1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2011-2014, Intel Corporation. 4 */ 5 6 #ifndef _NVME_H 7 #define _NVME_H 8 9 #include <linux/nvme.h> 10 #include <linux/cdev.h> 11 #include <linux/pci.h> 12 #include <linux/kref.h> 13 #include <linux/blk-mq.h> 14 #include <linux/sed-opal.h> 15 #include <linux/fault-inject.h> 16 #include <linux/rcupdate.h> 17 #include <linux/wait.h> 18 #include <linux/t10-pi.h> 19 20 #include <trace/events/block.h> 21 22 extern const struct pr_ops nvme_pr_ops; 23 24 extern unsigned int nvme_io_timeout; 25 #define NVME_IO_TIMEOUT (nvme_io_timeout * HZ) 26 27 extern unsigned int admin_timeout; 28 #define NVME_ADMIN_TIMEOUT (admin_timeout * HZ) 29 30 #define NVME_DEFAULT_KATO 5 31 32 #ifdef CONFIG_ARCH_NO_SG_CHAIN 33 #define NVME_INLINE_SG_CNT 0 34 #define NVME_INLINE_METADATA_SG_CNT 0 35 #else 36 #define NVME_INLINE_SG_CNT 2 37 #define NVME_INLINE_METADATA_SG_CNT 1 38 #endif 39 40 /* 41 * Default to a 4K page size, with the intention to update this 42 * path in the future to accommodate architectures with differing 43 * kernel and IO page sizes. 44 */ 45 #define NVME_CTRL_PAGE_SHIFT 12 46 #define NVME_CTRL_PAGE_SIZE (1 << NVME_CTRL_PAGE_SHIFT) 47 48 extern struct workqueue_struct *nvme_wq; 49 extern struct workqueue_struct *nvme_reset_wq; 50 extern struct workqueue_struct *nvme_delete_wq; 51 52 /* 53 * List of workarounds for devices that required behavior not specified in 54 * the standard. 55 */ 56 enum nvme_quirks { 57 /* 58 * Prefers I/O aligned to a stripe size specified in a vendor 59 * specific Identify field. 60 */ 61 NVME_QUIRK_STRIPE_SIZE = (1 << 0), 62 63 /* 64 * The controller doesn't handle Identify value others than 0 or 1 65 * correctly. 66 */ 67 NVME_QUIRK_IDENTIFY_CNS = (1 << 1), 68 69 /* 70 * The controller deterministically returns O's on reads to 71 * logical blocks that deallocate was called on. 72 */ 73 NVME_QUIRK_DEALLOCATE_ZEROES = (1 << 2), 74 75 /* 76 * The controller needs a delay before starts checking the device 77 * readiness, which is done by reading the NVME_CSTS_RDY bit. 78 */ 79 NVME_QUIRK_DELAY_BEFORE_CHK_RDY = (1 << 3), 80 81 /* 82 * APST should not be used. 83 */ 84 NVME_QUIRK_NO_APST = (1 << 4), 85 86 /* 87 * The deepest sleep state should not be used. 88 */ 89 NVME_QUIRK_NO_DEEPEST_PS = (1 << 5), 90 91 /* 92 * Set MEDIUM priority on SQ creation 93 */ 94 NVME_QUIRK_MEDIUM_PRIO_SQ = (1 << 7), 95 96 /* 97 * Ignore device provided subnqn. 98 */ 99 NVME_QUIRK_IGNORE_DEV_SUBNQN = (1 << 8), 100 101 /* 102 * Broken Write Zeroes. 103 */ 104 NVME_QUIRK_DISABLE_WRITE_ZEROES = (1 << 9), 105 106 /* 107 * Force simple suspend/resume path. 108 */ 109 NVME_QUIRK_SIMPLE_SUSPEND = (1 << 10), 110 111 /* 112 * Use only one interrupt vector for all queues 113 */ 114 NVME_QUIRK_SINGLE_VECTOR = (1 << 11), 115 116 /* 117 * Use non-standard 128 bytes SQEs. 118 */ 119 NVME_QUIRK_128_BYTES_SQES = (1 << 12), 120 121 /* 122 * Prevent tag overlap between queues 123 */ 124 NVME_QUIRK_SHARED_TAGS = (1 << 13), 125 126 /* 127 * Don't change the value of the temperature threshold feature 128 */ 129 NVME_QUIRK_NO_TEMP_THRESH_CHANGE = (1 << 14), 130 131 /* 132 * The controller doesn't handle the Identify Namespace 133 * Identification Descriptor list subcommand despite claiming 134 * NVMe 1.3 compliance. 135 */ 136 NVME_QUIRK_NO_NS_DESC_LIST = (1 << 15), 137 138 /* 139 * The controller does not properly handle DMA addresses over 140 * 48 bits. 141 */ 142 NVME_QUIRK_DMA_ADDRESS_BITS_48 = (1 << 16), 143 144 /* 145 * The controller requires the command_id value be limited, so skip 146 * encoding the generation sequence number. 147 */ 148 NVME_QUIRK_SKIP_CID_GEN = (1 << 17), 149 150 /* 151 * Reports garbage in the namespace identifiers (eui64, nguid, uuid). 