xref: /openbmc/linux/drivers/nvdimm/dimm_devs.c (revision d75f773c)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/vmalloc.h>
15 #include <linux/device.h>
16 #include <linux/ndctl.h>
17 #include <linux/slab.h>
18 #include <linux/io.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include "nd-core.h"
22 #include "label.h"
23 #include "pmem.h"
24 #include "nd.h"
25 
26 static DEFINE_IDA(dimm_ida);
27 
28 /*
29  * Retrieve bus and dimm handle and return if this bus supports
30  * get_config_data commands
31  */
32 int nvdimm_check_config_data(struct device *dev)
33 {
34 	struct nvdimm *nvdimm = to_nvdimm(dev);
35 
36 	if (!nvdimm->cmd_mask ||
37 	    !test_bit(ND_CMD_GET_CONFIG_DATA, &nvdimm->cmd_mask)) {
38 		if (test_bit(NDD_ALIASING, &nvdimm->flags))
39 			return -ENXIO;
40 		else
41 			return -ENOTTY;
42 	}
43 
44 	return 0;
45 }
46 
47 static int validate_dimm(struct nvdimm_drvdata *ndd)
48 {
49 	int rc;
50 
51 	if (!ndd)
52 		return -EINVAL;
53 
54 	rc = nvdimm_check_config_data(ndd->dev);
55 	if (rc)
56 		dev_dbg(ndd->dev, "%ps: %s error: %d\n",
57 				__builtin_return_address(0), __func__, rc);
58 	return rc;
59 }
60 
61 /**
62  * nvdimm_init_nsarea - determine the geometry of a dimm's namespace area
63  * @nvdimm: dimm to initialize
64  */
65 int nvdimm_init_nsarea(struct nvdimm_drvdata *ndd)
66 {
67 	struct nd_cmd_get_config_size *cmd = &ndd->nsarea;
68 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
69 	struct nvdimm_bus_descriptor *nd_desc;
70 	int rc = validate_dimm(ndd);
71 	int cmd_rc = 0;
72 
73 	if (rc)
74 		return rc;
75 
76 	if (cmd->config_size)
77 		return 0; /* already valid */
78 
79 	memset(cmd, 0, sizeof(*cmd));
80 	nd_desc = nvdimm_bus->nd_desc;
81 	rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev),
82 			ND_CMD_GET_CONFIG_SIZE, cmd, sizeof(*cmd), &cmd_rc);
83 	if (rc < 0)
84 		return rc;
85 	return cmd_rc;
86 }
87 
88 int nvdimm_get_config_data(struct nvdimm_drvdata *ndd, void *buf,
89 			   size_t offset, size_t len)
90 {
91 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
92 	struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
93 	int rc = validate_dimm(ndd), cmd_rc = 0;
94 	struct nd_cmd_get_config_data_hdr *cmd;
95 	size_t max_cmd_size, buf_offset;
96 
97 	if (rc)
98 		return rc;
99 
100 	if (offset + len > ndd->nsarea.config_size)
101 		return -ENXIO;
102 
103 	max_cmd_size = min_t(u32, len, ndd->nsarea.max_xfer);
104 	cmd = kvzalloc(max_cmd_size + sizeof(*cmd), GFP_KERNEL);
105 	if (!cmd)
106 		return -ENOMEM;
107 
108 	for (buf_offset = 0; len;
109 	     len -= cmd->in_length, buf_offset += cmd->in_length) {
110 		size_t cmd_size;
111 
112 		cmd->in_offset = offset + buf_offset;
113 		cmd->in_length = min(max_cmd_size, len);
114 
115 		cmd_size = sizeof(*cmd) + cmd->in_length;
116 
117 		rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev),
118 				ND_CMD_GET_CONFIG_DATA, cmd, cmd_size, &cmd_rc);
119 		if (rc < 0)
120 			break;
121 		if (cmd_rc < 0) {
122 			rc = cmd_rc;
123 			break;
124 		}
125 
126 		/* out_buf should be valid, copy it into our output buffer */
127 		memcpy(buf + buf_offset, cmd->out_buf, cmd->in_length);
