1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 6 #include <linux/moduleparam.h> 7 #include <linux/vmalloc.h> 8 #include <linux/device.h> 9 #include <linux/ndctl.h> 10 #include <linux/slab.h> 11 #include <linux/io.h> 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include "nd-core.h" 15 #include "label.h" 16 #include "pmem.h" 17 #include "nd.h" 18 19 static DEFINE_IDA(dimm_ida); 20 21 static bool noblk; 22 module_param(noblk, bool, 0444); 23 MODULE_PARM_DESC(noblk, "force disable BLK / local alias support"); 24 25 /* 26 * Retrieve bus and dimm handle and return if this bus supports 27 * get_config_data commands 28 */ 29 int nvdimm_check_config_data(struct device *dev) 30 { 31 struct nvdimm *nvdimm = to_nvdimm(dev); 32 33 if (!nvdimm->cmd_mask || 34 !test_bit(ND_CMD_GET_CONFIG_DATA, &nvdimm->cmd_mask)) { 35 if (test_bit(NDD_ALIASING, &nvdimm->flags)) 36 return -ENXIO; 37 else 38 return -ENOTTY; 39 } 40 41 return 0; 42 } 43 44 static int validate_dimm(struct nvdimm_drvdata *ndd) 45 { 46 int rc; 47 48 if (!ndd) 49 return -EINVAL; 50 51 rc = nvdimm_check_config_data(ndd->dev); 52 if (rc) 53 dev_dbg(ndd->dev, "%ps: %s error: %d\n", 54 __builtin_return_address(0), __func__, rc); 55 return rc; 56 } 57 58 /** 59 * nvdimm_init_nsarea - determine the geometry of a dimm's namespace area 60 * @nvdimm: dimm to initialize 61 */ 62 int nvdimm_init_nsarea(struct nvdimm_drvdata *ndd) 63 { 64 struct nd_cmd_get_config_size *cmd = &ndd->nsarea; 65 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); 66 struct nvdimm_bus_descriptor *nd_desc; 67 int rc = validate_dimm(ndd); 68 int cmd_rc = 0; 69 70 if (rc) 71 return rc; 72 73 if (cmd->config_size) 74 return 0; /* already valid */ 75 76 memset(cmd, 0, sizeof(*cmd)); 77 nd_desc = nvdimm_bus->nd_desc; 78 rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev), 79 ND_CMD_GET_CONFIG_SIZE, cmd, sizeof(*cmd), &cmd_rc); 80 if (rc < 0) 81 return rc; 82 return cmd_rc; 83 } 84 85 int nvdimm_get_config_data(struct nvdimm_drvdata *ndd, void *buf, 86 size_t offset, size_t len) 87 { 88 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); 89 struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; 90 int rc = validate_dimm(ndd), cmd_rc = 0; 91 struct nd_cmd_get_config_data_hdr *cmd; 92 size_t max_cmd_size, buf_offset; 93 94 if (rc) 95 return rc; 96 97 if (offset + len > ndd->nsarea.config_size) 98 return -ENXIO; 99 100 max_cmd_size = min_t(u32, len, ndd->nsarea.max_xfer); 101 cmd = kvzalloc(max_cmd_size + sizeof(*cmd), GFP_KERNEL); 102 if (!cmd) 103 return -ENOMEM; 104 105 for (buf_offset = 0; len; 106 len -= cmd->in_length, buf_offset += cmd->in_length) { 107 size_t cmd_size; 108 109 cmd->in_offset = offset + buf_offset; 110 cmd->in_length = min(max_cmd_size, len); 111 112 cmd_size = sizeof(*cmd) + cmd->in_length; 113 114 rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev), 115 ND_CMD_GET_CONFIG_DATA, cmd, cmd_size, &cmd_rc); 116 if (rc < 0) 117 break; 118 if (cmd_rc < 0) { 119 rc = cmd_rc; 120 break; 121 } 122 123 /* out_buf should be valid, copy it into our output buffer */ 124 memcpy(buf + buf_offset, cmd->out_buf, cmd->in_length); 125 } 126 