152 */ 153 NVME_QUIRK_BOGUS_NID = (1 << 18), 154 }; 155 156 /* 157 * Common request structure for NVMe passthrough. All drivers must have 158 * this structure as the first member of their request-private data. 159 */ 160 struct nvme_request { 161 struct nvme_command *cmd; 162 union nvme_result result; 163 u8 genctr; 164 u8 retries; 165 u8 flags; 166 u16 status; 167 #ifdef CONFIG_NVME_MULTIPATH 168 unsigned long start_time; 169 #endif 170 struct nvme_ctrl *ctrl; 171 }; 172 173 /* 174 * Mark a bio as coming in through the mpath node. 175 */ 176 #define REQ_NVME_MPATH REQ_DRV 177 178 enum { 179 NVME_REQ_CANCELLED = (1 << 0), 180 NVME_REQ_USERCMD = (1 << 1), 181 NVME_MPATH_IO_STATS = (1 << 2), 182 }; 183 184 static inline struct nvme_request *nvme_req(struct request *req) 185 { 186 return blk_mq_rq_to_pdu(req); 187 } 188 189 static inline u16 nvme_req_qid(struct request *req) 190 { 191 if (!req->q->queuedata) 192 return 0; 193 194 return req->mq_hctx->queue_num + 1; 195 } 196 197 /* The below value is the specific amount of delay needed before checking 198 * readiness in case of the PCI_DEVICE(0x1c58, 0x0003), which needs the 199 * NVME_QUIRK_DELAY_BEFORE_CHK_RDY quirk enabled. The value (in ms) was 200 * found empirically. 201 */ 202 #define NVME_QUIRK_DELAY_AMOUNT 2300 203 204 /* 205 * enum nvme_ctrl_state: Controller state 206 * 207 * @NVME_CTRL_NEW: New controller just allocated, initial state 208 * @NVME_CTRL_LIVE: Controller is connected and I/O capable 209 * @NVME_CTRL_RESETTING: Controller is resetting (or scheduled reset) 210 * @NVME_CTRL_CONNECTING: Controller is disconnected, now connecting the 211 * transport 212 * @NVME_CTRL_DELETING: Controller is deleting (or scheduled deletion) 213 * @NVME_CTRL_DELETING_NOIO: Controller is deleting and I/O is not 214 * disabled/failed immediately. This state comes 215 * after all async event processing took place and 216 * before ns removal and the controller deletion 217 * progress 218 * @NVME_CTRL_DEAD: Controller is non-present/unresponsive during 219 * shutdown or removal. In this case we forcibly 220 * kill all inflight I/O as they have no chance to 221 * complete 222 */ 223 enum nvme_ctrl_state { 224 NVME_CTRL_NEW, 225 NVME_CTRL_LIVE, 226 NVME_CTRL_RESETTING, 227 NVME_CTRL_CONNECTING, 228 NVME_CTRL_DELETING, 229 NVME_CTRL_DELETING_NOIO, 230 NVME_CTRL_DEAD, 231 }; 232 233 struct nvme_fault_inject { 234 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 235 struct fault_attr attr; 236 struct dentry *parent; 237 bool dont_retry; /* DNR, do not retry */ 238 u16 status; /* status code */ 239 #endif 240 }; 241 242 enum nvme_ctrl_flags { 243 NVME_CTRL_FAILFAST_EXPIRED = 0, 244 NVME_CTRL_ADMIN_Q_STOPPED = 1, 245 NVME_CTRL_STARTED_ONCE = 2, 246 NVME_CTRL_STOPPED = 3, 247 }; 248 249 struct nvme_ctrl { 250 bool comp_seen; 251 enum nvme_ctrl_state state; 252 bool identified; 253 spinlock_t lock; 254 struct mutex scan_lock; 255 const struct nvme_ctrl_ops *ops; 256 struct request_queue *admin_q; 257 struct request_queue *connect_q; 258 struct request_queue *fabrics_q; 259 struct device *dev; 260 int instance; 261 int numa_node; 262 struct blk_mq_tag_set *tagset; 263 struct blk_mq_tag_set *admin_tagset; 264 struct list_head namespaces; 265 struct rw_semaphore namespaces_rwsem; 266 struct device ctrl_device; 267 struct device *device; /* char device */ 268 #ifdef CONFIG_NVME_HWMON 269 struct device *hwmon_device; 270 #endif 271 struct cdev cdev; 272 struct work_struct reset_work; 273 struct work_struct delete_work; 274 wait_queue_head_t state_wq; 275 276 struct nvme_subsystem *subsys; 277 struct list_head subsys_entry; 278 279 struct opal_dev *opal_dev; 280 281 char name[12]; 282 u16 cntlid; 283 284 u32 ctrl_config; 285 u16 mtfa; 286 u32 queue_count; 287 288 u64 cap; 289 u32 max_hw_sectors; 290 u32 max_segments; 291 u32 max_integrity_segments; 292 u32 max_discard_sectors; 293 u32 max_discard_segments; 294 u32 max_zeroes_sectors; 295 #ifdef CONFIG_BLK_DEV_ZONED 296 u32 max_zone_append; 297 #endif 298 u16 crdt[3]; 299 u16 oncs; 300 u32 dmrsl; 301 u16 oacs; 302 u16 sqsize; 303 u32 max_namespaces; 304 atomic_t abort_limit; 305 u8 vwc; 306 u32 vs; 307 u32 sgls; 308 u16 kas; 309 u8 npss; 310 u8 apsta; 311 u16 wctemp; 312 u16 cctemp; 313 u32 oaes; 314 u32 aen_result; 315 u32 ctratt; 316 unsigned int shutdown_timeout; 317 unsigned int kato; 318 bool subsystem; 319 unsigned long quirks; 320 struct nvme_id_power_state psd[32]; 321 struct nvme_effects_log *effects; 322 struct xarray cels; 323 struct work_struct scan_work; 324 struct work_struct async_event_work; 325 struct delayed_work ka_work; 326 struct delayed_work failfast_work; 327 struct nvme_command ka_cmd; 328 struct work_struct fw_act_work; 329 unsigned long events; 330 331 #ifdef CONFIG_NVME_MULTIPATH 332 /* asymmetric namespace access: */ 333 u8 anacap; 334 u8 anatt; 335 u32 anagrpmax; 336 u32 nanagrpid; 337 struct mutex ana_lock; 338 struct nvme_ana_rsp_hdr *ana_log_buf; 339 size_t ana_log_size; 340 struct timer_list anatt_timer; 341 struct work_struct ana_work; 342 #endif 343 344 #ifdef CONFIG_NVME_AUTH 345 struct work_struct dhchap_auth_work; 346 struct mutex dhchap_auth_mutex; 347 struct nvme_dhchap_queue_context *dhchap_ctxs; 348 struct nvme_dhchap_key *host_key; 349 struct nvme_dhchap_key *ctrl_key; 350 u16 transaction; 351 #endif 352 353 /* Power saving configuration */ 354 u64 ps_max_latency_us; 355 bool apst_enabled; 356 357 /* PCIe only: */ 358 u32 hmpre; 359 u32 hmmin; 360 u32 hmminds; 361 u16 hmmaxd; 362 363 /* Fabrics only */ 364 u32 ioccsz; 365 u32 iorcsz; 366 u16 icdoff; 367 u16 maxcmd; 368 int nr_reconnects; 369 unsigned long flags; 370 struct nvmf_ctrl_options *opts; 371 372 struct page *discard_page; 373 unsigned long discard_page_busy; 374 375 struct nvme_fault_inject fault_inject; 376 377 enum nvme_ctrl_type cntrltype; 378 enum nvme_dctype dctype; 379 }; 380 381 enum nvme_iopolicy { 382 NVME_IOPOLICY_NUMA, 383 NVME_IOPOLICY_RR, 384 }; 385 386 struct nvme_subsystem { 387 int instance; 388 struct device dev; 389 /* 390 * Because we unregister the device on the last put we need 391 * a separate refcount. 392 */ 393 struct kref ref; 394 struct list_head entry; 395 struct mutex lock; 396 struct list_head ctrls; 397 struct list_head nsheads; 398 char subnqn[NVMF_NQN_SIZE]; 399 char serial[20]; 400 char model[40]; 401 char firmware_rev[8]; 402 u8 cmic; 403 enum nvme_subsys_type subtype; 404 u16 vendor_id; 405 u16 awupf; /* 0's based awupf value. */ 406 struct ida ns_ida; 407 #ifdef CONFIG_NVME_MULTIPATH 408 enum nvme_iopolicy iopolicy; 409 #endif 410 }; 411 412 /* 413 * Container structure for uniqueue namespace identifiers. 414 */ 415 struct nvme_ns_ids { 416 u8 eui64[8]; 417 u8 nguid[16]; 418 uuid_t uuid; 419 u8 csi; 420 }; 421 422 /* 423 * Anchor structure for namespaces. There is one for each namespace in a 424 * NVMe subsystem that any of our controllers can see, and the namespace 425 * structure for each controller is chained of it. For private namespaces 426 * there is a 1:1 relation to our namespace structures, that is ->list 427 * only ever has a single entry for private namespaces. 428 */ 429 struct nvme_ns_head { 430 struct list_head list; 431 struct srcu_struct srcu; 432 struct nvme_subsystem *subsys; 433 unsigned ns_id; 434 struct nvme_ns_ids ids; 435 struct list_head entry; 436 struct kref ref; 437 bool shared; 438 int instance; 439 struct nvme_effects_log *effects; 440 441 struct cdev cdev; 442 struct device cdev_device; 443 444 struct gendisk *disk; 445 #ifdef CONFIG_NVME_MULTIPATH 446 struct bio_list requeue_list; 447 spinlock_t requeue_lock; 448 struct work_struct requeue_work; 449 struct mutex lock; 450 unsigned long flags; 451 #define NVME_NSHEAD_DISK_LIVE 0 452 struct nvme_ns __rcu *current_path[]; 453 #endif 454 }; 455 456 static inline bool nvme_ns_head_multipath(struct nvme_ns_head *head) 457 { 458 return IS_ENABLED(CONFIG_NVME_MULTIPATH) && head->disk; 459 } 460 461 enum nvme_ns_features { 462 NVME_NS_EXT_LBAS = 1 << 0, /* support extended LBA format */ 463 NVME_NS_METADATA_SUPPORTED = 1 << 1, /* support getting generated md */ 464 NVME_NS_DEAC, /* DEAC bit in Write Zeores supported */ 465 }; 466 467 struct nvme_ns { 468 struct list_head list; 469 470 struct nvme_ctrl *ctrl; 471 struct request_queue *queue; 472 struct gendisk *disk; 473 #ifdef CONFIG_NVME_MULTIPATH 474 enum nvme_ana_state ana_state; 475 u32 ana_grpid; 476 #endif 477 struct list_head siblings; 478 struct kref kref; 479 struct nvme_ns_head *head; 480 481 int lba_shift; 482 u16 ms; 483 u16 pi_size; 484 u16 sgs; 485 u32 sws; 486 u8 pi_type; 487 u8 guard_type; 488 #ifdef CONFIG_BLK_DEV_ZONED 489 u64 zsze; 490 #endif 491 unsigned long features; 492 unsigned long flags; 493 #define NVME_NS_REMOVING 0 494 #define NVME_NS_ANA_PENDING 2 495 #define NVME_NS_FORCE_RO 3 496 #define NVME_NS_READY 4 497 498 struct cdev cdev; 499 struct device cdev_device; 500 501 struct nvme_fault_inject fault_inject; 502 503 }; 504 505 /* NVMe ns supports metadata actions by the controller (generate/strip) */ 506 static inline