128 	}
129 	kvfree(cmd);
130 
131 	return rc;
132 }
133 
134 int nvdimm_set_config_data(struct nvdimm_drvdata *ndd, size_t offset,
135 		void *buf, size_t len)
136 {
137 	size_t max_cmd_size, buf_offset;
138 	struct nd_cmd_set_config_hdr *cmd;
139 	int rc = validate_dimm(ndd), cmd_rc = 0;
140 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
141 	struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
142 
143 	if (rc)
144 		return rc;
145 
146 	if (offset + len > ndd->nsarea.config_size)
147 		return -ENXIO;
148 
149 	max_cmd_size = min_t(u32, len, ndd->nsarea.max_xfer);
150 	cmd = kvzalloc(max_cmd_size + sizeof(*cmd) + sizeof(u32), GFP_KERNEL);
151 	if (!cmd)
152 		return -ENOMEM;
153 
154 	for (buf_offset = 0; len; len -= cmd->in_length,
155 			buf_offset += cmd->in_length) {
156 		size_t cmd_size;
157 
158 		cmd->in_offset = offset + buf_offset;
159 		cmd->in_length = min(max_cmd_size, len);
160 		memcpy(cmd->in_buf, buf + buf_offset, cmd->in_length);
161 
162 		/* status is output in the last 4-bytes of the command buffer */
163 		cmd_size = sizeof(*cmd) + cmd->in_length + sizeof(u32);
164 
165 		rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev),
166 				ND_CMD_SET_CONFIG_DATA, cmd, cmd_size, &cmd_rc);
167 		if (rc < 0)
168 			break;
169 		if (cmd_rc < 0) {
170 			rc = cmd_rc;
171 			break;
172 		}
173 	}
174 	kvfree(cmd);
175 
176 	return rc;
177 }
178 
179 void nvdimm_set_aliasing(struct device *dev)
180 {
181 	struct nvdimm *nvdimm = to_nvdimm(dev);
182 
183 	set_bit(NDD_ALIASING, &nvdimm->flags);
184 }
185 
186 void nvdimm_set_locked(struct device *dev)
187 {
188 	struct nvdimm *nvdimm = to_nvdimm(dev);
189 
190 	set_bit(NDD_LOCKED, &nvdimm->flags);
191 }
192 
193 void nvdimm_clear_locked(struct device *dev)
194 {
195 	struct nvdimm *nvdimm = to_nvdimm(dev);
196 
197 	clear_bit(NDD_LOCKED, &nvdimm->flags);
198 }
199 
200 static void nvdimm_release(struct device *dev)
201 {
202 	struct nvdimm *nvdimm = to_nvdimm(dev);
203 
204 	ida_simple_remove(&dimm_ida, nvdimm->id);
205 	kfree(nvdimm);
206 }
207 
208 static struct device_type nvdimm_device_type = {
209 	.name = "nvdimm",
210 	.release = nvdimm_release,
211 };
212 
213 bool is_nvdimm(struct device *dev)
214 {
215 	return dev->type == &nvdimm_device_type;
216 }
217 
218 struct nvdimm *to_nvdimm(struct device *dev)
219 {
220 	struct nvdimm *nvdimm = container_of(dev, struct nvdimm, dev);
221 
222 	WARN_ON(!is_nvdimm(dev));
223 	return nvdimm;
224 }
225 EXPORT_SYMBOL_GPL(to_nvdimm);
226 
227 struct nvdimm *nd_blk_region_to_dimm(struct nd_blk_region *ndbr)
228 {
229 	struct nd_region *nd_region = &ndbr->nd_region;
230 	struct nd_mapping *nd_mapping = &nd_region->mapping[0];
231 
232 	return nd_mapping->nvdimm;
233 }
234 EXPORT_SYMBOL_GPL(nd_blk_region_to_dimm);
235 
236 unsigned long nd_blk_memremap_flags(struct nd_blk_region *ndbr)
237 {
238 	/* pmem mapping properties are private to libnvdimm */
239 	return ARCH_MEMREMAP_PMEM;
240 }
241 EXPORT_SYMBOL_GPL(nd_blk_memremap_flags);
242 
243 struct nvdimm_drvdata *to_ndd(struct nd_mapping *nd_mapping)
244 {
245 	struct nvdimm *nvdimm = nd_mapping->nvdimm;