kvfree(cmd); 127 128 return rc; 129 } 130 131 int nvdimm_set_config_data(struct nvdimm_drvdata *ndd, size_t offset, 132 void *buf, size_t len) 133 { 134 size_t max_cmd_size, buf_offset; 135 struct nd_cmd_set_config_hdr *cmd; 136 int rc = validate_dimm(ndd), cmd_rc = 0; 137 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); 138 struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; 139 140 if (rc) 141 return rc; 142 143 if (offset + len > ndd->nsarea.config_size) 144 return -ENXIO; 145 146 max_cmd_size = min_t(u32, len, ndd->nsarea.max_xfer); 147 cmd = kvzalloc(max_cmd_size + sizeof(*cmd) + sizeof(u32), GFP_KERNEL); 148 if (!cmd) 149 return -ENOMEM; 150 151 for (buf_offset = 0; len; len -= cmd->in_length, 152 buf_offset += cmd->in_length) { 153 size_t cmd_size; 154 155 cmd->in_offset = offset + buf_offset; 156 cmd->in_length = min(max_cmd_size, len); 157 memcpy(cmd->in_buf, buf + buf_offset, cmd->in_length); 158 159 /* status is output in the last 4-bytes of the command buffer */ 160 cmd_size = sizeof(*cmd) + cmd->in_length + sizeof(u32); 161 162 rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev), 163 ND_CMD_SET_CONFIG_DATA, cmd, cmd_size, &cmd_rc); 164 if (rc < 0) 165 break; 166 if (cmd_rc < 0) { 167 rc = cmd_rc; 168 break; 169 } 170 } 171 kvfree(cmd); 172 173 return rc; 174 } 175 176 void nvdimm_set_aliasing(struct device *dev) 177 { 178 struct nvdimm *nvdimm = to_nvdimm(dev); 179 180 set_bit(NDD_ALIASING, &nvdimm->flags); 181 } 182 183 void nvdimm_set_locked(struct device *dev) 184 { 185 struct nvdimm *nvdimm = to_nvdimm(dev); 186 187 set_bit(NDD_LOCKED, &nvdimm->flags); 188 } 189 190 void nvdimm_clear_locked(struct device *dev) 191 { 192 struct nvdimm *nvdimm = to_nvdimm(dev); 193 194 clear_bit(NDD_LOCKED, &nvdimm->flags); 195 } 196 197 static void nvdimm_release(struct device *dev) 198 { 199 struct nvdimm *nvdimm = to_nvdimm(dev); 200 201 ida_simple_remove(&dimm_ida, nvdimm->id); 202 kfree(nvdimm); 203 } 204 205 static struct device_type nvdimm_device_type = { 206 .name = "nvdimm", 207 .release = nvdimm_release, 208 }; 209 210 bool is_nvdimm(struct device *dev) 211 { 212 return dev->type == &nvdimm_device_type; 213 } 214 215 struct nvdimm *to_nvdimm(struct device *dev) 216 { 217 struct nvdimm *nvdimm = container_of(dev, struct nvdimm, dev); 218 219 WARN_ON(!is_nvdimm(dev)); 220 return nvdimm; 221 } 222 EXPORT_SYMBOL_GPL(to_nvdimm); 223 224 struct nvdimm *nd_blk_region_to_dimm(struct nd_blk_region *ndbr) 225 { 226 struct nd_region *nd_region = &ndbr->nd_region; 227 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 228 229 return nd_mapping->nvdimm; 230 } 231 EXPORT_SYMBOL_GPL(nd_blk_region_to_dimm); 232 233 unsigned long nd_blk_memremap_flags(struct nd_blk_region *ndbr) 234 { 235 /* pmem mapping properties are private to libnvdimm */ 236 return ARCH_MEMREMAP_PMEM; 237 } 238 EXPORT_SYMBOL_GPL(nd_blk_memremap_flags); 239 240 struct nvdimm_drvdata *to_ndd(struct nd_mapping *nd_mapping) 241 { 242 struct nvdimm *nvdimm = nd_mapping->nvdimm; 243 244 WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev)); 245 246 return dev_get_drvdata(&nvdimm->dev); 247 } 248 EXPORT_SYMBOL(to_ndd); 