1 /* 2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 #include <linux/vmalloc.h> 15 #include <linux/device.h> 16 #include <linux/ndctl.h> 17 #include <linux/slab.h> 18 #include <linux/io.h> 19 #include <linux/fs.h> 20 #include <linux/mm.h> 21 #include "nd-core.h" 22 #include "label.h" 23 #include "pmem.h" 24 #include "nd.h" 25 26 static DEFINE_IDA(dimm_ida); 27 28 /* 29 * Retrieve bus and dimm handle and return if this bus supports 30 * get_config_data commands 31 */ 32 int nvdimm_check_config_data(struct device *dev) 33 { 34 struct nvdimm *nvdimm = to_nvdimm(dev); 35 36 if (!nvdimm->cmd_mask || 37 !test_bit(ND_CMD_GET_CONFIG_DATA, &nvdimm->cmd_mask)) { 38 if (test_bit(NDD_ALIASING, &nvdimm->flags)) 39 return -ENXIO; 40 else 41 return -ENOTTY; 42 } 43 44 return 0; 45 } 46 47 static int validate_dimm(struct nvdimm_drvdata *ndd) 48 { 49 int rc; 50 51 if (!ndd) 52 return -EINVAL; 53 54 rc = nvdimm_check_config_data(ndd->dev); 55 if (rc) 56 dev_dbg(ndd->dev, "%pf: %s error: %d\n", 57 __builtin_return_address(0), __func__, rc); 58 return rc; 59 } 60 61 /** 62 * nvdimm_init_nsarea - determine the geometry of a dimm's namespace area 63 * @nvdimm: dimm to initialize 64 */ 65 int nvdimm_init_nsarea(struct nvdimm_drvdata *ndd) 66 { 67 struct nd_cmd_get_config_size *cmd = &ndd->nsarea; 68 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); 69 struct nvdimm_bus_descriptor *nd_desc; 70 int rc = validate_dimm(ndd); 71 int cmd_rc = 0; 72 73 if (rc) 74 return rc; 75 76 if (cmd->config_size) 77 return 0; /* already valid */ 78 79 memset(cmd, 0, sizeof(*cmd)); 80 nd_desc = nvdimm_bus->nd_desc; 81 rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev), 82 ND_CMD_GET_CONFIG_SIZE, cmd, sizeof(*cmd), &cmd_rc); 83 if (rc < 0) 84 return rc; 85 return cmd_rc; 86 } 87 88 int nvdimm_get_config_data(struct nvdimm_drvdata *ndd, void *buf, 89 size_t offset, size_t len) 90 { 91 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); 92 struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; 93 int rc = validate_dimm(ndd), cmd_rc = 0; 94 struct nd_cmd_get_config_data_hdr *cmd; 95 size_t max_cmd_size, buf_offset; 96 97 if (rc) 98 return rc; 99 100 if (offset + len > ndd->nsarea.config_size) 101 return -ENXIO; 102 103 max_cmd_size = min_t(u32, len, ndd->nsarea.max_xfer); 104 cmd = kvzalloc(max_cmd_size + sizeof(*cmd), GFP_KERNEL); 105 if (!cmd) 106 return -ENOMEM; 107 108 for (buf_offset = 0; len; 109 len -= cmd->in_length, buf_offset += cmd->in_length) { 110 size_t cmd_size; 111 112 cmd->in_offset = offset + buf_offset; 113 cmd->in_length = min(max_cmd_size, len); 114 115 cmd_size = sizeof(*cmd) + cmd->in_length; 116 117 rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev), 118 ND_CMD_GET_CONFIG_DATA, cmd, cmd_size, &cmd_rc); 119 if (rc < 0) 120 break; 121 if (cmd_rc < 0) { 122 rc = cmd_rc; 123 break; 124 } 125 126 /* out_buf should be valid, copy it into our output buffer */ 127 memcpy(buf + buf_offset, cmd->out_buf, cmd->in_length); 128 } 129 kvfree(cmd); 130 131 return rc; 132 } 133 134 int nvdimm_set_config_data(struct nvdimm_drvdata *ndd, size_t offset, 135 void *buf, size_t len) 136 { 137 size_t max_cmd_size, buf_offset; 138 struct nd_cmd_set_config_hdr *cmd; 139 int rc = validate_dimm(ndd), cmd_rc = 0; 140 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); 141 struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; 142 143 if (rc) 144 return rc; 145 146 if (offset + len > ndd->nsarea.config_size) 147 return -ENXIO; 148 149 max_cmd_size = min_t(u32, len, ndd->nsarea.max_xfer); 150 cmd = kvzalloc(max_cmd_size + sizeof(*cmd) + sizeof(u32), GFP_KERNEL); 151 if (!cmd) 152 return -ENOMEM; 153 154 for (buf_offset = 0; len; len -= cmd->in_length, 155 buf_offset += cmd->in_length) { 156 size_t cmd_size; 157 158 cmd->in_offset = offset + buf_offset; 159 cmd->in_length = min(max_cmd_size, len); 160 memcpy(cmd->in_buf, buf + buf_offset, cmd->in_length); 161 162 /* status is output in the last 4-bytes of the command buffer */ 163 cmd_size = sizeof(*cmd) + cmd->in_length + sizeof(u32); 164 165 rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev), 166 ND_CMD_SET_CONFIG_DATA, cmd, cmd_size, &cmd_rc); 167 if (rc < 0) 168 break; 169 if (cmd_rc < 0) { 170 rc = cmd_rc; 171 break; 172 } 173 } 174 kvfree(cmd); 175 176 return rc; 177 } 178 179 void nvdimm_set_aliasing(struct device *dev) 180 { 181 struct nvdimm *nvdimm = to_nvdimm(dev); 182 183 set_bit(NDD_ALIASING, &nvdimm->flags); 184 } 185 186 void nvdimm_set_locked(struct device *dev) 187 { 188 struct nvdimm *nvdimm = to_nvdimm(dev); 189 190 set_bit(NDD_LOCKED, &nvdimm->flags); 191 } 192 193 void nvdimm_clear_locked(struct device *dev) 194 { 195 struct nvdimm *nvdimm = to_nvdimm(dev); 196 197 clear_bit(NDD_LOCKED, &nvdimm->flags); 198 } 199 200 static void nvdimm_release(struct device *dev) 201 { 202 struct nvdimm *nvdimm = to_nvdimm(dev); 203 204 ida_simple_remove(&dimm_ida, nvdimm->id); 205 kfree(nvdimm); 206 } 207 208 static struct device_type nvdimm_device_type = { 209 .name = "nvdimm", 210 .release = nvdimm_release, 211 }; 212 213 bool is_nvdimm(struct device *dev) 214 { 215 return dev->type == &nvdimm_device_type; 216 } 217 218 struct nvdimm *to_nvdimm(struct device *dev) 219 { 220 struct nvdimm *nvdimm = container_of(dev, struct nvdimm, dev); 221 222 WARN_ON(!is_nvdimm(dev)); 223 return nvdimm; 224 } 225 EXPORT_SYMBOL_GPL(to_nvdimm); 226 227 struct nvdimm *nd_blk_region_to_dimm(struct nd_blk_region *ndbr) 228 { 229 struct nd_region *nd_region = &ndbr->nd_region; 230 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 231 232 return nd_mapping->nvdimm; 233 } 234 EXPORT_SYMBOL_GPL(nd_blk_region_to_dimm); 235 236 unsigned long nd_blk_memremap_flags(struct nd_blk_region *ndbr) 237 { 238 /* pmem mapping properties are private to libnvdimm */ 239 return ARCH_MEMREMAP_PMEM; 240 } 241 EXPORT_SYMBOL_GPL(nd_blk_memremap_flags); 242 243 struct nvdimm_drvdata *to_ndd(struct nd_mapping *nd_mapping) 244 { 245 struct nvdimm *nvdimm = nd_mapping->nvdimm; 246 247 WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev)); 248 249 return dev_get_drvdata(&nvdimm->dev); 250 } 251 EXPORT_SYMBOL(to_ndd); 252 253 void