246 
247 	WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev));
248 
249 	return dev_get_drvdata(&nvdimm->dev);
250 }
251 EXPORT_SYMBOL(to_ndd);
252 
253 void nvdimm_drvdata_release(struct kref *kref)
254 {
255 	struct nvdimm_drvdata *ndd = container_of(kref, typeof(*ndd), kref);
256 	struct device *dev = ndd->dev;
257 	struct resource *res, *_r;
258 
259 	dev_dbg(dev, "trace\n");
260 	nvdimm_bus_lock(dev);
261 	for_each_dpa_resource_safe(ndd, res, _r)
262 		nvdimm_free_dpa(ndd, res);
263 	nvdimm_bus_unlock(dev);
264 
265 	kvfree(ndd->data);
266 	kfree(ndd);
267 	put_device(dev);
268 }
269 
270 void get_ndd(struct nvdimm_drvdata *ndd)
271 {
272 	kref_get(&ndd->kref);
273 }
274 
275 void put_ndd(struct nvdimm_drvdata *ndd)
276 {
277 	if (ndd)
278 		kref_put(&ndd->kref, nvdimm_drvdata_release);
279 }
280 
281 const char *nvdimm_name(struct nvdimm *nvdimm)
282 {
283 	return dev_name(&nvdimm->dev);
284 }
285 EXPORT_SYMBOL_GPL(nvdimm_name);
286 
287 struct kobject *nvdimm_kobj(struct nvdimm *nvdimm)
288 {
289 	return &nvdimm->dev.kobj;
290 }
291 EXPORT_SYMBOL_GPL(nvdimm_kobj);
292 
293 unsigned long nvdimm_cmd_mask(struct nvdimm *nvdimm)
294 {
295 	return nvdimm->cmd_mask;
296 }
297 EXPORT_SYMBOL_GPL(nvdimm_cmd_mask);
298 
299 void *nvdimm_provider_data(struct nvdimm *nvdimm)
300 {
301 	if (nvdimm)
302 		return nvdimm->provider_data;
303 	return NULL;
304 }
305 EXPORT_SYMBOL_GPL(nvdimm_provider_data);
306 
307 static ssize_t commands_show(struct device *dev,
308 		struct device_attribute *attr, char *buf)
309 {
310 	struct nvdimm *nvdimm = to_nvdimm(dev);
311 	int cmd, len = 0;
312 
313 	if (!nvdimm->cmd_mask)
314 		return sprintf(buf, "\n");
315 
316 	for_each_set_bit(cmd, &nvdimm->cmd_mask, BITS_PER_LONG)
317 		len += sprintf(buf + len, "%s ", nvdimm_cmd_name(cmd));
318 	len += sprintf(buf + len, "\n");
319 	return len;
320 }
321 static DEVICE_ATTR_RO(commands);
322 
323 static ssize_t flags_show(struct device *dev,
324 		struct device_attribute *attr, char *buf)
325 {
326 	struct nvdimm *nvdimm = to_nvdimm(dev);
327 
328 	return sprintf(buf, "%s%s\n",
329 			test_bit(NDD_ALIASING, &nvdimm->flags) ? "alias " : "",
330 			test_bit(NDD_LOCKED, &nvdimm->flags) ? "lock " : "");
331 }
332 static DEVICE_ATTR_RO(flags);
333 
334 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
335 		char *buf)
336 {
337 	struct nvdimm *nvdimm = to_nvdimm(dev);
338 
339 	/*
340 	 * The state may be in the process of changing, userspace should
341 	 * quiesce probing if it wants a static answer
342 	 */
343 	nvdimm_bus_lock(dev);
344 	nvdimm_bus_unlock(dev);
345 	return sprintf(buf, "%s\n", atomic_read(&nvdimm->busy)
346 			? "active" : "idle");
347 }
348 static DEVICE_ATTR_RO(state);
349 
350 static ssize_t available_slots_show(struct device *dev,
351 		struct device_attribute *attr, char *buf)
352 {
353 	struct nvdimm_drvdata *ndd = dev_get_drvdata(dev);
354 	ssize_t rc;
355 	u32 nfree;
356 
357 	if (!ndd)
358 		return -ENXIO;
359 
360 	nvdimm_bus_lock(dev);
361 	nfree = nd_label_nfree(ndd);
362 	if (nfree - 1 > nfree) {
363 		dev_WARN_ONCE(dev, 1, "we ate our last label?\n");
