// SPDX-License-Identifier: GPL-2.0 /* * NVM Express device driver * Copyright (c) 2011-2014, Intel Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nvme.h" #include "fabrics.h" #define CREATE_TRACE_POINTS #include "trace.h" #define NVME_MINORS (1U << MINORBITS) unsigned int admin_timeout = 60; module_param(admin_timeout, uint, 0644); MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); EXPORT_SYMBOL_GPL(admin_timeout); unsigned int nvme_io_timeout = 30; module_param_named(io_timeout, nvme_io_timeout, uint, 0644); MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); EXPORT_SYMBOL_GPL(nvme_io_timeout); static unsigned char shutdown_timeout = 5; module_param(shutdown_timeout, byte, 0644); MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); static u8 nvme_max_retries = 5; module_param_named(max_retries, nvme_max_retries, byte, 0644); MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); static unsigned long default_ps_max_latency_us = 100000; module_param(default_ps_max_latency_us, ulong, 0644); MODULE_PARM_DESC(default_ps_max_latency_us, "max power saving latency for new devices; use PM QOS to change per device"); static bool force_apst; module_param(force_apst, bool, 0644); MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); static bool streams; module_param(streams, bool, 0644); MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); /* * nvme_wq - hosts nvme related works that are not reset or delete * nvme_reset_wq - hosts nvme reset works * nvme_delete_wq - hosts nvme delete works * * nvme_wq will host works such as scan, aen handling, fw activation, * keep-alive, periodic reconnects etc. nvme_reset_wq * runs reset works which also flush works hosted on nvme_wq for * serialization purposes. nvme_delete_wq host controller deletion * works which flush reset works for serialization. */ struct workqueue_struct *nvme_wq; EXPORT_SYMBOL_GPL(nvme_wq); struct workqueue_struct *nvme_reset_wq; EXPORT_SYMBOL_GPL(nvme_reset_wq); struct workqueue_struct *nvme_delete_wq; EXPORT_SYMBOL_GPL(nvme_delete_wq); static LIST_HEAD(nvme_subsystems); static DEFINE_MUTEX(nvme_subsystems_lock); static DEFINE_IDA(nvme_instance_ida); static dev_t nvme_chr_devt; static struct class *nvme_class; static struct class *nvme_subsys_class; static int nvme_revalidate_disk(struct gendisk *disk); static void nvme_put_subsystem(struct nvme_subsystem *subsys); static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, unsigned nsid); static void nvme_set_queue_dying(struct nvme_ns *ns) { /* * Revalidating a dead namespace sets capacity to 0. This will end * buffered writers dirtying pages that can't be synced. */ if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) return; blk_set_queue_dying(ns->queue); /* Forcibly unquiesce queues to avoid blocking dispatch */ blk_mq_unquiesce_queue(ns->queue); /* * Revalidate after unblocking dispatchers that may be holding bd_butex */ revalidate_disk(ns->disk); } static void nvme_queue_scan(struct nvme_ctrl *ctrl) { /* * Only new queue scan work when admin and IO queues are both alive */ if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) queue_work(nvme_wq, &ctrl->scan_work); } /* * Use this function to proceed with scheduling reset_work for a controller * that had previously been set to the resetting state. This is intended for * code paths that can't be interrupted by other reset attempts. A hot removal * may prevent this from succeeding. */ int nvme_try_sched_reset(struct nvme_ctrl *ctrl) { if (ctrl->state != NVME_CTRL_RESETTING) return -EBUSY; if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) return -EBUSY; return 0; } EXPORT_SYMBOL_GPL(nvme_try_sched_reset); int nvme_reset_ctrl(struct nvme_ctrl *ctrl) { if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) return -EBUSY; if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) return -EBUSY; return 0; } EXPORT_SYMBOL_GPL(nvme_reset_ctrl); int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) { int ret; ret = nvme_reset_ctrl(ctrl); if (!ret) { flush_work(&ctrl->reset_work); if (ctrl->state != NVME_CTRL_LIVE) ret = -ENETRESET; } return ret; } EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) { dev_info(ctrl->device, "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); flush_work(&ctrl->reset_work); nvme_stop_ctrl(ctrl); nvme_remove_namespaces(ctrl); ctrl->ops->delete_ctrl(ctrl); nvme_uninit_ctrl(ctrl); } static void nvme_delete_ctrl_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, delete_work); nvme_do_delete_ctrl(ctrl); } int nvme_delete_ctrl(struct nvme_ctrl *ctrl) { if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) return -EBUSY; if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) return -EBUSY; return 0; } EXPORT_SYMBOL_GPL(nvme_delete_ctrl); static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) { /* * Keep a reference until nvme_do_delete_ctrl() complete, * since ->delete_ctrl can free the controller. */ nvme_get_ctrl(ctrl); if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) nvme_do_delete_ctrl(ctrl); nvme_put_ctrl(ctrl); } static inline bool nvme_ns_has_pi(struct nvme_ns *ns) { return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple); } static blk_status_t nvme_error_status(u16 status) { switch (status & 0x7ff) { case NVME_SC_SUCCESS: return BLK_STS_OK; case NVME_SC_CAP_EXCEEDED: return BLK_STS_NOSPC; case NVME_SC_LBA_RANGE: case NVME_SC_CMD_INTERRUPTED: case NVME_SC_NS_NOT_READY: return BLK_STS_TARGET; case NVME_SC_BAD_ATTRIBUTES: case NVME_SC_ONCS_NOT_SUPPORTED: case NVME_SC_INVALID_OPCODE: case NVME_SC_INVALID_FIELD: case NVME_SC_INVALID_NS: return BLK_STS_NOTSUPP; case NVME_SC_WRITE_FAULT: case NVME_SC_READ_ERROR: case NVME_SC_UNWRITTEN_BLOCK: case NVME_SC_ACCESS_DENIED: case NVME_SC_READ_ONLY: case NVME_SC_COMPARE_FAILED: return BLK_STS_MEDIUM; case NVME_SC_GUARD_CHECK: case NVME_SC_APPTAG_CHECK: case NVME_SC_REFTAG_CHECK: case NVME_SC_INVALID_PI: return BLK_STS_PROTECTION; case NVME_SC_RESERVATION_CONFLICT: return BLK_STS_NEXUS; case NVME_SC_HOST_PATH_ERROR: return BLK_STS_TRANSPORT; default: return BLK_STS_IOERR; } } static inline bool nvme_req_needs_retry(struct request *req) { if (blk_noretry_request(req)) return false; if (nvme_req(req)->status & NVME_SC_DNR) return false; if (nvme_req(req)->retries >= nvme_max_retries) return false; return true; } static void nvme_retry_req(struct request *req) { struct nvme_ns *ns = req->q->queuedata; unsigned long delay = 0; u16 crd; /* The mask and shift result must be <= 3 */ crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; if (ns && crd) delay = ns->ctrl->crdt[crd - 1] * 100; nvme_req(req)->retries++; blk_mq_requeue_request(req, false); blk_mq_delay_kick_requeue_list(req->q, delay); } void nvme_complete_rq(struct request *req) { blk_status_t status = nvme_error_status(nvme_req(req)->status); trace_nvme_complete_rq(req); nvme_cleanup_cmd(req); if (nvme_req(req)->ctrl->kas) nvme_req(req)->ctrl->comp_seen = true; if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req)) return; if (!blk_queue_dying(req->q)) { nvme_retry_req(req); return; } } nvme_trace_bio_complete(req, status); blk_mq_end_request(req, status); } EXPORT_SYMBOL_GPL(nvme_complete_rq); bool nvme_cancel_request(struct request *req, void *data, bool reserved) { dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, "Cancelling I/O %d", req->tag); /* don't abort one completed request */ if (blk_mq_request_completed(req)) return true; nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; blk_mq_complete_request(req); return true; } EXPORT_SYMBOL_GPL(nvme_cancel_request); bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, enum nvme_ctrl_state new_state) { enum nvme_ctrl_state old_state; unsigned long flags; bool changed = false; spin_lock_irqsave(&ctrl->lock, flags); old_state = ctrl->state; switch (new_state) { case NVME_CTRL_LIVE: switch (old_state) { case NVME_CTRL_NEW: case NVME_CTRL_RESETTING: case NVME_CTRL_CONNECTING: changed = true; /* FALLTHRU */ default: break; } break; case NVME_CTRL_RESETTING: switch (old_state) { case NVME_CTRL_NEW: case NVME_CTRL_LIVE: changed = true; /* FALLTHRU */ default: break; } break; case NVME_CTRL_CONNECTING: switch (old_state) { case NVME_CTRL_NEW: case NVME_CTRL_RESETTING: changed = true; /* FALLTHRU */ default: break; } break; case NVME_CTRL_DELETING: switch (old_state) { case NVME_CTRL_LIVE: case NVME_CTRL_RESETTING: case NVME_CTRL_CONNECTING: changed = true; /* FALLTHRU */ default: break; } break; case NVME_CTRL_DEAD: switch (old_state) { case NVME_CTRL_DELETING: changed = true; /* FALLTHRU */ default: break; } break; default: break; } if (changed) { ctrl->state = new_state; wake_up_all(&ctrl->state_wq); } spin_unlock_irqrestore(&ctrl->lock, flags); if (changed && ctrl->state == NVME_CTRL_LIVE) nvme_kick_requeue_lists(ctrl); return changed; } EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); /* * Returns true for sink states that can't ever transition back to live. */ static bool nvme_state_terminal(struct nvme_ctrl *ctrl) { switch (ctrl->state) { case NVME_CTRL_NEW: case NVME_CTRL_LIVE: case NVME_CTRL_RESETTING: case NVME_CTRL_CONNECTING: return false; case NVME_CTRL_DELETING: case NVME_CTRL_DEAD: return true; default: WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); return true; } } /* * Waits for the controller state to be resetting, or returns false if it is * not possible to ever transition to that state. */ bool nvme_wait_reset(struct nvme_ctrl *ctrl) { wait_event(ctrl->state_wq, nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || nvme_state_terminal(ctrl)); return ctrl->state == NVME_CTRL_RESETTING; } EXPORT_SYMBOL_GPL(nvme_wait_reset); static void nvme_free_ns_head(struct kref *ref) { struct nvme_ns_head *head = container_of(ref, struct nvme_ns_head, ref); nvme_mpath_remove_disk(head); ida_simple_remove(&head->subsys->ns_ida, head->instance); list_del_init(&head->entry); cleanup_srcu_struct(&head->srcu); nvme_put_subsystem(head->subsys); kfree(head); } static void nvme_put_ns_head(struct nvme_ns_head *head) { kref_put(&head->ref, nvme_free_ns_head); } static void nvme_free_ns(struct kref *kref) { struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); if (ns->ndev) nvme_nvm_unregister(ns); put_disk(ns->disk); nvme_put_ns_head(ns->head); nvme_put_ctrl(ns->ctrl); kfree(ns); } static void nvme_put_ns(struct nvme_ns *ns) { kref_put(&ns->kref, nvme_free_ns); } static inline void nvme_clear_nvme_request(struct request *req) { if (!(req->rq_flags & RQF_DONTPREP)) { nvme_req(req)->retries = 0; nvme_req(req)->flags = 0; req->rq_flags |= RQF_DONTPREP; } } struct request *nvme_alloc_request(struct request_queue *q, struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) { unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; struct request *req; if (qid == NVME_QID_ANY) { req = blk_mq_alloc_request(q, op, flags); } else { req = blk_mq_alloc_request_hctx(q, op, flags, qid ? qid - 1 : 0); } if (IS_ERR(req)) return req; req->cmd_flags |= REQ_FAILFAST_DRIVER; nvme_clear_nvme_request(req); nvme_req(req)->cmd = cmd; return req; } EXPORT_SYMBOL_GPL(nvme_alloc_request); static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) { struct nvme_command c; memset(&c, 0, sizeof(c)); c.directive.opcode = nvme_admin_directive_send; c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; c.directive.dtype = NVME_DIR_IDENTIFY; c.directive.tdtype = NVME_DIR_STREAMS; c.directive.endir = enable ? NVME_DIR_ENDIR : 0; return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); } static int nvme_disable_streams(struct nvme_ctrl *ctrl) { return nvme_toggle_streams(ctrl, false); } static int nvme_enable_streams(struct nvme_ctrl *ctrl) { return nvme_toggle_streams(ctrl, true); } static int nvme_get_stream_params(struct nvme_ctrl *ctrl, struct streams_directive_params *s, u32 nsid) { struct nvme_command c; memset(&c, 0, sizeof(c)); memset(s, 0, sizeof(*s)); c.directive.opcode = nvme_admin_directive_recv; c.directive.nsid = cpu_to_le32(nsid); c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; c.directive.dtype = NVME_DIR_STREAMS; return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); } static int nvme_configure_directives(struct nvme_ctrl *ctrl) { struct streams_directive_params s; int ret; if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) return 0; if (!streams) return 0; ret = nvme_enable_streams(ctrl); if (ret) return ret; ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); if (ret) return ret; ctrl->nssa = le16_to_cpu(s.nssa); if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { dev_info(ctrl->device, "too few streams (%u) available\n", ctrl->nssa); nvme_disable_streams(ctrl); return 0; } ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); return 0; } /* * Check if 'req' has a write hint associated with it. If it does, assign * a valid namespace stream to the write. */ static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, struct request *req, u16 *control, u32 *dsmgmt) { enum rw_hint streamid = req->write_hint; if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) streamid = 0; else { streamid--; if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) return; *control |= NVME_RW_DTYPE_STREAMS; *dsmgmt |= streamid << 16; } if (streamid < ARRAY_SIZE(req->q->write_hints)) req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; } static inline void nvme_setup_flush(struct nvme_ns *ns, struct nvme_command *cmnd) { cmnd->common.opcode = nvme_cmd_flush; cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); } static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, struct nvme_command *cmnd) { unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; struct nvme_dsm_range *range; struct bio *bio; /* * Some devices do not consider the DSM 'Number of Ranges' field when * determining how much data to DMA. Always allocate memory for maximum * number of segments to prevent device reading beyond end of buffer. */ static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); if (!range) { /* * If we fail allocation our range, fallback to the controller * discard page. If that's also busy, it's safe to return * busy, as we know we can make progress once that's freed. */ if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) return BLK_STS_RESOURCE; range = page_address(ns->ctrl->discard_page); } __rq_for_each_bio(bio, req) { u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; if (n < segments) { range[n].cattr = cpu_to_le32(0); range[n].nlb = cpu_to_le32(nlb); range[n].slba = cpu_to_le64(slba); } n++; } if (WARN_ON_ONCE(n != segments)) { if (virt_to_page(range) == ns->ctrl->discard_page) clear_bit_unlock(0, &ns->ctrl->discard_page_busy); else kfree(range); return BLK_STS_IOERR; } cmnd->dsm.opcode = nvme_cmd_dsm; cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); cmnd->dsm.nr = cpu_to_le32(segments - 1); cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); req->special_vec.bv_page = virt_to_page(range); req->special_vec.bv_offset = offset_in_page(range); req->special_vec.bv_len = alloc_size; req->rq_flags |= RQF_SPECIAL_PAYLOAD; return BLK_STS_OK; } static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, struct request *req, struct nvme_command *cmnd) { if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) return nvme_setup_discard(ns, req, cmnd); cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); cmnd->write_zeroes.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); cmnd->write_zeroes.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); cmnd->write_zeroes.control = 0; return BLK_STS_OK; } static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, struct request *req, struct nvme_command *cmnd) { struct nvme_ctrl *ctrl = ns->ctrl; u16 control = 0; u32 dsmgmt = 0; if (req->cmd_flags & REQ_FUA) control |= NVME_RW_FUA; if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) control |= NVME_RW_LR; if (req->cmd_flags & REQ_RAHEAD) dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); if (ns->ms) { /* * If formated with metadata, the block layer always provides a * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else * we enable the PRACT bit for protection information or set the * namespace capacity to zero to prevent any I/O. */ if (!blk_integrity_rq(req)) { if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) return BLK_STS_NOTSUPP; control |= NVME_RW_PRINFO_PRACT; } switch (ns->pi_type) { case NVME_NS_DPS_PI_TYPE3: control |= NVME_RW_PRINFO_PRCHK_GUARD; break; case NVME_NS_DPS_PI_TYPE1: case NVME_NS_DPS_PI_TYPE2: control |= NVME_RW_PRINFO_PRCHK_GUARD | NVME_RW_PRINFO_PRCHK_REF; cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); break; } } cmnd->rw.control = cpu_to_le16(control); cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); return 0; } void nvme_cleanup_cmd(struct request *req) { if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { struct nvme_ns *ns = req->rq_disk->private_data; struct page *page = req->special_vec.bv_page; if (page == ns->ctrl->discard_page) clear_bit_unlock(0, &ns->ctrl->discard_page_busy); else kfree(page_address(page) + req->special_vec.bv_offset); } } EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, struct nvme_command *cmd) { blk_status_t ret = BLK_STS_OK; nvme_clear_nvme_request(req); memset(cmd, 0, sizeof(*cmd)); switch (req_op(req)) { case REQ_OP_DRV_IN: case REQ_OP_DRV_OUT: memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); break; case REQ_OP_FLUSH: nvme_setup_flush(ns, cmd); break; case REQ_OP_WRITE_ZEROES: ret = nvme_setup_write_zeroes(ns, req, cmd); break; case REQ_OP_DISCARD: ret = nvme_setup_discard(ns, req, cmd); break; case REQ_OP_READ: case REQ_OP_WRITE: ret = nvme_setup_rw(ns, req, cmd); break; default: WARN_ON_ONCE(1); return BLK_STS_IOERR; } cmd->common.command_id = req->tag; trace_nvme_setup_cmd(req, cmd); return ret; } EXPORT_SYMBOL_GPL(nvme_setup_cmd); static void nvme_end_sync_rq(struct request *rq, blk_status_t error) { struct completion *waiting = rq->end_io_data; rq->end_io_data = NULL; complete(waiting); } static void nvme_execute_rq_polled(struct request_queue *q, struct gendisk *bd_disk, struct request *rq, int at_head) { DECLARE_COMPLETION_ONSTACK(wait); WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)); rq->cmd_flags |= REQ_HIPRI; rq->end_io_data = &wait; blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq); while (!completion_done(&wait)) { blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true); cond_resched(); } } /* * Returns 0 on success. If the result is negative, it's a Linux error code; * if the result is positive, it's an NVM Express status code */ int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, union nvme_result *result, void *buffer, unsigned bufflen, unsigned timeout, int qid, int at_head, blk_mq_req_flags_t flags, bool poll) { struct request *req; int ret; req = nvme_alloc_request(q, cmd, flags, qid); if (IS_ERR(req)) return PTR_ERR(req); req->timeout = timeout ? timeout : ADMIN_TIMEOUT; if (buffer && bufflen) { ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); if (ret) goto out; } if (poll) nvme_execute_rq_polled(req->q, NULL, req, at_head); else blk_execute_rq(req->q, NULL, req, at_head); if (result) *result = nvme_req(req)->result; if (nvme_req(req)->flags & NVME_REQ_CANCELLED) ret = -EINTR; else ret = nvme_req(req)->status; out: blk_mq_free_request(req); return ret; } EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, void *buffer, unsigned bufflen) { return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, NVME_QID_ANY, 0, 0, false); } EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, unsigned len, u32 seed, bool write) { struct bio_integrity_payload *bip; int ret = -ENOMEM; void *buf; buf = kmalloc(len, GFP_KERNEL); if (!buf) goto out; ret = -EFAULT; if (write && copy_from_user(buf, ubuf, len)) goto out_free_meta; bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); if (IS_ERR(bip)) { ret = PTR_ERR(bip); goto out_free_meta; } bip->bip_iter.bi_size = len; bip->bip_iter.bi_sector = seed; ret = bio_integrity_add_page(bio, virt_to_page(buf), len, offset_in_page(buf)); if (ret == len) return buf; ret = -ENOMEM; out_free_meta: kfree(buf); out: return ERR_PTR(ret); } static int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd, void __user *ubuffer, unsigned bufflen, void __user *meta_buffer, unsigned meta_len, u32 meta_seed, u64 *result, unsigned timeout) { bool write = nvme_is_write(cmd); struct nvme_ns *ns = q->queuedata; struct gendisk *disk = ns ? ns->disk : NULL; struct request *req; struct bio *bio = NULL; void *meta = NULL; int ret; req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); if (IS_ERR(req)) return PTR_ERR(req); req->timeout = timeout ? timeout : ADMIN_TIMEOUT; nvme_req(req)->flags |= NVME_REQ_USERCMD; if (ubuffer && bufflen) { ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, GFP_KERNEL); if (ret) goto out; bio = req->bio; bio->bi_disk = disk; if (disk && meta_buffer && meta_len) { meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, meta_seed, write); if (IS_ERR(meta)) { ret = PTR_ERR(meta); goto out_unmap; } req->cmd_flags |= REQ_INTEGRITY; } } blk_execute_rq(req->q, disk, req, 0); if (nvme_req(req)->flags & NVME_REQ_CANCELLED) ret = -EINTR; else ret = nvme_req(req)->status; if (result) *result = le64_to_cpu(nvme_req(req)->result.u64); if (meta && !ret && !write) { if (copy_to_user(meta_buffer, meta, meta_len)) ret = -EFAULT; } kfree(meta); out_unmap: if (bio) blk_rq_unmap_user(bio); out: blk_mq_free_request(req); return ret; } static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) { struct nvme_ctrl *ctrl = rq->end_io_data; unsigned long flags; bool startka = false; blk_mq_free_request(rq); if (status) { dev_err(ctrl->device, "failed nvme_keep_alive_end_io error=%d\n", status); return; } ctrl->comp_seen = false; spin_lock_irqsave(&ctrl->lock, flags); if (ctrl->state == NVME_CTRL_LIVE || ctrl->state == NVME_CTRL_CONNECTING) startka = true; spin_unlock_irqrestore(&ctrl->lock, flags); if (startka) queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); } static int nvme_keep_alive(struct nvme_ctrl *ctrl) { struct request *rq; rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, NVME_QID_ANY); if (IS_ERR(rq)) return PTR_ERR(rq); rq->timeout = ctrl->kato * HZ; rq->end_io_data = ctrl; blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); return 0; } static void nvme_keep_alive_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), struct nvme_ctrl, ka_work); bool comp_seen = ctrl->comp_seen; if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { dev_dbg(ctrl->device, "reschedule traffic based keep-alive timer\n"); ctrl->comp_seen = false; queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); return; } if (nvme_keep_alive(ctrl)) { /* allocation failure, reset the controller */ dev_err(ctrl->device, "keep-alive failed\n"); nvme_reset_ctrl(ctrl); return; } } static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) { if (unlikely(ctrl->kato == 0)) return; queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); } void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) { if (unlikely(ctrl->kato == 0)) return; cancel_delayed_work_sync(&ctrl->ka_work); } EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) { struct nvme_command c = { }; int error; /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ c.identify.opcode = nvme_admin_identify; c.identify.cns = NVME_ID_CNS_CTRL; *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); if (!*id) return -ENOMEM; error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, sizeof(struct nvme_id_ctrl)); if (error) kfree(*id); return error; } static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, struct nvme_ns_id_desc *cur) { const char *warn_str = "ctrl returned bogus length:"; void *data = cur; switch (cur->nidt) { case NVME_NIDT_EUI64: if (cur->nidl != NVME_NIDT_EUI64_LEN) { dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", warn_str, cur->nidl); return -1; } memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); return NVME_NIDT_EUI64_LEN; case NVME_NIDT_NGUID: if (cur->nidl != NVME_NIDT_NGUID_LEN) { dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", warn_str, cur->nidl); return -1; } memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); return NVME_NIDT_NGUID_LEN; case NVME_NIDT_UUID: if (cur->nidl != NVME_NIDT_UUID_LEN) { dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", warn_str, cur->nidl); return -1; } uuid_copy(&ids->uuid, data + sizeof(*cur)); return NVME_NIDT_UUID_LEN; default: /* Skip unknown types */ return cur->nidl; } } static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, struct nvme_ns_ids *ids) { struct nvme_command c = { }; int status; void *data; int pos; int len; c.identify.opcode = nvme_admin_identify; c.identify.nsid = cpu_to_le32(nsid); c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); if (!data) return -ENOMEM; status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, NVME_IDENTIFY_DATA_SIZE); if (status) { dev_warn(ctrl->device, "Identify Descriptors failed (%d)\n", status); /* * Don't treat an error as fatal, as we potentially already * have a NGUID or EUI-64. */ if (status > 0 && !