1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/compat.h> 10 #include <linux/delay.h> 11 #include <linux/errno.h> 12 #include <linux/hdreg.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/list_sort.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/t10-pi.h> 23 #include <linux/pm_qos.h> 24 #include <asm/unaligned.h> 25 26 #include "nvme.h" 27 #include "fabrics.h" 28 29 #define CREATE_TRACE_POINTS 30 #include "trace.h" 31 32 #define NVME_MINORS (1U << MINORBITS) 33 34 unsigned int admin_timeout = 60; 35 module_param(admin_timeout, uint, 0644); 36 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 37 EXPORT_SYMBOL_GPL(admin_timeout); 38 39 unsigned int nvme_io_timeout = 30; 40 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 41 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 42 EXPORT_SYMBOL_GPL(nvme_io_timeout); 43 44 static unsigned char shutdown_timeout = 5; 45 module_param(shutdown_timeout, byte, 0644); 46 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 47 48 static u8 nvme_max_retries = 5; 49 module_param_named(max_retries, nvme_max_retries, byte, 0644); 50 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 51 52 static unsigned long default_ps_max_latency_us = 100000; 53 module_param(default_ps_max_latency_us, ulong, 0644); 54 MODULE_PARM_DESC(default_ps_max_latency_us, 55 "max power saving latency for new devices; use PM QOS to change per device"); 56 57 static bool force_apst; 58 module_param(force_apst, bool, 0644); 59 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 60 61 static bool streams; 62 module_param(streams, bool, 0644); 63 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 64 65 /* 66 * nvme_wq - hosts nvme related works that are not reset or delete 67 * nvme_reset_wq - hosts nvme reset works 68 * nvme_delete_wq - hosts nvme delete works 69 * 70 * nvme_wq will host works such as scan, aen handling, fw activation, 71 * keep-alive, periodic reconnects etc. nvme_reset_wq 72 * runs reset works which also flush works hosted on nvme_wq for 73 * serialization purposes. nvme_delete_wq host controller deletion 74 * works which flush reset works for serialization. 75 */ 76 struct workqueue_struct *nvme_wq; 77 EXPORT_SYMBOL_GPL(nvme_wq); 78 79 struct workqueue_struct *nvme_reset_wq; 80 EXPORT_SYMBOL_GPL(nvme_reset_wq); 81 82 struct workqueue_struct *nvme_delete_wq; 83 EXPORT_SYMBOL_GPL(nvme_delete_wq); 84 85 static LIST_HEAD(nvme_subsystems); 86 static DEFINE_MUTEX(nvme_subsystems_lock); 87 88 static DEFINE_IDA(nvme_instance_ida); 89 static dev_t nvme_chr_devt; 90 static struct class *nvme_class; 91 static struct class *nvme_subsys_class; 92 93 static int nvme_revalidate_disk(struct gendisk *disk); 94 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 95 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 96 unsigned nsid); 97 98 static void nvme_set_queue_dying(struct nvme_ns *ns) 99 { 100 /* 101 * Revalidating a dead namespace sets capacity to 0. This will end 102 * buffered writers dirtying pages that can't be synced. 103 */ 104 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 105 return; 106 blk_set_queue_dying(ns->queue); 107 /* Forcibly unquiesce queues to avoid blocking dispatch */ 108 blk_mq_unquiesce_queue(ns->queue); 109 /* 110 * Revalidate after unblocking dispatchers that may be holding bd_butex 111 */ 112 revalidate_disk(ns->disk); 113 } 114 115 static void nvme_queue_scan(struct nvme_ctrl *ctrl) 116 { 117 /* 118 * Only new queue scan work when admin and IO queues are both alive 119 */ 120 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 121 queue_work(nvme_wq, &ctrl->scan_work); 122 } 123 124 /* 125 * Use this function to proceed with scheduling reset_work for a controller 126 * that had previously been set to the resetting state. This is intended for 127 * code paths that can't be interrupted by other reset attempts. A hot removal 128 * may prevent this from succeeding. 129 */ 130 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 131 { 132 if (ctrl->state != NVME_CTRL_RESETTING) 133 return -EBUSY; 134 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 135 return -EBUSY; 136 return 0; 137 } 138 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 139 140 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 141 { 142 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 143 return -EBUSY; 144 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 145 return -EBUSY; 146 return 0; 147 } 148 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 149 150 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 151 { 152 int ret; 153 154 ret = nvme_reset_ctrl(ctrl); 155 if (!ret) { 156 flush_work(&ctrl->reset_work); 157 if (ctrl->state != NVME_CTRL_LIVE) 158 ret = -ENETRESET; 159 } 160 161 return ret; 162 } 163 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 164 165 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 166 { 167 dev_info(ctrl->device, 168 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 169 170 flush_work(&ctrl->reset_work); 171 nvme_stop_ctrl(ctrl); 172 nvme_remove_namespaces(ctrl); 173 ctrl->ops->delete_ctrl(ctrl); 174 nvme_uninit_ctrl(ctrl); 175 } 176 177 static void nvme_delete_ctrl_work(struct work_struct *work) 178 { 179 struct nvme_ctrl *ctrl = 180 container_of(work, struct nvme_ctrl, delete_work); 181 182 nvme_do_delete_ctrl(ctrl); 183 } 184 185 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 186 { 187 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 188 return -EBUSY; 189 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 190 return -EBUSY; 191 return 0; 192 } 193 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 194 195 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 196 { 197 /* 198 * Keep a reference until nvme_do_delete_ctrl() complete, 199 * since ->delete_ctrl can free the controller. 200 */ 201 nvme_get_ctrl(ctrl); 202 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 203 nvme_do_delete_ctrl(ctrl); 204 nvme_put_ctrl(ctrl); 205 } 206 207 static inline bool nvme_ns_has_pi(struct nvme_ns *ns) 208 { 209 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple); 210 } 211 212 static blk_status_t nvme_error_status(u16 status) 213 { 214 switch (status & 0x7ff) { 215 case NVME_SC_SUCCESS: 216 return BLK_STS_OK; 217 case NVME_SC_CAP_EXCEEDED: 218 return BLK_STS_NOSPC; 219 case NVME_SC_LBA_RANGE: 220 case NVME_SC_CMD_INTERRUPTED: 221 case NVME_SC_NS_NOT_READY: 222 return BLK_STS_TARGET; 223 case NVME_SC_BAD_ATTRIBUTES: 224 case NVME_SC_ONCS_NOT_SUPPORTED: 225 case NVME_SC_INVALID_OPCODE: 226 case NVME_SC_INVALID_FIELD: 227 case NVME_SC_INVALID_NS: 228 return BLK_STS_NOTSUPP; 229 case NVME_SC_WRITE_FAULT: 230 case NVME_SC_READ_ERROR: 231 case NVME_SC_UNWRITTEN_BLOCK: 232 case NVME_SC_ACCESS_DENIED: 233 case NVME_SC_READ_ONLY: 234 case NVME_SC_COMPARE_FAILED: 235 return BLK_STS_MEDIUM; 236 case NVME_SC_GUARD_CHECK: 237 case NVME_SC_APPTAG_CHECK: 238 case NVME_SC_REFTAG_CHECK: 239 case NVME_SC_INVALID_PI: 240 return BLK_STS_PROTECTION; 241 case NVME_SC_RESERVATION_CONFLICT: 242 return BLK_STS_NEXUS; 243 case NVME_SC_HOST_PATH_ERROR: 244 return BLK_STS_TRANSPORT; 245 default: 246 return BLK_STS_IOERR; 247 } 248 } 249 250 static inline bool nvme_req_needs_retry(struct request *req) 251 { 252 if (blk_noretry_request(req)) 253 return false; 254 if (nvme_req(req)->status & NVME_SC_DNR) 255 return false; 256 if (nvme_req(req)->retries >= nvme_max_retries) 257 return false; 258 return true; 259 } 260 261 static void nvme_retry_req(struct request *req) 262 { 263 struct nvme_ns *ns = req->q->queuedata; 264 unsigned long delay = 0; 265 u16 crd; 266 267 /* The mask and shift result must be <= 3 */ 268 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 269 if (ns && crd) 270 delay = ns->ctrl->crdt[crd - 1] * 100; 271 272 nvme_req(req)->retries++; 273 blk_mq_requeue_request(req, false); 274 blk_mq_delay_kick_requeue_list(req->q, delay); 275 } 276 277 void nvme_complete_rq(struct request *req) 278 { 279 blk_status_t status = nvme_error_status(nvme_req(req)->status); 280 281 trace_nvme_complete_rq(req); 282 283 nvme_cleanup_cmd(req); 284 285 if (nvme_req(req)->ctrl->kas) 286 nvme_req(req)->ctrl->comp_seen = true; 287 288 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 289 if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req)) 290 return; 291 292 if (!blk_queue_dying(req->q)) { 293 nvme_retry_req(req); 294 return; 295 } 296 } 297 298 nvme_trace_bio_complete(req, status); 299 blk_mq_end_request(req, status); 300 } 301 EXPORT_SYMBOL_GPL(nvme_complete_rq); 302 303 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 304 { 305 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 306 "Cancelling I/O %d", req->tag); 307 308 /* don't abort one completed request */ 309 if (blk_mq_request_completed(req)) 310 return true; 311 312 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 313 blk_mq_complete_request(req); 314 return true; 315 } 316 EXPORT_SYMBOL_GPL(nvme_cancel_request); 317 318 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 319 enum nvme_ctrl_state new_state) 320 { 321 enum nvme_ctrl_state old_state; 322 unsigned long flags; 323 bool changed = false; 324 325 spin_lock_irqsave(&ctrl->lock, flags); 326 327 old_state = ctrl->state; 328 switch (new_state) { 329 case NVME_CTRL_LIVE: 330 switch (old_state) { 331 case NVME_CTRL_NEW: 332 case NVME_CTRL_RESETTING: 333 case NVME_CTRL_CONNECTING: 334 changed = true; 335 /* FALLTHRU */ 336 default: 337 break; 338 } 339 break; 340 case NVME_CTRL_RESETTING: 341 switch (old_state) { 342 case NVME_CTRL_NEW: 343 case NVME_CTRL_LIVE: 344 changed = true; 345 /* FALLTHRU */ 346 default: 347 break; 348 } 349 break; 350 case NVME_CTRL_CONNECTING: 351 switch (old_state) { 352 case NVME_CTRL_NEW: 353 case NVME_CTRL_RESETTING: 354 changed = true; 355 /* FALLTHRU */ 356 default: 357 break; 358 } 359 break; 360 case NVME_CTRL_DELETING: 361 switch (old_state) { 362 case NVME_CTRL_LIVE: 363 case NVME_CTRL_RESETTING: 364 case NVME_CTRL_CONNECTING: 365 changed = true; 366 /* FALLTHRU */ 367 default: 368 break; 369 } 370 break; 371 case NVME_CTRL_DEAD: 372 switch (old_state) { 373 case NVME_CTRL_DELETING: 374 changed = true; 375 /* FALLTHRU */ 376 default: 377 break; 378 } 379 break; 380 default: 381 break; 382 } 383 384 if (changed) { 385 ctrl->state = new_state; 386 wake_up_all(&ctrl->state_wq); 387 } 388 389 spin_unlock_irqrestore(&ctrl->lock, flags); 390 if (changed && ctrl->state == NVME_CTRL_LIVE) 391 nvme_kick_requeue_lists(ctrl); 392 return changed; 393 } 394 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 395 396 /* 397 * Returns true for sink states that can't ever transition back to live. 398 */ 399 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 400 { 401 switch (ctrl->state) { 402 case NVME_CTRL_NEW: 403 case NVME_CTRL_LIVE: 404 case NVME_CTRL_RESETTING: 405 case NVME_CTRL_CONNECTING: 406 return false; 407 case NVME_CTRL_DELETING: 408 case NVME_CTRL_DEAD: 409 return true; 410 default: 411 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 412 return true; 413 } 414 } 415 416 /* 417 * Waits for the controller state to be resetting, or returns false if it is 418 * not possible to ever transition to that state. 419 */ 420 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 421 { 422 wait_event(ctrl->state_wq, 423 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 424 nvme_state_terminal(ctrl)); 425 return ctrl->state == NVME_CTRL_RESETTING; 426 } 427 EXPORT_SYMBOL_GPL(nvme_wait_reset); 428 429 static void nvme_free_ns_head(struct kref *ref) 430 { 431 struct nvme_ns_head *head = 432 container_of(ref, struct nvme_ns_head, ref); 433 434 nvme_mpath_remove_disk(head); 435 ida_simple_remove(&head->subsys->ns_ida, head->instance); 436 list_del_init(&head->entry); 437 cleanup_srcu_struct(&head->srcu); 438 nvme_put_subsystem(head->subsys); 439 kfree(head); 440 } 441 442 static void nvme_put_ns_head(struct nvme_ns_head *head) 443 { 444 kref_put(&head->ref, nvme_free_ns_head); 445 } 446 447 static void nvme_free_ns(struct kref *kref) 448 { 449 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 450 451 if (ns->ndev) 452 nvme_nvm_unregister(ns); 453 454 put_disk(ns->disk); 455 nvme_put_ns_head(ns->head); 456 nvme_put_ctrl(ns->ctrl); 457 kfree(ns); 458 } 459 460 static void nvme_put_ns(struct nvme_ns *ns) 461 { 462 kref_put(&ns->kref, nvme_free_ns); 463 } 464 465 static inline void nvme_clear_nvme_request(struct request *req) 466 { 467 if (!(req->rq_flags & RQF_DONTPREP)) { 468 nvme_req(req)->retries = 0; 469 nvme_req(req)->flags = 0; 470 req->rq_flags |= RQF_DONTPREP; 471 } 472 } 473 474 struct request *nvme_alloc_request(struct request_queue *q, 475 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 476 { 477 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 478 struct request *req; 479 480 if (qid == NVME_QID_ANY) { 481 req = blk_mq_alloc_request(q, op, flags); 482 } else { 483 req = blk_mq_alloc_request_hctx(q, op, flags, 484 qid ? qid - 1 : 0); 485 } 486 if (IS_ERR(req)) 487 return req; 488 489 req->cmd_flags |= REQ_FAILFAST_DRIVER; 490 nvme_clear_nvme_request(req); 491 nvme_req(req)->cmd = cmd; 492 493 return req; 494 } 495 EXPORT_SYMBOL_GPL(nvme_alloc_request); 496 497 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 498 { 499 struct nvme_command c; 500 501 memset(&c, 0, sizeof(c)); 502 503 c.directive.opcode = nvme_admin_directive_send; 504 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 505 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 506 c.directive.dtype = NVME_DIR_IDENTIFY; 507 c.directive.tdtype = NVME_DIR_STREAMS; 508 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 509 510 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 511 } 512 513 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 514 { 515 return nvme_toggle_streams(ctrl, false); 516 } 517 518 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 519 { 520 return nvme_toggle_streams(ctrl, true); 521 } 522 523 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 524 struct streams_directive_params *s, u32 nsid) 525 { 526 struct nvme_command c; 527 528 memset(&c, 0, sizeof(c)); 529 memset(s, 0, sizeof(*s)); 530 531 c.directive.opcode = nvme_admin_directive_recv; 532 c.directive.nsid = cpu_to_le32(nsid); 533 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); 534 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 535 c.directive.dtype = NVME_DIR_STREAMS; 536 537 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 538 } 539 540 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 541 { 542 struct streams_directive_params s; 543 int ret; 544 545 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 546 return 0; 547 if (!streams) 548 return 0; 549 550 ret = nvme_enable_streams(ctrl); 551 if (ret) 552 return ret; 553 554 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 555 if (ret) 556 return ret; 557 558 ctrl->nssa = le16_to_cpu(s.nssa); 559 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 560 dev_info(ctrl->device, "too few streams (%u) available\n", 561 ctrl->nssa); 562 nvme_disable_streams(ctrl); 563 return 0; 564 } 565 566 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 567 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 568 return 0; 569 } 570 571 /* 572 * Check if 'req' has a write hint associated with it. If it does, assign 573 * a valid namespace stream to the write. 