364 		nfree = 0;
365 	} else
366 		nfree--;
367 	rc = sprintf(buf, "%d\n", nfree);
368 	nvdimm_bus_unlock(dev);
369 	return rc;
370 }
371 static DEVICE_ATTR_RO(available_slots);
372 
373 __weak ssize_t security_show(struct device *dev,
374 		struct device_attribute *attr, char *buf)
375 {
376 	struct nvdimm *nvdimm = to_nvdimm(dev);
377 
378 	switch (nvdimm->sec.state) {
379 	case NVDIMM_SECURITY_DISABLED:
380 		return sprintf(buf, "disabled\n");
381 	case NVDIMM_SECURITY_UNLOCKED:
382 		return sprintf(buf, "unlocked\n");
383 	case NVDIMM_SECURITY_LOCKED:
384 		return sprintf(buf, "locked\n");
385 	case NVDIMM_SECURITY_FROZEN:
386 		return sprintf(buf, "frozen\n");
387 	case NVDIMM_SECURITY_OVERWRITE:
388 		return sprintf(buf, "overwrite\n");
389 	default:
390 		return -ENOTTY;
391 	}
392 
393 	return -ENOTTY;
394 }
395 
396 #define OPS							\
397 	C( OP_FREEZE,		"freeze",		1),	\
398 	C( OP_DISABLE,		"disable",		2),	\
399 	C( OP_UPDATE,		"update",		3),	\
400 	C( OP_ERASE,		"erase",		2),	\
401 	C( OP_OVERWRITE,	"overwrite",		2),	\
402 	C( OP_MASTER_UPDATE,	"master_update",	3),	\
403 	C( OP_MASTER_ERASE,	"master_erase",		2)
404 #undef C
405 #define C(a, b, c) a
406 enum nvdimmsec_op_ids { OPS };
407 #undef C
408 #define C(a, b, c) { b, c }
409 static struct {
410 	const char *name;
411 	int args;
412 } ops[] = { OPS };
413 #undef C
414 
415 #define SEC_CMD_SIZE 32
416 #define KEY_ID_SIZE 10
417 
418 static ssize_t __security_store(struct device *dev, const char *buf, size_t len)
419 {
420 	struct nvdimm *nvdimm = to_nvdimm(dev);
421 	ssize_t rc;
422 	char cmd[SEC_CMD_SIZE+1], keystr[KEY_ID_SIZE+1],
423 		nkeystr[KEY_ID_SIZE+1];
424 	unsigned int key, newkey;
425 	int i;
426 
427 	if (atomic_read(&nvdimm->busy))
428 		return -EBUSY;
429 
430 	rc = sscanf(buf, "%"__stringify(SEC_CMD_SIZE)"s"
431 			" %"__stringify(KEY_ID_SIZE)"s"
432 			" %"__stringify(KEY_ID_SIZE)"s",
433 			cmd, keystr, nkeystr);
434 	if (rc < 1)
435 		return -EINVAL;
436 	for (i = 0; i < ARRAY_SIZE(ops); i++)
437 		if (sysfs_streq(cmd, ops[i].name))
438 			break;
439 	if (i >= ARRAY_SIZE(ops))
440 		return -EINVAL;
441 	if (ops[i].args > 1)
442 		rc = kstrtouint(keystr, 0, &key);
443 	if (rc >= 0 && ops[i].args > 2)
444 		rc = kstrtouint(nkeystr, 0, &newkey);
445 	if (rc < 0)
446 		return rc;
447 
448 	if (i == OP_FREEZE) {
449 		dev_dbg(dev, "freeze\n");
450 		rc = nvdimm_security_freeze(nvdimm);
451 	} else if (i == OP_DISABLE) {
452 		dev_dbg(dev, "disable %u\n", key);
453 		rc = nvdimm_security_disable(nvdimm, key);
454 	} else if (i == OP_UPDATE) {
455 		dev_dbg(dev, "update %u %u\n", key, newkey);
456 		rc = nvdimm_security_update(nvdimm, key, newkey, NVDIMM_USER);
457 	} else if (i == OP_ERASE) {
458 		dev_dbg(dev, "erase %u\n", key);
459 		rc = nvdimm_security_erase(nvdimm, key, NVDIMM_USER);
460 	} else if (i == OP_OVERWRITE) {
461 		dev_dbg(dev, "overwrite %u\n", key);
462 		rc = nvdimm_security_overwrite(nvdimm, key);
463 	} else if (i == OP_MASTER_UPDATE) {
464 		dev_dbg(dev, "master_update %u %u\n", key, newkey);
465 		rc = nvdimm_security_update(nvdimm, key, newkey,
466 				NVDIMM_MASTER);