nvdimm_drvdata_release(struct kref *kref) 254 { 255 struct nvdimm_drvdata *ndd = container_of(kref, typeof(*ndd), kref); 256 struct device *dev = ndd->dev; 257 struct resource *res, *_r; 258 259 dev_dbg(dev, "trace\n"); 260 nvdimm_bus_lock(dev); 261 for_each_dpa_resource_safe(ndd, res, _r) 262 nvdimm_free_dpa(ndd, res); 263 nvdimm_bus_unlock(dev); 264 265 kvfree(ndd->data); 266 kfree(ndd); 267 put_device(dev); 268 } 269 270 void get_ndd(struct nvdimm_drvdata *ndd) 271 { 272 kref_get(&ndd->kref); 273 } 274 275 void put_ndd(struct nvdimm_drvdata *ndd) 276 { 277 if (ndd) 278 kref_put(&ndd->kref, nvdimm_drvdata_release); 279 } 280 281 const char *nvdimm_name(struct nvdimm *nvdimm) 282 { 283 return dev_name(&nvdimm->dev); 284 } 285 EXPORT_SYMBOL_GPL(nvdimm_name); 286 287 struct kobject *nvdimm_kobj(struct nvdimm *nvdimm) 288 { 289 return &nvdimm->dev.kobj; 290 } 291 EXPORT_SYMBOL_GPL(nvdimm_kobj); 292 293 unsigned long nvdimm_cmd_mask(struct nvdimm *nvdimm) 294 { 295 return nvdimm->cmd_mask; 296 } 297 EXPORT_SYMBOL_GPL(nvdimm_cmd_mask); 298 299 void *nvdimm_provider_data(struct nvdimm *nvdimm) 300 { 301 if (nvdimm) 302 return nvdimm->provider_data; 303 return NULL; 304 } 305 EXPORT_SYMBOL_GPL(nvdimm_provider_data); 306 307 static ssize_t commands_show(struct device *dev, 308 struct device_attribute *attr, char *buf) 309 { 310 struct nvdimm *nvdimm = to_nvdimm(dev); 311 int cmd, len = 0; 312 313 if (!nvdimm->cmd_mask) 314 return sprintf(buf, "\n"); 315 316 for_each_set_bit(cmd, &nvdimm->cmd_mask, BITS_PER_LONG) 317 len += sprintf(buf + len, "%s ", nvdimm_cmd_name(cmd)); 318 len += sprintf(buf + len, "\n"); 319 return len; 320 } 321 static DEVICE_ATTR_RO(commands); 322 323 static ssize_t flags_show(struct device *dev, 324 struct device_attribute *attr, char *buf) 325 { 326 struct nvdimm *nvdimm = to_nvdimm(dev); 327 328 return sprintf(buf, "%s%s\n", 329 test_bit(NDD_ALIASING, &nvdimm->flags) ? "alias " : "", 330 test_bit(NDD_LOCKED, &nvdimm->flags) ? "lock " : ""); 331 } 332 static DEVICE_ATTR_RO(flags); 333 334 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 335 char *buf) 336 { 337 struct nvdimm *nvdimm = to_nvdimm(dev); 338 339 /* 340 * The state may be in the process of changing, userspace should 341 * quiesce probing if it wants a static answer 342 */ 343 nvdimm_bus_lock(dev); 344 nvdimm_bus_unlock(dev); 345 return sprintf(buf, "%s\n", atomic_read(&nvdimm->busy) 346 ? "active" : "idle"); 347 } 348 static DEVICE_ATTR_RO(state); 349 350 static ssize_t available_slots_show(struct device *dev, 351 struct device_attribute *attr, char *buf) 352 { 353 struct nvdimm_drvdata *ndd = dev_get_drvdata(dev); 354 ssize_t rc; 355 u32 nfree; 356 357 if (!ndd) 358 return -ENXIO; 359 360 nvdimm_bus_lock(dev); 361 nfree = nd_label_nfree(ndd); 362 if (nfree - 1 > nfree) { 363 dev_WARN_ONCE(dev, 1, "we ate our last label?