574 */ 575 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 576 struct request *req, u16 *control, 577 u32 *dsmgmt) 578 { 579 enum rw_hint streamid = req->write_hint; 580 581 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 582 streamid = 0; 583 else { 584 streamid--; 585 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 586 return; 587 588 *control |= NVME_RW_DTYPE_STREAMS; 589 *dsmgmt |= streamid << 16; 590 } 591 592 if (streamid < ARRAY_SIZE(req->q->write_hints)) 593 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 594 } 595 596 static inline void nvme_setup_flush(struct nvme_ns *ns, 597 struct nvme_command *cmnd) 598 { 599 cmnd->common.opcode = nvme_cmd_flush; 600 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 601 } 602 603 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 604 struct nvme_command *cmnd) 605 { 606 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 607 struct nvme_dsm_range *range; 608 struct bio *bio; 609 610 /* 611 * Some devices do not consider the DSM 'Number of Ranges' field when 612 * determining how much data to DMA. Always allocate memory for maximum 613 * number of segments to prevent device reading beyond end of buffer. 614 */ 615 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 616 617 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 618 if (!range) { 619 /* 620 * If we fail allocation our range, fallback to the controller 621 * discard page. If that's also busy, it's safe to return 622 * busy, as we know we can make progress once that's freed. 623 */ 624 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 625 return BLK_STS_RESOURCE; 626 627 range = page_address(ns->ctrl->discard_page); 628 } 629 630 __rq_for_each_bio(bio, req) { 631 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 632 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 633 634 if (n < segments) { 635 range[n].cattr = cpu_to_le32(0); 636 range[n].nlb = cpu_to_le32(nlb); 637 range[n].slba = cpu_to_le64(slba); 638 } 639 n++; 640 } 641 642 if (WARN_ON_ONCE(n != segments)) { 643 if (virt_to_page(range) == ns->ctrl->discard_page) 644 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 645 else 646 kfree(range); 647 return BLK_STS_IOERR; 648 } 649 650 cmnd->dsm.opcode = nvme_cmd_dsm; 651 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 652 cmnd->dsm.nr = cpu_to_le32(segments - 1); 653 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 654 655 req->special_vec.bv_page = virt_to_page(range); 656 req->special_vec.bv_offset = offset_in_page(range); 657 req->special_vec.bv_len = alloc_size; 658 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 659 660 return BLK_STS_OK; 661 } 662 663 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 664 struct request *req, struct nvme_command *cmnd) 665 { 666 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 667 return nvme_setup_discard(ns, req, cmnd); 668 669 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 670 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 671 cmnd->write_zeroes.slba = 672 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 673 cmnd->write_zeroes.length = 674 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 675 cmnd->write_zeroes.control = 0; 676 return BLK_STS_OK; 677 } 678 679 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 680 struct request *req, struct nvme_command *cmnd) 681 { 682 struct nvme_ctrl *ctrl = ns->ctrl; 683 u16 control = 0; 684 u32 dsmgmt = 0; 685 686 if (req->cmd_flags & REQ_FUA) 687 control |= NVME_RW_FUA; 688 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 689 control |= NVME_RW_LR; 690 691 if (req->cmd_flags & REQ_RAHEAD) 692 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 693 694 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 695 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 696 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 697 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 698 699 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 700 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 701 702 if (ns->ms) { 703 /* 704 * If formated with metadata, the block layer always provides a 705 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 706 * we enable the PRACT bit for protection information or set the 707 * namespace capacity to zero to prevent any I/O. 708 */ 709 if (!blk_integrity_rq(req)) { 710 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 711 return BLK_STS_NOTSUPP; 712 control |= NVME_RW_PRINFO_PRACT; 713 } 714 715 switch (ns->pi_type) { 716 case NVME_NS_DPS_PI_TYPE3: 717 control |= NVME_RW_PRINFO_PRCHK_GUARD; 718 break; 719 case NVME_NS_DPS_PI_TYPE1: 720 case NVME_NS_DPS_PI_TYPE2: 721 control |= NVME_RW_PRINFO_PRCHK_GUARD | 722 NVME_RW_PRINFO_PRCHK_REF; 723 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 724 break; 725 } 726 } 727 728 cmnd->rw.control = cpu_to_le16(control); 729 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 730 return 0; 731 } 732 733 void nvme_cleanup_cmd(struct request *req) 734 { 735 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 736 struct nvme_ns *ns = req->rq_disk->private_data; 737 struct page *page = req->special_vec.bv_page; 738 739 if (page == ns->ctrl->discard_page) 740 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 741 else 742 kfree(page_address(page) + req->special_vec.bv_offset); 743 } 744 } 745 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 746 747 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 748 struct nvme_command *cmd) 749 { 750 blk_status_t ret = BLK_STS_OK; 751 752 nvme_clear_nvme_request(req); 753 754 memset(cmd, 0, sizeof(*cmd)); 755 switch (req_op(req)) { 756 case REQ_OP_DRV_IN: 757 case REQ_OP_DRV_OUT: 758 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 759 break; 760 case REQ_OP_FLUSH: 761 nvme_setup_flush(ns, cmd); 762 break; 763 case REQ_OP_WRITE_ZEROES: 764 ret = nvme_setup_write_zeroes(ns, req, cmd); 765 break; 766 case REQ_OP_DISCARD: 767 ret = nvme_setup_discard(ns, req, cmd); 768 break; 769 case REQ_OP_READ: 770 case REQ_OP_WRITE: 771 ret = nvme_setup_rw(ns, req, cmd); 772 break; 773 default: 774 WARN_ON_ONCE(1); 775 return BLK_STS_IOERR; 776 } 777 778 cmd->common.command_id = req->tag; 779 trace_nvme_setup_cmd(req, cmd); 780 return ret; 781 } 782 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 783 784 static void nvme_end_sync_rq(struct request *rq, blk_status_t error) 785 { 786 struct completion *waiting = rq->end_io_data; 787 788 rq->end_io_data = NULL; 789 complete(waiting); 790 } 791 792 static void nvme_execute_rq_polled(struct request_queue *q, 793 struct gendisk *bd_disk, struct request *rq, int at_head) 794 { 795 DECLARE_COMPLETION_ONSTACK(wait); 796 797 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)); 798 799 rq->cmd_flags |= REQ_HIPRI; 800 rq->end_io_data = &wait; 801 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq); 802 803 while (!completion_done(&wait)) { 804 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true); 805 cond_resched(); 806 } 807 } 808 809 /* 810 * Returns 0 on success. If the result is negative, it's a Linux error code; 811 * if the result is positive, it's an NVM Express status code 812 */ 813 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 814 union nvme_result *result, void *buffer, unsigned bufflen, 815 unsigned timeout, int qid, int at_head, 816 blk_mq_req_flags_t flags, bool poll) 817 { 818 struct request *req; 819 int ret; 820 821 req = nvme_alloc_request(q, cmd, flags, qid); 822 if (IS_ERR(req)) 823 return PTR_ERR(req); 824 825 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 826 827 if (buffer && bufflen) { 828 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 829 if (ret) 830 goto out; 831 } 832 833 if (poll) 834 nvme_execute_rq_polled(req->q, NULL, req, at_head); 835 else 836 blk_execute_rq(req->q, NULL, req, at_head); 837 if (result) 838 *result = nvme_req(req)->result; 839 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 840 ret = -EINTR; 841 else 842 ret = nvme_req(req)->status; 843 out: 844 blk_mq_free_request(req); 845 return ret; 846 } 847 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 848 849 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 850 void *buffer, unsigned bufflen) 851 { 852 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 853 NVME_QID_ANY, 0, 0, false); 854 } 855 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 856 857 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 858 unsigned len, u32 seed, bool write) 859 { 860 struct bio_integrity_payload *bip; 861 int ret = -ENOMEM; 862 void *buf; 863 864 buf = kmalloc(len, GFP_KERNEL); 865 if (!buf) 866 goto out; 867 868 ret = -EFAULT; 869 if (write && copy_from_user(buf, ubuf, len)) 870 goto out_free_meta; 871 872 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 873 if (IS_ERR(bip)) { 874 ret = PTR_ERR(bip); 875 goto out_free_meta; 876 } 877 878 bip->bip_iter.bi_size = len; 879 bip->bip_iter.bi_sector = seed; 880 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 881 offset_in_page(buf)); 882 if (ret == len) 883 return buf; 884 ret = -ENOMEM; 885 out_free_meta: 886 kfree(buf); 887 out: 888 return ERR_PTR(ret); 889 } 890 891 static int nvme_submit_user_cmd(struct request_queue *q, 892 struct nvme_command *cmd, void __user *ubuffer, 893 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 894 u32 meta_seed, u64 *result, unsigned timeout) 895 { 896 bool write = nvme_is_write(cmd); 897 struct nvme_ns *ns = q->queuedata; 898 struct gendisk *disk = ns ? ns->disk : NULL; 899 struct request *req; 900 struct bio *bio = NULL; 901 void *meta = NULL; 902 int ret; 903 904 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 905 if (IS_ERR(req)) 906 return PTR_ERR(req); 907 908 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 909 nvme_req(req)->flags |= NVME_REQ_USERCMD; 910 911 if (ubuffer && bufflen) { 912 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 913 GFP_KERNEL); 914 if (ret) 915 goto out; 916 bio = req->bio; 917 bio->bi_disk = disk; 918 if (disk && meta_buffer && meta_len) { 919 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 920 meta_seed, write); 921 if (IS_ERR(meta)) { 922 ret = PTR_ERR(meta); 923 goto out_unmap; 924 } 925 req->cmd_flags |= REQ_INTEGRITY; 926 } 927 } 928 929 blk_execute_rq(req->q, disk, req, 0); 930 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 931 ret = -EINTR; 932 else 933 ret = nvme_req(req)->status; 934 if (result) 935 *result = le64_to_cpu(nvme_req(req)->result.u64); 936 if (meta && !ret && !write) { 937 if (copy_to_user(meta_buffer, meta, meta_len)) 938 ret = -EFAULT; 939 } 940 kfree(meta); 941 out_unmap: 942 if (bio) 943 blk_rq_unmap_user(bio); 944 out: 945 blk_mq_free_request(req); 946 return ret; 947 } 948 949 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 950 { 951 struct nvme_ctrl *ctrl = rq->end_io_data; 952 unsigned long flags; 953 bool startka = false; 954 955 blk_mq_free_request(rq); 956 957 if (status) { 958 dev_err(ctrl->device, 959 "failed nvme_keep_alive_end_io error=%d\n", 960 status); 961 return; 962 } 963 964 ctrl->comp_seen = false; 965 spin_lock_irqsave(&ctrl->lock, flags); 966 if (ctrl->state == NVME_CTRL_LIVE || 967 ctrl->state == NVME_CTRL_CONNECTING) 968 startka = true; 969 spin_unlock_irqrestore(&ctrl->lock, flags); 970 if (startka) 971 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 972 } 973 974 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 975 { 976 struct request *rq; 977 978 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 979 NVME_QID_ANY); 980 if (IS_ERR(rq)) 981 return PTR_ERR(rq); 982 983 rq->timeout = ctrl->kato * HZ; 984 rq->end_io_data = ctrl; 985 986 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 987 988 return 0; 989 } 990 991 static void nvme_keep_alive_work(struct work_struct *work) 992 { 993 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 994 struct nvme_ctrl, ka_work); 995 bool comp_seen = ctrl->comp_seen; 996 997 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 998 dev_dbg(ctrl->device, 999 "reschedule traffic based keep-alive timer\n"); 1000 ctrl->comp_seen = false; 1001 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 1002 return; 1003 } 1004 1005 if (nvme_keep_alive(ctrl)) { 1006 /* allocation failure, reset the controller */ 1007 dev_err(ctrl->device, "keep-alive failed\n"); 1008 nvme_reset_ctrl(ctrl); 1009 return; 1010 } 1011 } 1012 1013 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1014 { 1015 if (unlikely(ctrl->kato == 0)) 1016 return; 1017 1018 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 1019 } 1020 1021 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1022 { 1023 if (unlikely(ctrl->kato == 0)) 1024 return; 1025 1026 cancel_delayed_work_sync(&ctrl->ka_work); 1027 } 1028 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1029 1030 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1031 { 1032 struct nvme_command c = { }; 1033 int error; 1034 1035 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1036 c.identify.opcode = nvme_admin_identify; 1037 c.identify.cns = NVME_ID_CNS_CTRL; 1038 1039 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1040 if (!*id) 1041 return -ENOMEM; 1042 1043 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1044 sizeof(struct nvme_id_ctrl)); 1045 if (error) 1046 kfree(*id); 1047 return error; 1048 } 1049 1050 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1051 struct nvme_ns_id_desc *cur) 1052 { 1053 const char *warn_str = "ctrl returned bogus length:"; 1054 void *data = cur; 1055 1056 switch (cur->nidt) { 1057 case NVME_NIDT_EUI64: 1058 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1059 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1060 warn_str, cur->nidl); 1061 return -1; 1062 } 1063 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1064 return NVME_NIDT_EUI64_LEN; 1065 case NVME_NIDT_NGUID: 1066 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1067 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1068 warn_str, cur->nidl); 1069 return -1; 1070 } 1071 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1072 return NVME_NIDT_NGUID_LEN; 1073 case NVME_NIDT_UUID: 1074 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1075 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1076 warn_str, cur->nidl); 1077 return -1; 1078 } 1079 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1080 return NVME_NIDT_UUID_LEN; 1081 default: 1082 /* Skip unknown types */ 1083 return cur->nidl; 1084 } 1085 } 1086 1087 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1088 struct nvme_ns_ids *ids) 1089 { 1090 struct nvme_command c = { }; 1091 int status; 1092 void *data; 1093 int pos; 1094 int len; 1095 1096 c.identify.opcode = nvme_admin_identify; 1097 c.identify.nsid = cpu_to_le32(nsid); 1098 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1099 1100 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1101 if (!data) 1102 return -ENOMEM; 1103 1104 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1105 NVME_IDENTIFY_DATA_SIZE); 1106 if (status) { 1107 dev_warn(ctrl->device, 1108 "Identify Descriptors failed (%d)\n", status); 1109 /* 1110 * Don't treat an error as fatal, as we potentially already 1111 * have a NGUID or EUI-64. 1112 */ 1113 if (status > 0 && !(status & NVME_SC_DNR)) 1114 status = 0; 1115 goto free_data; 1116 } 1117 1118 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1119 struct nvme_ns_id_desc *cur = data + pos; 1120 1121 if (cur->nidl == 0) 1122 break; 1123 1124 len = nvme_process_ns_desc(ctrl, ids, cur); 1125 if (len < 0) 1126 goto free_data; 1127 1128 len += sizeof(*cur); 1129 } 1130 free_data: 1131 kfree(data); 1132 return status; 1133 } 1134 1135 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 1136 { 1137 struct nvme_command c = { }; 1138 1139 c.identify.opcode = nvme_admin_identify; 1140 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 1141 c.identify.nsid = cpu_to_le32(nsid); 1142 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 1143 NVME_IDENTIFY_DATA_SIZE); 1144 } 1145 1146 static int nvme_identify_ns(struct nvme_ctrl *ctrl, 1147 unsigned nsid, struct nvme_id_ns **id) 1148 { 1149 struct nvme_command c = { }; 1150 int error; 1151 1152 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1153 c.identify.opcode = nvme_admin_identify; 1154 c.identify.nsid = cpu_to_le32(nsid); 1155 c.identify.cns = NVME_ID_CNS_NS; 1156 1157 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1158 if (!