467 	} else if (i == OP_MASTER_ERASE) {
468 		dev_dbg(dev, "master_erase %u\n", key);
469 		rc = nvdimm_security_erase(nvdimm, key,
470 				NVDIMM_MASTER);
471 	} else
472 		return -EINVAL;
473 
474 	if (rc == 0)
475 		rc = len;
476 	return rc;
477 }
478 
479 static ssize_t security_store(struct device *dev,
480 		struct device_attribute *attr, const char *buf, size_t len)
481 
482 {
483 	ssize_t rc;
484 
485 	/*
486 	 * Require all userspace triggered security management to be
487 	 * done while probing is idle and the DIMM is not in active use
488 	 * in any region.
489 	 */
490 	device_lock(dev);
491 	nvdimm_bus_lock(dev);
492 	wait_nvdimm_bus_probe_idle(dev);
493 	rc = __security_store(dev, buf, len);
494 	nvdimm_bus_unlock(dev);
495 	device_unlock(dev);
496 
497 	return rc;
498 }
499 static DEVICE_ATTR_RW(security);
500 
501 static struct attribute *nvdimm_attributes[] = {
502 	&dev_attr_state.attr,
503 	&dev_attr_flags.attr,
504 	&dev_attr_commands.attr,
505 	&dev_attr_available_slots.attr,
506 	&dev_attr_security.attr,
507 	NULL,
508 };
509 
510 static umode_t nvdimm_visible(struct kobject *kobj, struct attribute *a, int n)
511 {
512 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
513 	struct nvdimm *nvdimm = to_nvdimm(dev);
514 
515 	if (a != &dev_attr_security.attr)
516 		return a->mode;
517 	if (nvdimm->sec.state < 0)
518 		return 0;
519 	/* Are there any state mutation ops? */
520 	if (nvdimm->sec.ops->freeze || nvdimm->sec.ops->disable
521 			|| nvdimm->sec.ops->change_key
522 			|| nvdimm->sec.ops->erase
523 			|| nvdimm->sec.ops->overwrite)
524 		return a->mode;
525 	return 0444;
526 }
527 
528 struct attribute_group nvdimm_attribute_group = {
529 	.attrs = nvdimm_attributes,
530 	.is_visible = nvdimm_visible,
531 };
532 EXPORT_SYMBOL_GPL(nvdimm_attribute_group);
533 
534 struct nvdimm *__nvdimm_create(struct nvdimm_bus *nvdimm_bus,
535 		void *provider_data, const struct attribute_group **groups,
536 		unsigned long flags, unsigned long cmd_mask, int num_flush,
537 		struct resource *flush_wpq, const char *dimm_id,
538 		const struct nvdimm_security_ops *sec_ops)
539 {
540 	struct nvdimm *nvdimm = kzalloc(sizeof(*nvdimm), GFP_KERNEL);
541 	struct device *dev;
542 
543 	if (!nvdimm)
544 		return NULL;
545 
546 	nvdimm->id = ida_simple_get(&dimm_ida, 0, 0, GFP_KERNEL);
547 	if (nvdimm->id < 0) {
548 		kfree(nvdimm);
549 		return NULL;
550 	}
551 
552 	nvdimm->dimm_id = dimm_id;
553 	nvdimm->provider_data = provider_data;
554 	nvdimm->flags = flags;
555 	nvdimm->cmd_mask = cmd_mask;
556 	nvdimm->num_flush = num_flush;
557 	nvdimm->flush_wpq = flush_wpq;
558 	atomic_set(&nvdimm->busy, 0);
559 	dev = &nvdimm->dev;
560 	dev_set_name(dev, "nmem%d", nvdimm->id);
561 	dev->parent = &nvdimm_bus->dev;
562 	dev->type = &nvdimm_device_type;
563 	dev->devt = MKDEV(nvdimm_major, nvdimm->id);
564 	dev->groups = groups;
565 	nvdimm->sec.ops = sec_ops;
566 	nvdimm->sec.overwrite_tmo = 0;
567 	INIT_DELAYED_WORK(&nvdimm->dwork, nvdimm_security_overwrite_query);
568 	/*
569 	 * Security state must be initialized before device_add() for
570 	 * attribute visibility.