(status & NVME_SC_DNR)) status = 0; goto free_data; } for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { struct nvme_ns_id_desc *cur = data + pos; if (cur->nidl == 0) break; len = nvme_process_ns_desc(ctrl, ids, cur); if (len < 0) goto free_data; len += sizeof(*cur); } free_data: kfree(data); return status; } static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) { struct nvme_command c = { }; c.identify.opcode = nvme_admin_identify; c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; c.identify.nsid = cpu_to_le32(nsid); return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, NVME_IDENTIFY_DATA_SIZE); } static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, struct nvme_id_ns **id) { struct nvme_command c = { }; int error; /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ c.identify.opcode = nvme_admin_identify; c.identify.nsid = cpu_to_le32(nsid); c.identify.cns = NVME_ID_CNS_NS; *id = kmalloc(sizeof(**id), GFP_KERNEL); if (!*id) return -ENOMEM; error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); if (error) { dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); kfree(*id); } return error; } static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, unsigned int dword11, void *buffer, size_t buflen, u32 *result) { union nvme_result res = { 0 }; struct nvme_command c; int ret; memset(&c, 0, sizeof(c)); c.features.opcode = op; c.features.fid = cpu_to_le32(fid); c.features.dword11 = cpu_to_le32(dword11); ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0, NVME_QID_ANY, 0, 0, false); if (ret >= 0 && result) *result = le32_to_cpu(res.u32); return ret; } int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, unsigned int dword11, void *buffer, size_t buflen, u32 *result) { return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, buflen, result); } EXPORT_SYMBOL_GPL(nvme_set_features); int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, unsigned int dword11, void *buffer, size_t buflen, u32 *result) { return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, buflen, result); } EXPORT_SYMBOL_GPL(nvme_get_features); int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) { u32 q_count = (*count - 1) | ((*count - 1) << 16); u32 result; int status, nr_io_queues; status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, &result); if (status < 0) return status; /* * Degraded controllers might return an error when setting the queue * count. We still want to be able to bring them online and offer * access to the admin queue, as that might be only way to fix them up. */ if (status > 0) { dev_err(ctrl->device, "Could not set queue count (%d)\n", status); *count = 0; } else { nr_io_queues = min(result & 0xffff, result >> 16) + 1; *count = min(*count, nr_io_queues); } return 0; } EXPORT_SYMBOL_GPL(nvme_set_queue_count); #define NVME_AEN_SUPPORTED \ (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) static void nvme_enable_aen(struct nvme_ctrl *ctrl) { u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; int status; if (!supported_aens) return; status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, NULL, 0, &result); if (status) dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", supported_aens); queue_work(nvme_wq, &ctrl->async_event_work); } /* * Convert integer values from ioctl structures to user pointers, silently * ignoring the upper bits in the compat case to match behaviour of 32-bit * kernels. */ static void __user *nvme_to_user_ptr(uintptr_t ptrval) { if (in_compat_syscall()) ptrval = (compat_uptr_t)ptrval; return (void __user *)ptrval; } static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) { struct nvme_user_io io; struct nvme_command c; unsigned length, meta_len; void __user *metadata; if (copy_from_user(&io, uio, sizeof(io))) return -EFAULT; if (io.flags) return -EINVAL; switch (io.opcode) { case nvme_cmd_write: case nvme_cmd_read: case nvme_cmd_compare: break; default: return -EINVAL; } length = (io.nblocks + 1) << ns->lba_shift; meta_len = (io.nblocks + 1) * ns->ms; metadata = nvme_to_user_ptr(io.metadata); if (ns->ext) { length += meta_len; meta_len = 0; } else if (meta_len) { if ((io.metadata & 3) || !io.metadata) return -EINVAL; } memset(&c, 0, sizeof(c)); c.rw.opcode = io.opcode; c.rw.flags = io.flags; c.rw.nsid = cpu_to_le32(ns->head->ns_id); c.rw.slba = cpu_to_le64(io.slba); c.rw.length = cpu_to_le16(io.nblocks); c.rw.control = cpu_to_le16(io.control); c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); c.rw.reftag = cpu_to_le32(io.reftag); c.rw.apptag = cpu_to_le16(io.apptag); c.rw.appmask = cpu_to_le16(io.appmask); return nvme_submit_user_cmd(ns->queue, &c, nvme_to_user_ptr(io.addr), length, metadata, meta_len, lower_32_bits(io.slba), NULL, 0); } static u32 nvme_known_admin_effects(u8 opcode) { switch (opcode) { case nvme_admin_format_nvm: return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; case nvme_admin_sanitize_nvm: return NVME_CMD_EFFECTS_CSE_MASK; default: break; } return 0; } static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) { u32 effects = 0; if (ns) { if (ctrl->effects) effects = le32_to_cpu(ctrl->effects->iocs[opcode]); if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) dev_warn(ctrl->device, "IO command:%02x has unhandled effects:%08x\n", opcode, effects); return 0; } if (ctrl->effects) effects = le32_to_cpu(ctrl->effects->acs[opcode]); effects |= nvme_known_admin_effects(opcode); /* * For simplicity, IO to all namespaces is quiesced even if the command * effects say only one namespace is affected. */ if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { mutex_lock(&ctrl->scan_lock); mutex_lock(&ctrl->subsys->lock); nvme_mpath_start_freeze(ctrl->subsys); nvme_mpath_wait_freeze(ctrl->subsys); nvme_start_freeze(ctrl); nvme_wait_freeze(ctrl); } return effects; } static void nvme_update_formats(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; down_read(&ctrl->namespaces_rwsem); list_for_each_entry(ns, &ctrl->namespaces, list) if (ns->disk && nvme_revalidate_disk(ns->disk)) nvme_set_queue_dying(ns); up_read(&ctrl->namespaces_rwsem); } static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) { /* * Revalidate LBA changes prior to unfreezing. This is necessary to * prevent memory corruption if a logical block size was changed by * this command. */ if (effects & NVME_CMD_EFFECTS_LBCC) nvme_update_formats(ctrl); if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { nvme_unfreeze(ctrl); nvme_mpath_unfreeze(ctrl->subsys); mutex_unlock(&ctrl->subsys->lock); nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); mutex_unlock(&ctrl->scan_lock); } if (effects & NVME_CMD_EFFECTS_CCC) nvme_init_identify(ctrl); if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) nvme_queue_scan(ctrl); } static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, struct nvme_passthru_cmd __user *ucmd) { struct nvme_passthru_cmd cmd; struct nvme_command c; unsigned timeout = 0; u32 effects; u64 result; int status; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (copy_from_user(&cmd, ucmd, sizeof(cmd))) return -EFAULT; if (cmd.flags) return -EINVAL; memset(&c, 0, sizeof(c)); c.common.opcode = cmd.opcode; c.common.flags = cmd.flags; c.common.nsid = cpu_to_le32(cmd.nsid); c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); c.common.cdw10 = cpu_to_le32(cmd.cdw10); c.common.cdw11 = cpu_to_le32(cmd.cdw11); c.common.cdw12 = cpu_to_le32(cmd.cdw12); c.common.cdw13 = cpu_to_le32(cmd.cdw13); c.common.cdw14 = cpu_to_le32(cmd.cdw14); c.common.cdw15 = cpu_to_le32(cmd.cdw15); if (cmd.timeout_ms) timeout = msecs_to_jiffies(cmd.timeout_ms); effects = nvme_passthru_start(ctrl, ns, cmd.opcode); status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, nvme_to_user_ptr(cmd.addr), cmd.data_len, nvme_to_user_ptr(cmd.metadata), cmd.metadata_len, 0, &result, timeout); nvme_passthru_end(ctrl, effects); if (status >= 0) { if (put_user(result, &ucmd->result)) return -EFAULT; } return status; } static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns, struct nvme_passthru_cmd64 __user *ucmd) { struct nvme_passthru_cmd64 cmd; struct nvme_command c; unsigned timeout = 0; u32 effects; int status; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (copy_from_user(&cmd, ucmd, sizeof(cmd))) return -EFAULT; if (cmd.flags) return -EINVAL; memset(&c, 0, sizeof(c)); c.common.opcode = cmd.opcode; c.common.flags = cmd.flags; c.common.nsid = cpu_to_le32(cmd.nsid); c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); c.common.cdw10 = cpu_to_le32(cmd.cdw10); c.common.cdw11 = cpu_to_le32(cmd.cdw11); c.common.cdw12 = cpu_to_le32(cmd.cdw12); c.common.cdw13 = cpu_to_le32(cmd.cdw13); c.common.cdw14 = cpu_to_le32(cmd.cdw14); c.common.cdw15 = cpu_to_le32(cmd.cdw15); if (cmd.timeout_ms) timeout = msecs_to_jiffies(cmd.timeout_ms); effects = nvme_passthru_start(ctrl, ns, cmd.opcode); status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, nvme_to_user_ptr(cmd.addr), cmd.data_len, nvme_to_user_ptr(cmd.metadata), cmd.metadata_len, 0, &cmd.result, timeout); nvme_passthru_end(ctrl, effects); if (status >= 0) { if (put_user(cmd.result, &ucmd->result)) return -EFAULT; } return status; } /* * Issue ioctl requests on the first available path. Note that unlike normal * block layer requests we will not retry failed request on another controller. */ static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, struct nvme_ns_head **head, int *srcu_idx) { #ifdef CONFIG_NVME_MULTIPATH if (disk->fops == &nvme_ns_head_ops) { struct nvme_ns *ns; *head = disk->private_data; *srcu_idx = srcu_read_lock(&(*head)->srcu); ns = nvme_find_path(*head); if (!ns) srcu_read_unlock(&(*head)->srcu, *srcu_idx); return ns; } #endif *head = NULL; *srcu_idx = -1; return disk->private_data; } static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) { if (head) srcu_read_unlock(&head->srcu, idx); } static bool is_ctrl_ioctl(unsigned int cmd) { if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD) return true; if (is_sed_ioctl(cmd)) return true; return false; } static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd, void __user *argp, struct nvme_ns_head *head, int srcu_idx) { struct nvme_ctrl *ctrl = ns->ctrl; int ret; nvme_get_ctrl(ns->ctrl); nvme_put_ns_from_disk(head, srcu_idx); switch (cmd) { case NVME_IOCTL_ADMIN_CMD: ret = nvme_user_cmd(ctrl, NULL, argp); break; case NVME_IOCTL_ADMIN64_CMD: ret = nvme_user_cmd64(ctrl, NULL, argp); break; default: ret = sed_ioctl(ctrl->opal_dev, cmd, argp); break; } nvme_put_ctrl(ctrl); return ret; } static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { struct nvme_ns_head *head = NULL; void __user *argp = (void __user *)arg; struct nvme_ns *ns; int srcu_idx, ret; ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); if (unlikely(!ns)) return -EWOULDBLOCK; /* * Handle ioctls that apply to the controller instead of the namespace * seperately and drop the ns SRCU reference early. This avoids a * deadlock when deleting namespaces using the passthrough interface. */ if (is_ctrl_ioctl(cmd)) return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx); switch (cmd) { case NVME_IOCTL_ID: force_successful_syscall_return(); ret = ns->head->ns_id; break; case NVME_IOCTL_IO_CMD: ret = nvme_user_cmd(ns->ctrl, ns, argp); break; case NVME_IOCTL_SUBMIT_IO: ret = nvme_submit_io(ns, argp); break; case NVME_IOCTL_IO64_CMD: ret = nvme_user_cmd64(ns->ctrl, ns, argp); break; default: if (ns->ndev) ret = nvme_nvm_ioctl(ns, cmd, arg); else ret = -ENOTTY; } nvme_put_ns_from_disk(head, srcu_idx); return ret; } #ifdef CONFIG_COMPAT struct nvme_user_io32 { __u8 opcode; __u8 flags; __u16 control; __u16 nblocks; __u16 rsvd; __u64 metadata; __u64 addr; __u64 slba; __u32 dsmgmt; __u32 reftag; __u16 apptag; __u16 appmask; } __attribute__((__packed__)); #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32) static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { /* * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO * between 32 bit programs and 64 bit kernel. * The cause is that the results of sizeof(struct nvme_user_io), * which is used to define NVME_IOCTL_SUBMIT_IO, * are not same between 32 bit compiler and 64 bit compiler. * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs. * Other IOCTL numbers are same