*id) 1159 return -ENOMEM; 1160 1161 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1162 if (error) { 1163 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1164 kfree(*id); 1165 } 1166 1167 return error; 1168 } 1169 1170 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1171 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1172 { 1173 union nvme_result res = { 0 }; 1174 struct nvme_command c; 1175 int ret; 1176 1177 memset(&c, 0, sizeof(c)); 1178 c.features.opcode = op; 1179 c.features.fid = cpu_to_le32(fid); 1180 c.features.dword11 = cpu_to_le32(dword11); 1181 1182 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1183 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false); 1184 if (ret >= 0 && result) 1185 *result = le32_to_cpu(res.u32); 1186 return ret; 1187 } 1188 1189 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1190 unsigned int dword11, void *buffer, size_t buflen, 1191 u32 *result) 1192 { 1193 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1194 buflen, result); 1195 } 1196 EXPORT_SYMBOL_GPL(nvme_set_features); 1197 1198 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1199 unsigned int dword11, void *buffer, size_t buflen, 1200 u32 *result) 1201 { 1202 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1203 buflen, result); 1204 } 1205 EXPORT_SYMBOL_GPL(nvme_get_features); 1206 1207 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1208 { 1209 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1210 u32 result; 1211 int status, nr_io_queues; 1212 1213 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1214 &result); 1215 if (status < 0) 1216 return status; 1217 1218 /* 1219 * Degraded controllers might return an error when setting the queue 1220 * count. We still want to be able to bring them online and offer 1221 * access to the admin queue, as that might be only way to fix them up. 1222 */ 1223 if (status > 0) { 1224 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1225 *count = 0; 1226 } else { 1227 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1228 *count = min(*count, nr_io_queues); 1229 } 1230 1231 return 0; 1232 } 1233 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1234 1235 #define NVME_AEN_SUPPORTED \ 1236 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1237 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1238 1239 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1240 { 1241 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1242 int status; 1243 1244 if (!supported_aens) 1245 return; 1246 1247 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1248 NULL, 0, &result); 1249 if (status) 1250 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1251 supported_aens); 1252 1253 queue_work(nvme_wq, &ctrl->async_event_work); 1254 } 1255 1256 /* 1257 * Convert integer values from ioctl structures to user pointers, silently 1258 * ignoring the upper bits in the compat case to match behaviour of 32-bit 1259 * kernels. 1260 */ 1261 static void __user *nvme_to_user_ptr(uintptr_t ptrval) 1262 { 1263 if (in_compat_syscall()) 1264 ptrval = (compat_uptr_t)ptrval; 1265 return (void __user *)ptrval; 1266 } 1267 1268 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1269 { 1270 struct nvme_user_io io; 1271 struct nvme_command c; 1272 unsigned length, meta_len; 1273 void __user *metadata; 1274 1275 if (copy_from_user(&io, uio, sizeof(io))) 1276 return -EFAULT; 1277 if (io.flags) 1278 return -EINVAL; 1279 1280 switch (io.opcode) { 1281 case nvme_cmd_write: 1282 case nvme_cmd_read: 1283 case nvme_cmd_compare: 1284 break; 1285 default: 1286 return -EINVAL; 1287 } 1288 1289 length = (io.nblocks + 1) << ns->lba_shift; 1290 meta_len = (io.nblocks + 1) * ns->ms; 1291 metadata = nvme_to_user_ptr(io.metadata); 1292 1293 if (ns->ext) { 1294 length += meta_len; 1295 meta_len = 0; 1296 } else if (meta_len) { 1297 if ((io.metadata & 3) || !io.metadata) 1298 return -EINVAL; 1299 } 1300 1301 memset(&c, 0, sizeof(c)); 1302 c.rw.opcode = io.opcode; 1303 c.rw.flags = io.flags; 1304 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1305 c.rw.slba = cpu_to_le64(io.slba); 1306 c.rw.length = cpu_to_le16(io.nblocks); 1307 c.rw.control = cpu_to_le16(io.control); 1308 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1309 c.rw.reftag = cpu_to_le32(io.reftag); 1310 c.rw.apptag = cpu_to_le16(io.apptag); 1311 c.rw.appmask = cpu_to_le16(io.appmask); 1312 1313 return nvme_submit_user_cmd(ns->queue, &c, 1314 nvme_to_user_ptr(io.addr), length, 1315 metadata, meta_len, lower_32_bits(io.slba), NULL, 0); 1316 } 1317 1318 static u32 nvme_known_admin_effects(u8 opcode) 1319 { 1320 switch (opcode) { 1321 case nvme_admin_format_nvm: 1322 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 1323 NVME_CMD_EFFECTS_CSE_MASK; 1324 case nvme_admin_sanitize_nvm: 1325 return NVME_CMD_EFFECTS_CSE_MASK; 1326 default: 1327 break; 1328 } 1329 return 0; 1330 } 1331 1332 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1333 u8 opcode) 1334 { 1335 u32 effects = 0; 1336 1337 if (ns) { 1338 if (ctrl->effects) 1339 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1340 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1341 dev_warn(ctrl->device, 1342 "IO command:%02x has unhandled effects:%08x\n", 1343 opcode, effects); 1344 return 0; 1345 } 1346 1347 if (ctrl->effects) 1348 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1349 effects |= nvme_known_admin_effects(opcode); 1350 1351 /* 1352 * For simplicity, IO to all namespaces is quiesced even if the command 1353 * effects say only one namespace is affected. 1354 */ 1355 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1356 mutex_lock(&ctrl->scan_lock); 1357 mutex_lock(&ctrl->subsys->lock); 1358 nvme_mpath_start_freeze(ctrl->subsys); 1359 nvme_mpath_wait_freeze(ctrl->subsys); 1360 nvme_start_freeze(ctrl); 1361 nvme_wait_freeze(ctrl); 1362 } 1363 return effects; 1364 } 1365 1366 static void nvme_update_formats(struct nvme_ctrl *ctrl) 1367 { 1368 struct nvme_ns *ns; 1369 1370 down_read(&ctrl->namespaces_rwsem); 1371 list_for_each_entry(ns, &ctrl->namespaces, list) 1372 if (ns->disk && nvme_revalidate_disk(ns->disk)) 1373 nvme_set_queue_dying(ns); 1374 up_read(&ctrl->namespaces_rwsem); 1375 } 1376 1377 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1378 { 1379 /* 1380 * Revalidate LBA changes prior to unfreezing. This is necessary to 1381 * prevent memory corruption if a logical block size was changed by 1382 * this command. 1383 */ 1384 if (effects & NVME_CMD_EFFECTS_LBCC) 1385 nvme_update_formats(ctrl); 1386 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1387 nvme_unfreeze(ctrl); 1388 nvme_mpath_unfreeze(ctrl->subsys); 1389 mutex_unlock(&ctrl->subsys->lock); 1390 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1391 mutex_unlock(&ctrl->scan_lock); 1392 } 1393 if (effects & NVME_CMD_EFFECTS_CCC) 1394 nvme_init_identify(ctrl); 1395 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) 1396 nvme_queue_scan(ctrl); 1397 } 1398 1399 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1400 struct nvme_passthru_cmd __user *ucmd) 1401 { 1402 struct nvme_passthru_cmd cmd; 1403 struct nvme_command c; 1404 unsigned timeout = 0; 1405 u32 effects; 1406 u64 result; 1407 int status; 1408 1409 if (!capable(CAP_SYS_ADMIN)) 1410 return -EACCES; 1411 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1412 return -EFAULT; 1413 if (cmd.flags) 1414 return -EINVAL; 1415 1416 memset(&c, 0, sizeof(c)); 1417 c.common.opcode = cmd.opcode; 1418 c.common.flags = cmd.flags; 1419 c.common.nsid = cpu_to_le32(cmd.nsid); 1420 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1421 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1422 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1423 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1424 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1425 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1426 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1427 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1428 1429 if (cmd.timeout_ms) 1430 timeout = msecs_to_jiffies(cmd.timeout_ms); 1431 1432 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1433 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1434 nvme_to_user_ptr(cmd.addr), cmd.data_len, 1435 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len, 1436 0, &result, timeout); 1437 nvme_passthru_end(ctrl, effects); 1438 1439 if (status >= 0) { 1440 if (put_user(result, &ucmd->result)) 1441 return -EFAULT; 1442 } 1443 1444 return status; 1445 } 1446 1447 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1448 struct nvme_passthru_cmd64 __user *ucmd) 1449 { 1450 struct nvme_passthru_cmd64 cmd; 1451 struct nvme_command c; 1452 unsigned timeout = 0; 1453 u32 effects; 1454 int status; 1455 1456 if (!capable(CAP_SYS_ADMIN)) 1457 return -EACCES; 1458 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1459 return -EFAULT; 1460 if (cmd.flags) 1461 return -EINVAL; 1462 1463 memset(&c, 0, sizeof(c)); 1464 c.common.opcode = cmd.opcode; 1465 c.common.flags = cmd.flags; 1466 c.common.nsid = cpu_to_le32(cmd.nsid); 1467 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1468 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1469 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1470 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1471 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1472 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1473 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1474 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1475 1476 if (cmd.timeout_ms) 1477 timeout = msecs_to_jiffies(cmd.timeout_ms); 1478 1479 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1480 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1481 nvme_to_user_ptr(cmd.addr), cmd.data_len, 1482 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len, 1483 0, &cmd.result, timeout); 1484 nvme_passthru_end(ctrl, effects); 1485 1486 if (status >= 0) { 1487 if (put_user(cmd.result, &ucmd->result)) 1488 return -EFAULT; 1489 } 1490 1491 return status; 1492 } 1493 1494 /* 1495 * Issue ioctl requests on the first available path. Note that unlike normal 1496 * block layer requests we will not retry failed request on another controller. 1497 */ 1498 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1499 struct nvme_ns_head **head, int *srcu_idx) 1500 { 1501 #ifdef CONFIG_NVME_MULTIPATH 1502 if (disk->fops == &nvme_ns_head_ops) { 1503 struct nvme_ns *ns; 1504 1505 *head = disk->private_data; 1506 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1507 ns = nvme_find_path(*head); 1508 if (!ns) 1509 srcu_read_unlock(&(*head)->srcu, *srcu_idx); 1510 return ns; 1511 } 1512 #endif 1513 *head = NULL; 1514 *srcu_idx = -1; 1515 return disk->private_data; 1516 } 1517 1518 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1519 { 1520 if (head) 1521 srcu_read_unlock(&head->srcu, idx); 1522 } 1523 1524 static bool is_ctrl_ioctl(unsigned int cmd) 1525 { 1526 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD) 1527 return true; 1528 if (is_sed_ioctl(cmd)) 1529 return true; 1530 return false; 1531 } 1532 1533 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd, 1534 void __user *argp, 1535 struct nvme_ns_head *head, 1536 int srcu_idx) 1537 { 1538 struct nvme_ctrl *ctrl = ns->ctrl; 1539 int ret; 1540 1541 nvme_get_ctrl(ns->ctrl); 1542 nvme_put_ns_from_disk(head, srcu_idx); 1543 1544 switch (cmd) { 1545 case NVME_IOCTL_ADMIN_CMD: 1546 ret = nvme_user_cmd(ctrl, NULL, argp); 1547 break; 1548 case NVME_IOCTL_ADMIN64_CMD: 1549 ret = nvme_user_cmd64(ctrl, NULL, argp); 1550 break; 1551 default: 1552 ret = sed_ioctl(ctrl->opal_dev, cmd, argp); 1553 break; 1554 } 1555 nvme_put_ctrl(ctrl); 1556 return ret; 1557 } 1558 1559 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1560 unsigned int cmd, unsigned long arg) 1561 { 1562 struct nvme_ns_head *head = NULL; 1563 void __user *argp = (void __user *)arg; 1564 struct nvme_ns *ns; 1565 int srcu_idx, ret; 1566 1567 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1568 if (unlikely(!ns)) 1569 return -EWOULDBLOCK; 1570 1571 /* 1572 * Handle ioctls that apply to the controller instead of the namespace 1573 * seperately and drop the ns SRCU reference early. This avoids a 1574 * deadlock when deleting namespaces using the passthrough interface. 1575 */ 1576 if (is_ctrl_ioctl(cmd)) 1577 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx); 1578 1579 switch (cmd) { 1580 case NVME_IOCTL_ID: 1581 force_successful_syscall_return(); 1582 ret = ns->head->ns_id; 1583 break; 1584 case NVME_IOCTL_IO_CMD: 1585 ret = nvme_user_cmd(ns->ctrl, ns, argp); 1586 break; 1587 case NVME_IOCTL_SUBMIT_IO: 1588 ret = nvme_submit_io(ns, argp); 1589 break; 1590 case NVME_IOCTL_IO64_CMD: 1591 ret = nvme_user_cmd64(ns->ctrl, ns, argp); 1592 break; 1593 default: 1594 if (ns->ndev) 1595 ret = nvme_nvm_ioctl(ns, cmd, arg); 1596 else 1597 ret = -ENOTTY; 1598 } 1599 1600 nvme_put_ns_from_disk(head, srcu_idx); 1601 return ret; 1602 } 1603 1604 #ifdef CONFIG_COMPAT 1605 struct nvme_user_io32 { 1606 __u8 opcode; 1607 __u8 flags; 1608 __u16 control; 1609 __u16 nblocks; 1610 __u16 rsvd; 1611 __u64 metadata; 1612 __u64 addr; 1613 __u64 slba; 1614 __u32 dsmgmt; 1615 __u32 reftag; 1616 __u16 apptag; 1617 __u16 appmask; 1618 } __attribute__((__packed__)); 1619 1620 #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32) 1621 1622 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, 1623 unsigned int cmd, unsigned long arg) 1624 { 1625 /* 1626 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO 1627 * between 32 bit programs and 64 bit kernel. 1628 * The cause is that the results of sizeof(struct nvme_user_io), 1629 * which is used to define NVME_IOCTL_SUBMIT_IO, 1630 * are not same between 32 bit compiler and 64 bit compiler. 1631 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling 1632 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs. 1633 * Other IOCTL numbers are same between 32 bit and 64 bit. 1634 * So there is nothing to do regarding to other IOCTL numbers. 