571 	 */
572 	/* get security state and extended (master) state */
573 	nvdimm->sec.state = nvdimm_security_state(nvdimm, NVDIMM_USER);
574 	nvdimm->sec.ext_state = nvdimm_security_state(nvdimm, NVDIMM_MASTER);
575 	nd_device_register(dev);
576 
577 	return nvdimm;
578 }
579 EXPORT_SYMBOL_GPL(__nvdimm_create);
580 
581 static void shutdown_security_notify(void *data)
582 {
583 	struct nvdimm *nvdimm = data;
584 
585 	sysfs_put(nvdimm->sec.overwrite_state);
586 }
587 
588 int nvdimm_security_setup_events(struct device *dev)
589 {
590 	struct nvdimm *nvdimm = to_nvdimm(dev);
591 
592 	if (nvdimm->sec.state < 0 || !nvdimm->sec.ops
593 			|| !nvdimm->sec.ops->overwrite)
594 		return 0;
595 	nvdimm->sec.overwrite_state = sysfs_get_dirent(dev->kobj.sd, "security");
596 	if (!nvdimm->sec.overwrite_state)
597 		return -ENOMEM;
598 
599 	return devm_add_action_or_reset(dev, shutdown_security_notify, nvdimm);
600 }
601 EXPORT_SYMBOL_GPL(nvdimm_security_setup_events);
602 
603 int nvdimm_in_overwrite(struct nvdimm *nvdimm)
604 {
605 	return test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags);
606 }
607 EXPORT_SYMBOL_GPL(nvdimm_in_overwrite);
608 
609 int nvdimm_security_freeze(struct nvdimm *nvdimm)
610 {
611 	int rc;
612 
613 	WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev));
614 
615 	if (!nvdimm->sec.ops || !nvdimm->sec.ops->freeze)
616 		return -EOPNOTSUPP;
617 
618 	if (nvdimm->sec.state < 0)
619 		return -EIO;
620 
621 	if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
622 		dev_warn(&nvdimm->dev, "Overwrite operation in progress.\n");
623 		return -EBUSY;
624 	}
625 
626 	rc = nvdimm->sec.ops->freeze(nvdimm);
627 	nvdimm->sec.state = nvdimm_security_state(nvdimm, NVDIMM_USER);
628 
629 	return rc;
630 }
631 
632 int alias_dpa_busy(struct device *dev, void *data)
633 {
634 	resource_size_t map_end, blk_start, new;
635 	struct blk_alloc_info *info = data;
636 	struct nd_mapping *nd_mapping;
637 	struct nd_region *nd_region;
638 	struct nvdimm_drvdata *ndd;
639 	struct resource *res;
640 	int i;
641 
642 	if (!is_memory(dev))
643 		return 0;
644 
645 	nd_region = to_nd_region(dev);
646 	for (i = 0; i < nd_region->ndr_mappings; i++) {
647 		nd_mapping  = &nd_region->mapping[i];
648 		if (nd_mapping->nvdimm == info->nd_mapping->nvdimm)
649 			break;
650 	}
651 
652 	if (i >= nd_region->ndr_mappings)
653 		return 0;
654 
655 	ndd = to_ndd(nd_mapping);
656 	map_end = nd_mapping->start + nd_mapping->size - 1;
657 	blk_start = nd_mapping->start;
658 
659 	/*
660 	 * In the allocation case ->res is set to free space that we are
661 	 * looking to validate against PMEM aliasing collision rules
662 	 * (i.e. BLK is allocated after all aliased PMEM).
