likely to overtake the previous one unless
350 		 * you have some serious IRQ latency issues.
351 		 */
352 		cmask = riscv_pmu_ctr_get_width_mask(event);
353 		hwc->sample_period  =  cmask >> 1;
354 		hwc->last_period    = hwc->sample_period;
355 		local64_set(&hwc->period_left, hwc->sample_period);
356 	}
357 
358 	return 0;
359 }
360 
361 static int riscv_pmu_event_idx(struct perf_event *event)
362 {
363 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
364 
365 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
366 		return 0;
367 
368 	if (rvpmu->csr_index)
369 		return rvpmu->csr_index(event) + 1;
370 
371 	return 0;
372 }
373 
374 static void riscv_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
375 {
376 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
377 
378 	if (rvpmu->event_mapped) {
379 		rvpmu->event_mapped(event, mm);
380 		perf_event_update_userpage(event);
381 	}
382 }
383 
384 static void riscv_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
385 {
386 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
387 
388 	if (rvpmu->event_unmapped) {
389 		rvpmu->event_unmapped(event, mm);
390 		perf_event_update_userpage(event);
391 	}
392 }
393 
394 struct riscv_pmu *riscv_pmu_alloc(void)
395 {
396 	struct riscv_pmu *pmu;
397 	int cpuid, i;
398 	struct cpu_hw_events *cpuc;
399 
400 	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
401 	if (!pmu)
402 		goto out;
403 
404 	pmu->hw_events = alloc_percpu_gfp(struct cpu_hw_events, GFP_KERNEL);
405 	if (!pmu->hw_events) {
406 		pr_info("failed to allocate per-cpu PMU data.\n");
407 		goto out_free_pmu;
408 	}
409 
410 	for_each_possible_cpu(cpuid) {
411 		cpuc = per_cpu_ptr(pmu->hw_events, cpuid);
412 		cpuc->n_events = 0;
413 		for (i = 0; i < RISCV_MAX_COUNTERS; i++)
414 			cpuc->events[i] = NULL;
415 	}
416 	pmu->pmu = (struct pmu) {
417 		.event_init	= riscv_pmu_event_init,
418 		.event_mapped	= riscv_pmu_event_mapped,
419 		.event_unmapped	= riscv_pmu_event_unmapped,
420 		.event_idx	= riscv_pmu_event_idx,
421 		.add		= riscv_pmu_add,
422 		.del		= riscv_pmu_del,
423 		.start		= riscv_pmu_start,
424 		.stop		= riscv_pmu_stop,
425 		.read		= riscv_pmu_read,
426 	};
427 
428 	return pmu;
429 
430 out_free_pmu:
431 	kfree(pmu);
432 out:
433 	return NULL;
434 }
435