1635 */ 1636 if (cmd == NVME_IOCTL_SUBMIT_IO32) 1637 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg); 1638 1639 return nvme_ioctl(bdev, mode, cmd, arg); 1640 } 1641 #else 1642 #define nvme_compat_ioctl NULL 1643 #endif /* CONFIG_COMPAT */ 1644 1645 static int nvme_open(struct block_device *bdev, fmode_t mode) 1646 { 1647 struct nvme_ns *ns = bdev->bd_disk->private_data; 1648 1649 #ifdef CONFIG_NVME_MULTIPATH 1650 /* should never be called due to GENHD_FL_HIDDEN */ 1651 if (WARN_ON_ONCE(ns->head->disk)) 1652 goto fail; 1653 #endif 1654 if (!kref_get_unless_zero(&ns->kref)) 1655 goto fail; 1656 if (!try_module_get(ns->ctrl->ops->module)) 1657 goto fail_put_ns; 1658 1659 return 0; 1660 1661 fail_put_ns: 1662 nvme_put_ns(ns); 1663 fail: 1664 return -ENXIO; 1665 } 1666 1667 static void nvme_release(struct gendisk *disk, fmode_t mode) 1668 { 1669 struct nvme_ns *ns = disk->private_data; 1670 1671 module_put(ns->ctrl->ops->module); 1672 nvme_put_ns(ns); 1673 } 1674 1675 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1676 { 1677 /* some standard values */ 1678 geo->heads = 1 << 6; 1679 geo->sectors = 1 << 5; 1680 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1681 return 0; 1682 } 1683 1684 #ifdef CONFIG_BLK_DEV_INTEGRITY 1685 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1686 { 1687 struct blk_integrity integrity; 1688 1689 memset(&integrity, 0, sizeof(integrity)); 1690 switch (pi_type) { 1691 case NVME_NS_DPS_PI_TYPE3: 1692 integrity.profile = &t10_pi_type3_crc; 1693 integrity.tag_size = sizeof(u16) + sizeof(u32); 1694 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1695 break; 1696 case NVME_NS_DPS_PI_TYPE1: 1697 case NVME_NS_DPS_PI_TYPE2: 1698 integrity.profile = &t10_pi_type1_crc; 1699 integrity.tag_size = sizeof(u16); 1700 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1701 break; 1702 default: 1703 integrity.profile = NULL; 1704 break; 1705 } 1706 integrity.tuple_size = ms; 1707 blk_integrity_register(disk, &integrity); 1708 blk_queue_max_integrity_segments(disk->queue, 1); 1709 } 1710 #else 1711 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1712 { 1713 } 1714 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1715 1716 static void nvme_set_chunk_size(struct nvme_ns *ns) 1717 { 1718 u32 chunk_size = nvme_lba_to_sect(ns, ns->noiob); 1719 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); 1720 } 1721 1722 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1723 { 1724 struct nvme_ctrl *ctrl = ns->ctrl; 1725 struct request_queue *queue = disk->queue; 1726 u32 size = queue_logical_block_size(queue); 1727 1728 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { 1729 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1730 return; 1731 } 1732 1733 if (ctrl->nr_streams && ns->sws && ns->sgs) 1734 size *= ns->sws * ns->sgs; 1735 1736 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1737 NVME_DSM_MAX_RANGES); 1738 1739 queue->limits.discard_alignment = 0; 1740 queue->limits.discard_granularity = size; 1741 1742 /* If discard is already enabled, don't reset queue limits */ 1743 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1744 return; 1745 1746 blk_queue_max_discard_sectors(queue, UINT_MAX); 1747 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1748 1749 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1750 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1751 } 1752 1753 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns) 1754 { 1755 u64 max_blocks; 1756 1757 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) || 1758 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 1759 return; 1760 /* 1761 * Even though NVMe spec explicitly states that MDTS is not 1762 * applicable to the write-zeroes:- "The restriction does not apply to 1763 * commands that do not transfer data between the host and the 1764 * controller (e.g., Write Uncorrectable ro Write Zeroes command).". 1765 * In order to be more cautious use controller's max_hw_sectors value 1766 * to configure the maximum sectors for the write-zeroes which is 1767 * configured based on the controller's MDTS field in the 1768 * nvme_init_identify() if available. 1769 */ 1770 if (ns->ctrl->max_hw_sectors == UINT_MAX) 1771 max_blocks = (u64)USHRT_MAX + 1; 1772 else 1773 max_blocks = ns->ctrl->max_hw_sectors + 1; 1774 1775 blk_queue_max_write_zeroes_sectors(disk->queue, 1776 nvme_lba_to_sect(ns, max_blocks)); 1777 } 1778 1779 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1780 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1781 { 1782 memset(ids, 0, sizeof(*ids)); 1783 1784 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1785 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1786 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1787 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1788 if (ctrl->vs >= NVME_VS(1, 3, 0)) 1789 return nvme_identify_ns_descs(ctrl, nsid, ids); 1790 return 0; 1791 } 1792 1793 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1794 { 1795 return !uuid_is_null(&ids->uuid) || 1796 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1797 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1798 } 1799 1800 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1801 { 1802 return uuid_equal(&a->uuid, &b->uuid) && 1803 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1804 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; 1805 } 1806 1807 static void nvme_update_disk_info(struct gendisk *disk, 1808 struct nvme_ns *ns, struct nvme_id_ns *id) 1809 { 1810 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1811 unsigned short bs = 1 << ns->lba_shift; 1812 u32 atomic_bs, phys_bs, io_opt; 1813 1814 if (ns->lba_shift > PAGE_SHIFT) { 1815 /* unsupported block size, set capacity to 0 later */ 1816 bs = (1 << 9); 1817 } 1818 blk_mq_freeze_queue(disk->queue); 1819 blk_integrity_unregister(disk); 1820 1821 if (id->nabo == 0) { 1822 /* 1823 * Bit 1 indicates whether NAWUPF is defined for this namespace 1824 * and whether it should be used instead of AWUPF. If NAWUPF == 1825 * 0 then AWUPF must be used instead. 1826 */ 1827 if (id->nsfeat & (1 << 1) && id->nawupf) 1828 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1829 else 1830 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1831 } else { 1832 atomic_bs = bs; 1833 } 1834 phys_bs = bs; 1835 io_opt = bs; 1836 if (id->nsfeat & (1 << 4)) { 1837 /* NPWG = Namespace Preferred Write Granularity */ 1838 phys_bs *= 1 + le16_to_cpu(id->npwg); 1839 /* NOWS = Namespace Optimal Write Size */ 1840 io_opt *= 1 + le16_to_cpu(id->nows); 1841 } 1842 1843 blk_queue_logical_block_size(disk->queue, bs); 1844 /* 1845 * Linux filesystems assume writing a single physical block is 1846 * an atomic operation. Hence limit the physical block size to the 1847 * value of the Atomic Write Unit Power Fail parameter. 1848 */ 1849 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1850 blk_queue_io_min(disk->queue, phys_bs); 1851 blk_queue_io_opt(disk->queue, io_opt); 1852 1853 if (ns->ms && !ns->ext && 1854 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1855 nvme_init_integrity(disk, ns->ms, ns->pi_type); 1856 if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) || 1857 ns->lba_shift > PAGE_SHIFT) 1858 capacity = 0; 1859 1860 set_capacity_revalidate_and_notify(disk, capacity, false); 1861 1862 nvme_config_discard(disk, ns); 1863 nvme_config_write_zeroes(disk, ns); 1864 1865 if (id->nsattr & (1 << 0)) 1866 set_disk_ro(disk, true); 1867 else 1868 set_disk_ro(disk, false); 1869 1870 blk_mq_unfreeze_queue(disk->queue); 1871 } 1872 1873 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1874 { 1875 struct nvme_ns *ns = disk->private_data; 1876 1877 /* 1878 * If identify namespace failed, use default 512 byte block size so 1879 * block layer can use before failing read/write for 0 capacity. 1880 */ 1881 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1882 if (ns->lba_shift == 0) 1883 ns->lba_shift = 9; 1884 ns->noiob = le16_to_cpu(id->noiob); 1885 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1886 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1887 /* the PI implementation requires metadata equal t10 pi tuple size */ 1888 if (ns->ms == sizeof(struct t10_pi_tuple)) 1889 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1890 else 1891 ns->pi_type = 0; 1892 1893 if (ns->noiob) 1894 nvme_set_chunk_size(ns); 1895 nvme_update_disk_info(disk, ns, id); 1896 #ifdef CONFIG_NVME_MULTIPATH 1897 if (ns->head->disk) { 1898 nvme_update_disk_info(ns->head->disk, ns, id); 1899 blk_queue_stack_limits(ns->head->disk->queue, ns->queue); 1900 if (bdi_cap_stable_pages_required(ns->queue->backing_dev_info)) { 1901 struct backing_dev_info *info = 1902 ns->head->disk->queue->backing_dev_info; 1903 1904 info->capabilities |= BDI_CAP_STABLE_WRITES; 1905 } 1906 1907 revalidate_disk(ns->head->disk); 1908 } 1909 #endif 1910 } 1911 1912 static int nvme_revalidate_disk(struct gendisk *disk) 1913 { 1914 struct nvme_ns *ns = disk->private_data; 1915 struct nvme_ctrl *ctrl = ns->ctrl; 1916 struct nvme_id_ns *id; 1917 struct nvme_ns_ids ids; 1918 int ret = 0; 1919 1920 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1921 set_capacity(disk, 0); 1922 return -ENODEV; 1923 } 1924 1925 ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id); 1926 if (ret) 1927 goto out; 1928 1929 if (id->ncap == 0) { 1930 ret = -ENODEV; 1931 goto free_id; 1932 } 1933 1934 __nvme_revalidate_disk(disk, id); 1935 ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 1936 if (ret) 1937 goto free_id; 1938 1939 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 1940 dev_err(ctrl->device, 1941 "identifiers changed for nsid %d\n", ns->head->ns_id); 1942 ret = -ENODEV; 1943 } 1944 1945 free_id: 1946 kfree(id); 1947 out: 1948 /* 1949 * Only fail the function if we got a fatal error back from the 1950 * device, otherwise ignore the error and just move on. 1951 */ 1952 if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR))) 1953 ret = 0; 1954 else if (ret > 0) 1955 ret = blk_status_to_errno(nvme_error_status(ret)); 1956 return ret; 1957 } 1958 1959 static char nvme_pr_type(enum pr_type type) 1960 { 1961 switch (type) { 1962 case PR_WRITE_EXCLUSIVE: 1963 return 1; 1964 case PR_EXCLUSIVE_ACCESS: 1965 return 2; 1966 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1967 return 3; 1968 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1969 return 4; 1970 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1971 return 5; 1972 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1973 return 6; 1974 default: 1975 return 0; 1976 } 1977 }; 1978 1979 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1980 u64 key, u64 sa_key, u8 op) 1981 { 1982 struct nvme_ns_head *head = NULL; 1983 struct nvme_ns *ns; 1984 struct nvme_command c; 1985 int srcu_idx, ret; 1986 u8 data[16] = { 0, }; 1987 1988 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1989 if (unlikely(!ns)) 1990 return -EWOULDBLOCK; 1991 1992 put_unaligned_le64(key, &data[0]); 1993 put_unaligned_le64(sa_key, &data[8]); 1994 1995 memset(&c, 0, sizeof(c)); 1996 c.common.opcode = op; 1997 c.common.nsid = cpu_to_le32(ns->head->ns_id); 1998 c.common.cdw10 = cpu_to_le32(cdw10); 1999 2000 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 2001 nvme_put_ns_from_disk(head, srcu_idx); 2002 return ret; 2003 } 2004 2005 static int nvme_pr_register(struct block_device *bdev, u64 old, 2006 u64 new, unsigned flags) 2007 { 2008 u32 cdw10; 2009 2010 if (flags & ~PR_FL_IGNORE_KEY) 2011 return -EOPNOTSUPP; 2012 2013 cdw10 = old ? 2 : 0; 2014 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2015 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2016 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2017 } 2018 2019 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2020 enum pr_type type, unsigned flags) 2021 { 2022 u32 cdw10; 2023 2024 if (flags & ~PR_FL_IGNORE_KEY) 2025 return -EOPNOTSUPP; 2026 2027 cdw10 = nvme_pr_type(type) << 8; 2028 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2029 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2030 } 2031 2032 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2033 enum pr_type type, bool abort) 2034 { 2035 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2036 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2037 } 2038 2039 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2040 { 2041 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2042 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2043 } 2044 2045 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2046 { 2047 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2048 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2049 } 2050 2051 static const struct pr_ops nvme_pr_ops = { 2052 .pr_register = nvme_pr_register, 2053 .pr_reserve = nvme_pr_reserve, 2054 .pr_release = nvme_pr_release, 2055 .pr_preempt = nvme_pr_preempt, 2056 .pr_clear = nvme_pr_clear, 2057 }; 2058 2059 #ifdef CONFIG_BLK_SED_OPAL 2060 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2061 bool send) 2062 { 2063 struct nvme_ctrl *ctrl = data; 2064 struct nvme_command cmd; 2065 2066 memset(&cmd, 0, sizeof(cmd)); 2067 if (send) 2068 cmd.common.opcode = nvme_admin_security_send; 2069 else 2070 cmd.common.opcode = nvme_admin_security_recv; 2071 cmd.common.nsid = 0; 2072 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2073 cmd.common.cdw11 = cpu_to_le32(len); 2074 2075 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2076 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false); 2077 } 2078 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2079 #endif /* CONFIG_BLK_SED_OPAL */ 2080 2081 static const struct block_device_operations nvme_fops = { 2082 .owner = THIS_MODULE, 2083 .ioctl = nvme_ioctl, 2084 .compat_ioctl = nvme_compat_ioctl, 2085 .open = nvme_open, 2086 .release = nvme_release, 2087 .getgeo = nvme_getgeo, 2088 .revalidate_disk= nvme_revalidate_disk, 2089 .pr_ops = &nvme_pr_ops, 2090 }; 2091 2092 #ifdef CONFIG_NVME_MULTIPATH 2093 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 2094 { 2095 struct nvme_ns_head *head = bdev->bd_disk->private_data; 2096 2097 if (!kref_get_unless_zero(&head->ref)) 2098 return -ENXIO; 2099 return 0; 2100 } 2101 2102 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 2103 { 2104 nvme_put_ns_head(disk->private_data); 2105 } 2106 2107 const struct block_device_operations nvme_ns_head_ops = { 2108 .owner = THIS_MODULE, 2109 .open = nvme_ns_head_open, 2110 .release = nvme_ns_head_release, 2111 .ioctl = nvme_ioctl, 2112 .compat_ioctl = nvme_compat_ioctl, 2113 .getgeo = nvme_getgeo, 2114 .pr_ops = &nvme_pr_ops, 2115 }; 2116 #endif /* CONFIG_NVME_MULTIPATH */ 2117 2118 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2119 { 2120 unsigned long timeout = 2121 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2122 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2123 int ret; 2124 2125 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2126 if (csts == ~0) 2127 return -ENODEV; 2128 if ((csts & NVME_CSTS_RDY) == bit) 2129 break; 2130 2131 usleep_range(1000, 2000); 2132 if (fatal_signal_pending(current)) 2133 return -EINTR; 2134 if (time_after(jiffies, timeout)) { 2135 dev_err(ctrl->device, 2136 "Device not ready; aborting %s, CSTS=0x%x\n", 2137 enabled ? "initialisation" : "reset", csts); 2138 return -ENODEV; 2139 } 2140 } 2141 2142 return ret; 2143 } 2144 2145 /* 2146 * If the device has been passed off to us in an enabled state, just clear 2147 * the enabled bit. The spec says we should set the 'shutdown notification 2148 * bits', but doing so may cause the device to complete commands to the 2149 * admin queue ... and we don't know what memory that might be pointing at! 2150 */ 2151 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2152 { 2153 int ret; 2154 2155 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2156 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2157 2158 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2159 if (ret) 2160 return ret; 2161 2162 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2163 msleep(NVME_QUIRK_DELAY_AMOUNT); 2164 2165 return nvme_wait_ready(ctrl, ctrl->cap, false); 2166 } 2167 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2168 2169 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2170 { 2171 /* 2172 * Default to a 4K page size, with the intention to update this 2173 * path in the future to accomodate architectures with differing 2174 * kernel and IO page sizes. 