249 250 void nvdimm_drvdata_release(struct kref *kref) 251 { 252 struct nvdimm_drvdata *ndd = container_of(kref, typeof(*ndd), kref); 253 struct device *dev = ndd->dev; 254 struct resource *res, *_r; 255 256 dev_dbg(dev, "trace\n"); 257 nvdimm_bus_lock(dev); 258 for_each_dpa_resource_safe(ndd, res, _r) 259 nvdimm_free_dpa(ndd, res); 260 nvdimm_bus_unlock(dev); 261 262 kvfree(ndd->data); 263 kfree(ndd); 264 put_device(dev); 265 } 266 267 void get_ndd(struct nvdimm_drvdata *ndd) 268 { 269 kref_get(&ndd->kref); 270 } 271 272 void put_ndd(struct nvdimm_drvdata *ndd) 273 { 274 if (ndd) 275 kref_put(&ndd->kref, nvdimm_drvdata_release); 276 } 277 278 const char *nvdimm_name(struct nvdimm *nvdimm) 279 { 280 return dev_name(&nvdimm->dev); 281 } 282 EXPORT_SYMBOL_GPL(nvdimm_name); 283 284 struct kobject *nvdimm_kobj(struct nvdimm *nvdimm) 285 { 286 return &nvdimm->dev.kobj; 287 } 288 EXPORT_SYMBOL_GPL(nvdimm_kobj); 289 290 unsigned long nvdimm_cmd_mask(struct nvdimm *nvdimm) 291 { 292 return nvdimm->cmd_mask; 293 } 294 EXPORT_SYMBOL_GPL(nvdimm_cmd_mask); 295 296 void *nvdimm_provider_data(struct nvdimm *nvdimm) 297 { 298 if (nvdimm) 299 return nvdimm->provider_data; 300 return NULL; 301 } 302 EXPORT_SYMBOL_GPL(nvdimm_provider_data); 303 304 static ssize_t commands_show(struct device *dev, 305 struct device_attribute *attr, char *buf) 306 { 307 struct nvdimm *nvdimm = to_nvdimm(dev); 308 int cmd, len = 0; 309 310 if (!nvdimm->cmd_mask) 311 return sprintf(buf, "\n"); 312 313 for_each_set_bit(cmd, &nvdimm->cmd_mask, BITS_PER_LONG) 314 len += sprintf(buf + len, "%s ", nvdimm_cmd_name(cmd)); 315 len += sprintf(buf + len, "\n"); 316 return len; 317 } 318 static DEVICE_ATTR_RO(commands); 319 320 static ssize_t flags_show(struct device *dev, 321 struct device_attribute *attr, char *buf) 322 { 323 struct nvdimm *nvdimm = to_nvdimm(dev); 324 325 return sprintf(buf, "%s%s\n", 326 test_bit(NDD_ALIASING, &nvdimm->flags) ? "alias " : "", 327 test_bit(NDD_LOCKED, &nvdimm->flags) ? "lock " : ""); 328 } 329 static DEVICE_ATTR_RO(flags); 330 331 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 332 char *buf) 333 { 334 struct nvdimm *nvdimm = to_nvdimm(dev); 335 336 /* 337 * The state may be in the process of changing, userspace should 338 * quiesce probing if it wants a static answer 339 */ 340 nvdimm_bus_lock(dev); 341 nvdimm_bus_unlock(dev); 342 return sprintf(buf, "%s\n", atomic_read(&nvdimm->busy) 343 ? "active" : "idle"); 344 } 345 static DEVICE_ATTR_RO(state); 346 347 static ssize_t available_slots_show(struct device *dev, 348 struct device_attribute *attr, char *buf) 349 { 350 struct nvdimm_drvdata *ndd = dev_get_drvdata(dev); 351 ssize_t rc; 352 u32 nfree; 353 354 if (!ndd) 355 return -ENXIO; 356 357 nvdimm_bus_lock(dev); 358 nfree = nd_label_nfree(ndd); 359 if (nfree - 1 > nfree) { 360 dev_WARN_ONCE(dev, 1, "we ate our last label?