\n"); 364 nfree = 0; 365 } else 366 nfree--; 367 rc = sprintf(buf, "%d\n", nfree); 368 nvdimm_bus_unlock(dev); 369 return rc; 370 } 371 static DEVICE_ATTR_RO(available_slots); 372 373 __weak ssize_t security_show(struct device *dev, 374 struct device_attribute *attr, char *buf) 375 { 376 struct nvdimm *nvdimm = to_nvdimm(dev); 377 378 switch (nvdimm->sec.state) { 379 case NVDIMM_SECURITY_DISABLED: 380 return sprintf(buf, "disabled\n"); 381 case NVDIMM_SECURITY_UNLOCKED: 382 return sprintf(buf, "unlocked\n"); 383 case NVDIMM_SECURITY_LOCKED: 384 return sprintf(buf, "locked\n"); 385 case NVDIMM_SECURITY_FROZEN: 386 return sprintf(buf, "frozen\n"); 387 case NVDIMM_SECURITY_OVERWRITE: 388 return sprintf(buf, "overwrite\n"); 389 default: 390 return -ENOTTY; 391 } 392 393 return -ENOTTY; 394 } 395 396 #define OPS \ 397 C( OP_FREEZE, "freeze", 1), \ 398 C( OP_DISABLE, "disable", 2), \ 399 C( OP_UPDATE, "update", 3), \ 400 C( OP_ERASE, "erase", 2), \ 401 C( OP_OVERWRITE, "overwrite", 2), \ 402 C( OP_MASTER_UPDATE, "master_update", 3), \ 403 C( OP_MASTER_ERASE, "master_erase", 2) 404 #undef C 405 #define C(a, b, c) a 406 enum nvdimmsec_op_ids { OPS }; 407 #undef C 408 #define C(a, b, c) { b, c } 409 static struct { 410 const char *name; 411 int args; 412 } ops[] = { OPS }; 413 #undef C 414 415 #define SEC_CMD_SIZE 32 416 #define KEY_ID_SIZE 10 417 418 static ssize_t __security_store(struct device *dev, const char *buf, size_t len) 419 { 420 struct nvdimm *nvdimm = to_nvdimm(dev); 421 ssize_t rc; 422 char cmd[SEC_CMD_SIZE+1], keystr[KEY_ID_SIZE+1], 423 nkeystr[KEY_ID_SIZE+1]; 424 unsigned int key, newkey; 425 int i; 426 427 if (atomic_read(&nvdimm->busy)) 428 return -EBUSY; 429 430 rc = sscanf(buf, "%"__stringify(SEC_CMD_SIZE)"s" 431 " %"__stringify(KEY_ID_SIZE)"s" 432 " %"__stringify(KEY_ID_SIZE)"s", 433 cmd, keystr, nkeystr); 434 if (rc < 1) 435 return -EINVAL; 436 for (i = 0; i < ARRAY_SIZE(ops); i++) 437 if (sysfs_streq(cmd, ops[i].name)) 438 break; 439 if (i >= ARRAY_SIZE(ops)) 440 return -EINVAL; 441 if (ops[i].args > 1) 442 rc = kstrtouint(keystr, 0, &key); 443 if (rc >= 0 && ops[i].args > 2) 444 rc = kstrtouint(nkeystr, 0, &newkey); 445 if (rc < 0) 446 return rc; 447 448 if (i == OP_FREEZE) { 449 dev_dbg(dev, "freeze\n"); 450 rc = nvdimm_security_freeze(nvdimm); 451 } else if (i == OP_DISABLE) { 452 dev_dbg(dev, "disable %u\n", key); 453 rc = nvdimm_security_disable(nvdimm, key); 454 } else if (i == OP_UPDATE) { 455 dev_dbg(dev, "update %u %u\n", key, newkey); 456 rc = nvdimm_security_update(nvdimm, key, newkey, NVDIMM_USER); 457 } else if (i == OP_ERASE) { 458 dev_dbg(dev, "erase %u\n", key); 459 rc = nvdimm_security_erase(nvdimm, key, NVDIMM_USER); 460 } else if (i == OP_OVERWRITE) { 461 dev_dbg(dev, "overwrite %u\n", key); 462 rc = nvdimm_security_overwrite(nvdimm, key); 463 } else if (i == OP_MASTER_UPDATE) { 464 dev_dbg(dev, "master_update %u %u\n", key, newkey); 465 rc = nvdimm_security_update(nvdimm, key, newkey, 466 NVDIMM_MASTER); 467 } else if (i == OP_MASTER_ERASE) { 468 dev_dbg(dev, "master_erase %u\n", key); 469 rc = nvdimm_security_erase(nvdimm, key, 470 NVDIMM_MASTER); 471 } else 472 return -EINVAL; 473 474 if (rc == 0) 475 rc = len; 476 return rc; 477 } 478 479 static ssize_t security_store(struct device *dev, 480 struct device_attribute *attr, const char *buf, size_t len) 481 482 { 483 ssize_t rc; 484 485 /* 486 * Require all userspace triggered security management to be 487 * done while probing is idle and the DIMM is not in active use 488 * in any region. 