xref: /openbmc/linux/drivers/perf/riscv_pmu.c (revision b2ddeb7f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V performance counter support.
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  *
7  * This implementation is based on old RISC-V perf and ARM perf event code
8  * which are in turn based on sparc64 and x86 code.
9  */
10 
11 #include <linux/cpumask.h>
12 #include <linux/irq.h>
13 #include <linux/irqdesc.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/printk.h>
16 #include <linux/smp.h>
17 #include <linux/sched_clock.h>
18 
19 #include <asm/sbi.h>
20 
riscv_perf_user_access(struct perf_event * event)21 static bool riscv_perf_user_access(struct perf_event *event)
22 {
23 	return ((event->attr.type == PERF_TYPE_HARDWARE) ||
24 		(event->attr.type == PERF_TYPE_HW_CACHE) ||
25 		(event->attr.type == PERF_TYPE_RAW)) &&
26 		!!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) &&
27 		(event->hw.idx != -1);
28 }
29 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)30 void arch_perf_update_userpage(struct perf_event *event,
31 			       struct perf_event_mmap_page *userpg, u64 now)
32 {
33 	struct clock_read_data *rd;
34 	unsigned int seq;
35 	u64 ns;
36 
37 	userpg->cap_user_time = 0;
38 	userpg->cap_user_time_zero = 0;
39 	userpg->cap_user_time_short = 0;
40 	userpg->cap_user_rdpmc = riscv_perf_user_access(event);
41 
42 #ifdef CONFIG_RISCV_PMU
43 	/*
44 	 * The counters are 64-bit but the priv spec doesn't mandate all the
45 	 * bits to be implemented: that's why, counter width can vary based on
46 	 * the cpu vendor.
47 	 */
48 	if (userpg->cap_user_rdpmc)
49 		userpg->pmc_width = to_riscv_pmu(event->pmu)->ctr_get_width(event->hw.idx) + 1;
50 #endif
51 
52 	do {
53 		rd = sched_clock_read_begin(&seq);
54 
55 		userpg->time_mult = rd->mult;
56 		userpg->time_shift = rd->shift;
57 		userpg->time_zero = rd->epoch_ns;
58 		userpg->time_cycles = rd->epoch_cyc;
59 		userpg->time_mask = rd->sched_clock_mask;
60 
61 		/*
62 		 * Subtract the cycle base, such that software that
63 		 * doesn't know about cap_user_time_short still 'works'
64 		 * assuming no wraps.
65 		 */
66 		ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
67 		userpg->time_zero -= ns;
68 
69 	} while (sched_clock_read_retry(seq));
70 
71 	userpg->time_offset = userpg->time_zero - now;
72 
73 	/*
74 	 * time_shift is not expected to be greater than 31 due to
75 	 * the original published conversion algorithm shifting a
76 	 * 32-bit value (now specifies a 64-bit value) - refer
77 	 * perf_event_mmap_page documentation in perf_event.h.
78 	 */
79 	if (userpg->time_shift == 32) {
80 		userpg->time_shift = 31;
81 		userpg->time_mult >>= 1;
82 	}
83 
84 	/*
85 	 * Internal timekeeping for enabled/running/stopped times
86 	 * is always computed with the sched_clock.