\n"); 361 nfree = 0; 362 } else 363 nfree--; 364 rc = sprintf(buf, "%d\n", nfree); 365 nvdimm_bus_unlock(dev); 366 return rc; 367 } 368 static DEVICE_ATTR_RO(available_slots); 369 370 __weak ssize_t security_show(struct device *dev, 371 struct device_attribute *attr, char *buf) 372 { 373 struct nvdimm *nvdimm = to_nvdimm(dev); 374 375 switch (nvdimm->sec.state) { 376 case NVDIMM_SECURITY_DISABLED: 377 return sprintf(buf, "disabled\n"); 378 case NVDIMM_SECURITY_UNLOCKED: 379 return sprintf(buf, "unlocked\n"); 380 case NVDIMM_SECURITY_LOCKED: 381 return sprintf(buf, "locked\n"); 382 case NVDIMM_SECURITY_FROZEN: 383 return sprintf(buf, "frozen\n"); 384 case NVDIMM_SECURITY_OVERWRITE: 385 return sprintf(buf, "overwrite\n"); 386 default: 387 return -ENOTTY; 388 } 389 390 return -ENOTTY; 391 } 392 393 #define OPS \ 394 C( OP_FREEZE, "freeze", 1), \ 395 C( OP_DISABLE, "disable", 2), \ 396 C( OP_UPDATE, "update", 3), \ 397 C( OP_ERASE, "erase", 2), \ 398 C( OP_OVERWRITE, "overwrite", 2), \ 399 C( OP_MASTER_UPDATE, "master_update", 3), \ 400 C( OP_MASTER_ERASE, "master_erase", 2) 401 #undef C 402 #define C(a, b, c) a 403 enum nvdimmsec_op_ids { OPS }; 404 #undef C 405 #define C(a, b, c) { b, c } 406 static struct { 407 const char *name; 408 int args; 409 } ops[] = { OPS }; 410 #undef C 411 412 #define SEC_CMD_SIZE 32 413 #define KEY_ID_SIZE 10 414 415 static ssize_t __security_store(struct device *dev, const char *buf, size_t len) 416 { 417 struct nvdimm *nvdimm = to_nvdimm(dev); 418 ssize_t rc; 419 char cmd[SEC_CMD_SIZE+1], keystr[KEY_ID_SIZE+1], 420 nkeystr[KEY_ID_SIZE+1]; 421 unsigned int key, newkey; 422 int i; 423 424 if (atomic_read(&nvdimm->busy)) 425 return -EBUSY; 426 427 rc = sscanf(buf, "%"__stringify(SEC_CMD_SIZE)"s" 428 " %"__stringify(KEY_ID_SIZE)"s" 429 " %"__stringify(KEY_ID_SIZE)"s", 430 cmd, keystr, nkeystr); 431 if (rc < 1) 432 return -EINVAL; 433 for (i = 0; i < ARRAY_SIZE(ops); i++) 434 if (sysfs_streq(cmd, ops[i].name)) 435 break; 436 if (i >= ARRAY_SIZE(ops)) 437 return -EINVAL; 438 if (ops[i].args > 1) 439 rc = kstrtouint(keystr, 0, &key); 440 if (rc >= 0 && ops[i].args > 2) 441 rc = kstrtouint(nkeystr, 0, &newkey); 442 if (rc < 0) 443 return rc; 444 445 if (i == OP_FREEZE) { 446 dev_dbg(dev, "freeze\n"); 447 rc = nvdimm_security_freeze(nvdimm); 448 } else if (i == OP_DISABLE) { 449 dev_dbg(dev, "disable %u\n", key); 450 rc = nvdimm_security_disable(nvdimm, key); 451 } else if (i == OP_UPDATE) { 452 dev_dbg(dev, "update %u %u\n", key, newkey); 453 rc = nvdimm_security_update(nvdimm, key, newkey, NVDIMM_USER); 454 } else if (i == OP_ERASE) { 455 dev_dbg(dev, "erase %u\n", key); 456 rc = nvdimm_security_erase(nvdimm, key, NVDIMM_USER); 457 } else if (i == OP_OVERWRITE) { 458 dev_dbg(dev, "overwrite %u\n", key); 459 rc = nvdimm_security_overwrite(nvdimm, key); 460 } else if (i == OP_MASTER_UPDATE) { 461 dev_dbg(dev, "master_update %u %u\n", key, newkey); 462 rc = nvdimm_security_update(nvdimm, key, newkey, 463 NVDIMM_MASTER); 464 } else if (i == OP_MASTER_ERASE) { 465 dev_dbg(dev, "master_erase %u\n", key); 466 rc = nvdimm_security_erase(nvdimm, key, 467 NVDIMM_MASTER); 468 } else 469 return -EINVAL; 470 471 if (rc == 0) 472 rc = len; 473 return rc; 474 } 475 476 static ssize_t security_store(struct device *dev, 477 struct device_attribute *attr, const char *buf, size_t len) 478 479 { 480 ssize_t rc; 481 482 /* 483 * Require all userspace triggered security management to be 484 * done while probing is idle and the DIMM is not in active use 485 * in any region. 