between 32 bit and 64 bit. * So there is nothing to do regarding to other IOCTL numbers. */ if (cmd == NVME_IOCTL_SUBMIT_IO32) return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg); return nvme_ioctl(bdev, mode, cmd, arg); } #else #define nvme_compat_ioctl NULL #endif /* CONFIG_COMPAT */ static int nvme_open(struct block_device *bdev, fmode_t mode) { struct nvme_ns *ns = bdev->bd_disk->private_data; #ifdef CONFIG_NVME_MULTIPATH /* should never be called due to GENHD_FL_HIDDEN */ if (WARN_ON_ONCE(ns->head->disk)) goto fail; #endif if (!kref_get_unless_zero(&ns->kref)) goto fail; if (!try_module_get(ns->ctrl->ops->module)) goto fail_put_ns; return 0; fail_put_ns: nvme_put_ns(ns); fail: return -ENXIO; } static void nvme_release(struct gendisk *disk, fmode_t mode) { struct nvme_ns *ns = disk->private_data; module_put(ns->ctrl->ops->module); nvme_put_ns(ns); } static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) { /* some standard values */ geo->heads = 1 << 6; geo->sectors = 1 << 5; geo->cylinders = get_capacity(bdev->bd_disk) >> 11; return 0; } #ifdef CONFIG_BLK_DEV_INTEGRITY static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) { struct blk_integrity integrity; memset(&integrity, 0, sizeof(integrity)); switch (pi_type) { case NVME_NS_DPS_PI_TYPE3: integrity.profile = &t10_pi_type3_crc; integrity.tag_size = sizeof(u16) + sizeof(u32); integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; break; case NVME_NS_DPS_PI_TYPE1: case NVME_NS_DPS_PI_TYPE2: integrity.profile = &t10_pi_type1_crc; integrity.tag_size = sizeof(u16); integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; break; default: integrity.profile = NULL; break; } integrity.tuple_size = ms; blk_integrity_register(disk, &integrity); blk_queue_max_integrity_segments(disk->queue, 1); } #else static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) { } #endif /* CONFIG_BLK_DEV_INTEGRITY */ static void nvme_set_chunk_size(struct nvme_ns *ns) { u32 chunk_size = nvme_lba_to_sect(ns, ns->noiob); blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); } static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) { struct nvme_ctrl *ctrl = ns->ctrl; struct request_queue *queue = disk->queue; u32 size = queue_logical_block_size(queue); if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); return; } if (ctrl->nr_streams && ns->sws && ns->sgs) size *= ns->sws * ns->sgs; BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < NVME_DSM_MAX_RANGES); queue->limits.discard_alignment = 0; queue->limits.discard_granularity = size; /* If discard is already enabled, don't reset queue limits */ if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) return; blk_queue_max_discard_sectors(queue, UINT_MAX); blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); } static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns) { u64 max_blocks; if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) || (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) return; /* * Even though NVMe spec explicitly states that MDTS is not * applicable to the write-zeroes:- "The restriction does not apply to * commands that do not transfer data between the host and the * controller (e.g., Write Uncorrectable ro Write Zeroes command).". * In order to be more cautious use controller's max_hw_sectors value * to configure the maximum sectors for the write-zeroes which is * configured based on the controller's MDTS field in the * nvme_init_identify() if available. */ if (ns->ctrl->max_hw_sectors == UINT_MAX) max_blocks = (u64)USHRT_MAX + 1; else max_blocks = ns->ctrl->max_hw_sectors + 1; blk_queue_max_write_zeroes_sectors(disk->queue, nvme_lba_to_sect(ns, max_blocks)); } static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, struct nvme_id_ns *id, struct nvme_ns_ids *ids) { memset(ids, 0, sizeof(*ids)); if (ctrl->vs >= NVME_VS(1, 1, 0)) memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); if (ctrl->vs >= NVME_VS(1, 2, 0)) memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); if (ctrl->vs >= NVME_VS(1, 3, 0)) return nvme_identify_ns_descs(ctrl, nsid, ids); return 0; } static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) { return !uuid_is_null(&ids->uuid) || memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); } static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) { return uuid_equal(&a->uuid, &b->uuid) && memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; } static void nvme_update_disk_info(struct gendisk *disk, struct nvme_ns *ns, struct nvme_id_ns *id) { sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); unsigned short bs = 1 << ns->lba_shift; u32 atomic_bs, phys_bs, io_opt; if (ns->lba_shift > PAGE_SHIFT) { /* unsupported block size, set capacity to 0 later */ bs = (1 << 9); } blk_mq_freeze_queue(disk->queue); blk_integrity_unregister(disk); if (id->nabo == 0) { /* * Bit 1 indicates whether NAWUPF is defined for this namespace * and whether it should be used instead of AWUPF. If NAWUPF == * 0 then AWUPF must be used instead. */ if (id->nsfeat & (1 << 1) && id->nawupf) atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; else atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; } else { atomic_bs = bs; } phys_bs = bs; io_opt = bs; if (id->nsfeat & (1 << 4)) { /* NPWG = Namespace Preferred Write Granularity */ phys_bs *= 1 + le16_to_cpu(id->npwg); /* NOWS = Namespace Optimal Write Size */ io_opt *= 1 + le16_to_cpu(id->nows); } blk_queue_logical_block_size(disk->queue, bs); /* * Linux filesystems assume writing a single physical block is * an atomic operation. Hence limit the physical block size to the * value of the Atomic Write Unit Power Fail parameter. */ blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); blk_queue_io_min(disk->queue, phys_bs); blk_queue_io_opt(disk->queue, io_opt); if (ns->ms && !ns->ext && (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) nvme_init_integrity(disk, ns->ms, ns->pi_type); if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) || ns->lba_shift > PAGE_SHIFT) capacity = 0; set_capacity_revalidate_and_notify(disk, capacity, false); nvme_config_discard(disk, ns); nvme_config_write_zeroes(disk, ns); if (id->nsattr & (1 << 0)) set_disk_ro(disk, true); else set_disk_ro(disk, false); blk_mq_unfreeze_queue(disk->queue); } static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) { struct nvme_ns *ns = disk->private_data; /* * If identify namespace failed, use default 512 byte block size so * block layer can use before failing read/write for 0 capacity. */ ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; if (ns->lba_shift == 0) ns->lba_shift = 9; ns->noiob = le16_to_cpu(id->noiob); ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); /* the PI implementation requires metadata equal t10 pi tuple size */ if (ns->ms == sizeof(struct t10_pi_tuple)) ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; else ns->pi_type = 0; if (ns->noiob) nvme_set_chunk_size(ns); nvme_update_disk_info(disk, ns, id); #ifdef CONFIG_NVME_MULTIPATH if (ns->head->disk) { nvme_update_disk_info(ns->head->disk, ns, id); blk_queue_stack_limits(ns->head->disk->queue, ns->queue); if (bdi_cap_stable_pages_required(ns->queue->backing_dev_info)) { struct backing_dev_info *info = ns->head->disk->queue->backing_dev_info; info->capabilities |= BDI_CAP_STABLE_WRITES; } revalidate_disk(ns->head->disk); } #endif } static int nvme_revalidate_disk(struct gendisk *disk) { struct nvme_ns *ns = disk->private_data; struct nvme_ctrl *ctrl = ns->ctrl; struct nvme_id_ns *id; struct nvme_ns_ids ids; int ret = 0; if (test_bit(NVME_NS_DEAD, &ns->flags)) { set_capacity(disk, 0); return -ENODEV; } ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id); if (ret) goto out; if (id->ncap == 0) { ret = -ENODEV; goto free_id; } __nvme_revalidate_disk(disk, id); ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); if (ret) goto free_id; if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { dev_err(ctrl->device, "identifiers changed for nsid %d\n", ns->head->ns_id); ret = -ENODEV; } free_id: kfree(id); out: /* * Only fail the function if we got a fatal error back from the * device, otherwise ignore the error and just move on. */ if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR))) ret = 0; else if (ret > 0) ret = blk_status_to_errno(nvme_error_status(ret)); return ret; } static char nvme_pr_type(enum pr_type type) { switch (type) { case PR_WRITE_EXCLUSIVE: return 1; case PR_EXCLUSIVE_ACCESS: return 2; case PR_WRITE_EXCLUSIVE_REG_ONLY: return 3; case PR_EXCLUSIVE_ACCESS_REG_ONLY: return 4; case PR_WRITE_EXCLUSIVE_ALL_REGS: return 5; case PR_EXCLUSIVE_ACCESS_ALL_REGS: return 6; default: return 0; } }; static int nvme_pr_command(struct block_device *bdev, u32 cdw10, u64 key, u64 sa_key, u8 op) { struct nvme_ns_head *head = NULL; struct nvme_ns *ns; struct nvme_command c; int srcu_idx, ret; u8 data[16] = { 0, }; ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); if (unlikely(!ns)) return -EWOULDBLOCK; put_unaligned_le64(key, &data[0]); put_unaligned_le64(sa_key, &data[8]); memset(&c, 0, sizeof(c)); c.common.opcode = op; c.common.nsid = cpu_to_le32(ns->head->ns_id); c.common.cdw10 = cpu_to_le32(cdw10); ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); nvme_put_ns_from_disk(head, srcu_idx); return ret; } static int nvme_pr_register(struct block_device *bdev, u64 old, u64 new, unsigned flags) { u32 cdw10; if (flags & ~PR_FL_IGNORE_KEY) return -EOPNOTSUPP; cdw10 = old ? 2 : 0; cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); } static int nvme_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, unsigned flags) { u32 cdw10; if (flags & ~PR_FL_IGNORE_KEY) return -EOPNOTSUPP; cdw10 = nvme_pr_type(type) << 8; cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); } static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, enum pr_type type, bool abort) { u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); } static int nvme_pr_clear(struct block_device *bdev, u64 key) { u32 cdw10 = 1 | (key ? 1 << 3 : 0); return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); } static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) { u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); } static const struct pr_ops nvme_pr_ops = { .pr_register = nvme_pr_register, .pr_reserve = nvme_pr_reserve, .pr_release = nvme_pr_release, .pr_preempt = nvme_pr_preempt, .pr_clear = nvme_pr_clear, }; #ifdef CONFIG_BLK_SED_OPAL int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, bool send) { struct nvme_ctrl *ctrl = data; struct nvme_command cmd; memset(&cmd, 0, sizeof(cmd)); if (send) cmd.common.opcode = nvme_admin_security_send; else cmd.common.opcode = nvme_admin_security_recv; cmd.common.nsid = 0; cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); cmd.common.cdw11 = cpu_to_le32(len); return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false); } EXPORT_SYMBOL_GPL(nvme_sec_submit); #endif /* CONFIG_BLK_SED_OPAL */ static const struct block_device_operations nvme_fops = { .owner = THIS_MODULE, .ioctl = nvme_ioctl, .compat_ioctl = nvme_compat_ioctl, .open = nvme_open, .release = nvme_release, .getgeo = nvme_getgeo, .revalidate_disk= nvme_revalidate_disk, .pr_ops = &nvme_pr_ops, }; #ifdef CONFIG_NVME_MULTIPATH static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) { struct nvme_ns_head *head = bdev->bd_disk->private_data; if (!kref_get_unless_zero(&head->ref)) return -ENXIO; return 0; } static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) { nvme_put_ns_head(disk->private_data); } const struct block_device_operations nvme_ns_head_ops = { .owner = THIS_MODULE, .open = nvme_ns_head_open, .release = nvme_ns_head_release, .ioctl = nvme_ioctl, .compat_ioctl = nvme_compat_ioctl, .getgeo = nvme_getgeo, .pr_ops = &nvme_pr_ops, }; #endif /* CONFIG_NVME_MULTIPATH */ static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) { unsigned long timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; int ret; while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { if (csts == ~0) return -ENODEV; if ((csts & NVME_CSTS_RDY) == bit) break; usleep_range(1000, 2000); if (fatal_signal_pending(current)) return -EINTR; if (time_after(jiffies, timeout)) { dev_err(ctrl->device, "Device not ready; aborting %s, CSTS=0x%x\n", enabled ? "initialisation" : "reset", csts); return -ENODEV; } } return ret; } /* * If the device has been passed off to us in an enabled state, just clear * the enabled bit. The spec says we should set