87 	 */
88 	userpg->cap_user_time = 1;
89 	userpg->cap_user_time_zero = 1;
90 	userpg->cap_user_time_short = 1;
91 }
92 
csr_read_num(int csr_num)93 static unsigned long csr_read_num(int csr_num)
94 {
95 #define switchcase_csr_read(__csr_num, __val)		{\
96 	case __csr_num:					\
97 		__val = csr_read(__csr_num);		\
98 		break; }
99 #define switchcase_csr_read_2(__csr_num, __val)		{\
100 	switchcase_csr_read(__csr_num + 0, __val)	 \
101 	switchcase_csr_read(__csr_num + 1, __val)}
102 #define switchcase_csr_read_4(__csr_num, __val)		{\
103 	switchcase_csr_read_2(__csr_num + 0, __val)	 \
104 	switchcase_csr_read_2(__csr_num + 2, __val)}
105 #define switchcase_csr_read_8(__csr_num, __val)		{\
106 	switchcase_csr_read_4(__csr_num + 0, __val)	 \
107 	switchcase_csr_read_4(__csr_num + 4, __val)}
108 #define switchcase_csr_read_16(__csr_num, __val)	{\
109 	switchcase_csr_read_8(__csr_num + 0, __val)	 \
110 	switchcase_csr_read_8(__csr_num + 8, __val)}
111 #define switchcase_csr_read_32(__csr_num, __val)	{\
112 	switchcase_csr_read_16(__csr_num + 0, __val)	 \
113 	switchcase_csr_read_16(__csr_num + 16, __val)}
114 
115 	unsigned long ret = 0;
116 
117 	switch (csr_num) {
118 	switchcase_csr_read_32(CSR_CYCLE, ret)
119 	switchcase_csr_read_32(CSR_CYCLEH, ret)
120 	default :
121 		break;
122 	}
123 
124 	return ret;
125 #undef switchcase_csr_read_32
126 #undef switchcase_csr_read_16
127 #undef switchcase_csr_read_8
128 #undef switchcase_csr_read_4
129 #undef switchcase_csr_read_2
130 #undef switchcase_csr_read
131 }
132 
133 /*
134  * Read the CSR of a corresponding counter.
135  */
riscv_pmu_ctr_read_csr(unsigned long csr)136 unsigned long riscv_pmu_ctr_read_csr(unsigned long csr)
137 {
138 	if (csr < CSR_CYCLE || csr > CSR_HPMCOUNTER31H ||
139 	   (csr > CSR_HPMCOUNTER31 && csr < CSR_CYCLEH)) {
140 		pr_err("Invalid performance counter csr %lx\n", csr);
141 		return -EINVAL;
142 	}
143 
144 	return csr_read_num(csr);
145 }
146 
riscv_pmu_ctr_get_width_mask(struct perf_event * event)147 u64 riscv_pmu_ctr_get_width_mask(struct perf_event *event)
148 {
149 	int cwidth;
150 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
151 	struct hw_perf_event *hwc = &event->hw;
152 
153 	if (hwc->idx == -1)
154 		/* Handle init case where idx is not initialized yet */
155 		cwidth = rvpmu->ctr_get_width(0);
156 	else
157 		cwidth = rvpmu->ctr_get_width(hwc->idx);
158 
159 	return GENMASK_ULL(cwidth, 0);
160 }
161 
riscv_pmu_event_update(struct perf_event * event)162 u64 riscv_pmu_event_update(struct perf_event *event)
163 {
164 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
165 	struct hw_perf_event *hwc = &event->hw;
166 	u64 prev_raw_count, new_raw_count;
167 	unsigned long cmask;
168 	u64 oldval, delta;
169 
170 	if (!rvpmu->ctr_read)
171 		return 0;
172 
173 	cmask = riscv_pmu_ctr_get_width_mask(event);
174 
175 	do {
176 		prev_raw_count = local64_read(&hwc->prev_count);
177 		new_raw_count = rvpmu->ctr_read(event);
178 		oldval = local64_cmpxchg(&hwc->prev_count, prev_raw_count,
179 					 new_raw_count);
180 	} while (oldval != prev_raw_count);
181 
182 	delta = (new_raw_count - prev_raw_count) & cmask;
183 	local64_add(delta, &event->count);
184 	local64_sub(delta, &hwc->period_left);
185 
186 	return delta;
187 }
188 
riscv_pmu_stop(struct perf_event * event,int flags)189 void riscv_pmu_stop(struct perf_event *event, int flags)
190 {
191 	struct hw_perf_event *hwc = &event->hw;
192 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
193 
194 	WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
195 
196 	if (!(hwc->state & PERF_HES_STOPPED)) {
197 		if (rvpmu->ctr_stop) {
198 			rvpmu->ctr_stop(event, 0);
199 			hwc->state |= PERF_HES_STOPPED;
200 		}
201 		riscv_pmu_event_update(event);
202 		hwc->state |= PERF_HES_UPTODATE;
203 	}
204 }
205 
riscv_pmu_event_set_period(struct perf_event * event)206 int riscv_pmu_event_set_period(struct perf_event *event)
207 {
208 	struct hw_perf_event *hwc = &event->hw;
209 	s64 left = local64_read(&hwc->period_left);
210 	s64 period = hwc->sample_period;
211 	int overflow = 0;
212 	uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
213 
214 	if (unlikely(left <= -period)) {
215 		left = period;
216 		local64_set(&hwc->period_left, left);
217 		hwc->last_period = period;
218 		overflow = 1;
219 	}
220 
221 	if (unlikely(left <= 0)) {
222 		left += period;
223 		local64_set(&hwc->period_left, left);
224 		hwc->last_period = period;
225 		overflow = 1;
226 	}
227 
228 	/*
229 	 * Limit the maximum period to prevent the counter value
230 	 * from overtaking the one we are about to program. In
231 	 * effect we are reducing max_period to account for
232 	 * interrupt latency (and we are being very conservative).