486 */ 487 nd_device_lock(dev); 488 nvdimm_bus_lock(dev); 489 wait_nvdimm_bus_probe_idle(dev); 490 rc = __security_store(dev, buf, len); 491 nvdimm_bus_unlock(dev); 492 nd_device_unlock(dev); 493 494 return rc; 495 } 496 static DEVICE_ATTR_RW(security); 497 498 static struct attribute *nvdimm_attributes[] = { 499 &dev_attr_state.attr, 500 &dev_attr_flags.attr, 501 &dev_attr_commands.attr, 502 &dev_attr_available_slots.attr, 503 &dev_attr_security.attr, 504 NULL, 505 }; 506 507 static umode_t nvdimm_visible(struct kobject *kobj, struct attribute *a, int n) 508 { 509 struct device *dev = container_of(kobj, typeof(*dev), kobj); 510 struct nvdimm *nvdimm = to_nvdimm(dev); 511 512 if (a != &dev_attr_security.attr) 513 return a->mode; 514 if (nvdimm->sec.state < 0) 515 return 0; 516 /* Are there any state mutation ops? */ 517 if (nvdimm->sec.ops->freeze || nvdimm->sec.ops->disable 518 || nvdimm->sec.ops->change_key 519 || nvdimm->sec.ops->erase 520 || nvdimm->sec.ops->overwrite) 521 return a->mode; 522 return 0444; 523 } 524 525 struct attribute_group nvdimm_attribute_group = { 526 .attrs = nvdimm_attributes, 527 .is_visible = nvdimm_visible, 528 }; 529 EXPORT_SYMBOL_GPL(nvdimm_attribute_group); 530 531 struct nvdimm *__nvdimm_create(struct nvdimm_bus *nvdimm_bus, 532 void *provider_data, const struct attribute_group **groups, 533 unsigned long flags, unsigned long cmd_mask, int num_flush, 534 struct resource *flush_wpq, const char *dimm_id, 535 const struct nvdimm_security_ops *sec_ops) 536 { 537 struct nvdimm *nvdimm = kzalloc(sizeof(*nvdimm), GFP_KERNEL); 538 struct device *dev; 539 540 if (!nvdimm) 541 return NULL; 542 543 nvdimm->id = ida_simple_get(&dimm_ida, 0, 0, GFP_KERNEL); 544 if (nvdimm->id < 0) { 545 kfree(nvdimm); 546 return NULL; 547 } 548 549 nvdimm->dimm_id = dimm_id; 550 nvdimm->provider_data = provider_data; 551 if (noblk) 552 flags |= 1 << NDD_NOBLK; 553 nvdimm->flags = flags; 554 nvdimm->cmd_mask = cmd_mask; 555 nvdimm->num_flush = num_flush; 556 nvdimm->flush_wpq = flush_wpq; 557 atomic_set(&nvdimm->busy, 0); 558 dev = &nvdimm->dev; 559 dev_set_name(dev, "nmem%d", nvdimm->id); 560 dev->parent = &nvdimm_bus->dev; 561 dev->type = &nvdimm_device_type; 562 dev->devt = MKDEV(nvdimm_major, nvdimm->id); 563 dev->groups = groups; 564 nvdimm->sec.ops = sec_ops; 565 nvdimm->sec.overwrite_tmo = 0; 566 INIT_DELAYED_WORK(&nvdimm->dwork, nvdimm_security_overwrite_query); 567 /* 568 * Security state must be initialized before device_add() for 569 * attribute visibility. 570 */ 571 /* get security state and extended (master) state */ 572 nvdimm->sec.state = nvdimm_security_state(nvdimm, NVDIMM_USER); 573 nvdimm->sec.ext_state = nvdimm_security_state(nvdimm, NVDIMM_MASTER); 574 nd_device_register(dev); 575 576 return nvdimm; 577 } 578 EXPORT_SYMBOL_GPL(__nvdimm_create); 579 580 static void shutdown_security_notify(void *data) 581 { 582 struct nvdimm *nvdimm = data; 583 584 sysfs_put(nvdimm->sec.overwrite_state); 585 } 586 587 int nvdimm_security_setup_events(struct device *dev) 588 { 