2175 */ 2176 unsigned dev_page_min, page_shift = 12; 2177 int ret; 2178 2179 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2180 if (ret) { 2181 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2182 return ret; 2183 } 2184 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2185 2186 if (page_shift < dev_page_min) { 2187 dev_err(ctrl->device, 2188 "Minimum device page size %u too large for host (%u)\n", 2189 1 << dev_page_min, 1 << page_shift); 2190 return -ENODEV; 2191 } 2192 2193 ctrl->page_size = 1 << page_shift; 2194 2195 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2196 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 2197 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2198 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2199 ctrl->ctrl_config |= NVME_CC_ENABLE; 2200 2201 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2202 if (ret) 2203 return ret; 2204 return nvme_wait_ready(ctrl, ctrl->cap, true); 2205 } 2206 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2207 2208 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2209 { 2210 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2211 u32 csts; 2212 int ret; 2213 2214 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2215 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2216 2217 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2218 if (ret) 2219 return ret; 2220 2221 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2222 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2223 break; 2224 2225 msleep(100); 2226 if (fatal_signal_pending(current)) 2227 return -EINTR; 2228 if (time_after(jiffies, timeout)) { 2229 dev_err(ctrl->device, 2230 "Device shutdown incomplete; abort shutdown\n"); 2231 return -ENODEV; 2232 } 2233 } 2234 2235 return ret; 2236 } 2237 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2238 2239 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 2240 struct request_queue *q) 2241 { 2242 bool vwc = false; 2243 2244 if (ctrl->max_hw_sectors) { 2245 u32 max_segments = 2246 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 2247 2248 max_segments = min_not_zero(max_segments, ctrl->max_segments); 2249 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 2250 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 2251 } 2252 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2253 is_power_of_2(ctrl->max_hw_sectors)) 2254 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 2255 blk_queue_virt_boundary(q, ctrl->page_size - 1); 2256 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 2257 vwc = true; 2258 blk_queue_write_cache(q, vwc, vwc); 2259 } 2260 2261 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2262 { 2263 __le64 ts; 2264 int ret; 2265 2266 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2267 return 0; 2268 2269 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2270 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2271 NULL); 2272 if (ret) 2273 dev_warn_once(ctrl->device, 2274 "could not set timestamp (%d)\n", ret); 2275 return ret; 2276 } 2277 2278 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2279 { 2280 struct nvme_feat_host_behavior *host; 2281 int ret; 2282 2283 /* Don't bother enabling the feature if retry delay is not reported */ 2284 if (!ctrl->crdt[0]) 2285 return 0; 2286 2287 host = kzalloc(sizeof(*host), GFP_KERNEL); 2288 if (!host) 2289 return 0; 2290 2291 host->acre = NVME_ENABLE_ACRE; 2292 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2293 host, sizeof(*host), NULL); 2294 kfree(host); 2295 return ret; 2296 } 2297 2298 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2299 { 2300 /* 2301 * APST (Autonomous Power State Transition) lets us program a 2302 * table of power state transitions that the controller will 2303 * perform automatically. We configure it with a simple 2304 * heuristic: we are willing to spend at most 2% of the time 2305 * transitioning between power states. Therefore, when running 2306 * in any given state, we will enter the next lower-power 2307 * non-operational state after waiting 50 * (enlat + exlat) 2308 * microseconds, as long as that state's exit latency is under 2309 * the requested maximum latency. 2310 * 2311 * We will not autonomously enter any non-operational state for 2312 * which the total latency exceeds ps_max_latency_us. Users 2313 * can set ps_max_latency_us to zero to turn off APST. 2314 */ 2315 2316 unsigned apste; 2317 struct nvme_feat_auto_pst *table; 2318 u64 max_lat_us = 0; 2319 int max_ps = -1; 2320 int ret; 2321 2322 /* 2323 * If APST isn't supported or if we haven't been initialized yet, 2324 * then don't do anything. 2325 */ 2326 if (!ctrl->apsta) 2327 return 0; 2328 2329 if (ctrl->npss > 31) { 2330 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2331 return 0; 2332 } 2333 2334 table = kzalloc(sizeof(*table), GFP_KERNEL); 2335 if (!table) 2336 return 0; 2337 2338 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2339 /* Turn off APST. */ 2340 apste = 0; 2341 dev_dbg(ctrl->device, "APST disabled\n"); 2342 } else { 2343 __le64 target = cpu_to_le64(0); 2344 int state; 2345 2346 /* 2347 * Walk through all states from lowest- to highest-power. 2348 * According to the spec, lower-numbered states use more 2349 * power. NPSS, despite the name, is the index of the 2350 * lowest-power state, not the number of states. 2351 */ 2352 for (state = (int)ctrl->npss; state >= 0; state--) { 2353 u64 total_latency_us, exit_latency_us, transition_ms; 2354 2355 if (target) 2356 table->entries[state] = target; 2357 2358 /* 2359 * Don't allow transitions to the deepest state 2360 * if it's quirked off. 2361 */ 2362 if (state == ctrl->npss && 2363 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2364 continue; 2365 2366 /* 2367 * Is this state a useful non-operational state for 2368 * higher-power states to autonomously transition to? 2369 */ 2370 if (!(ctrl->psd[state].flags & 2371 NVME_PS_FLAGS_NON_OP_STATE)) 2372 continue; 2373 2374 exit_latency_us = 2375 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2376 if (exit_latency_us > ctrl->ps_max_latency_us) 2377 continue; 2378 2379 total_latency_us = 2380 exit_latency_us + 2381 le32_to_cpu(ctrl->psd[state].entry_lat); 2382 2383 /* 2384 * This state is good. Use it as the APST idle 2385 * target for higher power states. 2386 */ 2387 transition_ms = total_latency_us + 19; 2388 do_div(transition_ms, 20); 2389 if (transition_ms > (1 << 24) - 1) 2390 transition_ms = (1 << 24) - 1; 2391 2392 target = cpu_to_le64((state << 3) | 2393 (transition_ms << 8)); 2394 2395 if (max_ps == -1) 2396 max_ps = state; 2397 2398 if (total_latency_us > max_lat_us) 2399 max_lat_us = total_latency_us; 2400 } 2401 2402 apste = 1; 2403 2404 if (max_ps == -1) { 2405 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2406 } else { 2407 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2408 max_ps, max_lat_us, (int)sizeof(*table), table); 2409 } 2410 } 2411 2412 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2413 table, sizeof(*table), NULL); 2414 if (ret) 2415 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2416 2417 kfree(table); 2418 return ret; 2419 } 2420 2421 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2422 { 2423 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2424 u64 latency; 2425 2426 switch (val) { 2427 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2428 case PM_QOS_LATENCY_ANY: 2429 latency = U64_MAX; 2430 break; 2431 2432 default: 2433 latency = val; 2434 } 2435 2436 if (ctrl->ps_max_latency_us != latency) { 2437 ctrl->ps_max_latency_us = latency; 2438 nvme_configure_apst(ctrl); 2439 } 2440 } 2441 2442 struct nvme_core_quirk_entry { 2443 /* 2444 * NVMe model and firmware strings are padded with spaces. For 2445 * simplicity, strings in the quirk table are padded with NULLs 2446 * instead. 2447 */ 2448 u16 vid; 2449 const char *mn; 2450 const char *fr; 2451 unsigned long quirks; 2452 }; 2453 2454 static const struct nvme_core_quirk_entry core_quirks[] = { 2455 { 2456 /* 2457 * This Toshiba device seems to die using any APST states. See: 2458 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2459 */ 2460 .vid = 0x1179, 2461 .mn = "THNSF5256GPUK TOSHIBA", 2462 .quirks = NVME_QUIRK_NO_APST, 2463 }, 2464 { 2465 /* 2466 * This LiteON CL1-3D*-Q11 firmware version has a race 2467 * condition associated with actions related to suspend to idle 2468 * LiteON has resolved the problem in future firmware 2469 */ 2470 .vid = 0x14a4, 2471 .fr = "22301111", 2472 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2473 } 2474 }; 2475 2476 /* match is null-terminated but idstr is space-padded. */ 2477 static bool string_matches(const char *idstr, const char *match, size_t len) 2478 { 2479 size_t matchlen; 2480 2481 if (!match) 2482 return true; 2483 2484 matchlen = strlen(match); 2485 WARN_ON_ONCE(matchlen > len); 2486 2487 if (memcmp(idstr, match, matchlen)) 2488 return false; 2489 2490 for (; matchlen < len; matchlen++) 2491 if (idstr[matchlen] != ' ') 2492 return false; 2493 2494 return true; 2495 } 2496 2497 static bool quirk_matches(const struct nvme_id_ctrl *id, 2498 const struct nvme_core_quirk_entry *q) 2499 { 2500 return q->vid == le16_to_cpu(id->vid) && 2501 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2502 string_matches(id->fr, q->fr, sizeof(id->fr)); 2503 } 2504 2505 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2506 struct nvme_id_ctrl *id) 2507 { 2508 size_t nqnlen; 2509 int off; 2510 2511 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2512 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2513 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2514 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2515 return; 2516 } 2517 2518 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2519 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2520 } 2521 2522 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2523 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2524 "nqn.2014.08.org.nvmexpress:%04x%04x", 2525 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2526 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2527 off += sizeof(id->sn); 2528 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2529 off += sizeof(id->mn); 2530 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2531 } 2532 2533 static void nvme_release_subsystem(struct device *dev) 2534 { 2535 struct nvme_subsystem *subsys = 2536 container_of(dev, struct nvme_subsystem, dev); 2537 2538 if (subsys->instance >= 0) 2539 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2540 kfree(subsys); 2541 } 2542 2543 static void nvme_destroy_subsystem(struct kref *ref) 2544 { 2545 struct nvme_subsystem *subsys = 2546 container_of(ref, struct nvme_subsystem, ref); 2547 2548 mutex_lock(&nvme_subsystems_lock); 2549 list_del(&subsys->entry); 2550 mutex_unlock(&nvme_subsystems_lock); 2551 2552 ida_destroy(&subsys->ns_ida); 2553 device_del(&subsys->dev); 2554 put_device(&subsys->dev); 2555 } 2556 2557 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2558 { 2559 kref_put(&subsys->ref, nvme_destroy_subsystem); 2560 } 2561 2562 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2563 { 2564 struct nvme_subsystem *subsys; 2565 2566 lockdep_assert_held(&nvme_subsystems_lock); 2567 2568 /* 2569 * Fail matches for discovery subsystems. This results 2570 * in each discovery controller bound to a unique subsystem. 2571 * This avoids issues with validating controller values 2572 * that can only be true when there is a single unique subsystem. 2573 * There may be multiple and completely independent entities 2574 * that provide discovery controllers. 2575 */ 2576 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2577 return NULL; 2578 2579 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2580 if (strcmp(subsys->subnqn, subsysnqn)) 2581 continue; 2582 if (!kref_get_unless_zero(&subsys->ref)) 2583 continue; 2584 return subsys; 2585 } 2586 2587 return NULL; 2588 } 2589 2590 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2591 struct device_attribute subsys_attr_##_name = \ 2592 __ATTR(_name, _mode, _show, NULL) 2593 2594 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2595 struct device_attribute *attr, 2596 char *buf) 2597 { 2598 struct nvme_subsystem *subsys = 2599 container_of(dev, struct nvme_subsystem, dev); 2600 2601 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2602 } 2603 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2604 2605 #define nvme_subsys_show_str_function(field) \ 2606 static ssize_t subsys_##field##_show(struct device *dev, \ 2607 struct device_attribute *attr, char *buf) \ 2608 { \ 2609 struct nvme_subsystem *subsys = \ 2610 container_of(dev, struct nvme_subsystem, dev); \ 2611 return sprintf(buf, "%.*s\n", \ 2612 (int)sizeof(subsys->field), subsys->field); \ 2613 } \ 2614 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2615 2616 nvme_subsys_show_str_function(model); 2617 nvme_subsys_show_str_function(serial); 2618 nvme_subsys_show_str_function(firmware_rev); 2619 2620 static struct attribute *nvme_subsys_attrs[] = { 2621 &subsys_attr_model.attr, 2622 &subsys_attr_serial.attr, 2623 &subsys_attr_firmware_rev.attr, 2624 &subsys_attr_subsysnqn.attr, 2625 #ifdef CONFIG_NVME_MULTIPATH 2626 &subsys_attr_iopolicy.attr, 2627 #endif 2628 NULL, 2629 }; 2630 2631 static struct attribute_group nvme_subsys_attrs_group = { 2632 .attrs = nvme_subsys_attrs, 2633 }; 2634 2635 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2636 &nvme_subsys_attrs_group, 2637 NULL, 2638 }; 2639 2640 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2641 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2642 { 2643 struct nvme_ctrl *tmp; 2644 2645 lockdep_assert_held(&nvme_subsystems_lock); 2646 2647 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2648 if (nvme_state_terminal(tmp)) 2649 continue; 2650 2651 if (tmp->cntlid == ctrl->cntlid) { 2652 dev_err(ctrl->device, 2653 "Duplicate cntlid %u with %s, rejecting\n", 2654 ctrl->cntlid, dev_name(tmp->device)); 2655 return false; 2656 } 2657 2658 if ((id->cmic & (1 << 1)) || 2659 (ctrl->opts && ctrl->opts->discovery_nqn)) 2660 continue; 2661 2662 dev_err(ctrl->device, 2663 "Subsystem does not support multiple controllers\n"); 2664 return false; 2665 } 2666 2667 return true; 2668 } 2669 2670 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2671 { 2672 struct nvme_subsystem *subsys, *found; 2673 int ret; 2674 2675 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2676 if (!subsys) 2677 return -ENOMEM; 2678 2679 subsys->instance = -1; 2680 mutex_init(&subsys->lock); 2681 kref_init(&subsys->ref); 2682 INIT_LIST_HEAD(&subsys->ctrls); 2683 INIT_LIST_HEAD(&subsys->nsheads); 2684 nvme_init_subnqn(subsys, ctrl, id); 2685 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2686 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2687 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2688 subsys->vendor_id = le16_to_cpu(id->vid); 2689 subsys->cmic = id->cmic; 2690 subsys->awupf = le16_to_cpu(id->awupf); 2691 #ifdef CONFIG_NVME_MULTIPATH 2692 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2693 #endif 2694 2695 subsys->dev.class = nvme_subsys_class; 2696 subsys->dev.release = nvme_release_subsystem; 2697 subsys->dev.groups = nvme_subsys_attrs_groups; 2698 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2699 device_initialize(&subsys->dev); 2700 2701 mutex_lock(&nvme_subsystems_lock); 2702 found = __nvme_find_get_subsystem(subsys->subnqn); 2703 if (found) { 2704 put_device(&subsys->dev); 2705 subsys = found; 2706 2707 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2708 ret = -EINVAL; 2709 goto out_put_subsystem; 2710 } 2711 } else { 2712 ret = device_add(&subsys->dev); 2713 if (ret) { 2714 dev_err(ctrl->device, 2715 "failed to register subsystem device.\n"); 2716 put_device(&subsys->dev); 2717 goto out_unlock; 2718 } 2719 ida_init(&subsys->ns_ida); 2720 list_add_tail(&subsys->entry, &nvme_subsystems); 2721 } 2722 2723 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2724 dev_name(ctrl->device)); 2725 if (ret) { 2726 dev_err(ctrl->device, 2727 "failed to create sysfs link from subsystem.