489 */ 490 device_lock(dev); 491 nvdimm_bus_lock(dev); 492 wait_nvdimm_bus_probe_idle(dev); 493 rc = __security_store(dev, buf, len); 494 nvdimm_bus_unlock(dev); 495 device_unlock(dev); 496 497 return rc; 498 } 499 static DEVICE_ATTR_RW(security); 500 501 static struct attribute *nvdimm_attributes[] = { 502 &dev_attr_state.attr, 503 &dev_attr_flags.attr, 504 &dev_attr_commands.attr, 505 &dev_attr_available_slots.attr, 506 &dev_attr_security.attr, 507 NULL, 508 }; 509 510 static umode_t nvdimm_visible(struct kobject *kobj, struct attribute *a, int n) 511 { 512 struct device *dev = container_of(kobj, typeof(*dev), kobj); 513 struct nvdimm *nvdimm = to_nvdimm(dev); 514 515 if (a != &dev_attr_security.attr) 516 return a->mode; 517 if (nvdimm->sec.state < 0) 518 return 0; 519 /* Are there any state mutation ops? */ 520 if (nvdimm->sec.ops->freeze || nvdimm->sec.ops->disable 521 || nvdimm->sec.ops->change_key 522 || nvdimm->sec.ops->erase 523 || nvdimm->sec.ops->overwrite) 524 return a->mode; 525 return 0444; 526 } 527 528 struct attribute_group nvdimm_attribute_group = { 529 .attrs = nvdimm_attributes, 530 .is_visible = nvdimm_visible, 531 }; 532 EXPORT_SYMBOL_GPL(nvdimm_attribute_group); 533 534 struct nvdimm *__nvdimm_create(struct nvdimm_bus *nvdimm_bus, 535 void *provider_data, const struct attribute_group **groups, 536 unsigned long flags, unsigned long cmd_mask, int num_flush, 537 struct resource *flush_wpq, const char *dimm_id, 538 const struct nvdimm_security_ops *sec_ops) 539 { 540 struct nvdimm *nvdimm = kzalloc(sizeof(*nvdimm), GFP_KERNEL); 541 struct device *dev; 542 543 if (!nvdimm) 544 return NULL; 545 546 nvdimm->id = ida_simple_get(&dimm_ida, 0, 0, GFP_KERNEL); 547 if (nvdimm->id < 0) { 548 kfree(nvdimm); 549 return NULL; 550 } 551 552 nvdimm->dimm_id = dimm_id; 553 nvdimm->provider_data = provider_data; 554 nvdimm->flags = flags; 555 nvdimm->cmd_mask = cmd_mask; 556 nvdimm->num_flush = num_flush; 557 nvdimm->flush_wpq = flush_wpq; 558 atomic_set(&nvdimm->busy, 0); 559 dev = &nvdimm->dev; 560 dev_set_name(dev, "nmem%d", nvdimm->id); 561 dev->parent = &nvdimm_bus->dev; 562 dev->type = &nvdimm_device_type; 563 dev->devt = MKDEV(nvdimm_major, nvdimm->id); 564 dev->groups = groups; 565 nvdimm->sec.ops = sec_ops; 566 nvdimm->sec.overwrite_tmo = 0; 567 INIT_DELAYED_WORK(&nvdimm->dwork, nvdimm_security_overwrite_query); 568 /* 569 * Security state must be initialized before device_add() for 570 * attribute visibility. 