bool nvme_ns_has_pi(struct nvme_ns *ns) 507 { 508 return ns->pi_type && ns->ms == ns->pi_size; 509 } 510 511 struct nvme_ctrl_ops { 512 const char *name; 513 struct module *module; 514 unsigned int flags; 515 #define NVME_F_FABRICS (1 << 0) 516 #define NVME_F_METADATA_SUPPORTED (1 << 1) 517 #define NVME_F_BLOCKING (1 << 2) 518 519 const struct attribute_group **dev_attr_groups; 520 int (*reg_read32)(struct nvme_ctrl *ctrl, u32 off, u32 *val); 521 int (*reg_write32)(struct nvme_ctrl *ctrl, u32 off, u32 val); 522 int (*reg_read64)(struct nvme_ctrl *ctrl, u32 off, u64 *val); 523 void (*free_ctrl)(struct nvme_ctrl *ctrl); 524 void (*submit_async_event)(struct nvme_ctrl *ctrl); 525 void (*delete_ctrl)(struct nvme_ctrl *ctrl); 526 void (*stop_ctrl)(struct nvme_ctrl *ctrl); 527 int (*get_address)(struct nvme_ctrl *ctrl, char *buf, int size); 528 void (*print_device_info)(struct nvme_ctrl *ctrl); 529 bool (*supports_pci_p2pdma)(struct nvme_ctrl *ctrl); 530 }; 531 532 /* 533 * nvme command_id is constructed as such: 534 * | xxxx | xxxxxxxxxxxx | 535 * gen request tag 536 */ 537 #define nvme_genctr_mask(gen) (gen & 0xf) 538 #define nvme_cid_install_genctr(gen) (nvme_genctr_mask(gen) << 12) 539 #define nvme_genctr_from_cid(cid) ((cid & 0xf000) >> 12) 540 #define nvme_tag_from_cid(cid) (cid & 0xfff) 541 542 static inline u16 nvme_cid(struct request *rq) 543 { 544 return nvme_cid_install_genctr(nvme_req(rq)->genctr) | rq->tag; 545 } 546 547 static inline struct request *nvme_find_rq(struct blk_mq_tags *tags, 548 u16 command_id) 549 { 550 u8 genctr = nvme_genctr_from_cid(command_id); 551 u16 tag = nvme_tag_from_cid(command_id); 552 struct request *rq; 553 554 rq = blk_mq_tag_to_rq(tags, tag); 555 if (unlikely(!rq)) { 556 pr_err("could not locate request for tag %#x\n", 557 tag); 558 return NULL; 559 } 560 if (unlikely(nvme_genctr_mask(nvme_req(rq)->genctr) != genctr)) { 561 dev_err(nvme_req(rq)->ctrl->device, 562 "request %#x genctr mismatch (got %#x expected %#x)\n", 563 tag, genctr, nvme_genctr_mask(nvme_req(rq)->genctr)); 564 return NULL; 565 } 566 return rq; 567 } 568 569 static inline struct request *nvme_cid_to_rq(struct blk_mq_tags *tags, 570 u16 command_id) 571 { 572 return blk_mq_tag_to_rq(tags, nvme_tag_from_cid(command_id)); 573 } 574 575 /* 576 * Return the length of the string without the space padding 577 */ 578 static inline int nvme_strlen(char *s, int len) 579 { 580 while (s[len - 1] == ' ') 581 len--; 582 return len; 583 } 584 585 static inline void nvme_print_device_info(struct nvme_ctrl *ctrl) 586 { 587 struct nvme_subsystem *subsys = ctrl->subsys; 588 589 if (ctrl->ops->print_device_info) { 590 ctrl->ops->print_device_info(ctrl); 591 return; 592 } 593 594 dev_err(ctrl->device, 595 "VID:%04x model:%.*s firmware:%.*s\n", subsys->vendor_id, 596 nvme_strlen(subsys->model, sizeof(subsys->model)), 597 subsys->model, nvme_strlen(subsys->firmware_rev, 598 sizeof(subsys->firmware_rev)), 599 subsys->firmware_rev); 600 } 601 602 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 603 void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj, 604 const char *dev_name); 605 void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inject); 606 void nvme_should_fail(struct request *req); 607 #else 608 static inline void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj, 609 const char *dev_name) 610 { 611 } 612 static inline void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inj) 613 { 614 } 615 static inline void nvme_should_fail(struct request *req) {} 616 #endif 617 618 bool nvme_wait_reset(struct nvme_ctrl *ctrl); 619 int nvme_try_sched_reset(struct nvme_ctrl *ctrl); 620 621 static inline int nvme_reset_subsystem(struct nvme_ctrl *ctrl) 622 { 623 int ret; 624 625 if (!ctrl->subsystem) 626 return -ENOTTY; 627 if (!nvme_wait_reset(ctrl)) 628 return -EBUSY; 629 630 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_NSSR, 0x4E564D65); 631 if (ret) 632 return ret; 633 634 return nvme_try_sched_reset(ctrl); 635 } 636 637 /* 638 * Convert a 512B sector number to a device logical block number. 639 */ 640 static inline u64 nvme_sect_to_lba(struct nvme_ns *ns, sector_t sector) 641 { 642 return sector >> (ns->lba_shift - SECTOR_SHIFT); 643 } 644 645 /* 646 * Convert a device logical block number to a 512B sector number. 