663 	 */
664 	if (info->res) {
665 		if (info->res->start >= nd_mapping->start
666 				&& info->res->start < map_end)
667 			/* pass */;
668 		else
669 			return 0;
670 	}
671 
672  retry:
673 	/*
674 	 * Find the free dpa from the end of the last pmem allocation to
675 	 * the end of the interleave-set mapping.
676 	 */
677 	for_each_dpa_resource(ndd, res) {
678 		if (strncmp(res->name, "pmem", 4) != 0)
679 			continue;
680 		if ((res->start >= blk_start && res->start < map_end)
681 				|| (res->end >= blk_start
682 					&& res->end <= map_end)) {
683 			new = max(blk_start, min(map_end + 1, res->end + 1));
684 			if (new != blk_start) {
685 				blk_start = new;
686 				goto retry;
687 			}
688 		}
689 	}
690 
691 	/* update the free space range with the probed blk_start */
692 	if (info->res && blk_start > info->res->start) {
693 		info->res->start = max(info->res->start, blk_start);
694 		if (info->res->start > info->res->end)
695 			info->res->end = info->res->start - 1;
696 		return 1;
697 	}
698 
699 	info->available -= blk_start - nd_mapping->start;
700 
701 	return 0;
702 }
703 
704 /**
705  * nd_blk_available_dpa - account the unused dpa of BLK region
706  * @nd_mapping: container of dpa-resource-root + labels
707  *
708  * Unlike PMEM, BLK namespaces can occupy discontiguous DPA ranges, but
709  * we arrange for them to never start at an lower dpa than the last
710  * PMEM allocation in an aliased region.
711  */
712 resource_size_t nd_blk_available_dpa(struct nd_region *nd_region)
713 {
714 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
715 	struct nd_mapping *nd_mapping = &nd_region->mapping[0];
716 	struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
717 	struct blk_alloc_info info = {
718 		.nd_mapping = nd_mapping,
719 		.available = nd_mapping->size,
720 		.res = NULL,
721 	};
722 	struct resource *res;
723 
724 	if (!ndd)
725 		return 0;
726 
727 	device_for_each_child(&nvdimm_bus->dev, &info, alias_dpa_busy);
728 
729 	/* now account for busy blk allocations in unaliased dpa */
730 	for_each_dpa_resource(ndd, res) {
731 		if (strncmp(res->name, "blk", 3) != 0)
732 			continue;
733 		info.available -= resource_size(res);
734 	}
735 
736 	return info.available;
737 }
738 
739 /**
740  * nd_pmem_max_contiguous_dpa - For the given dimm+region, return the max
741  *			   contiguous unallocated dpa range.
742  * @nd_region: constrain available space check to this reference region
743  * @nd_mapping: container of dpa-resource-root + labels
744  */
745 resource_size_t nd_pmem_max_contiguous_dpa(struct nd_region *nd_region,
746 					   struct nd_mapping *nd_mapping)
747 {
748 	struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
749 	struct nvdimm_bus *nvdimm_bus;
750 	resource_size_t max = 0;
751 	struct resource *res;
752 
753 	/* if a dimm is disabled the available capacity is zero */
754 	if (!ndd)
755 		return 0;
756 
757 	nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
758 	if (__reserve_free_pmem(&nd_region->dev, nd_mapping->nvdimm))
759 		return 0;
760 	for_each_dpa_resource(ndd, res) {
761 		if (strcmp(res->name, "pmem-reserve") != 0)
762 			continue;
763 		if (resource_size(res) > max)
764 			max = resource_size(res);
765 	}
766 	release_free_pmem(nvdimm_bus, nd_mapping);
767 	return max;
768 }
769 
770 /**
771  * nd_pmem_available_dpa - for the given dimm+region account unallocated dpa
772  * @nd_mapping: container of dpa-resource-root + labels
773  * @nd_region: constrain available space check to this reference region
774  * @overlap: calculate available space assuming this level of overlap
775  *
776  * Validate that a PMEM label, if present, aligns with the start of an
777  * interleave set and truncate the available size at the lowest BLK
778  * overlap point.
779  *
780  * The expectation is that this routine is called multiple times as it
781  * probes for the largest BLK encroachment for any single member DIMM of
782  * the interleave set.  Once that value is determined the PMEM-limit for
783  * the set can be established.