571 */ 572 /* get security state and extended (master) state */ 573 nvdimm->sec.state = nvdimm_security_state(nvdimm, NVDIMM_USER); 574 nvdimm->sec.ext_state = nvdimm_security_state(nvdimm, NVDIMM_MASTER); 575 nd_device_register(dev); 576 577 return nvdimm; 578 } 579 EXPORT_SYMBOL_GPL(__nvdimm_create); 580 581 int nvdimm_security_setup_events(struct nvdimm *nvdimm) 582 { 583 nvdimm->sec.overwrite_state = sysfs_get_dirent(nvdimm->dev.kobj.sd, 584 "security"); 585 if (!nvdimm->sec.overwrite_state) 586 return -ENODEV; 587 return 0; 588 } 589 EXPORT_SYMBOL_GPL(nvdimm_security_setup_events); 590 591 int nvdimm_in_overwrite(struct nvdimm *nvdimm) 592 { 593 return test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags); 594 } 595 EXPORT_SYMBOL_GPL(nvdimm_in_overwrite); 596 597 int nvdimm_security_freeze(struct nvdimm *nvdimm) 598 { 599 int rc; 600 601 WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev)); 602 603 if (!nvdimm->sec.ops || !nvdimm->sec.ops->freeze) 604 return -EOPNOTSUPP; 605 606 if (nvdimm->sec.state < 0) 607 return -EIO; 608 609 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { 610 dev_warn(&nvdimm->dev, "Overwrite operation in progress.\n"); 611 return -EBUSY; 612 } 613 614 rc = nvdimm->sec.ops->freeze(nvdimm); 615 nvdimm->sec.state = nvdimm_security_state(nvdimm, NVDIMM_USER); 616 617 return rc; 618 } 619 620 int alias_dpa_busy(struct device *dev, void *data) 621 { 622 resource_size_t map_end, blk_start, new; 623 struct blk_alloc_info *info = data; 624 struct nd_mapping *nd_mapping; 625 struct nd_region *nd_region; 626 struct nvdimm_drvdata *ndd; 627 struct resource *res; 628 int i; 629 630 if (!is_memory(dev)) 631 return 0; 632 633 nd_region = to_nd_region(dev); 634 for (i = 0; i < nd_region->ndr_mappings; i++) { 635 nd_mapping = &nd_region->mapping[i]; 636 if (nd_mapping->nvdimm == info->nd_mapping->nvdimm) 637 break; 638 } 639 640 if (i >= nd_region->ndr_mappings) 641 return 0; 642 643 ndd = to_ndd(nd_mapping); 644 map_end = nd_mapping->start + nd_mapping->size - 1; 645 blk_start = nd_mapping->start; 646 647 /* 648 * In the allocation case ->res is set to free space that we are 649 * looking to validate against PMEM aliasing collision rules 650 * (i.e. BLK is allocated after all aliased PMEM). 651 */ 652 if (info->res) { 653 if (info->res->start >= nd_mapping->start 654 && info->res->start < map_end) 655 /* pass */; 656 else 657 return 0; 658 } 659 660 retry: 661 /* 662 * Find the free dpa from the end of the last pmem allocation to 663 * the end of the interleave-set mapping. 664 */ 665 for_each_dpa_resource(ndd, res) { 666 if (strncmp(res->name, "pmem", 4) != 0) 667 continue; 668 if ((res->start >= blk_start && res->start < map_end) 669 || (res->end >= blk_start 670 && res->end <= map_end)) { 671 new = max(blk_start, min(map_end + 1, res->end + 1)); 672 if (new != blk_start) { 673 blk_start = new; 674 goto retry; 675 } 676 } 677 } 678 679 /* update the free space range with the probed blk_start */ 680 if (info->res && blk_start > info->res->start) { 681 info->res->start = max(info->res->start, blk_start); 682 if (info->res->start > info->res->end) 683 info->res->end = info->res->start - 1; 684 return 1; 685 } 686 687 info->available -= blk_start - nd_mapping->start; 688 689 return 0; 690 } 691 692 /** 693 * nd_blk_available_dpa - account the unused dpa of BLK region 694 * @nd_mapping: container of dpa-resource-root + labels 695 * 696 * Unlike PMEM, BLK namespaces can occupy discontiguous DPA ranges, but 697 * we arrange for them to never start at an lower dpa than the last 698 * PMEM allocation in an aliased region. 