647 */ 648 static inline sector_t nvme_lba_to_sect(struct nvme_ns *ns, u64 lba) 649 { 650 return lba << (ns->lba_shift - SECTOR_SHIFT); 651 } 652 653 /* 654 * Convert byte length to nvme's 0-based num dwords 655 */ 656 static inline u32 nvme_bytes_to_numd(size_t len) 657 { 658 return (len >> 2) - 1; 659 } 660 661 static inline bool nvme_is_ana_error(u16 status) 662 { 663 switch (status & 0x7ff) { 664 case NVME_SC_ANA_TRANSITION: 665 case NVME_SC_ANA_INACCESSIBLE: 666 case NVME_SC_ANA_PERSISTENT_LOSS: 667 return true; 668 default: 669 return false; 670 } 671 } 672 673 static inline bool nvme_is_path_error(u16 status) 674 { 675 /* check for a status code type of 'path related status' */ 676 return (status & 0x700) == 0x300; 677 } 678 679 /* 680 * Fill in the status and result information from the CQE, and then figure out 681 * if blk-mq will need to use IPI magic to complete the request, and if yes do 682 * so. If not let the caller complete the request without an indirect function 683 * call. 684 */ 685 static inline bool nvme_try_complete_req(struct request *req, __le16 status, 686 union nvme_result result) 687 { 688 struct nvme_request *rq = nvme_req(req); 689 struct nvme_ctrl *ctrl = rq->ctrl; 690 691 if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN)) 692 rq->genctr++; 693 694 rq->status = le16_to_cpu(status) >> 1; 695 rq->result = result; 696 /* inject error when permitted by fault injection framework */ 697 nvme_should_fail(req); 698 if (unlikely(blk_should_fake_timeout(req->q))) 699 return true; 700 return blk_mq_complete_request_remote(req); 701 } 702 703 static inline void nvme_get_ctrl(struct nvme_ctrl *ctrl) 704 { 705 get_device(ctrl->device); 706 } 707 708 static inline void nvme_put_ctrl(struct nvme_ctrl *ctrl) 709 { 710 put_device(ctrl->device); 711 } 712 713 static inline bool nvme_is_aen_req(u16 qid, __u16 command_id) 714 { 715 return !qid && 716 nvme_tag_from_cid(command_id) >= NVME_AQ_BLK_MQ_DEPTH; 717 } 718 719 void nvme_complete_rq(struct request *req); 720 void nvme_complete_batch_req(struct request *req); 721 722 static __always_inline void nvme_complete_batch(struct io_comp_batch *iob, 723 void (*fn)(struct request *rq)) 724 { 725 struct request *req; 726 727 rq_list_for_each(&iob->req_list, req) { 728 fn(req); 729 nvme_complete_batch_req(req); 730 } 731 blk_mq_end_request_batch(iob); 732 } 733 734 blk_status_t nvme_host_path_error(struct request *req); 735 bool nvme_cancel_request(struct request *req, void *data); 736 void nvme_cancel_tagset(struct nvme_ctrl *ctrl); 737 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl); 738 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 739 enum nvme_ctrl_state new_state); 740 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown); 741 int nvme_enable_ctrl(struct nvme_ctrl *ctrl); 742 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 743 const struct nvme_ctrl_ops *ops, unsigned long quirks); 744 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl); 745 void nvme_start_ctrl(struct nvme_ctrl *ctrl); 746 void nvme_stop_ctrl(struct nvme_ctrl *ctrl); 747 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended); 748 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 749 const struct blk_mq_ops *ops, unsigned int cmd_size); 750 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl); 751 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 752 const struct blk_mq_ops *ops, unsigned int nr_maps, 753 unsigned int cmd_size); 754 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl); 755 756 void nvme_remove_namespaces(struct nvme_ctrl *ctrl); 757 758 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 759 volatile union nvme_result *res); 760 761 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl); 762 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl); 763 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl); 764 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl); 765 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl); 766 void nvme_sync_queues(struct nvme_ctrl *ctrl); 767 void nvme_sync_io_queues(struct nvme_ctrl *ctrl); 768 void nvme_unfreeze(struct nvme_ctrl *ctrl); 769 void nvme_wait_freeze(struct nvme_ctrl *ctrl); 770 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout); 