589 struct nvdimm *nvdimm = to_nvdimm(dev); 590 591 if (nvdimm->sec.state < 0 || !nvdimm->sec.ops 592 || !nvdimm->sec.ops->overwrite) 593 return 0; 594 nvdimm->sec.overwrite_state = sysfs_get_dirent(dev->kobj.sd, "security"); 595 if (!nvdimm->sec.overwrite_state) 596 return -ENOMEM; 597 598 return devm_add_action_or_reset(dev, shutdown_security_notify, nvdimm); 599 } 600 EXPORT_SYMBOL_GPL(nvdimm_security_setup_events); 601 602 int nvdimm_in_overwrite(struct nvdimm *nvdimm) 603 { 604 return test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags); 605 } 606 EXPORT_SYMBOL_GPL(nvdimm_in_overwrite); 607 608 int nvdimm_security_freeze(struct nvdimm *nvdimm) 609 { 610 int rc; 611 612 WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev)); 613 614 if (!nvdimm->sec.ops || !nvdimm->sec.ops->freeze) 615 return -EOPNOTSUPP; 616 617 if (nvdimm->sec.state < 0) 618 return -EIO; 619 620 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { 621 dev_warn(&nvdimm->dev, "Overwrite operation in progress.\n"); 622 return -EBUSY; 623 } 624 625 rc = nvdimm->sec.ops->freeze(nvdimm); 626 nvdimm->sec.state = nvdimm_security_state(nvdimm, NVDIMM_USER); 627 628 return rc; 629 } 630 631 int alias_dpa_busy(struct device *dev, void *data) 632 { 633 resource_size_t map_end, blk_start, new; 634 struct blk_alloc_info *info = data; 635 struct nd_mapping *nd_mapping; 636 struct nd_region *nd_region; 637 struct nvdimm_drvdata *ndd; 638 struct resource *res; 639 int i; 640 641 if (!is_memory(dev)) 642 return 0; 643 644 nd_region = to_nd_region(dev); 645 for (i = 0; i < nd_region->ndr_mappings; i++) { 646 nd_mapping = &nd_region->mapping[i]; 647 if (nd_mapping->nvdimm == info->nd_mapping->nvdimm) 648 break; 649 } 650 651 if (i >= nd_region->ndr_mappings) 652 return 0; 653 654 ndd = to_ndd(nd_mapping); 655 map_end = nd_mapping->start + nd_mapping->size - 1; 656 blk_start = nd_mapping->start; 657 658 /* 659 * In the allocation case ->res is set to free space that we are 660 * looking to validate against PMEM aliasing collision rules 661 * (i.e. BLK is allocated after all aliased PMEM). 662 */ 663 if (info->res) { 664 if (info->res->start >= nd_mapping->start 665 && info->res->start < map_end) 666 /* pass */; 667 else 668 return 0; 669 } 670 671 retry: 672 /* 673 * Find the free dpa from the end of the last pmem allocation to 674 * the end of the interleave-set mapping. 675 */ 676 for_each_dpa_resource(ndd, res) { 677 if (strncmp(res->name, "pmem", 4) != 0) 678 continue; 679 if ((res->start >= blk_start && res->start < map_end) 680 || (res->end >= blk_start 681 && res->end <= map_end)) { 682 new = max(blk_start, min(map_end + 1, res->end + 1)); 683 if (new != blk_start) { 684 blk_start = new; 685 goto retry; 686 } 687 } 688 } 689 690 /* update the free space range with the probed blk_start */ 691 if (info->res && blk_start > info->res->start) { 692 info->res->start = max(info->res->start, blk_start); 693 if (info->res->start > info->res->end) 694 info->res->end = info->res->start - 1; 695 return 1; 696 } 697 698 info->available -= blk_start - nd_mapping->start; 699 700 return 0; 701 } 702 703 /** 704 * nd_blk_available_dpa - account the unused dpa of BLK region 705 * @nd_mapping: container of dpa-resource-root + labels 706 * 707 * Unlike PMEM, BLK namespaces can occupy discontiguous DPA ranges, but 708 * we arrange for them to never start at an lower dpa than the last 709 * PMEM allocation in an aliased region. 