699 */ 700 resource_size_t nd_blk_available_dpa(struct nd_region *nd_region) 701 { 702 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); 703 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 704 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 705 struct blk_alloc_info info = { 706 .nd_mapping = nd_mapping, 707 .available = nd_mapping->size, 708 .res = NULL, 709 }; 710 struct resource *res; 711 712 if (!ndd) 713 return 0; 714 715 device_for_each_child(&nvdimm_bus->dev, &info, alias_dpa_busy); 716 717 /* now account for busy blk allocations in unaliased dpa */ 718 for_each_dpa_resource(ndd, res) { 719 if (strncmp(res->name, "blk", 3) != 0) 720 continue; 721 info.available -= resource_size(res); 722 } 723 724 return info.available; 725 } 726 727 /** 728 * nd_pmem_max_contiguous_dpa - For the given dimm+region, return the max 729 * contiguous unallocated dpa range. 730 * @nd_region: constrain available space check to this reference region 731 * @nd_mapping: container of dpa-resource-root + labels 732 */ 733 resource_size_t nd_pmem_max_contiguous_dpa(struct nd_region *nd_region, 734 struct nd_mapping *nd_mapping) 735 { 736 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 737 struct nvdimm_bus *nvdimm_bus; 738 resource_size_t max = 0; 739 struct resource *res; 740 741 /* if a dimm is disabled the available capacity is zero */ 742 if (!ndd) 743 return 0; 744 745 nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); 746 if (__reserve_free_pmem(&nd_region->dev, nd_mapping->nvdimm)) 747 return 0; 748 for_each_dpa_resource(ndd, res) { 749 if (strcmp(res->name, "pmem-reserve") != 0) 750 continue; 751 if (resource_size(res) > max) 752 max = resource_size(res); 753 } 754 release_free_pmem(nvdimm_bus, nd_mapping); 755 return max; 756 } 757 758 /** 759 * nd_pmem_available_dpa - for the given dimm+region account unallocated dpa 760 * @nd_mapping: container of dpa-resource-root + labels 761 * @nd_region: constrain available space check to this reference region 762 * @overlap: calculate available space assuming this level of overlap 763 * 764 * Validate that a PMEM label, if present, aligns with the start of an 765 * interleave set and truncate the available size at the lowest BLK 766 * overlap point. 767 * 768 * The expectation is that this routine is called multiple times as it 769 * probes for the largest BLK encroachment for any single member DIMM of 770 * the interleave set. Once that value is determined the PMEM-limit for 771 * the set can be established. 