771 void nvme_start_freeze(struct nvme_ctrl *ctrl); 772 773 static inline enum req_op nvme_req_op(struct nvme_command *cmd) 774 { 775 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 776 } 777 778 #define NVME_QID_ANY -1 779 void nvme_init_request(struct request *req, struct nvme_command *cmd); 780 void nvme_cleanup_cmd(struct request *req); 781 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req); 782 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 783 struct request *req); 784 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 785 bool queue_live); 786 787 static inline bool nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 788 bool queue_live) 789 { 790 if (likely(ctrl->state == NVME_CTRL_LIVE)) 791 return true; 792 if (ctrl->ops->flags & NVME_F_FABRICS && 793 ctrl->state == NVME_CTRL_DELETING) 794 return queue_live; 795 return __nvme_check_ready(ctrl, rq, queue_live); 796 } 797 798 /* 799 * NSID shall be unique for all shared namespaces, or if at least one of the 800 * following conditions is met: 801 * 1. Namespace Management is supported by the controller 802 * 2. ANA is supported by the controller 803 * 3. NVM Set are supported by the controller 804 * 805 * In other case, private namespace are not required to report a unique NSID. 806 */ 807 static inline bool nvme_is_unique_nsid(struct nvme_ctrl *ctrl, 808 struct nvme_ns_head *head) 809 { 810 return head->shared || 811 (ctrl->oacs & NVME_CTRL_OACS_NS_MNGT_SUPP) || 812 (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA) || 813 (ctrl->ctratt & NVME_CTRL_CTRATT_NVM_SETS); 814 } 815 816 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 817 void *buf, unsigned bufflen); 818 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 819 union nvme_result *result, void *buffer, unsigned bufflen, 820 int qid, int at_head, 821 blk_mq_req_flags_t flags); 822 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 823 unsigned int dword11, void *buffer, size_t buflen, 824 u32 *result); 825 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 826 unsigned int dword11, void *buffer, size_t buflen, 827 u32 *result); 828 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count); 829 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl); 830 int nvme_reset_ctrl(struct nvme_ctrl *ctrl); 831 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl); 832 int nvme_delete_ctrl(struct nvme_ctrl *ctrl); 833 void nvme_queue_scan(struct nvme_ctrl *ctrl); 834 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 835 void *log, size_t size, u64 offset); 836 bool nvme_tryget_ns_head(struct nvme_ns_head *head); 837 void nvme_put_ns_head(struct nvme_ns_head *head); 838 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 839 const struct file_operations *fops, struct module *owner); 840 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device); 841 int nvme_ioctl(struct block_device *bdev, fmode_t mode, 842 unsigned int cmd, unsigned long arg); 843 long nvme_ns_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 844 int nvme_ns_head_ioctl(struct block_device *bdev, fmode_t mode, 845 unsigned int cmd, unsigned long arg); 846 long nvme_ns_head_chr_ioctl(struct file *file, unsigned int cmd, 847 unsigned long arg); 848 long nvme_dev_ioctl(struct file *file, unsigned int cmd, 849 unsigned long arg); 850 int nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd, 851 struct io_comp_batch *iob, unsigned int poll_flags); 852 int nvme_ns_head_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd, 853 struct io_comp_batch *iob, unsigned int poll_flags); 854 int nvme_ns_chr_uring_cmd(struct io_uring_cmd *ioucmd, 855 unsigned int issue_flags); 856 int nvme_ns_head_chr_uring_cmd(struct io_uring_cmd *ioucmd, 857 unsigned int issue_flags); 858 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo); 859 int nvme_dev_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags); 860 861 extern const struct attribute_group *nvme_ns_id_attr_groups[]; 862 extern const struct pr_ops nvme_pr_ops; 863 extern const struct block_device_operations nvme_ns_head_ops; 864 extern const struct attribute_group nvme_dev_attrs_group; 865 866 struct nvme_ns *nvme_find_path(struct nvme_ns_head *head); 867 #ifdef CONFIG_NVME_MULTIPATH 868 