710 */ 711 resource_size_t nd_blk_available_dpa(struct nd_region *nd_region) 712 { 713 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); 714 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 715 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 716 struct blk_alloc_info info = { 717 .nd_mapping = nd_mapping, 718 .available = nd_mapping->size, 719 .res = NULL, 720 }; 721 struct resource *res; 722 723 if (!ndd) 724 return 0; 725 726 device_for_each_child(&nvdimm_bus->dev, &info, alias_dpa_busy); 727 728 /* now account for busy blk allocations in unaliased dpa */ 729 for_each_dpa_resource(ndd, res) { 730 if (strncmp(res->name, "blk", 3) != 0) 731 continue; 732 info.available -= resource_size(res); 733 } 734 735 return info.available; 736 } 737 738 /** 739 * nd_pmem_max_contiguous_dpa - For the given dimm+region, return the max 740 * contiguous unallocated dpa range. 741 * @nd_region: constrain available space check to this reference region 742 * @nd_mapping: container of dpa-resource-root + labels 743 */ 744 resource_size_t nd_pmem_max_contiguous_dpa(struct nd_region *nd_region, 745 struct nd_mapping *nd_mapping) 746 { 747 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 748 struct nvdimm_bus *nvdimm_bus; 749 resource_size_t max = 0; 750 struct resource *res; 751 752 /* if a dimm is disabled the available capacity is zero */ 753 if (!ndd) 754 return 0; 755 756 nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); 757 if (__reserve_free_pmem(&nd_region->dev, nd_mapping->nvdimm)) 758 return 0; 759 for_each_dpa_resource(ndd, res) { 760 if (strcmp(res->name, "pmem-reserve") != 0) 761 continue; 762 if (resource_size(res) > max) 763 max = resource_size(res); 764 } 765 release_free_pmem(nvdimm_bus, nd_mapping); 766 return max; 767 } 768 769 /** 770 * nd_pmem_available_dpa - for the given dimm+region account unallocated dpa 771 * @nd_mapping: container of dpa-resource-root + labels 772 * @nd_region: constrain available space check to this reference region 773 * @overlap: calculate available space assuming this level of overlap 774 * 775 * Validate that a PMEM label, if present, aligns with the start of an 776 * interleave set and truncate the available size at the lowest BLK 777 * overlap point. 778 * 779 * The expectation is that this routine is called multiple times as it 780 * probes for the largest BLK encroachment for any single member DIMM of 781 * the interleave set. Once that value is determined the PMEM-limit for 782 * the set can be established. 