the 'shutdown notification * bits', but doing so may cause the device to complete commands to the * admin queue ... and we don't know what memory that might be pointing at! */ int nvme_disable_ctrl(struct nvme_ctrl *ctrl) { int ret; ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; ctrl->ctrl_config &= ~NVME_CC_ENABLE; ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); if (ret) return ret; if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) msleep(NVME_QUIRK_DELAY_AMOUNT); return nvme_wait_ready(ctrl, ctrl->cap, false); } EXPORT_SYMBOL_GPL(nvme_disable_ctrl); int nvme_enable_ctrl(struct nvme_ctrl *ctrl) { /* * Default to a 4K page size, with the intention to update this * path in the future to accomodate architectures with differing * kernel and IO page sizes. */ unsigned dev_page_min, page_shift = 12; int ret; ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); if (ret) { dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); return ret; } dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; if (page_shift < dev_page_min) { dev_err(ctrl->device, "Minimum device page size %u too large for host (%u)\n", 1 << dev_page_min, 1 << page_shift); return -ENODEV; } ctrl->page_size = 1 << page_shift; ctrl->ctrl_config = NVME_CC_CSS_NVM; ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; ctrl->ctrl_config |= NVME_CC_ENABLE; ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); if (ret) return ret; return nvme_wait_ready(ctrl, ctrl->cap, true); } EXPORT_SYMBOL_GPL(nvme_enable_ctrl); int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) { unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); u32 csts; int ret; ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); if (ret) return ret; while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) break; msleep(100); if (fatal_signal_pending(current)) return -EINTR; if (time_after(jiffies, timeout)) { dev_err(ctrl->device, "Device shutdown incomplete; abort shutdown\n"); return -ENODEV; } } return ret; } EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, struct request_queue *q) { bool vwc = false; if (ctrl->max_hw_sectors) { u32 max_segments = (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; max_segments = min_not_zero(max_segments, ctrl->max_segments); blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); } if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && is_power_of_2(ctrl->max_hw_sectors)) blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); blk_queue_virt_boundary(q, ctrl->page_size - 1); if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) vwc = true; blk_queue_write_cache(q, vwc, vwc); } static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) { __le64 ts; int ret; if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) return 0; ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), NULL); if (ret) dev_warn_once(ctrl->device, "could not set timestamp (%d)\n", ret); return ret; } static int nvme_configure_acre(struct nvme_ctrl *ctrl) { struct nvme_feat_host_behavior *host; int ret; /* Don't bother enabling the feature if retry delay is not reported */ if (!ctrl->crdt[0]) return 0; host = kzalloc(sizeof(*host), GFP_KERNEL); if (!host) return 0; host->acre = NVME_ENABLE_ACRE; ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, host, sizeof(*host), NULL); kfree(host); return ret; } static int nvme_configure_apst(struct nvme_ctrl *ctrl) { /* * APST (Autonomous Power State Transition) lets us program a * table of power state transitions that the controller will * perform automatically. We configure it with a simple * heuristic: we are willing to spend at most 2% of the time * transitioning between power states. Therefore, when running * in any given state, we will enter the next lower-power * non-operational state after waiting 50 * (enlat + exlat) * microseconds, as long as that state's exit latency is under * the requested maximum latency. * * We will not autonomously enter any non-operational state for * which the total latency exceeds ps_max_latency_us. Users * can set ps_max_latency_us to zero to turn off APST. */ unsigned apste; struct nvme_feat_auto_pst *table; u64 max_lat_us = 0; int max_ps = -1; int ret; /* * If APST isn't supported or if we haven't been initialized yet, * then don't do anything. */ if (!ctrl->apsta) return 0; if (ctrl->npss > 31) { dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); return 0; } table = kzalloc(sizeof(*table), GFP_KERNEL); if (!table) return 0; if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { /* Turn off APST. */ apste = 0; dev_dbg(ctrl->device, "APST disabled\n"); } else { __le64 target = cpu_to_le64(0); int state; /* * Walk through all states from lowest- to highest-power. * According to the spec, lower-numbered states use more * power. NPSS, despite the name, is the index of the * lowest-power state, not the number of states. */ for (state = (int)ctrl->npss; state >= 0; state--) { u64 total_latency_us, exit_latency_us, transition_ms; if (target) table->entries[state] = target; /* * Don't allow transitions to the deepest state * if it's quirked off. */ if (state == ctrl->npss && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) continue; /* * Is this state a useful non-operational state for * higher-power states to autonomously transition to? */ if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) continue; exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); if (exit_latency_us > ctrl->ps_max_latency_us) continue; total_latency_us = exit_latency_us + le32_to_cpu(ctrl->psd[state].entry_lat); /* * This state is good. Use it as the APST idle * target for higher power states. */ transition_ms = total_latency_us + 19; do_div(transition_ms, 20); if (transition_ms > (1 << 24) - 1) transition_ms = (1 << 24) - 1; target = cpu_to_le64((state << 3) | (transition_ms << 8)); if (max_ps == -1) max_ps = state; if (total_latency_us > max_lat_us) max_lat_us = total_latency_us; } apste = 1; if (max_ps == -1) { dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); } else { dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", max_ps, max_lat_us, (int)sizeof(*table), table); } } ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, table, sizeof(*table), NULL); if (ret) dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); kfree(table); return ret; } static void nvme_set_latency_tolerance(struct device *dev, s32 val) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); u64 latency; switch (val) { case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: case PM_QOS_LATENCY_ANY: latency = U64_MAX; break; default: latency = val; } if (ctrl->ps_max_latency_us != latency) { ctrl->ps_max_latency_us = latency; nvme_configure_apst(ctrl); } } struct nvme_core_quirk_entry { /* * NVMe model and firmware strings are padded with spaces. For * simplicity, strings in the quirk table are padded with NULLs * instead. */ u16 vid; const char *mn; const char *fr; unsigned long quirks; }; static const struct nvme_core_quirk_entry core_quirks[] = { { /* * This Toshiba device seems to die using any APST states. See: * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 */ .vid = 0x1179, .mn = "THNSF5256GPUK TOSHIBA", .quirks = NVME_QUIRK_NO_APST, }, { /* * This LiteON CL1-3D*-Q11 firmware version has a race * condition associated with actions related to suspend to idle * LiteON has resolved the problem in future firmware */ .vid = 0x14a4, .fr = "22301111", .quirks = NVME_QUIRK_SIMPLE_SUSPEND, } }; /* match is null-terminated but idstr is space-padded. */ static bool string_matches(const char *idstr, const char *match, size_t len) { size_t matchlen; if (!match) return true; matchlen = strlen(match); WARN_ON_ONCE(matchlen > len); if (memcmp(idstr, match, matchlen)) return false; for (; matchlen < len; matchlen++) if (idstr[matchlen] != ' ') return false; return true; } static bool quirk_matches(const struct nvme_id_ctrl *id, const struct nvme_core_quirk_entry *q) { return q->vid == le16_to_cpu(id->vid) && string_matches(id->mn, q->mn, sizeof(id->mn)) && string_matches(id->fr, q->fr, sizeof(id->fr)); } static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) { size_t nqnlen; int off; if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); return; } if (ctrl->vs >= NVME_VS(1, 2, 1)) dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); } /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, "nqn.2014.08.org.nvmexpress:%04x%04x", le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); off += sizeof(id->sn); memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); off += sizeof(id->mn); memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); } static void nvme_release_subsystem(struct device *dev) { struct nvme_subsystem *subsys = container_of(dev, struct nvme_subsystem, dev); if (subsys->instance >= 0) ida_simple_remove(&nvme_instance_ida, subsys->instance); kfree(subsys); } static void nvme_destroy_subsystem(struct kref *ref) { struct nvme_subsystem *subsys = container_of(ref, struct nvme_subsystem, ref); mutex_lock(&nvme_subsystems_lock); list_del(&subsys->entry); mutex_unlock(&nvme_subsystems_lock); ida_destroy(&subsys->ns_ida); device_del(&subsys->dev); put_device(&subsys->dev); } static void nvme_put_subsystem(struct nvme_subsystem *subsys) { kref_put(&subsys->ref, nvme_destroy_subsystem); } static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) { struct nvme_subsystem *subsys; lockdep_assert_held(&nvme_subsystems_lock); /* * Fail matches for discovery subsystems. This results * in each discovery controller bound to a unique subsystem. * This avoids issues with validating controller values * that can only be true when there is a single unique subsystem. * There may be multiple and completely independent entities * that provide discovery controllers. */ if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) return NULL; list_for_each_entry(subsys, &nvme_subsystems, entry) { if (strcmp(subsys->subnqn, subsysnqn)) continue; if (!kref_get_unless_zero(&subsys->ref)) continue; return subsys; } return NULL; } #define SUBSYS_ATTR_RO(_name, _mode, _show) \ struct device_attribute subsys_attr_##_name = \ __ATTR(_name, _mode, _show, NULL) static ssize_t nvme_subsys_show_nqn(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_subsystem *subsys = container_of(dev, struct nvme_subsystem, dev); return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); } static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); #define nvme_subsys_show_str_function(field) \ static ssize_t subsys_##field##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct nvme_subsystem *subsys = \ container_of(dev, struct nvme_subsystem, dev); \ return sprintf(buf, "%.*s\n", \ (int)sizeof(subsys->field), subsys->field); \ } \ static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); nvme_subsys_show_str_function(model); nvme_subsys_show_str_function(serial); nvme_subsys_show_str_function(firmware_rev); static struct attribute *nvme_subsys_attrs[] = { &subsys_attr_model.attr, &subsys_attr_serial.attr, &subsys_attr_firmware_rev.attr, &subsys_attr_subsysnqn.attr, #ifdef CONFIG_NVME_MULTIPATH &subsys_attr_iopolicy.attr, #endif NULL, }; static struct attribute_group nvme_subsys_attrs_group = { .attrs = nvme_subsys_attrs, }; static const struct attribute_group *nvme_subsys_attrs_groups[] = { &nvme_subsys_attrs_group, NULL, }; static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) { struct nvme_ctrl *tmp; lockdep_assert_held(&nvme_subsystems_lock); list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { if (nvme_state_terminal(tmp)) continue; if (tmp->cntlid == ctrl->cntlid) { dev_err(ctrl->device, "Duplicate cntlid %u with %s, rejecting\n", ctrl->cntlid, dev_name(tmp->device)); return false; } if ((id->cmic & (1 << 1)) || (ctrl->opts && ctrl->opts->discovery_nqn)) continue; dev_err(ctrl->device, "Subsystem does not support multiple controllers\n"); return false; } return true; } static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) { struct nvme_subsystem *subsys, *found; int ret; subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); if (!subsys) return -ENOMEM; subsys->instance = -1; mutex_init(&subsys->lock); kref_init(&subsys->ref); INIT_LIST_HEAD(&subsys->ctrls); INIT_LIST_HEAD(&subsys->nsheads); nvme_init_subnqn(subsys, ctrl, id); memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); memcpy(subsys->model, id->mn, sizeof(subsys->model)); memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); subsys->vendor_id = le16_to_cpu(id->vid); subsys->cmic = id->cmic; subsys->awupf = le16_to_cpu(id->awupf); #ifdef CONFIG_NVME_MULTIPATH subsys->iopolicy = NVME_IOPOLICY_NUMA; #endif subsys->dev.class = nvme_subsys_class; subsys->dev.release = nvme_release_subsystem; subsys->dev.groups = nvme_subsys_attrs_groups; dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); device_initialize(&subsys->dev); mutex_lock(&nvme_subsystems_lock); found = __nvme_find_get_subsystem(subsys->subnqn); if (found) { put_device(&subsys->dev); subsys = found; if (!nvme_validate_cntlid(subsys, ctrl, id)) { ret = -EINVAL; goto out_put_subsystem; } } else { ret = device_add(&subsys->dev); if (ret) { dev_err(ctrl->device, "failed to register subsystem device.