\n"); 2728 goto out_put_subsystem; 2729 } 2730 2731 if (!found) 2732 subsys->instance = ctrl->instance; 2733 ctrl->subsys = subsys; 2734 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2735 mutex_unlock(&nvme_subsystems_lock); 2736 return 0; 2737 2738 out_put_subsystem: 2739 nvme_put_subsystem(subsys); 2740 out_unlock: 2741 mutex_unlock(&nvme_subsystems_lock); 2742 return ret; 2743 } 2744 2745 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, 2746 void *log, size_t size, u64 offset) 2747 { 2748 struct nvme_command c = { }; 2749 unsigned long dwlen = size / 4 - 1; 2750 2751 c.get_log_page.opcode = nvme_admin_get_log_page; 2752 c.get_log_page.nsid = cpu_to_le32(nsid); 2753 c.get_log_page.lid = log_page; 2754 c.get_log_page.lsp = lsp; 2755 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2756 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2757 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2758 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2759 2760 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2761 } 2762 2763 static int nvme_get_effects_log(struct nvme_ctrl *ctrl) 2764 { 2765 int ret; 2766 2767 if (!ctrl->effects) 2768 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2769 2770 if (!ctrl->effects) 2771 return 0; 2772 2773 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, 2774 ctrl->effects, sizeof(*ctrl->effects), 0); 2775 if (ret) { 2776 kfree(ctrl->effects); 2777 ctrl->effects = NULL; 2778 } 2779 return ret; 2780 } 2781 2782 /* 2783 * Initialize the cached copies of the Identify data and various controller 2784 * register in our nvme_ctrl structure. This should be called as soon as 2785 * the admin queue is fully up and running. 2786 */ 2787 int nvme_init_identify(struct nvme_ctrl *ctrl) 2788 { 2789 struct nvme_id_ctrl *id; 2790 int ret, page_shift; 2791 u32 max_hw_sectors; 2792 bool prev_apst_enabled; 2793 2794 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2795 if (ret) { 2796 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2797 return ret; 2798 } 2799 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2800 ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 2801 2802 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2803 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 2804 2805 ret = nvme_identify_ctrl(ctrl, &id); 2806 if (ret) { 2807 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2808 return -EIO; 2809 } 2810 2811 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2812 ret = nvme_get_effects_log(ctrl); 2813 if (ret < 0) 2814 goto out_free; 2815 } 2816 2817 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2818 ctrl->cntlid = le16_to_cpu(id->cntlid); 2819 2820 if (!ctrl->identified) { 2821 int i; 2822 2823 ret = nvme_init_subsystem(ctrl, id); 2824 if (ret) 2825 goto out_free; 2826 2827 /* 2828 * Check for quirks. Quirk can depend on firmware version, 2829 * so, in principle, the set of quirks present can change 2830 * across a reset. As a possible future enhancement, we 2831 * could re-scan for quirks every time we reinitialize 2832 * the device, but we'd have to make sure that the driver 2833 * behaves intelligently if the quirks change. 2834 */ 2835 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2836 if (quirk_matches(id, &core_quirks[i])) 2837 ctrl->quirks |= core_quirks[i].quirks; 2838 } 2839 } 2840 2841 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2842 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2843 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2844 } 2845 2846 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2847 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2848 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2849 2850 ctrl->oacs = le16_to_cpu(id->oacs); 2851 ctrl->oncs = le16_to_cpu(id->oncs); 2852 ctrl->mtfa = le16_to_cpu(id->mtfa); 2853 ctrl->oaes = le32_to_cpu(id->oaes); 2854 ctrl->wctemp = le16_to_cpu(id->wctemp); 2855 ctrl->cctemp = le16_to_cpu(id->cctemp); 2856 2857 atomic_set(&ctrl->abort_limit, id->acl + 1); 2858 ctrl->vwc = id->vwc; 2859 if (id->mdts) 2860 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 2861 else 2862 max_hw_sectors = UINT_MAX; 2863 ctrl->max_hw_sectors = 2864 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2865 2866 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2867 ctrl->sgls = le32_to_cpu(id->sgls); 2868 ctrl->kas = le16_to_cpu(id->kas); 2869 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2870 ctrl->ctratt = le32_to_cpu(id->ctratt); 2871 2872 if (id->rtd3e) { 2873 /* us -> s */ 2874 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 2875 2876 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2877 shutdown_timeout, 60); 2878 2879 if (ctrl->shutdown_timeout != shutdown_timeout) 2880 dev_info(ctrl->device, 2881 "Shutdown timeout set to %u seconds\n", 2882 ctrl->shutdown_timeout); 2883 } else 2884 ctrl->shutdown_timeout = shutdown_timeout; 2885 2886 ctrl->npss = id->npss; 2887 ctrl->apsta = id->apsta; 2888 prev_apst_enabled = ctrl->apst_enabled; 2889 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2890 if (force_apst && id->apsta) { 2891 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2892 ctrl->apst_enabled = true; 2893 } else { 2894 ctrl->apst_enabled = false; 2895 } 2896 } else { 2897 ctrl->apst_enabled = id->apsta; 2898 } 2899 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2900 2901 if (ctrl->ops->flags & NVME_F_FABRICS) { 2902 ctrl->icdoff = le16_to_cpu(id->icdoff); 2903 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2904 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2905 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2906 2907 /* 2908 * In fabrics we need to verify the cntlid matches the 2909 * admin connect 2910 */ 2911 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2912 dev_err(ctrl->device, 2913 "Mismatching cntlid: Connect %u vs Identify " 2914 "%u, rejecting\n", 2915 ctrl->cntlid, le16_to_cpu(id->cntlid)); 2916 ret = -EINVAL; 2917 goto out_free; 2918 } 2919 2920 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 2921 dev_err(ctrl->device, 2922 "keep-alive support is mandatory for fabrics\n"); 2923 ret = -EINVAL; 2924 goto out_free; 2925 } 2926 } else { 2927 ctrl->hmpre = le32_to_cpu(id->hmpre); 2928 ctrl->hmmin = le32_to_cpu(id->hmmin); 2929 ctrl->hmminds = le32_to_cpu(id->hmminds); 2930 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2931 } 2932 2933 ret = nvme_mpath_init(ctrl, id); 2934 kfree(id); 2935 2936 if (ret < 0) 2937 return ret; 2938 2939 if (ctrl->apst_enabled && !prev_apst_enabled) 2940 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2941 else if (!ctrl->apst_enabled && prev_apst_enabled) 2942 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2943 2944 ret = nvme_configure_apst(ctrl); 2945 if (ret < 0) 2946 return ret; 2947 2948 ret = nvme_configure_timestamp(ctrl); 2949 if (ret < 0) 2950 return ret; 2951 2952 ret = nvme_configure_directives(ctrl); 2953 if (ret < 0) 2954 return ret; 2955 2956 ret = nvme_configure_acre(ctrl); 2957 if (ret < 0) 2958 return ret; 2959 2960 if (!ctrl->identified) 2961 nvme_hwmon_init(ctrl); 2962 2963 ctrl->identified = true; 2964 2965 return 0; 2966 2967 out_free: 2968 kfree(id); 2969 return ret; 2970 } 2971 EXPORT_SYMBOL_GPL(nvme_init_identify); 2972 2973 static int nvme_dev_open(struct inode *inode, struct file *file) 2974 { 2975 struct nvme_ctrl *ctrl = 2976 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2977 2978 switch (ctrl->state) { 2979 case NVME_CTRL_LIVE: 2980 break; 2981 default: 2982 return -EWOULDBLOCK; 2983 } 2984 2985 file->private_data = ctrl; 2986 return 0; 2987 } 2988 2989 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 2990 { 2991 struct nvme_ns *ns; 2992 int ret; 2993 2994 down_read(&ctrl->namespaces_rwsem); 2995 if (list_empty(&ctrl->namespaces)) { 2996 ret = -ENOTTY; 2997 goto out_unlock; 2998 } 2999 3000 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 3001 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 3002 dev_warn(ctrl->device, 3003 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 3004 ret = -EINVAL; 3005 goto out_unlock; 3006 } 3007 3008 dev_warn(ctrl->device, 3009 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 3010 kref_get(&ns->kref); 3011 up_read(&ctrl->namespaces_rwsem); 3012 3013 ret = nvme_user_cmd(ctrl, ns, argp); 3014 nvme_put_ns(ns); 3015 return ret; 3016 3017 out_unlock: 3018 up_read(&ctrl->namespaces_rwsem); 3019 return ret; 3020 } 3021 3022 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 3023 unsigned long arg) 3024 { 3025 struct nvme_ctrl *ctrl = file->private_data; 3026 void __user *argp = (void __user *)arg; 3027 3028 switch (cmd) { 3029 case NVME_IOCTL_ADMIN_CMD: 3030 return nvme_user_cmd(ctrl, NULL, argp); 3031 case NVME_IOCTL_ADMIN64_CMD: 3032 return nvme_user_cmd64(ctrl, NULL, argp); 3033 case NVME_IOCTL_IO_CMD: 3034 return nvme_dev_user_cmd(ctrl, argp); 3035 case NVME_IOCTL_RESET: 3036 dev_warn(ctrl->device, "resetting controller\n"); 3037 return nvme_reset_ctrl_sync(ctrl); 3038 case NVME_IOCTL_SUBSYS_RESET: 3039 return nvme_reset_subsystem(ctrl); 3040 case NVME_IOCTL_RESCAN: 3041 nvme_queue_scan(ctrl); 3042 return 0; 3043 default: 3044 return -ENOTTY; 3045 } 3046 } 3047 3048 static const struct file_operations nvme_dev_fops = { 3049 .owner = THIS_MODULE, 3050 .open = nvme_dev_open, 3051 .unlocked_ioctl = nvme_dev_ioctl, 3052 .compat_ioctl = compat_ptr_ioctl, 3053 }; 3054 3055 static ssize_t nvme_sysfs_reset(struct device *dev, 3056 struct device_attribute *attr, const char *buf, 3057 size_t count) 3058 { 3059 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3060 int ret; 3061 3062 ret = nvme_reset_ctrl_sync(ctrl); 3063 if (ret < 0) 3064 return ret; 3065 return count; 3066 } 3067 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3068 3069 static ssize_t nvme_sysfs_rescan(struct device *dev, 3070 struct device_attribute *attr, const char *buf, 3071 size_t count) 3072 { 3073 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3074 3075 nvme_queue_scan(ctrl); 3076 return count; 3077 } 3078 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3079 3080 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3081 { 3082 struct gendisk *disk = dev_to_disk(dev); 3083 3084 if (disk->fops == &nvme_fops) 3085 return nvme_get_ns_from_dev(dev)->head; 3086 else 3087 return disk->private_data; 3088 } 3089 3090 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3091 char *buf) 3092 { 3093 struct nvme_ns_head *head = dev_to_ns_head(dev); 3094 struct nvme_ns_ids *ids = &head->ids; 3095 struct nvme_subsystem *subsys = head->subsys; 3096 int serial_len = sizeof(subsys->serial); 3097 int model_len = sizeof(subsys->model); 3098 3099 if (!uuid_is_null(&ids->uuid)) 3100 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 3101 3102 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3103 return sprintf(buf, "eui.%16phN\n", ids->nguid); 3104 3105 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3106 return sprintf(buf, "eui.%8phN\n", ids->eui64); 3107 3108 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3109 subsys->serial[serial_len - 1] == '\0')) 3110 serial_len--; 3111 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3112 subsys->model[model_len - 1] == '\0')) 3113 model_len--; 3114 3115 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3116 serial_len, subsys->serial, model_len, subsys->model, 3117 head->ns_id); 3118 } 3119 static DEVICE_ATTR_RO(wwid); 3120 3121 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3122 char *buf) 3123 { 3124 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3125 } 3126 static DEVICE_ATTR_RO(nguid); 3127 3128 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3129 char *buf) 3130 { 3131 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3132 3133 /* For backward compatibility expose the NGUID to userspace if 3134 * we have no UUID set 3135 */ 3136 if (uuid_is_null(&ids->uuid)) { 3137 printk_ratelimited(KERN_WARNING 3138 "No UUID available providing old NGUID\n"); 3139 return sprintf(buf, "%pU\n", ids->nguid); 3140 } 3141 return sprintf(buf, "%pU\n", &ids->uuid); 3142 } 3143 static DEVICE_ATTR_RO(uuid); 3144 3145 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3146 char *buf) 3147 { 3148 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3149 } 3150 static DEVICE_ATTR_RO(eui); 3151 3152 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3153 char *buf) 3154 { 3155 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3156 } 3157 static DEVICE_ATTR_RO(nsid); 3158 3159 static struct attribute *nvme_ns_id_attrs[] = { 3160 &dev_attr_wwid.attr, 3161 &dev_attr_uuid.attr, 3162 &dev_attr_nguid.attr, 3163 &dev_attr_eui.attr, 3164 &dev_attr_nsid.attr, 3165 #ifdef CONFIG_NVME_MULTIPATH 3166 &dev_attr_ana_grpid.attr, 3167 &dev_attr_ana_state.attr, 3168 #endif 3169 NULL, 3170 }; 3171 3172 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3173 struct attribute *a, int n) 3174 { 3175 struct device *dev = container_of(kobj, struct device, kobj); 3176 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3177 3178 if (a == &dev_attr_uuid.attr) { 3179 if (uuid_is_null(&ids->uuid) && 3180 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3181 return 0; 3182 } 3183 if (a == &dev_attr_nguid.attr) { 3184 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3185 return 0; 3186 } 3187 if (a == &dev_attr_eui.attr) { 3188 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3189 return 0; 3190 } 3191 #ifdef CONFIG_NVME_MULTIPATH 3192 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3193 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */ 3194 return 0; 3195 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3196 return 0; 3197 } 3198 #endif 3199 return a->mode; 3200 } 3201 3202 static const struct attribute_group nvme_ns_id_attr_group = { 3203 .attrs = nvme_ns_id_attrs, 3204 .is_visible = nvme_ns_id_attrs_are_visible, 3205 }; 3206 3207 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3208 &nvme_ns_id_attr_group, 3209 #ifdef CONFIG_NVM 3210 &nvme_nvm_attr_group, 3211 #endif 3212 NULL, 3213 }; 3214 3215 #define nvme_show_str_function(field) \ 3216 static ssize_t field##_show(struct device *dev, \ 3217 struct device_attribute *attr, char *buf) \ 3218 { \ 3219 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3220 return sprintf(buf, "%.