783 */ 784 resource_size_t nd_pmem_available_dpa(struct nd_region *nd_region, 785 struct nd_mapping *nd_mapping, resource_size_t *overlap) 786 { 787 resource_size_t map_start, map_end, busy = 0, available, blk_start; 788 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 789 struct resource *res; 790 const char *reason; 791 792 if (!ndd) 793 return 0; 794 795 map_start = nd_mapping->start; 796 map_end = map_start + nd_mapping->size - 1; 797 blk_start = max(map_start, map_end + 1 - *overlap); 798 for_each_dpa_resource(ndd, res) { 799 if (res->start >= map_start && res->start < map_end) { 800 if (strncmp(res->name, "blk", 3) == 0) 801 blk_start = min(blk_start, 802 max(map_start, res->start)); 803 else if (res->end > map_end) { 804 reason = "misaligned to iset"; 805 goto err; 806 } else 807 busy += resource_size(res); 808 } else if (res->end >= map_start && res->end <= map_end) { 809 if (strncmp(res->name, "blk", 3) == 0) { 810 /* 811 * If a BLK allocation overlaps the start of 812 * PMEM the entire interleave set may now only 813 * be used for BLK. 814 */ 815 blk_start = map_start; 816 } else 817 busy += resource_size(res); 818 } else if (map_start > res->start && map_start < res->end) { 819 /* total eclipse of the mapping */ 820 busy += nd_mapping->size; 821 blk_start = map_start; 822 } 823 } 824 825 *overlap = map_end + 1 - blk_start; 826 available = blk_start - map_start; 827 if (busy < available) 828 return available - busy; 829 return 0; 830 831 err: 832 nd_dbg_dpa(nd_region, ndd, res, "%s\n", reason); 833 return 0; 834 } 835 836 void nvdimm_free_dpa(struct nvdimm_drvdata *ndd, struct resource *res) 837 { 838 WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev)); 839 kfree(res->name); 840 __release_region(&ndd->dpa, res->start, resource_size(res)); 841 } 842 843 struct resource *nvdimm_allocate_dpa(struct nvdimm_drvdata *ndd, 844 struct nd_label_id *label_id, resource_size_t start, 845 resource_size_t n) 846 { 847 char *name = kmemdup(label_id, sizeof(*label_id), GFP_KERNEL); 848 struct resource *res; 849 850 if (!name) 851 return NULL; 852 853 WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev)); 854 res = __request_region(&ndd->dpa, start, n, name, 0); 855 if (!res) 856 kfree(name); 857 return res; 858 } 859 860 /** 861 * nvdimm_allocated_dpa - sum up the dpa currently allocated to this label_id 862 * @nvdimm: container of dpa-resource-root + labels 863 * @label_id: dpa resource name of the form {pmem|blk}-<human readable uuid> 864 */ 865 resource_size_t nvdimm_allocated_dpa(struct nvdimm_drvdata *ndd, 866 struct nd_label_id *label_id) 867 { 868 resource_size_t allocated = 0; 869 struct resource *res; 870 871 for_each_dpa_resource(ndd, res) 872 if (strcmp(res->name, label_id->id) == 0) 873 allocated += resource_size(res); 874 875 return allocated; 876 } 877 878 static int count_dimms(struct device *dev, void *c) 879 { 880 int *count = c; 881 882 if (is_nvdimm(dev)) 883 (*count)++; 884 return 0; 885 } 886 887 int nvdimm_bus_check_dimm_count(struct nvdimm_bus *nvdimm_bus, int dimm_count) 888 { 889 int count = 0; 890 /* Flush any possible dimm registration failures */ 891 nd_synchronize(); 892 893 device_for_each_child(&nvdimm_bus->dev, &count, count_dimms); 894 dev_dbg(&nvdimm_bus->dev, "count: %d\n", count); 895 if (count != dimm_count) 896 return -ENXIO; 897 return 0; 898 } 899 EXPORT_SYMBOL_GPL(nvdimm_bus_check_dimm_count); 900 901 void __exit nvdimm_devs_exit(void) 902 { 903 ida_destroy(&dimm_ida); 904 } 905