\n"); put_device(&subsys->dev); goto out_unlock; } ida_init(&subsys->ns_ida); list_add_tail(&subsys->entry, &nvme_subsystems); } ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, dev_name(ctrl->device)); if (ret) { dev_err(ctrl->device, "failed to create sysfs link from subsystem.\n"); goto out_put_subsystem; } if (!found) subsys->instance = ctrl->instance; ctrl->subsys = subsys; list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); mutex_unlock(&nvme_subsystems_lock); return 0; out_put_subsystem: nvme_put_subsystem(subsys); out_unlock: mutex_unlock(&nvme_subsystems_lock); return ret; } int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, void *log, size_t size, u64 offset) { struct nvme_command c = { }; unsigned long dwlen = size / 4 - 1; c.get_log_page.opcode = nvme_admin_get_log_page; c.get_log_page.nsid = cpu_to_le32(nsid); c.get_log_page.lid = log_page; c.get_log_page.lsp = lsp; c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); } static int nvme_get_effects_log(struct nvme_ctrl *ctrl) { int ret; if (!ctrl->effects) ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); if (!ctrl->effects) return 0; ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, ctrl->effects, sizeof(*ctrl->effects), 0); if (ret) { kfree(ctrl->effects); ctrl->effects = NULL; } return ret; } /* * Initialize the cached copies of the Identify data and various controller * register in our nvme_ctrl structure. This should be called as soon as * the admin queue is fully up and running. */ int nvme_init_identify(struct nvme_ctrl *ctrl) { struct nvme_id_ctrl *id; int ret, page_shift; u32 max_hw_sectors; bool prev_apst_enabled; ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); if (ret) { dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); return ret; } page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12; ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); if (ctrl->vs >= NVME_VS(1, 1, 0)) ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); ret = nvme_identify_ctrl(ctrl, &id); if (ret) { dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); return -EIO; } if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { ret = nvme_get_effects_log(ctrl); if (ret < 0) goto out_free; } if (!(ctrl->ops->flags & NVME_F_FABRICS)) ctrl->cntlid = le16_to_cpu(id->cntlid); if (!ctrl->identified) { int i; ret = nvme_init_subsystem(ctrl, id); if (ret) goto out_free; /* * Check for quirks. Quirk can depend on firmware version, * so, in principle, the set of quirks present can change * across a reset. As a possible future enhancement, we * could re-scan for quirks every time we reinitialize * the device, but we'd have to make sure that the driver * behaves intelligently if the quirks change. */ for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { if (quirk_matches(id, &core_quirks[i])) ctrl->quirks |= core_quirks[i].quirks; } } if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; } ctrl->crdt[0] = le16_to_cpu(id->crdt1); ctrl->crdt[1] = le16_to_cpu(id->crdt2); ctrl->crdt[2] = le16_to_cpu(id->crdt3); ctrl->oacs = le16_to_cpu(id->oacs); ctrl->oncs = le16_to_cpu(id->oncs); ctrl->mtfa = le16_to_cpu(id->mtfa); ctrl->oaes = le32_to_cpu(id->oaes); ctrl->wctemp = le16_to_cpu(id->wctemp); ctrl->cctemp = le16_to_cpu(id->cctemp); atomic_set(&ctrl->abort_limit, id->acl + 1); ctrl->vwc = id->vwc; if (id->mdts) max_hw_sectors = 1 << (id->mdts + page_shift - 9); else max_hw_sectors = UINT_MAX; ctrl->max_hw_sectors = min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); nvme_set_queue_limits(ctrl, ctrl->admin_q); ctrl->sgls = le32_to_cpu(id->sgls); ctrl->kas = le16_to_cpu(id->kas); ctrl->max_namespaces = le32_to_cpu(id->mnan); ctrl->ctratt = le32_to_cpu(id->ctratt); if (id->rtd3e) { /* us -> s */ u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, shutdown_timeout, 60); if (ctrl->shutdown_timeout != shutdown_timeout) dev_info(ctrl->device, "Shutdown timeout set to %u seconds\n", ctrl->shutdown_timeout); } else ctrl->shutdown_timeout = shutdown_timeout; ctrl->npss = id->npss; ctrl->apsta = id->apsta; prev_apst_enabled = ctrl->apst_enabled; if (ctrl->quirks & NVME_QUIRK_NO_APST) { if (force_apst && id->apsta) { dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); ctrl->apst_enabled = true; } else { ctrl->apst_enabled = false; } } else { ctrl->apst_enabled = id->apsta; } memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); if (ctrl->ops->flags & NVME_F_FABRICS) { ctrl->icdoff = le16_to_cpu(id->icdoff); ctrl->ioccsz = le32_to_cpu(id->ioccsz); ctrl->iorcsz = le32_to_cpu(id->iorcsz); ctrl->maxcmd = le16_to_cpu(id->maxcmd); /* * In fabrics we need to verify the cntlid matches the * admin connect */ if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { dev_err(ctrl->device, "Mismatching cntlid: Connect %u vs Identify " "%u, rejecting\n", ctrl->cntlid, le16_to_cpu(id->cntlid)); ret = -EINVAL; goto out_free; } if (!ctrl->opts->discovery_nqn && !ctrl->kas) { dev_err(ctrl->device, "keep-alive support is mandatory for fabrics\n"); ret = -EINVAL; goto out_free; } } else { ctrl->hmpre = le32_to_cpu(id->hmpre); ctrl->hmmin = le32_to_cpu(id->hmmin); ctrl->hmminds = le32_to_cpu(id->hmminds); ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); } ret = nvme_mpath_init(ctrl, id); kfree(id); if (ret < 0) return ret; if (ctrl->apst_enabled && !prev_apst_enabled) dev_pm_qos_expose_latency_tolerance(ctrl->device); else if (!ctrl->apst_enabled && prev_apst_enabled) dev_pm_qos_hide_latency_tolerance(ctrl->device); ret = nvme_configure_apst(ctrl); if (ret < 0) return ret; ret = nvme_configure_timestamp(ctrl); if (ret < 0) return ret; ret = nvme_configure_directives(ctrl); if (ret < 0) return ret; ret = nvme_configure_acre(ctrl); if (ret < 0) return ret; if (!ctrl->identified) nvme_hwmon_init(ctrl); ctrl->identified = true; return 0; out_free: kfree(id); return ret; } EXPORT_SYMBOL_GPL(nvme_init_identify); static int nvme_dev_open(struct inode *inode, struct file *file) { struct nvme_ctrl *ctrl = container_of(inode->i_cdev, struct nvme_ctrl, cdev); switch (ctrl->state) { case NVME_CTRL_LIVE: break; default: return -EWOULDBLOCK; } file->private_data = ctrl; return 0; } static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) { struct nvme_ns *ns; int ret; down_read(&ctrl->namespaces_rwsem); if (list_empty(&ctrl->namespaces)) { ret = -ENOTTY; goto out_unlock; } ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { dev_warn(ctrl->device, "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); ret = -EINVAL; goto out_unlock; } dev_warn(ctrl->device, "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); kref_get(&ns->kref); up_read(&ctrl->namespaces_rwsem); ret = nvme_user_cmd(ctrl, ns, argp); nvme_put_ns(ns); return ret; out_unlock: up_read(&ctrl->namespaces_rwsem); return ret; } static long nvme_dev_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct nvme_ctrl *ctrl = file->private_data; void __user *argp = (void __user *)arg; switch (cmd) { case NVME_IOCTL_ADMIN_CMD: return nvme_user_cmd(ctrl, NULL, argp); case NVME_IOCTL_ADMIN64_CMD: return nvme_user_cmd64(ctrl, NULL, argp); case NVME_IOCTL_IO_CMD: return nvme_dev_user_cmd(ctrl, argp); case NVME_IOCTL_RESET: dev_warn(ctrl->device, "resetting controller\n"); return nvme_reset_ctrl_sync(ctrl); case NVME_IOCTL_SUBSYS_RESET: return nvme_reset_subsystem(ctrl); case NVME_IOCTL_RESCAN: nvme_queue_scan(ctrl); return 0; default: return -ENOTTY; } } static const struct file_operations nvme_dev_fops = { .owner = THIS_MODULE, .open = nvme_dev_open, .unlocked_ioctl = nvme_dev_ioctl, .compat_ioctl = compat_ptr_ioctl, }; static ssize_t nvme_sysfs_reset(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); int ret; ret = nvme_reset_ctrl_sync(ctrl); if (ret < 0) return ret; return count; } static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); static ssize_t nvme_sysfs_rescan(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); nvme_queue_scan(ctrl); return count; } static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) { struct gendisk *disk = dev_to_disk(dev); if (disk->fops == &nvme_fops) return nvme_get_ns_from_dev(dev)->head; else return disk->private_data; } static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ns_head *head = dev_to_ns_head(dev); struct nvme_ns_ids *ids = &head->ids; struct nvme_subsystem *subsys = head->subsys; int serial_len = sizeof(subsys->serial); int model_len = sizeof(subsys->model); if (!uuid_is_null(&ids->uuid)) return sprintf(buf, "uuid.%pU\n", &ids->uuid); if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) return sprintf(buf, "eui.%16phN\n", ids->nguid); if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) return sprintf(buf, "eui.%8phN\n", ids->eui64); while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || subsys->serial[serial_len - 1] == '\0')) serial_len--; while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || subsys->model[model_len - 1] == '\0')) model_len--; return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, serial_len, subsys->serial, model_len, subsys->model, head->ns_id); } static DEVICE_ATTR_RO(wwid); static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); } static DEVICE_ATTR_RO(nguid); static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; /* For backward compatibility expose the NGUID to userspace if * we have no UUID set */ if (uuid_is_null(&ids->uuid)) { printk_ratelimited(KERN_WARNING "No UUID available providing old NGUID\n"); return sprintf(buf, "%pU\n", ids->nguid); } return sprintf(buf, "%pU\n", &ids->uuid); } static DEVICE_ATTR_RO(uuid); static ssize_t eui_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); } static DEVICE_ATTR_RO(eui); static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); } static DEVICE_ATTR_RO(nsid); static struct attribute *nvme_ns_id_attrs[] = { &dev_attr_wwid.attr, &dev_attr_uuid.attr, &dev_attr_nguid.attr, &dev_attr_eui.attr, &dev_attr_nsid.attr, #ifdef CONFIG_NVME_MULTIPATH &dev_attr_ana_grpid.attr, &dev_attr_ana_state.attr, #endif NULL, }; static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = container_of(kobj, struct device, kobj); struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; if (a == &dev_attr_uuid.attr) { if (uuid_is_null(&ids->uuid) && !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) return 0; } if (a == &dev_attr_nguid.attr) { if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) return 0; } if (a == &dev_attr_eui.attr) { if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) return 0; } #ifdef CONFIG_NVME_MULTIPATH if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */ return 0; if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) return 0; } #endif return a->mode; } static const struct attribute_group nvme_ns_id_attr_group = { .attrs = nvme_ns_id_attrs, .is_visible = nvme_ns_id_attrs_are_visible, }; const struct attribute_group *nvme_ns_id_attr_groups[] = { &nvme_ns_id_attr_group, #ifdef CONFIG_NVM &nvme_nvm_attr_group, #endif NULL, }; #define nvme_show_str_function(field) \ static ssize_t field##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ return sprintf(buf, "%.