static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl) 869 { 870 return ctrl->ana_log_buf != NULL; 871 } 872 873 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys); 874 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys); 875 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys); 876 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys); 877 void nvme_failover_req(struct request *req); 878 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl); 879 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,struct nvme_ns_head *head); 880 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid); 881 void nvme_mpath_remove_disk(struct nvme_ns_head *head); 882 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id); 883 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl); 884 void nvme_mpath_update(struct nvme_ctrl *ctrl); 885 void nvme_mpath_uninit(struct nvme_ctrl *ctrl); 886 void nvme_mpath_stop(struct nvme_ctrl *ctrl); 887 bool nvme_mpath_clear_current_path(struct nvme_ns *ns); 888 void nvme_mpath_revalidate_paths(struct nvme_ns *ns); 889 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl); 890 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head); 891 void nvme_mpath_start_request(struct request *rq); 892 void nvme_mpath_end_request(struct request *rq); 893 894 static inline void nvme_trace_bio_complete(struct request *req) 895 { 896 struct nvme_ns *ns = req->q->queuedata; 897 898 if ((req->cmd_flags & REQ_NVME_MPATH) && req->bio) 899 trace_block_bio_complete(ns->head->disk->queue, req->bio); 900 } 901 902 extern bool multipath; 903 extern struct device_attribute dev_attr_ana_grpid; 904 extern struct device_attribute dev_attr_ana_state; 905 extern struct device_attribute subsys_attr_iopolicy; 906 907 #else 908 #define multipath false 909 static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl) 910 { 911 return false; 912 } 913 static inline void nvme_failover_req(struct request *req) 914 { 915 } 916 static inline void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) 917 { 918 } 919 static inline int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, 920 struct nvme_ns_head *head) 921 { 922 return 0; 923 } 924 static inline void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid) 925 { 926 } 927 static inline void nvme_mpath_remove_disk(struct nvme_ns_head *head) 928 { 929 } 930 static inline bool nvme_mpath_clear_current_path(struct nvme_ns *ns) 931 { 932 return false; 933 } 934 static inline void nvme_mpath_revalidate_paths(struct nvme_ns *ns) 935 { 936 } 937 static inline void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl) 938 { 939 } 940 static inline void nvme_mpath_shutdown_disk(struct nvme_ns_head *head) 941 { 942 } 943 static inline void nvme_trace_bio_complete(struct request *req) 944 { 945 } 946 static inline void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl) 947 { 948 } 949 static inline int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, 950 struct nvme_id_ctrl *id) 951 { 952 if (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA) 953 dev_warn(ctrl->device, 954 "Please enable CONFIG_NVME_MULTIPATH for full support of multi-port devices.\n"); 955 return 0; 956 } 957 static inline void nvme_mpath_update(struct nvme_ctrl *ctrl) 958 { 959 } 960 static inline void nvme_mpath_uninit(struct nvme_ctrl *ctrl) 961 { 962 } 963 static inline void nvme_mpath_stop(struct nvme_ctrl *ctrl) 964 { 965 } 966 static inline void nvme_mpath_unfreeze(struct nvme_subsystem *subsys) 967 { 968 } 969 static inline void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys) 970 { 971 } 972 static inline void nvme_mpath_start_freeze(struct nvme_subsystem *subsys) 973 { 974 } 975 static inline void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys) 976 { 977 } 978 static inline void nvme_mpath_start_request(struct request *rq) 979 { 980 } 981 static inline void nvme_mpath_end_request(struct request *rq) 982 { 983 } 984 #endif /* CONFIG_NVME_MULTIPATH */ 985 986 int nvme_revalidate_zones(struct nvme_ns *ns); 987 int nvme_ns_report_zones(struct nvme_ns *ns, sector_t sector, 988 unsigned int nr_zones, report_zones_cb cb, void *data); 989 #ifdef CONFIG_BLK_DEV_ZONED 990 int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf); 991 blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, struct request *req, 992 struct nvme_command *cmnd, 993 enum nvme_zone_mgmt_action action); 994 #else 995 static inline blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, 996 struct request *req, struct nvme_command *cmnd, 997 enum nvme_zone_mgmt_action action) 998 { 999 return BLK_STS_NOTSUPP; 1000 } 1001 1002 static inline int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf) 1003 { 1004 dev_warn(ns->ctrl->device, 1005 "Please enable CONFIG_BLK_DEV_ZONED to support ZNS devices\n"); 1006 return -EPROTONOSUPPORT; 1007 } 1008 #endif 1009 1010 static inline struct nvme_ns *nvme_get_ns_from_dev(struct device *dev) 1011 { 1012 return dev_to_disk(dev)->private_data; 1013 } 1014 1015 #ifdef CONFIG_NVME_HWMON 1016 int nvme_hwmon_init(struct nvme_ctrl *ctrl); 1017 void nvme_hwmon_exit(struct nvme_ctrl *ctrl); 1018 #else 1019 static inline int nvme_hwmon_init(struct nvme_ctrl *ctrl) 1020 { 1021 return 0; 1022 } 1023 1024 static inline void nvme_hwmon_exit(struct nvme_ctrl *ctrl) 1025 { 1026 } 1027 #endif 1028 1029 static inline void nvme_start_request(struct request *rq) 1030 { 1031 if (rq->cmd_flags & REQ_NVME_MPATH) 1032 nvme_mpath_start_request(rq); 1033 blk_mq_start_request(rq); 1034 } 1035 1036 static inline bool nvme_ctrl_sgl_supported(struct nvme_ctrl *ctrl) 1037 { 1038 return ctrl->sgls & ((1 << 0) | (1 << 1)); 1039 } 1040 1041 #ifdef CONFIG_NVME_AUTH 1042 int __init nvme_init_auth(void); 1043 void __exit nvme_exit_auth(void); 1044 int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl); 1045 void nvme_auth_stop(struct nvme_ctrl *ctrl); 1046 int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid); 1047 int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid); 1048 void nvme_auth_free(struct nvme_ctrl *ctrl); 1049 #else 1050 static inline int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl) 1051 { 1052 return 0; 1053 } 1054 static inline int __init nvme_init_auth(void) 1055 { 1056 return 0; 1057 } 1058 static inline void __exit nvme_exit_auth(void) 1059 { 1060 } 1061 static inline void nvme_auth_stop(struct nvme_ctrl *ctrl) {}; 1062 static inline int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid) 1063 { 1064 return -EPROTONOSUPPORT; 1065 } 1066 static inline int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid) 1067 { 1068 return NVME_SC_AUTH_REQUIRED; 1069 } 1070 static inline void nvme_auth_free(struct nvme_ctrl *ctrl) {}; 1071 #endif 1072 1073 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1074 u8 opcode); 1075 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode); 1076 int nvme_execute_rq(struct request *rq, bool at_head); 1077 void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects, 1078 struct nvme_command *cmd, int status); 1079 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file); 1080 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid); 1081 void nvme_put_ns(struct nvme_ns *ns); 1082 1083 static inline bool nvme_multi_css(struct nvme_ctrl *ctrl) 1084 { 1085 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI; 1086 } 1087 1088 #ifdef CONFIG_NVME_VERBOSE_ERRORS 1089 const unsigned char *nvme_get_error_status_str(u16 status); 1090 const unsigned char *nvme_get_opcode_str(u8 opcode); 1091 const unsigned char *nvme_get_admin_opcode_str(u8 opcode); 1092 const unsigned char *nvme_get_fabrics_opcode_str(u8 opcode); 1093 #else /* CONFIG_NVME_VERBOSE_ERRORS */ 1094 static inline const unsigned char *nvme_get_error_status_str(u16 status) 1095 { 1096 return "I/O Error"; 1097 } 1098 static inline const unsigned char *nvme_get_opcode_str(u8 opcode) 1099 { 1100 return "I/O Cmd"; 1101 } 1102 static inline const unsigned char *nvme_get_admin_opcode_str(u8 opcode) 1103 { 1104 return "Admin Cmd"; 1105 } 1106 1107 static inline const unsigned char *nvme_get_fabrics_opcode_str(u8 opcode) 1108 { 1109 return "Fabrics Cmd"; 1110 } 1111 #endif /* CONFIG_NVME_VERBOSE_ERRORS */ 1112 1113 static inline const unsigned char *nvme_opcode_str(int qid, u8 opcode, u8 fctype) 1114 { 1115 if (opcode == nvme_fabrics_command) 1116 return nvme_get_fabrics_opcode_str(fctype); 1117 return qid ? nvme_get_opcode_str(opcode) : 1118 nvme_get_admin_opcode_str(opcode); 1119 } 1120 #endif /* _NVME_H */ 1121