784  */
785 resource_size_t nd_pmem_available_dpa(struct nd_region *nd_region,
786 		struct nd_mapping *nd_mapping, resource_size_t *overlap)
787 {
788 	resource_size_t map_start, map_end, busy = 0, available, blk_start;
789 	struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
790 	struct resource *res;
791 	const char *reason;
792 
793 	if (!ndd)
794 		return 0;
795 
796 	map_start = nd_mapping->start;
797 	map_end = map_start + nd_mapping->size - 1;
798 	blk_start = max(map_start, map_end + 1 - *overlap);
799 	for_each_dpa_resource(ndd, res) {
800 		if (res->start >= map_start && res->start < map_end) {
801 			if (strncmp(res->name, "blk", 3) == 0)
802 				blk_start = min(blk_start,
803 						max(map_start, res->start));
804 			else if (res->end > map_end) {
805 				reason = "misaligned to iset";
806 				goto err;
807 			} else
808 				busy += resource_size(res);
809 		} else if (res->end >= map_start && res->end <= map_end) {
810 			if (strncmp(res->name, "blk", 3) == 0) {
811 				/*
812 				 * If a BLK allocation overlaps the start of
813 				 * PMEM the entire interleave set may now only
814 				 * be used for BLK.
815 				 */
816 				blk_start = map_start;
817 			} else
818 				busy += resource_size(res);
819 		} else if (map_start > res->start && map_start < res->end) {
820 			/* total eclipse of the mapping */
821 			busy += nd_mapping->size;
822 			blk_start = map_start;
823 		}
824 	}
825 
826 	*overlap = map_end + 1 - blk_start;
827 	available = blk_start - map_start;
828 	if (busy < available)
829 		return available - busy;
830 	return 0;
831 
832  err:
833 	nd_dbg_dpa(nd_region, ndd, res, "%s\n", reason);
834 	return 0;
835 }
836 
837 void nvdimm_free_dpa(struct nvdimm_drvdata *ndd, struct resource *res)
838 {
839 	WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev));
840 	kfree(res->name);
841 	__release_region(&ndd->dpa, res->start, resource_size(res));
842 }
843 
844 struct resource *nvdimm_allocate_dpa(struct nvdimm_drvdata *ndd,
845 		struct nd_label_id *label_id, resource_size_t start,
846 		resource_size_t n)
847 {
848 	char *name = kmemdup(label_id, sizeof(*label_id), GFP_KERNEL);
849 	struct resource *res;
850 
851 	if (!name)
852 		return NULL;
853 
854 	WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev));
855 	res = __request_region(&ndd->dpa, start, n, name, 0);
856 	if (!res)
857 		kfree(name);
858 	return res;
859 }
860 
861 /**
862  * nvdimm_allocated_dpa - sum up the dpa currently allocated to this label_id
863  * @nvdimm: container of dpa-resource-root + labels
864  * @label_id: dpa resource name of the form {pmem|blk}-<human readable uuid>
865  */
866 resource_size_t nvdimm_allocated_dpa(struct nvdimm_drvdata *ndd,
867 		struct nd_label_id *label_id)
868 {
869 	resource_size_t allocated = 0;
870 	struct resource *res;
871 
872 	for_each_dpa_resource(ndd, res)
873 		if (strcmp(res->name, label_id->id) == 0)
874 			allocated += resource_size(res);
875 
876 	return allocated;
877 }
878 
879 static int count_dimms(struct device *dev, void *c)
880 {
881 	int *count = c;
882 
883 	if (is_nvdimm(dev))
884 		(*count)++;
885 	return 0;
886 }
887 
888 int nvdimm_bus_check_dimm_count(struct nvdimm_bus *nvdimm_bus, int dimm_count)
889 {
890 	int count = 0;
891 	/* Flush any possible dimm registration failures */
892 	nd_synchronize();
893 
894 	device_for_each_child(&nvdimm_bus->dev, &count, count_dimms);
895 	dev_dbg(&nvdimm_bus->dev, "count: %d\n", count);
896 	if (count != dimm_count)
897 		return -ENXIO;
898 	return 0;
899 }
900 EXPORT_SYMBOL_GPL(nvdimm_bus_check_dimm_count);
901 
902 void __exit nvdimm_devs_exit(void)
903 {
904 	ida_destroy(&dimm_ida);
905 }
906