*s\n", \ (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ } \ static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); nvme_show_str_function(model); nvme_show_str_function(serial); nvme_show_str_function(firmware_rev); #define nvme_show_int_function(field) \ static ssize_t field##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ return sprintf(buf, "%d\n", ctrl->field); \ } \ static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); nvme_show_int_function(cntlid); nvme_show_int_function(numa_node); nvme_show_int_function(queue_count); nvme_show_int_function(sqsize); static ssize_t nvme_sysfs_delete(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); /* Can't delete non-created controllers */ if (!ctrl->created) return -EBUSY; if (device_remove_file_self(dev, attr)) nvme_delete_ctrl_sync(ctrl); return count; } static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); static ssize_t nvme_sysfs_show_transport(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); } static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); static ssize_t nvme_sysfs_show_state(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); static const char *const state_name[] = { [NVME_CTRL_NEW] = "new", [NVME_CTRL_LIVE] = "live", [NVME_CTRL_RESETTING] = "resetting", [NVME_CTRL_CONNECTING] = "connecting", [NVME_CTRL_DELETING] = "deleting", [NVME_CTRL_DEAD] = "dead", }; if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && state_name[ctrl->state]) return sprintf(buf, "%s\n", state_name[ctrl->state]); return sprintf(buf, "unknown state\n"); } static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); } static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn); } static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); static ssize_t nvme_sysfs_show_hostid(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id); } static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); static ssize_t nvme_sysfs_show_address(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); } static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); static struct attribute *nvme_dev_attrs[] = { &dev_attr_reset_controller.attr, &dev_attr_rescan_controller.attr, &dev_attr_model.attr, &dev_attr_serial.attr, &dev_attr_firmware_rev.attr, &dev_attr_cntlid.attr, &dev_attr_delete_controller.attr, &dev_attr_transport.attr, &dev_attr_subsysnqn.attr, &dev_attr_address.attr, &dev_attr_state.attr, &dev_attr_numa_node.attr, &dev_attr_queue_count.attr, &dev_attr_sqsize.attr, &dev_attr_hostnqn.attr, &dev_attr_hostid.attr, NULL }; static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = container_of(kobj, struct device, kobj); struct nvme_ctrl *ctrl = dev_get_drvdata(dev); if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) return 0; if (a == &dev_attr_address.attr && !ctrl->ops->get_address) return 0; if (a == &dev_attr_hostnqn.attr && !ctrl->opts) return 0; if (a == &dev_attr_hostid.attr && !ctrl->opts) return 0; return a->mode; } static struct attribute_group nvme_dev_attrs_group = { .attrs = nvme_dev_attrs, .is_visible = nvme_dev_attrs_are_visible, }; static const struct attribute_group *nvme_dev_attr_groups[] = { &nvme_dev_attrs_group, NULL, }; static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, unsigned nsid) { struct nvme_ns_head *h; lockdep_assert_held(&subsys->lock); list_for_each_entry(h, &subsys->nsheads, entry) { if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) return h; } return NULL; } static int __nvme_check_ids(struct nvme_subsystem *subsys, struct nvme_ns_head *new) { struct nvme_ns_head *h; lockdep_assert_held(&subsys->lock); list_for_each_entry(h, &subsys->nsheads, entry) { if (nvme_ns_ids_valid(&new->ids) && !list_empty(&h->list) && nvme_ns_ids_equal(&new->ids, &h->ids)) return -EINVAL; } return 0; } static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, unsigned nsid, struct nvme_id_ns *id, struct nvme_ns_ids *ids) { struct nvme_ns_head *head; size_t size = sizeof(*head); int ret = -ENOMEM; #ifdef CONFIG_NVME_MULTIPATH size += num_possible_nodes() * sizeof(struct nvme_ns *); #endif head = kzalloc(size, GFP_KERNEL); if (!head) goto out; ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); if (ret < 0) goto out_free_head; head->instance = ret; INIT_LIST_HEAD(&head->list); ret = init_srcu_struct(&head->srcu); if (ret) goto out_ida_remove; head->subsys = ctrl->subsys; head->ns_id = nsid; head->ids = *ids; kref_init(&head->ref); ret = __nvme_check_ids(ctrl->subsys, head); if (ret) { dev_err(ctrl->device, "duplicate IDs for nsid %d\n", nsid); goto out_cleanup_srcu; } ret = nvme_mpath_alloc_disk(ctrl, head); if (ret) goto out_cleanup_srcu; list_add_tail(&head->entry, &ctrl->subsys->nsheads); kref_get(&ctrl->subsys->ref); return head; out_cleanup_srcu: cleanup_srcu_struct(&head->srcu); out_ida_remove: ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); out_free_head: kfree(head); out: if (ret > 0) ret = blk_status_to_errno(nvme_error_status(ret)); return ERR_PTR(ret); } static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, struct nvme_id_ns *id) { struct nvme_ctrl *ctrl = ns->ctrl; bool is_shared = id->nmic & (1 << 0); struct nvme_ns_head *head = NULL; struct nvme_ns_ids ids; int ret = 0; ret = nvme_report_ns_ids(ctrl, nsid, id, &ids); if (ret) goto out; mutex_lock(&ctrl->subsys->lock); if (is_shared) head = nvme_find_ns_head(ctrl->subsys, nsid); if (!head) { head = nvme_alloc_ns_head(ctrl, nsid, id, &ids); if (IS_ERR(head)) { ret = PTR_ERR(head); goto out_unlock; } } else { if (!nvme_ns_ids_equal(&head->ids, &ids)) { dev_err(ctrl->device, "IDs don't match for shared namespace %d\n", nsid); ret = -EINVAL; goto out_unlock; } } list_add_tail(&ns->siblings, &head->list); ns->head = head; out_unlock: mutex_unlock(&ctrl->subsys->lock); out: if (ret > 0) ret = blk_status_to_errno(nvme_error_status(ret)); return ret; } static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) { struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); return nsa->head->ns_id - nsb->head->ns_id; } static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) { struct nvme_ns *ns, *ret = NULL; down_read(&ctrl->namespaces_rwsem); list_for_each_entry(ns, &ctrl->namespaces, list) { if (ns->head->ns_id == nsid) { if (!kref_get_unless_zero(&ns->kref)) continue; ret = ns; break; } if (ns->head->ns_id > nsid) break; } up_read(&ctrl->namespaces_rwsem); return ret; } static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) { struct streams_directive_params s; int ret; if (!ctrl->nr_streams) return 0; ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); if (ret) return ret; ns->sws = le32_to_cpu(s.sws); ns->sgs = le16_to_cpu(s.sgs); if (ns->sws) { unsigned int bs = 1 << ns->lba_shift; blk_queue_io_min(ns->queue, bs * ns->sws); if (ns->sgs) blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); } return 0; } static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) { struct nvme_ns *ns; struct gendisk *disk; struct nvme_id_ns *id; char disk_name[DISK_NAME_LEN]; int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret; ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); if (!ns) return; ns->queue = blk_mq_init_queue(ctrl->tagset); if (IS_ERR(ns->queue)) goto out_free_ns; if (ctrl->opts && ctrl->opts->data_digest) ns->queue->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); ns->queue->queuedata = ns; ns->ctrl = ctrl; kref_init(&ns->kref); ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); nvme_set_queue_limits(ctrl, ns->queue); ret = nvme_identify_ns(ctrl, nsid, &id); if (ret) goto out_free_queue; if (id->ncap == 0) /* no namespace (legacy quirk) */ goto out_free_id; ret = nvme_init_ns_head(ns, nsid, id); if (ret) goto out_free_id; nvme_setup_streams_ns(ctrl, ns); nvme_set_disk_name(disk_name, ns, ctrl, &flags); disk = alloc_disk_node(0, node); if (!disk) goto out_unlink_ns; disk->fops = &nvme_fops; disk->private_data = ns; disk->queue = ns->queue; disk->flags = flags; memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); ns->disk = disk; __nvme_revalidate_disk(disk, id); if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { ret = nvme_nvm_register(ns, disk_name, node); if (ret) { dev_warn(ctrl->device, "LightNVM init failure\n"); goto out_put_disk; } } down_write(&ctrl->namespaces_rwsem); list_add_tail(&ns->list, &ctrl->namespaces); up_write(&ctrl->namespaces_rwsem); nvme_get_ctrl(ctrl); device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); nvme_mpath_add_disk(ns, id); nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); kfree(id); return; out_put_disk: /* prevent double queue cleanup */ ns->disk->queue = NULL; put_disk(ns->disk); out_unlink_ns: mutex_lock(&ctrl->subsys->lock); list_del_rcu(&ns->siblings); mutex_unlock(&ctrl->subsys->lock); nvme_put_ns_head(ns->head); out_free_id: kfree(id); out_free_queue: blk_cleanup_queue(ns->queue); out_free_ns: kfree(ns); } static void nvme_ns_remove(struct nvme_ns *ns) { if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) return; nvme_fault_inject_fini(&ns->fault_inject); mutex_lock(&ns->ctrl->subsys->lock); list_del_rcu(&ns->siblings); mutex_unlock(&ns->ctrl->subsys->lock); synchronize_rcu(); /* guarantee not available in head->list */ nvme_mpath_clear_current_path(ns); synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */ if (ns->disk && ns->disk->flags & GENHD_FL_UP) { del_gendisk(ns->disk); blk_cleanup_queue(ns->queue); if (blk_get_integrity(ns->disk)) blk_integrity_unregister(ns->disk); } down_write(&ns->ctrl->namespaces_rwsem); list_del_init(&ns->list); up_write(&ns->ctrl->namespaces_rwsem); nvme_mpath_check_last_path(ns); nvme_put_ns(ns); } static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) { struct nvme_ns *ns; ns = nvme_find_get_ns(ctrl, nsid); if (ns) { if (ns->disk && revalidate_disk(ns->disk)) nvme_ns_remove(ns); nvme_put_ns(ns); } else nvme_alloc_ns(ctrl, nsid); } static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, unsigned nsid) { struct nvme_ns *ns, *next; LIST_HEAD(rm_list); down_write(&ctrl->namespaces_rwsem); list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) list_move_tail(&ns->list, &rm_list); } up_write(&ctrl->namespaces_rwsem); list_for_each_entry_safe(ns, next, &rm_list, list) nvme_ns_remove(ns); } static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) { struct nvme_ns *ns; __le32 *ns_list; unsigned i, j, nsid, prev = 0; unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024); int ret = 0; ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); if (!ns_list) return -ENOMEM; for (i = 0; i < num_lists; i++) { ret = nvme_identify_ns_list(ctrl, prev, ns_list); if (ret) goto free; for (j = 0; j < min(nn, 1024U); j++) { nsid = le32_to_cpu(ns_list[j]); if (!nsid) goto out; nvme_validate_ns(ctrl, nsid); while (++prev < nsid) { ns = nvme_find_get_ns(ctrl, prev); if (ns) { nvme_ns_remove(ns); nvme_put_ns(ns); } } } nn -= j; } out: nvme_remove_invalid_namespaces(ctrl, prev); free: kfree(ns_list); return ret; } static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) { unsigned i; for (i = 1; i <= nn; i++) nvme_validate_ns(ctrl, i); nvme_remove_invalid_namespaces(ctrl, nn); } static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) { size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); __le32 *log; int error; log = kzalloc(log_size, GFP_KERNEL); if (!log) return; /* * We need to read the log to clear the AEN, but we don't want to rely * on it for the changed namespace information as userspace could have * raced with us in reading the log page, which could cause us to miss * updates. */ error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log, log_size, 0); if (error) dev_warn(ctrl->device, "reading changed ns log failed: %d\n", error); kfree(log); } static void nvme_scan_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, scan_work); struct nvme_id_ctrl *id; unsigned nn; /* No tagset on a live ctrl means IO queues could not created */ if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) return; if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { dev_info(ctrl->device, "rescanning namespaces.\n"); nvme_clear_changed_ns_log(ctrl); } if (nvme_identify_ctrl(ctrl, &id)) return; mutex_lock(&ctrl->scan_lock); nn = le32_to_cpu(id->nn); if (ctrl->vs >= NVME_VS(1, 1, 0) && !