233 	 */
234 	if (left > (max_period >> 1))
235 		left = (max_period >> 1);
236 
237 	local64_set(&hwc->prev_count, (u64)-left);
238 
239 	perf_event_update_userpage(event);
240 
241 	return overflow;
242 }
243 
riscv_pmu_start(struct perf_event * event,int flags)244 void riscv_pmu_start(struct perf_event *event, int flags)
245 {
246 	struct hw_perf_event *hwc = &event->hw;
247 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
248 	uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
249 	u64 init_val;
250 
251 	if (flags & PERF_EF_RELOAD)
252 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
253 
254 	hwc->state = 0;
255 	riscv_pmu_event_set_period(event);
256 	init_val = local64_read(&hwc->prev_count) & max_period;
257 	rvpmu->ctr_start(event, init_val);
258 	perf_event_update_userpage(event);
259 }
260 
riscv_pmu_add(struct perf_event * event,int flags)261 static int riscv_pmu_add(struct perf_event *event, int flags)
262 {
263 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
264 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
265 	struct hw_perf_event *hwc = &event->hw;
266 	int idx;
267 
268 	idx = rvpmu->ctr_get_idx(event);
269 	if (idx < 0)
270 		return idx;
271 
272 	hwc->idx = idx;
273 	cpuc->events[idx] = event;
274 	cpuc->n_events++;
275 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
276 	if (flags & PERF_EF_START)
277 		riscv_pmu_start(event, PERF_EF_RELOAD);
278 
279 	/* Propagate our changes to the userspace mapping. */
280 	perf_event_update_userpage(event);
281 
282 	return 0;
283 }
284 
riscv_pmu_del(struct perf_event * event,int flags)285 static void riscv_pmu_del(struct perf_event *event, int flags)
286 {
287 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
288 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
289 	struct hw_perf_event *hwc = &event->hw;
290 
291 	riscv_pmu_stop(event, PERF_EF_UPDATE);
292 	cpuc->events[hwc->idx] = NULL;
293 	/* The firmware need to reset the counter mapping */
294 	if (rvpmu->ctr_stop)
295 		rvpmu->ctr_stop(event, RISCV_PMU_STOP_FLAG_RESET);
296 	cpuc->n_events--;
297 	if (rvpmu->ctr_clear_idx)
298 		rvpmu->ctr_clear_idx(event);
299 	perf_event_update_userpage(event);
300 	hwc->idx = -1;
301 }
302 
riscv_pmu_read(struct perf_event * event)303 static void riscv_pmu_read(struct perf_event *event)
304 {
305 	riscv_pmu_event_update(event);
306 }
307 
riscv_pmu_event_init(struct perf_event * event)308 static int riscv_pmu_event_init(struct perf_event *event)
309 {
310 	struct hw_perf_event *hwc = &event->hw;
311 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
312 	int mapped_event;
313 	u64 event_config = 0;
314 	uint64_t cmask;
315 
316 	/* driver does not support branch stack sampling */
317 	if (has_branch_stack(event))
318 		return -EOPNOTSUPP;
319 
320 	hwc->flags = 0;
321 	mapped_event = rvpmu->event_map(event, &event_config);
322 	if (mapped_event < 0) {
323 		pr_debug("event %x:%llx not supported\n", event->attr.type,
324 			 event->attr.config);
325 		return mapped_event;
326 	}
327 
328 	/*
329 	 * idx is set to -1 because the index of a general event should not be
330 	 * decided until binding to some counter in pmu->add().