*s\n", \ 3221 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3222 } \ 3223 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3224 3225 nvme_show_str_function(model); 3226 nvme_show_str_function(serial); 3227 nvme_show_str_function(firmware_rev); 3228 3229 #define nvme_show_int_function(field) \ 3230 static ssize_t field##_show(struct device *dev, \ 3231 struct device_attribute *attr, char *buf) \ 3232 { \ 3233 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3234 return sprintf(buf, "%d\n", ctrl->field); \ 3235 } \ 3236 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3237 3238 nvme_show_int_function(cntlid); 3239 nvme_show_int_function(numa_node); 3240 nvme_show_int_function(queue_count); 3241 nvme_show_int_function(sqsize); 3242 3243 static ssize_t nvme_sysfs_delete(struct device *dev, 3244 struct device_attribute *attr, const char *buf, 3245 size_t count) 3246 { 3247 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3248 3249 /* Can't delete non-created controllers */ 3250 if (!ctrl->created) 3251 return -EBUSY; 3252 3253 if (device_remove_file_self(dev, attr)) 3254 nvme_delete_ctrl_sync(ctrl); 3255 return count; 3256 } 3257 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3258 3259 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3260 struct device_attribute *attr, 3261 char *buf) 3262 { 3263 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3264 3265 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 3266 } 3267 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3268 3269 static ssize_t nvme_sysfs_show_state(struct device *dev, 3270 struct device_attribute *attr, 3271 char *buf) 3272 { 3273 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3274 static const char *const state_name[] = { 3275 [NVME_CTRL_NEW] = "new", 3276 [NVME_CTRL_LIVE] = "live", 3277 [NVME_CTRL_RESETTING] = "resetting", 3278 [NVME_CTRL_CONNECTING] = "connecting", 3279 [NVME_CTRL_DELETING] = "deleting", 3280 [NVME_CTRL_DEAD] = "dead", 3281 }; 3282 3283 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3284 state_name[ctrl->state]) 3285 return sprintf(buf, "%s\n", state_name[ctrl->state]); 3286 3287 return sprintf(buf, "unknown state\n"); 3288 } 3289 3290 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3291 3292 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3293 struct device_attribute *attr, 3294 char *buf) 3295 { 3296 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3297 3298 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 3299 } 3300 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3301 3302 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3303 struct device_attribute *attr, 3304 char *buf) 3305 { 3306 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3307 3308 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn); 3309 } 3310 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3311 3312 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3313 struct device_attribute *attr, 3314 char *buf) 3315 { 3316 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3317 3318 return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id); 3319 } 3320 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3321 3322 static ssize_t nvme_sysfs_show_address(struct device *dev, 3323 struct device_attribute *attr, 3324 char *buf) 3325 { 3326 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3327 3328 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3329 } 3330 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3331 3332 static struct attribute *nvme_dev_attrs[] = { 3333 &dev_attr_reset_controller.attr, 3334 &dev_attr_rescan_controller.attr, 3335 &dev_attr_model.attr, 3336 &dev_attr_serial.attr, 3337 &dev_attr_firmware_rev.attr, 3338 &dev_attr_cntlid.attr, 3339 &dev_attr_delete_controller.attr, 3340 &dev_attr_transport.attr, 3341 &dev_attr_subsysnqn.attr, 3342 &dev_attr_address.attr, 3343 &dev_attr_state.attr, 3344 &dev_attr_numa_node.attr, 3345 &dev_attr_queue_count.attr, 3346 &dev_attr_sqsize.attr, 3347 &dev_attr_hostnqn.attr, 3348 &dev_attr_hostid.attr, 3349 NULL 3350 }; 3351 3352 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3353 struct attribute *a, int n) 3354 { 3355 struct device *dev = container_of(kobj, struct device, kobj); 3356 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3357 3358 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3359 return 0; 3360 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3361 return 0; 3362 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3363 return 0; 3364 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3365 return 0; 3366 3367 return a->mode; 3368 } 3369 3370 static struct attribute_group nvme_dev_attrs_group = { 3371 .attrs = nvme_dev_attrs, 3372 .is_visible = nvme_dev_attrs_are_visible, 3373 }; 3374 3375 static const struct attribute_group *nvme_dev_attr_groups[] = { 3376 &nvme_dev_attrs_group, 3377 NULL, 3378 }; 3379 3380 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, 3381 unsigned nsid) 3382 { 3383 struct nvme_ns_head *h; 3384 3385 lockdep_assert_held(&subsys->lock); 3386 3387 list_for_each_entry(h, &subsys->nsheads, entry) { 3388 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 3389 return h; 3390 } 3391 3392 return NULL; 3393 } 3394 3395 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3396 struct nvme_ns_head *new) 3397 { 3398 struct nvme_ns_head *h; 3399 3400 lockdep_assert_held(&subsys->lock); 3401 3402 list_for_each_entry(h, &subsys->nsheads, entry) { 3403 if (nvme_ns_ids_valid(&new->ids) && 3404 !list_empty(&h->list) && 3405 nvme_ns_ids_equal(&new->ids, &h->ids)) 3406 return -EINVAL; 3407 } 3408 3409 return 0; 3410 } 3411 3412 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3413 unsigned nsid, struct nvme_id_ns *id, 3414 struct nvme_ns_ids *ids) 3415 { 3416 struct nvme_ns_head *head; 3417 size_t size = sizeof(*head); 3418 int ret = -ENOMEM; 3419 3420 #ifdef CONFIG_NVME_MULTIPATH 3421 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3422 #endif 3423 3424 head = kzalloc(size, GFP_KERNEL); 3425 if (!head) 3426 goto out; 3427 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3428 if (ret < 0) 3429 goto out_free_head; 3430 head->instance = ret; 3431 INIT_LIST_HEAD(&head->list); 3432 ret = init_srcu_struct(&head->srcu); 3433 if (ret) 3434 goto out_ida_remove; 3435 head->subsys = ctrl->subsys; 3436 head->ns_id = nsid; 3437 head->ids = *ids; 3438 kref_init(&head->ref); 3439 3440 ret = __nvme_check_ids(ctrl->subsys, head); 3441 if (ret) { 3442 dev_err(ctrl->device, 3443 "duplicate IDs for nsid %d\n", nsid); 3444 goto out_cleanup_srcu; 3445 } 3446 3447 ret = nvme_mpath_alloc_disk(ctrl, head); 3448 if (ret) 3449 goto out_cleanup_srcu; 3450 3451 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3452 3453 kref_get(&ctrl->subsys->ref); 3454 3455 return head; 3456 out_cleanup_srcu: 3457 cleanup_srcu_struct(&head->srcu); 3458 out_ida_remove: 3459 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3460 out_free_head: 3461 kfree(head); 3462 out: 3463 if (ret > 0) 3464 ret = blk_status_to_errno(nvme_error_status(ret)); 3465 return ERR_PTR(ret); 3466 } 3467 3468 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3469 struct nvme_id_ns *id) 3470 { 3471 struct nvme_ctrl *ctrl = ns->ctrl; 3472 bool is_shared = id->nmic & (1 << 0); 3473 struct nvme_ns_head *head = NULL; 3474 struct nvme_ns_ids ids; 3475 int ret = 0; 3476 3477 ret = nvme_report_ns_ids(ctrl, nsid, id, &ids); 3478 if (ret) 3479 goto out; 3480 3481 mutex_lock(&ctrl->subsys->lock); 3482 if (is_shared) 3483 head = nvme_find_ns_head(ctrl->subsys, nsid); 3484 if (!head) { 3485 head = nvme_alloc_ns_head(ctrl, nsid, id, &ids); 3486 if (IS_ERR(head)) { 3487 ret = PTR_ERR(head); 3488 goto out_unlock; 3489 } 3490 } else { 3491 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 3492 dev_err(ctrl->device, 3493 "IDs don't match for shared namespace %d\n", 3494 nsid); 3495 ret = -EINVAL; 3496 goto out_unlock; 3497 } 3498 } 3499 3500 list_add_tail(&ns->siblings, &head->list); 3501 ns->head = head; 3502 3503 out_unlock: 3504 mutex_unlock(&ctrl->subsys->lock); 3505 out: 3506 if (ret > 0) 3507 ret = blk_status_to_errno(nvme_error_status(ret)); 3508 return ret; 3509 } 3510 3511 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 3512 { 3513 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3514 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3515 3516 return nsa->head->ns_id - nsb->head->ns_id; 3517 } 3518 3519 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3520 { 3521 struct nvme_ns *ns, *ret = NULL; 3522 3523 down_read(&ctrl->namespaces_rwsem); 3524 list_for_each_entry(ns, &ctrl->namespaces, list) { 3525 if (ns->head->ns_id == nsid) { 3526 if (!kref_get_unless_zero(&ns->kref)) 3527 continue; 3528 ret = ns; 3529 break; 3530 } 3531 if (ns->head->ns_id > nsid) 3532 break; 3533 } 3534 up_read(&ctrl->namespaces_rwsem); 3535 return ret; 3536 } 3537 3538 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) 3539 { 3540 struct streams_directive_params s; 3541 int ret; 3542 3543 if (!ctrl->nr_streams) 3544 return 0; 3545 3546 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 3547 if (ret) 3548 return ret; 3549 3550 ns->sws = le32_to_cpu(s.sws); 3551 ns->sgs = le16_to_cpu(s.sgs); 3552 3553 if (ns->sws) { 3554 unsigned int bs = 1 << ns->lba_shift; 3555 3556 blk_queue_io_min(ns->queue, bs * ns->sws); 3557 if (ns->sgs) 3558 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); 3559 } 3560 3561 return 0; 3562 } 3563 3564 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3565 { 3566 struct nvme_ns *ns; 3567 struct gendisk *disk; 3568 struct nvme_id_ns *id; 3569 char disk_name[DISK_NAME_LEN]; 3570 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret; 3571 3572 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3573 if (!ns) 3574 return; 3575 3576 ns->queue = blk_mq_init_queue(ctrl->tagset); 3577 if (IS_ERR(ns->queue)) 3578 goto out_free_ns; 3579 3580 if (ctrl->opts && ctrl->opts->data_digest) 3581 ns->queue->backing_dev_info->capabilities 3582 |= BDI_CAP_STABLE_WRITES; 3583 3584 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3585 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3586 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3587 3588 ns->queue->queuedata = ns; 3589 ns->ctrl = ctrl; 3590 3591 kref_init(&ns->kref); 3592 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 3593 3594 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 3595 nvme_set_queue_limits(ctrl, ns->queue); 3596 3597 ret = nvme_identify_ns(ctrl, nsid, &id); 3598 if (ret) 3599 goto out_free_queue; 3600 3601 if (id->ncap == 0) /* no namespace (legacy quirk) */ 3602 goto out_free_id; 3603 3604 ret = nvme_init_ns_head(ns, nsid, id); 3605 if (ret) 3606 goto out_free_id; 3607 nvme_setup_streams_ns(ctrl, ns); 3608 nvme_set_disk_name(disk_name, ns, ctrl, &flags); 3609 3610 disk = alloc_disk_node(0, node); 3611 if (!disk) 3612 goto out_unlink_ns; 3613 3614 disk->fops = &nvme_fops; 3615 disk->private_data = ns; 3616 disk->queue = ns->queue; 3617 disk->flags = flags; 3618 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3619 ns->disk = disk; 3620 3621 __nvme_revalidate_disk(disk, id); 3622 3623 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3624 ret = nvme_nvm_register(ns, disk_name, node); 3625 if (ret) { 3626 dev_warn(ctrl->device, "LightNVM init failure\n"); 3627 goto out_put_disk; 3628 } 3629 } 3630 3631 down_write(&ctrl->namespaces_rwsem); 3632 list_add_tail(&ns->list, &ctrl->namespaces); 3633 up_write(&ctrl->namespaces_rwsem); 3634 3635 nvme_get_ctrl(ctrl); 3636 3637 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3638 3639 nvme_mpath_add_disk(ns, id); 3640 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3641 kfree(id); 3642 3643 return; 3644 out_put_disk: 3645 /* prevent double queue cleanup */ 3646 ns->disk->queue = NULL; 3647 put_disk(ns->disk); 3648 out_unlink_ns: 3649 mutex_lock(&ctrl->subsys->lock); 3650 list_del_rcu(&ns->siblings); 3651 mutex_unlock(&ctrl->subsys->lock); 3652 nvme_put_ns_head(ns->head); 3653 out_free_id: 3654 kfree(id); 3655 out_free_queue: 3656 blk_cleanup_queue(ns->queue); 3657 out_free_ns: 3658 kfree(ns); 3659 } 3660 3661 static void nvme_ns_remove(struct nvme_ns *ns) 3662 { 3663 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3664 return; 3665 3666 nvme_fault_inject_fini(&ns->fault_inject); 3667 3668 mutex_lock(&ns->ctrl->subsys->lock); 3669 list_del_rcu(&ns->siblings); 3670 mutex_unlock(&ns->ctrl->subsys->lock); 3671 synchronize_rcu(); /* guarantee not available in head->list */ 3672 nvme_mpath_clear_current_path(ns); 3673 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */ 3674 3675 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 3676 del_gendisk(ns->disk); 3677 blk_cleanup_queue(ns->queue); 3678 if (blk_get_integrity(ns->disk)) 3679 blk_integrity_unregister(ns->disk); 3680 } 3681 3682 down_write(&ns->ctrl->namespaces_rwsem); 3683 list_del_init(&ns->list); 3684 up_write(&ns->ctrl->namespaces_rwsem); 3685 3686 nvme_mpath_check_last_path(ns); 3687 nvme_put_ns(ns); 3688 } 3689 3690 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3691 { 3692 struct nvme_ns *ns; 3693 3694 ns = nvme_find_get_ns(ctrl, nsid); 3695 if (ns) { 3696 if (ns->disk && revalidate_disk(ns->disk)) 3697 nvme_ns_remove(ns); 3698 nvme_put_ns(ns); 3699 } else 3700 nvme_alloc_ns(ctrl, nsid); 3701 } 3702 3703 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3704 unsigned nsid) 3705 { 3706 struct nvme_ns *ns, *next; 3707 LIST_HEAD(rm_list); 3708 3709 down_write(&ctrl->namespaces_rwsem); 3710 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3711 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3712 list_move_tail(&ns->list, &rm_list); 3713 } 3714 up_write(&ctrl->namespaces_rwsem); 3715 3716 list_for_each_entry_safe(ns, next, &rm_list, list) 3717 nvme_ns_remove(ns); 3718 3719 } 3720 3721 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 3722 { 3723 struct nvme_ns *ns; 3724 __le32 *ns_list; 3725 unsigned i, j, nsid, prev = 0; 3726 unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024); 3727 int ret = 0; 3728 3729 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3730 if (!ns_list) 3731 return -ENOMEM; 3732 3733 for (i = 0; i < num_lists; i++) { 3734 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 3735 if (ret) 3736 goto free; 3737 3738 for (j = 0; j < min(nn, 1024U); j++) { 3739 nsid = le32_to_cpu(ns_list[j]); 3740 if (!nsid) 3741 goto out; 3742 3743 nvme_validate_ns(ctrl, nsid); 3744 3745 while (++prev < nsid) { 3746 ns = nvme_find_get_ns(ctrl, prev); 3747 if (ns) { 3748 nvme_ns_remove(ns); 3749 nvme_put_ns(ns); 3750 } 3751 } 3752 } 3753 nn -= j; 3754 } 3755 out: 3756 nvme_remove_invalid_namespaces(ctrl, prev); 3757 free: 3758 kfree(ns_list); 3759 return ret; 3760 } 3761 3762 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 3763 { 3764 unsigned i; 3765 3766 for (i = 1; i <= nn; i++) 3767 nvme_validate_ns(ctrl, i); 3768 3769 nvme_remove_invalid_namespaces(ctrl, nn); 3770 } 3771 3772 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3773 { 3774 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3775 __le32 *log; 3776 int error; 3777 3778 log = kzalloc(log_size, GFP_KERNEL); 3779 if (!log) 3780 return; 3781 3782 /* 3783 * We need to read the log to clear the AEN, but we don't want to rely 3784 * on it for the changed namespace information as userspace could have 3785 * raced with us in reading the log page, which could cause us to miss 3786 * updates. 3787 */ 3788 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log, 3789 log_size, 0); 3790 if (error) 3791 dev_warn(ctrl->device, 3792 "reading changed ns log failed: %d\n", error); 3793 3794 kfree(log); 3795 } 3796 3797 static void nvme_scan_work(struct work_struct *work) 3798 { 3799 struct nvme_ctrl *ctrl = 3800 container_of(work, struct nvme_ctrl, scan_work); 3801 struct nvme_id_ctrl *id; 3802 unsigned nn; 3803 3804 /* No tagset on a live ctrl means IO queues could not created */ 3805 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 3806 return; 3807 3808 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3809 dev_info(ctrl->device, "rescanning namespaces.\n"); 3810 nvme_clear_changed_ns_log(ctrl); 3811 } 3812 3813 if (nvme_identify_ctrl(ctrl, &id)) 3814 return; 3815 3816 mutex_lock(&ctrl->scan_lock); 3817 nn = le32_to_cpu(id->nn); 3818 if (ctrl->vs >= NVME_VS(1, 1, 0) && 3819 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 3820 if (!nvme_scan_ns_list(ctrl, nn)) 3821 goto out_free_id; 3822 } 3823 nvme_scan_ns_sequential(ctrl, nn); 3824 out_free_id: 3825 mutex_unlock(&ctrl->scan_lock); 3826 kfree(id); 3827 down_write(&ctrl->namespaces_rwsem); 3828 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3829 up_write(&ctrl->namespaces_rwsem); 3830 } 3831 3832 /* 3833 * This function iterates the namespace list unlocked to allow recovery from 3834 * controller failure. It is up to the caller to ensure the namespace list is 3835 * not modified by scan work while this function is executing. 3836 */ 3837 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3838 { 3839 struct nvme_ns *ns, *next; 3840 LIST_HEAD(ns_list); 3841 3842 /* 3843 * make sure to requeue I/O to all namespaces as these 3844 * might result from the scan itself and must complete 3845 * for the scan_work to make progress 3846 */ 3847 nvme_mpath_clear_ctrl_paths(ctrl); 3848 3849 /* prevent racing with ns scanning */ 3850 flush_work(&ctrl->scan_work); 3851 3852 /* 3853 * The dead states indicates the controller was not gracefully 3854 * disconnected. In that case, we won't be able to flush any data while 3855 * removing the namespaces' disks; fail all the queues now to avoid 3856 * potentially having to clean up the failed sync later. 