772 */ 773 resource_size_t nd_pmem_available_dpa(struct nd_region *nd_region, 774 struct nd_mapping *nd_mapping, resource_size_t *overlap) 775 { 776 resource_size_t map_start, map_end, busy = 0, available, blk_start; 777 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 778 struct resource *res; 779 const char *reason; 780 781 if (!ndd) 782 return 0; 783 784 map_start = nd_mapping->start; 785 map_end = map_start + nd_mapping->size - 1; 786 blk_start = max(map_start, map_end + 1 - *overlap); 787 for_each_dpa_resource(ndd, res) { 788 if (res->start >= map_start && res->start < map_end) { 789 if (strncmp(res->name, "blk", 3) == 0) 790 blk_start = min(blk_start, 791 max(map_start, res->start)); 792 else if (res->end > map_end) { 793 reason = "misaligned to iset"; 794 goto err; 795 } else 796 busy += resource_size(res); 797 } else if (res->end >= map_start && res->end <= map_end) { 798 if (strncmp(res->name, "blk", 3) == 0) { 799 /* 800 * If a BLK allocation overlaps the start of 801 * PMEM the entire interleave set may now only 802 * be used for BLK. 803 */ 804 blk_start = map_start; 805 } else 806 busy += resource_size(res); 807 } else if (map_start > res->start && map_start < res->end) { 808 /* total eclipse of the mapping */ 809 busy += nd_mapping->size; 810 blk_start = map_start; 811 } 812 } 813 814 *overlap = map_end + 1 - blk_start; 815 available = blk_start - map_start; 816 if (busy < available) 817 return available - busy; 818 return 0; 819 820 err: 821 nd_dbg_dpa(nd_region, ndd, res, "%s\n", reason); 822 return 0; 823 } 824 825 void nvdimm_free_dpa(struct nvdimm_drvdata *ndd, struct resource *res) 826 { 827 WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev)); 828 kfree(res->name); 829 __release_region(&ndd->dpa, res->start, resource_size(res)); 830 } 831 832 struct resource *nvdimm_allocate_dpa(struct nvdimm_drvdata *ndd, 833 struct nd_label_id *label_id, resource_size_t start, 834 resource_size_t n) 835 { 836 char *name = kmemdup(label_id, sizeof(*label_id), GFP_KERNEL); 837 struct resource *res; 838 839 if (!name) 840 return NULL; 841 842 WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev)); 843 res = __request_region(&ndd->dpa, start, n, name, 0); 844 if (!res) 845 kfree(name); 846 return res; 847 } 848 849 /** 850 * nvdimm_allocated_dpa - sum up the dpa currently allocated to this label_id 851 * @nvdimm: container of dpa-resource-root + labels 852 * @label_id: dpa resource name of the form {pmem|blk}-<human readable uuid> 853 */ 854 resource_size_t nvdimm_allocated_dpa(struct nvdimm_drvdata *ndd, 855 struct nd_label_id *label_id) 856 { 857 resource_size_t allocated = 0; 858 struct resource *res; 859 860 for_each_dpa_resource(ndd, res) 861 if (strcmp(res->name, label_id->id) == 0) 862 allocated += resource_size(res); 863 864 return allocated; 865 } 866 867 static int count_dimms(struct device *dev, void *c) 868 { 869 int *count = c; 870 871 if (is_nvdimm(dev)) 872 (*count)++; 873 return 0; 874 } 875 876 int nvdimm_bus_check_dimm_count(struct nvdimm_bus *nvdimm_bus, int dimm_count) 877 { 878 int count = 0; 879 /* Flush any possible dimm registration failures */ 880 nd_synchronize(); 881 882 device_for_each_child(&nvdimm_bus->dev, &count, count_dimms); 883 dev_dbg(&nvdimm_bus->dev, "count: %d\n", count); 884 if (count != dimm_count) 885 return -ENXIO; 886 return 0; 887 } 888 EXPORT_SYMBOL_GPL(nvdimm_bus_check_dimm_count); 889 890 void __exit nvdimm_devs_exit(void) 891 { 892 ida_destroy(&dimm_ida); 893 } 894