331 	 * config will contain the information about counter CSR
332 	 * the idx will contain the counter index
333 	 */
334 	hwc->config = event_config;
335 	hwc->idx = -1;
336 	hwc->event_base = mapped_event;
337 
338 	if (rvpmu->event_init)
339 		rvpmu->event_init(event);
340 
341 	if (!is_sampling_event(event)) {
342 		/*
343 		 * For non-sampling runs, limit the sample_period to half
344 		 * of the counter width. That way, the new counter value
345 		 * is far less likely to overtake the previous one unless
346 		 * you have some serious IRQ latency issues.
347 		 */
348 		cmask = riscv_pmu_ctr_get_width_mask(event);
349 		hwc->sample_period  =  cmask >> 1;
350 		hwc->last_period    = hwc->sample_period;
351 		local64_set(&hwc->period_left, hwc->sample_period);
352 	}
353 
354 	return 0;
355 }
356 
riscv_pmu_event_idx(struct perf_event * event)357 static int riscv_pmu_event_idx(struct perf_event *event)
358 {
359 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
360 
361 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
362 		return 0;
363 
364 	if (rvpmu->csr_index)
365 		return rvpmu->csr_index(event) + 1;
366 
367 	return 0;
368 }
369 
riscv_pmu_event_mapped(struct perf_event * event,struct mm_struct * mm)370 static void riscv_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
371 {
372 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
373 
374 	if (rvpmu->event_mapped) {
375 		rvpmu->event_mapped(event, mm);
376 		perf_event_update_userpage(event);
377 	}
378 }
379 
riscv_pmu_event_unmapped(struct perf_event * event,struct mm_struct * mm)380 static void riscv_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
381 {
382 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
383 
384 	if (rvpmu->event_unmapped) {
385 		rvpmu->event_unmapped(event, mm);
386 		perf_event_update_userpage(event);
387 	}
388 }
389 
riscv_pmu_alloc(void)390 struct riscv_pmu *riscv_pmu_alloc(void)
391 {
392 	struct riscv_pmu *pmu;
393 	int cpuid, i;
394 	struct cpu_hw_events *cpuc;
395 
396 	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
397 	if (!pmu)
398 		goto out;
399 
400 	pmu->hw_events = alloc_percpu_gfp(struct cpu_hw_events, GFP_KERNEL);
401 	if (!pmu->hw_events) {
402 		pr_info("failed to allocate per-cpu PMU data.\n");
403 		goto out_free_pmu;
404 	}
405 
406 	for_each_possible_cpu(cpuid) {
407 		cpuc = per_cpu_ptr(pmu->hw_events, cpuid);
408 		cpuc->n_events = 0;
409 		for (i = 0; i < RISCV_MAX_COUNTERS; i++)
410 			cpuc->events[i] = NULL;
411 	}
412 	pmu->pmu = (struct pmu) {
413 		.event_init	= riscv_pmu_event_init,
414 		.event_mapped	= riscv_pmu_event_mapped,
415 		.event_unmapped	= riscv_pmu_event_unmapped,
416 		.event_idx	= riscv_pmu_event_idx,
417 		.add		= riscv_pmu_add,
418 		.del		= riscv_pmu_del,
419 		.start		= riscv_pmu_start,
420 		.stop		= riscv_pmu_stop,
421 		.read		= riscv_pmu_read,
422 	};
423 
424 	return pmu;
425 
426 out_free_pmu:
427 	kfree(pmu);
428 out:
429 	return NULL;
430 }
431