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { if (!nvme_scan_ns_list(ctrl, nn)) goto out_free_id; } nvme_scan_ns_sequential(ctrl, nn); out_free_id: mutex_unlock(&ctrl->scan_lock); kfree(id); down_write(&ctrl->namespaces_rwsem); list_sort(NULL, &ctrl->namespaces, ns_cmp); up_write(&ctrl->namespaces_rwsem); } /* * This function iterates the namespace list unlocked to allow recovery from * controller failure. It is up to the caller to ensure the namespace list is * not modified by scan work while this function is executing. */ void nvme_remove_namespaces(struct nvme_ctrl *ctrl) { struct nvme_ns *ns, *next; LIST_HEAD(ns_list); /* * make sure to requeue I/O to all namespaces as these * might result from the scan itself and must complete * for the scan_work to make progress */ nvme_mpath_clear_ctrl_paths(ctrl); /* prevent racing with ns scanning */ flush_work(&ctrl->scan_work); /* * The dead states indicates the controller was not gracefully * disconnected. In that case, we won't be able to flush any data while * removing the namespaces' disks; fail all the queues now to avoid * potentially having to clean up the failed sync later. */ if (ctrl->state == NVME_CTRL_DEAD) nvme_kill_queues(ctrl); down_write(&ctrl->namespaces_rwsem); list_splice_init(&ctrl->namespaces, &ns_list); up_write(&ctrl->namespaces_rwsem); list_for_each_entry_safe(ns, next, &ns_list, list) nvme_ns_remove(ns); } EXPORT_SYMBOL_GPL(nvme_remove_namespaces); static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) { struct nvme_ctrl *ctrl = container_of(dev, struct nvme_ctrl, ctrl_device); struct nvmf_ctrl_options *opts = ctrl->opts; int ret; ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); if (ret) return ret; if (opts) { ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); if (ret) return ret; ret = add_uevent_var(env, "NVME_TRSVCID=%s", opts->trsvcid ?: "none"); if (ret) return ret; ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", opts->host_traddr ?: "none"); } return ret; } static void nvme_aen_uevent(struct nvme_ctrl *ctrl) { char *envp[2] = { NULL, NULL }; u32 aen_result = ctrl->aen_result; ctrl->aen_result = 0; if (!aen_result) return; envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); if (!envp[0]) return; kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); kfree(envp[0]); } static void nvme_async_event_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, async_event_work); nvme_aen_uevent(ctrl); ctrl->ops->submit_async_event(ctrl); } static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) { u32 csts; if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) return false; if (csts == ~0) return false; return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); } static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) { struct nvme_fw_slot_info_log *log; log = kmalloc(sizeof(*log), GFP_KERNEL); if (!log) return; if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, log, sizeof(*log), 0)) dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); kfree(log); } static void nvme_fw_act_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, fw_act_work); unsigned long fw_act_timeout; if (ctrl->mtfa) fw_act_timeout = jiffies + msecs_to_jiffies(ctrl->mtfa * 100); else fw_act_timeout = jiffies + msecs_to_jiffies(admin_timeout * 1000); nvme_stop_queues(ctrl); while (nvme_ctrl_pp_status(ctrl)) { if (time_after(jiffies, fw_act_timeout)) { dev_warn(ctrl->device, "Fw activation timeout, reset controller\n"); nvme_try_sched_reset(ctrl); return; } msleep(100); } if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) return; nvme_start_queues(ctrl); /* read FW slot information to clear the AER */ nvme_get_fw_slot_info(ctrl); } static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) { u32 aer_notice_type = (result & 0xff00) >> 8; trace_nvme_async_event(ctrl, aer_notice_type); switch (aer_notice_type) { case NVME_AER_NOTICE_NS_CHANGED: set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); nvme_queue_scan(ctrl); break; case NVME_AER_NOTICE_FW_ACT_STARTING: /* * We are (ab)using the RESETTING state to prevent subsequent * recovery actions from interfering with the controller's * firmware activation. */ if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) queue_work(nvme_wq, &ctrl->fw_act_work); break; #ifdef CONFIG_NVME_MULTIPATH case NVME_AER_NOTICE_ANA: if (!ctrl->ana_log_buf) break; queue_work(nvme_wq, &ctrl->ana_work); break; #endif case NVME_AER_NOTICE_DISC_CHANGED: ctrl->aen_result = result; break; default: dev_warn(ctrl->device, "async event result %08x\n", result); } } void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, volatile union nvme_result *res) { u32 result = le32_to_cpu(res->u32); u32 aer_type = result & 0x07; if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) return; switch (aer_type) { case NVME_AER_NOTICE: nvme_handle_aen_notice(ctrl, result); break; case NVME_AER_ERROR: case NVME_AER_SMART: case NVME_AER_CSS: case NVME_AER_VS: trace_nvme_async_event(ctrl, aer_type); ctrl->aen_result = result; break; default: break; } queue_work(nvme_wq, &ctrl->async_event_work); } EXPORT_SYMBOL_GPL(nvme_complete_async_event); void nvme_stop_ctrl(struct nvme_ctrl *ctrl) { nvme_mpath_stop(ctrl); nvme_stop_keep_alive(ctrl); flush_work(&ctrl->async_event_work); cancel_work_sync(&ctrl->fw_act_work); } EXPORT_SYMBOL_GPL(nvme_stop_ctrl); void nvme_start_ctrl(struct nvme_ctrl *ctrl) { if (ctrl->kato) nvme_start_keep_alive(ctrl); nvme_enable_aen(ctrl); if (ctrl->queue_count > 1) { nvme_queue_scan(ctrl); nvme_start_queues(ctrl); } ctrl->created = true; } EXPORT_SYMBOL_GPL(nvme_start_ctrl); void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) { nvme_fault_inject_fini(&ctrl->fault_inject); dev_pm_qos_hide_latency_tolerance(ctrl->device); cdev_device_del(&ctrl->cdev, ctrl->device); nvme_put_ctrl(ctrl); } EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); static void nvme_free_ctrl(struct device *dev) { struct nvme_ctrl *ctrl = container_of(dev, struct nvme_ctrl, ctrl_device); struct nvme_subsystem *subsys = ctrl->subsys; if (subsys && ctrl->instance != subsys->instance) ida_simple_remove(&nvme_instance_ida, ctrl->instance); kfree(ctrl->effects); nvme_mpath_uninit(ctrl); __free_page(ctrl->discard_page); if (subsys) { mutex_lock(&nvme_subsystems_lock); list_del(&ctrl->subsys_entry); sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); mutex_unlock(&nvme_subsystems_lock); } ctrl->ops->free_ctrl(ctrl); if (subsys) nvme_put_subsystem(subsys); } /* * Initialize a NVMe controller structures. This needs to be called during * earliest initialization so that we have the initialized structured around * during probing. */ int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, const struct nvme_ctrl_ops *ops, unsigned long quirks) { int ret; ctrl->state = NVME_CTRL_NEW; spin_lock_init(&ctrl->lock); mutex_init(&ctrl->scan_lock); INIT_LIST_HEAD(&ctrl->namespaces); init_rwsem(&ctrl->namespaces_rwsem); ctrl->dev = dev; ctrl->ops = ops; ctrl->quirks = quirks; INIT_WORK(&ctrl->scan_work, nvme_scan_work); INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); init_waitqueue_head(&ctrl->state_wq); INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > PAGE_SIZE); ctrl->discard_page = alloc_page(GFP_KERNEL); if (!ctrl->discard_page) { ret = -ENOMEM; goto out; } ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); if (ret < 0) goto out; ctrl->instance = ret; device_initialize(&ctrl->ctrl_device); ctrl->device = &ctrl->ctrl_device; ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); ctrl->device->class = nvme_class; ctrl->device->parent = ctrl->dev; ctrl->device->groups = nvme_dev_attr_groups; ctrl->device->release = nvme_free_ctrl; dev_set_drvdata(ctrl->device, ctrl); ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); if (ret) goto out_release_instance; nvme_get_ctrl(ctrl); cdev_init(&ctrl->cdev, &nvme_dev_fops); ctrl->cdev.owner = ops->module; ret = cdev_device_add(&ctrl->cdev, ctrl->device); if (ret) goto out_free_name; /* * Initialize latency tolerance controls. The sysfs files won't * be visible to userspace unless the device actually supports APST. */ ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; dev_pm_qos_update_user_latency_tolerance(ctrl->device, min(default_ps_max_latency_us, (unsigned long)S32_MAX)); nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); return 0; out_free_name: nvme_put_ctrl(ctrl); kfree_const(ctrl->device->kobj.name); out_release_instance: ida_simple_remove(&nvme_instance_ida, ctrl->instance); out: if (ctrl->discard_page) __free_page(ctrl->discard_page); return ret; } EXPORT_SYMBOL_GPL(nvme_init_ctrl); /** * nvme_kill_queues(): Ends all namespace queues * @ctrl: the dead controller that needs to end * * Call this function when the driver determines it is unable to get the * controller in a state capable of servicing IO. */ void nvme_kill_queues(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; down_read(&ctrl->namespaces_rwsem); /* Forcibly unquiesce queues to avoid blocking dispatch */ if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) blk_mq_unquiesce_queue(ctrl->admin_q); list_for_each_entry(ns, &ctrl->namespaces, list) nvme_set_queue_dying(ns); up_read(&ctrl->namespaces_rwsem); } EXPORT_SYMBOL_GPL(nvme_kill_queues); void nvme_unfreeze(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; down_read(&ctrl->namespaces_rwsem); list_for_each_entry(ns, &ctrl->namespaces, list) blk_mq_unfreeze_queue(ns->queue); up_read(&ctrl->namespaces_rwsem); } EXPORT_SYMBOL_GPL(nvme_unfreeze); void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) { struct nvme_ns *ns; down_read(&ctrl->namespaces_rwsem); list_for_each_entry(ns, &ctrl->namespaces, list) { timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); if (timeout <= 0) break; } up_read(&ctrl->namespaces_rwsem); } EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); void nvme_wait_freeze(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; down_read(&ctrl->namespaces_rwsem); list_for_each_entry(ns, &ctrl->namespaces, list) blk_mq_freeze_queue_wait(ns->queue); up_read(&ctrl->namespaces_rwsem); } EXPORT_SYMBOL_GPL(nvme_wait_freeze); void nvme_start_freeze(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; down_read(&ctrl->namespaces_rwsem); list_for_each_entry(ns, &ctrl->namespaces, list) blk_freeze_queue_start(ns->queue); up_read(&ctrl->namespaces_rwsem); } EXPORT_SYMBOL_GPL(nvme_start_freeze); void nvme_stop_queues(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; down_read(&ctrl->namespaces_rwsem); list_for_each_entry(ns, &ctrl->namespaces, list) blk_mq_quiesce_queue(ns->queue); up_read(&ctrl->namespaces_rwsem); } EXPORT_SYMBOL_GPL(nvme_stop_queues); void nvme_start_queues(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; down_read(&ctrl->namespaces_rwsem); list_for_each_entry(ns, &ctrl->namespaces, list) blk_mq_unquiesce_queue(ns->queue); up_read(&ctrl->namespaces_rwsem); } EXPORT_SYMBOL_GPL(nvme_start_queues); void nvme_sync_queues(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; down_read(&ctrl->namespaces_rwsem); list_for_each_entry(ns, &ctrl->namespaces, list) blk_sync_queue(ns->queue); up_read(&ctrl->namespaces_rwsem); if (ctrl->admin_q) blk_sync_queue(ctrl->admin_q); } EXPORT_SYMBOL_GPL(nvme_sync_queues); /* * Check we didn't inadvertently grow the command structure sizes: */ static inline void _nvme_check_size(void) { BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); BUILD_BUG_ON(sizeof(struct nvme_features) != 64); BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); BUILD_BUG_ON(sizeof(struct nvme_command) != 64); BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); } static int __init nvme_core_init(void) { int result = -ENOMEM; _nvme_check_size(); nvme_wq = alloc_workqueue("nvme-wq", WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); if (!nvme_wq) goto out; nvme_reset_wq = alloc_workqueue("nvme-reset-wq", WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); if (!nvme_reset_wq) goto destroy_wq; nvme_delete_wq = alloc_workqueue("nvme-delete-wq", WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); if (!nvme_delete_wq) goto destroy_reset_wq; result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); if (result < 0) goto destroy_delete_wq; nvme_class = class_create(THIS_MODULE, "nvme"); if (IS_ERR(nvme_class)) { result = PTR_ERR(nvme_class); goto unregister_chrdev; } nvme_class->dev_uevent = nvme_class_uevent; nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); if (IS_ERR(nvme_subsys_class)) { result = PTR_ERR(nvme_subsys_class); goto destroy_class; } return 0; destroy_class: class_destroy(nvme_class); unregister_chrdev: unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); destroy_delete_wq: destroy_workqueue(nvme_delete_wq); destroy_reset_wq: destroy_workqueue(nvme_reset_wq); destroy_wq: destroy_workqueue(nvme_wq); out: return result; } static void __exit nvme_core_exit(void) { class_destroy(nvme_subsys_class); class_destroy(nvme_class); unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); destroy_workqueue(nvme_delete_wq); destroy_workqueue(nvme_reset_wq); destroy_workqueue(nvme_wq); ida_destroy(&nvme_instance_ida); } MODULE_LICENSE("GPL"); MODULE_VERSION("1.0"); module_init(nvme_core_init); module_exit(nvme_core_exit);