3857 */ 3858 if (ctrl->state == NVME_CTRL_DEAD) 3859 nvme_kill_queues(ctrl); 3860 3861 down_write(&ctrl->namespaces_rwsem); 3862 list_splice_init(&ctrl->namespaces, &ns_list); 3863 up_write(&ctrl->namespaces_rwsem); 3864 3865 list_for_each_entry_safe(ns, next, &ns_list, list) 3866 nvme_ns_remove(ns); 3867 } 3868 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3869 3870 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 3871 { 3872 struct nvme_ctrl *ctrl = 3873 container_of(dev, struct nvme_ctrl, ctrl_device); 3874 struct nvmf_ctrl_options *opts = ctrl->opts; 3875 int ret; 3876 3877 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 3878 if (ret) 3879 return ret; 3880 3881 if (opts) { 3882 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 3883 if (ret) 3884 return ret; 3885 3886 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 3887 opts->trsvcid ?: "none"); 3888 if (ret) 3889 return ret; 3890 3891 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 3892 opts->host_traddr ?: "none"); 3893 } 3894 return ret; 3895 } 3896 3897 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 3898 { 3899 char *envp[2] = { NULL, NULL }; 3900 u32 aen_result = ctrl->aen_result; 3901 3902 ctrl->aen_result = 0; 3903 if (!aen_result) 3904 return; 3905 3906 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 3907 if (!envp[0]) 3908 return; 3909 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 3910 kfree(envp[0]); 3911 } 3912 3913 static void nvme_async_event_work(struct work_struct *work) 3914 { 3915 struct nvme_ctrl *ctrl = 3916 container_of(work, struct nvme_ctrl, async_event_work); 3917 3918 nvme_aen_uevent(ctrl); 3919 ctrl->ops->submit_async_event(ctrl); 3920 } 3921 3922 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 3923 { 3924 3925 u32 csts; 3926 3927 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 3928 return false; 3929 3930 if (csts == ~0) 3931 return false; 3932 3933 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 3934 } 3935 3936 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 3937 { 3938 struct nvme_fw_slot_info_log *log; 3939 3940 log = kmalloc(sizeof(*log), GFP_KERNEL); 3941 if (!log) 3942 return; 3943 3944 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, log, 3945 sizeof(*log), 0)) 3946 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 3947 kfree(log); 3948 } 3949 3950 static void nvme_fw_act_work(struct work_struct *work) 3951 { 3952 struct nvme_ctrl *ctrl = container_of(work, 3953 struct nvme_ctrl, fw_act_work); 3954 unsigned long fw_act_timeout; 3955 3956 if (ctrl->mtfa) 3957 fw_act_timeout = jiffies + 3958 msecs_to_jiffies(ctrl->mtfa * 100); 3959 else 3960 fw_act_timeout = jiffies + 3961 msecs_to_jiffies(admin_timeout * 1000); 3962 3963 nvme_stop_queues(ctrl); 3964 while (nvme_ctrl_pp_status(ctrl)) { 3965 if (time_after(jiffies, fw_act_timeout)) { 3966 dev_warn(ctrl->device, 3967 "Fw activation timeout, reset controller\n"); 3968 nvme_try_sched_reset(ctrl); 3969 return; 3970 } 3971 msleep(100); 3972 } 3973 3974 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 3975 return; 3976 3977 nvme_start_queues(ctrl); 3978 /* read FW slot information to clear the AER */ 3979 nvme_get_fw_slot_info(ctrl); 3980 } 3981 3982 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 3983 { 3984 u32 aer_notice_type = (result & 0xff00) >> 8; 3985 3986 trace_nvme_async_event(ctrl, aer_notice_type); 3987 3988 switch (aer_notice_type) { 3989 case NVME_AER_NOTICE_NS_CHANGED: 3990 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 3991 nvme_queue_scan(ctrl); 3992 break; 3993 case NVME_AER_NOTICE_FW_ACT_STARTING: 3994 /* 3995 * We are (ab)using the RESETTING state to prevent subsequent 3996 * recovery actions from interfering with the controller's 3997 * firmware activation. 3998 */ 3999 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4000 queue_work(nvme_wq, &ctrl->fw_act_work); 4001 break; 4002 #ifdef CONFIG_NVME_MULTIPATH 4003 case NVME_AER_NOTICE_ANA: 4004 if (!ctrl->ana_log_buf) 4005 break; 4006 queue_work(nvme_wq, &ctrl->ana_work); 4007 break; 4008 #endif 4009 case NVME_AER_NOTICE_DISC_CHANGED: 4010 ctrl->aen_result = result; 4011 break; 4012 default: 4013 dev_warn(ctrl->device, "async event result %08x\n", result); 4014 } 4015 } 4016 4017 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4018 volatile union nvme_result *res) 4019 { 4020 u32 result = le32_to_cpu(res->u32); 4021 u32 aer_type = result & 0x07; 4022 4023 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4024 return; 4025 4026 switch (aer_type) { 4027 case NVME_AER_NOTICE: 4028 nvme_handle_aen_notice(ctrl, result); 4029 break; 4030 case NVME_AER_ERROR: 4031 case NVME_AER_SMART: 4032 case NVME_AER_CSS: 4033 case NVME_AER_VS: 4034 trace_nvme_async_event(ctrl, aer_type); 4035 ctrl->aen_result = result; 4036 break; 4037 default: 4038 break; 4039 } 4040 queue_work(nvme_wq, &ctrl->async_event_work); 4041 } 4042 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4043 4044 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4045 { 4046 nvme_mpath_stop(ctrl); 4047 nvme_stop_keep_alive(ctrl); 4048 flush_work(&ctrl->async_event_work); 4049 cancel_work_sync(&ctrl->fw_act_work); 4050 } 4051 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4052 4053 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4054 { 4055 if (ctrl->kato) 4056 nvme_start_keep_alive(ctrl); 4057 4058 nvme_enable_aen(ctrl); 4059 4060 if (ctrl->queue_count > 1) { 4061 nvme_queue_scan(ctrl); 4062 nvme_start_queues(ctrl); 4063 } 4064 ctrl->created = true; 4065 } 4066 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4067 4068 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4069 { 4070 nvme_fault_inject_fini(&ctrl->fault_inject); 4071 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4072 cdev_device_del(&ctrl->cdev, ctrl->device); 4073 nvme_put_ctrl(ctrl); 4074 } 4075 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4076 4077 static void nvme_free_ctrl(struct device *dev) 4078 { 4079 struct nvme_ctrl *ctrl = 4080 container_of(dev, struct nvme_ctrl, ctrl_device); 4081 struct nvme_subsystem *subsys = ctrl->subsys; 4082 4083 if (subsys && ctrl->instance != subsys->instance) 4084 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4085 4086 kfree(ctrl->effects); 4087 nvme_mpath_uninit(ctrl); 4088 __free_page(ctrl->discard_page); 4089 4090 if (subsys) { 4091 mutex_lock(&nvme_subsystems_lock); 4092 list_del(&ctrl->subsys_entry); 4093 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4094 mutex_unlock(&nvme_subsystems_lock); 4095 } 4096 4097 ctrl->ops->free_ctrl(ctrl); 4098 4099 if (subsys) 4100 nvme_put_subsystem(subsys); 4101 } 4102 4103 /* 4104 * Initialize a NVMe controller structures. This needs to be called during 4105 * earliest initialization so that we have the initialized structured around 4106 * during probing. 4107 */ 4108 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4109 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4110 { 4111 int ret; 4112 4113 ctrl->state = NVME_CTRL_NEW; 4114 spin_lock_init(&ctrl->lock); 4115 mutex_init(&ctrl->scan_lock); 4116 INIT_LIST_HEAD(&ctrl->namespaces); 4117 init_rwsem(&ctrl->namespaces_rwsem); 4118 ctrl->dev = dev; 4119 ctrl->ops = ops; 4120 ctrl->quirks = quirks; 4121 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4122 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4123 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4124 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4125 init_waitqueue_head(&ctrl->state_wq); 4126 4127 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4128 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4129 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4130 4131 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4132 PAGE_SIZE); 4133 ctrl->discard_page = alloc_page(GFP_KERNEL); 4134 if (!ctrl->discard_page) { 4135 ret = -ENOMEM; 4136 goto out; 4137 } 4138 4139 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4140 if (ret < 0) 4141 goto out; 4142 ctrl->instance = ret; 4143 4144 device_initialize(&ctrl->ctrl_device); 4145 ctrl->device = &ctrl->ctrl_device; 4146 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 4147 ctrl->device->class = nvme_class; 4148 ctrl->device->parent = ctrl->dev; 4149 ctrl->device->groups = nvme_dev_attr_groups; 4150 ctrl->device->release = nvme_free_ctrl; 4151 dev_set_drvdata(ctrl->device, ctrl); 4152 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4153 if (ret) 4154 goto out_release_instance; 4155 4156 nvme_get_ctrl(ctrl); 4157 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4158 ctrl->cdev.owner = ops->module; 4159 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4160 if (ret) 4161 goto out_free_name; 4162 4163 /* 4164 * Initialize latency tolerance controls. The sysfs files won't 4165 * be visible to userspace unless the device actually supports APST. 4166 */ 4167 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4168 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4169 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4170 4171 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4172 4173 return 0; 4174 out_free_name: 4175 nvme_put_ctrl(ctrl); 4176 kfree_const(ctrl->device->kobj.name); 4177 out_release_instance: 4178 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4179 out: 4180 if (ctrl->discard_page) 4181 __free_page(ctrl->discard_page); 4182 return ret; 4183 } 4184 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4185 4186 /** 4187 * nvme_kill_queues(): Ends all namespace queues 4188 * @ctrl: the dead controller that needs to end 4189 * 4190 * Call this function when the driver determines it is unable to get the 4191 * controller in a state capable of servicing IO. 4192 */ 4193 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4194 { 4195 struct nvme_ns *ns; 4196 4197 down_read(&ctrl->namespaces_rwsem); 4198 4199 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4200 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4201 blk_mq_unquiesce_queue(ctrl->admin_q); 4202 4203 list_for_each_entry(ns, &ctrl->namespaces, list) 4204 nvme_set_queue_dying(ns); 4205 4206 up_read(&ctrl->namespaces_rwsem); 4207 } 4208 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4209 4210 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4211 { 4212 struct nvme_ns *ns; 4213 4214 down_read(&ctrl->namespaces_rwsem); 4215 list_for_each_entry(ns, &ctrl->namespaces, list) 4216 blk_mq_unfreeze_queue(ns->queue); 4217 up_read(&ctrl->namespaces_rwsem); 4218 } 4219 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4220 4221 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4222 { 4223 struct nvme_ns *ns; 4224 4225 down_read(&ctrl->namespaces_rwsem); 4226 list_for_each_entry(ns, &ctrl->namespaces, list) { 4227 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4228 if (timeout <= 0) 4229 break; 4230 } 4231 up_read(&ctrl->namespaces_rwsem); 4232 } 4233 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4234 4235 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4236 { 4237 struct nvme_ns *ns; 4238 4239 down_read(&ctrl->namespaces_rwsem); 4240 list_for_each_entry(ns, &ctrl->namespaces, list) 4241 blk_mq_freeze_queue_wait(ns->queue); 4242 up_read(&ctrl->namespaces_rwsem); 4243 } 4244 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4245 4246 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4247 { 4248 struct nvme_ns *ns; 4249 4250 down_read(&ctrl->namespaces_rwsem); 4251 list_for_each_entry(ns, &ctrl->namespaces, list) 4252 blk_freeze_queue_start(ns->queue); 4253 up_read(&ctrl->namespaces_rwsem); 4254 } 4255 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4256 4257 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4258 { 4259 struct nvme_ns *ns; 4260 4261 down_read(&ctrl->namespaces_rwsem); 4262 list_for_each_entry(ns, &ctrl->namespaces, list) 4263 blk_mq_quiesce_queue(ns->queue); 4264 up_read(&ctrl->namespaces_rwsem); 4265 } 4266 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4267 4268 void nvme_start_queues(struct nvme_ctrl *ctrl) 4269 { 4270 struct nvme_ns *ns; 4271 4272 down_read(&ctrl->namespaces_rwsem); 4273 list_for_each_entry(ns, &ctrl->namespaces, list) 4274 blk_mq_unquiesce_queue(ns->queue); 4275 up_read(&ctrl->namespaces_rwsem); 4276 } 4277 EXPORT_SYMBOL_GPL(nvme_start_queues); 4278 4279 4280 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4281 { 4282 struct nvme_ns *ns; 4283 4284 down_read(&ctrl->namespaces_rwsem); 4285 list_for_each_entry(ns, &ctrl->namespaces, list) 4286 blk_sync_queue(ns->queue); 4287 up_read(&ctrl->namespaces_rwsem); 4288 4289 if (ctrl->admin_q) 4290 blk_sync_queue(ctrl->admin_q); 4291 } 4292 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4293 4294 /* 4295 * Check we didn't inadvertently grow the command structure sizes: 4296 */ 4297 static inline void _nvme_check_size(void) 4298 { 4299 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4300 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4301 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4302 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4303 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4304 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4305 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4306 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4307 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4308 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4309 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4310 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4311 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4312 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4313 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4314 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4315 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4316 } 4317 4318 4319 static int __init nvme_core_init(void) 4320 { 4321 int result = -ENOMEM; 4322 4323 _nvme_check_size(); 4324 4325 nvme_wq = alloc_workqueue("nvme-wq", 4326 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4327 if (!nvme_wq) 4328 goto out; 4329 4330 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4331 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4332 if (!nvme_reset_wq) 4333 goto destroy_wq; 4334 4335 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4336 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4337 if (!nvme_delete_wq) 4338 goto destroy_reset_wq; 4339 4340 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 4341 if (result < 0) 4342 goto destroy_delete_wq; 4343 4344 nvme_class = class_create(THIS_MODULE, "nvme"); 4345 if (IS_ERR(nvme_class)) { 4346 result = PTR_ERR(nvme_class); 4347 goto unregister_chrdev; 4348 } 4349 nvme_class->dev_uevent = nvme_class_uevent; 4350 4351 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4352 if (IS_ERR(nvme_subsys_class)) { 4353 result = PTR_ERR(nvme_subsys_class); 4354 goto destroy_class; 4355 } 4356 return 0; 4357 4358 destroy_class: 4359 class_destroy(nvme_class); 4360 unregister_chrdev: 4361 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4362 destroy_delete_wq: 4363 destroy_workqueue(nvme_delete_wq); 4364 destroy_reset_wq: 4365 destroy_workqueue(nvme_reset_wq); 4366 destroy_wq: 4367 destroy_workqueue(nvme_wq); 4368 out: 4369 return result; 4370 } 4371 4372 static void __exit nvme_core_exit(void) 4373 { 4374 class_destroy(nvme_subsys_class); 4375 class_destroy(nvme_class); 4376 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4377 destroy_workqueue(nvme_delete_wq); 4378 destroy_workqueue(nvme_reset_wq); 4379 destroy_workqueue(nvme_wq); 4380 ida_destroy(&nvme_instance_ida); 4381 } 4382 4383 MODULE_LICENSE("GPL"); 4384 MODULE_VERSION("1.0"); 4385 module_init(nvme_core_init); 4386 module_exit(nvme_core_exit); 4387