xref: /openbmc/linux/drivers/nvdimm/dimm_devs.c (revision 08720988)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/moduleparam.h>
7 #include <linux/vmalloc.h>
8 #include <linux/device.h>
9 #include <linux/ndctl.h>
10 #include <linux/slab.h>
11 #include <linux/io.h>
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include "nd-core.h"
15 #include "label.h"
16 #include "pmem.h"
17 #include "nd.h"
18 
19 static DEFINE_IDA(dimm_ida);
20 
21 static bool noblk;
22 module_param(noblk, bool, 0444);
23 MODULE_PARM_DESC(noblk, "force disable BLK / local alias support");
24 
25 /*
26  * Retrieve bus and dimm handle and return if this bus supports
27  * get_config_data commands
28  */
29 int nvdimm_check_config_data(struct device *dev)
30 {
31 	struct nvdimm *nvdimm = to_nvdimm(dev);
32 
33 	if (!nvdimm->cmd_mask ||
34 	    !test_bit(ND_CMD_GET_CONFIG_DATA, &nvdimm->cmd_mask)) {
35 		if (test_bit(NDD_ALIASING, &nvdimm->flags))
36 			return -ENXIO;
37 		else
38 			return -ENOTTY;
39 	}
40 
41 	return 0;
42 }
43 
44 static int validate_dimm(struct nvdimm_drvdata *ndd)
45 {
46 	int rc;
47 
48 	if (!ndd)
49 		return -EINVAL;
50 
51 	rc = nvdimm_check_config_data(ndd->dev);
52 	if (rc)
53 		dev_dbg(ndd->dev, "%ps: %s error: %d\n",
54 				__builtin_return_address(0), __func__, rc);
55 	return rc;
56 }
57 
58 /**
59  * nvdimm_init_nsarea - determine the geometry of a dimm's namespace area
60  * @nvdimm: dimm to initialize
61  */
62 int nvdimm_init_nsarea(struct nvdimm_drvdata *ndd)
63 {
64 	struct nd_cmd_get_config_size *cmd = &ndd->nsarea;
65 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
66 	struct nvdimm_bus_descriptor *nd_desc;
67 	int rc = validate_dimm(ndd);
68 	int cmd_rc = 0;
69 
70 	if (rc)
71 		return rc;
72 
73 	if (cmd->config_size)
74 		return 0; /* already valid */
75 
76 	memset(cmd, 0, sizeof(*cmd));
77 	nd_desc = nvdimm_bus->nd_desc;
78 	rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev),
79 			ND_CMD_GET_CONFIG_SIZE, cmd, sizeof(*cmd), &cmd_rc);
80 	if (rc < 0)
81 		return rc;
82 	return cmd_rc;
83 }
84 
85 int nvdimm_get_config_data(struct nvdimm_drvdata *ndd, void *buf,
86 			   size_t offset, size_t len)
87 {
88 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
89 	struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
90 	int rc = validate_dimm(ndd), cmd_rc = 0;
91 	struct nd_cmd_get_config_data_hdr *cmd;
92 	size_t max_cmd_size, buf_offset;
93 
94 	if (rc)
95 		return rc;
96 
97 	if (offset + len > ndd->nsarea.config_size)
98 		return -ENXIO;
99 
100 	max_cmd_size = min_t(u32, len, ndd->nsarea.max_xfer);
101 	cmd = kvzalloc(max_cmd_size + sizeof(*cmd), GFP_KERNEL);
102 	if (!cmd)
103 		return -ENOMEM;
104 
105 	for (buf_offset = 0; len;
106 	     len -= cmd->in_length, buf_offset += cmd->in_length) {
107 		size_t cmd_size;
108 
109 		cmd->in_offset = offset + buf_offset;
110 		cmd->in_length = min(max_cmd_size, len);
111 
112 		cmd_size = sizeof(*cmd) + cmd->in_length;
113 
114 		rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev),
115 				ND_CMD_GET_CONFIG_DATA, cmd, cmd_size, &cmd_rc);
116 		if (rc < 0)
117 			break;
118 		if (cmd_rc < 0) {
119 			rc = cmd_rc;
120 			break;
121 		}
122 
123 		/* out_buf should be valid, copy it into our output buffer */
124 		memcpy(buf + buf_offset, cmd->out_buf, cmd->in_length);
125 	}
126 	kvfree(cmd);
127 
128 	return rc;
129 }
130 
131 int nvdimm_set_config_data(struct nvdimm_drvdata *ndd, size_t offset,
132 		void *buf, size_t len)
133 {
134 	size_t max_cmd_size, buf_offset;
135 	struct nd_cmd_set_config_hdr *cmd;
136 	int rc = validate_dimm(ndd), cmd_rc = 0;
137 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
138 	struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
139 
140 	if (rc)
141 		return rc;
142 
143 	if (offset + len > ndd->nsarea.config_size)
144 		return -ENXIO;
145 
146 	max_cmd_size = min_t(u32, len, ndd->nsarea.max_xfer);
147 	cmd = kvzalloc(max_cmd_size + sizeof(*cmd) + sizeof(u32), GFP_KERNEL);
148 	if (!cmd)
149 		return -ENOMEM;
150 
151 	for (buf_offset = 0; len; len -= cmd->in_length,
152 			buf_offset += cmd->in_length) {
153 		size_t cmd_size;
154 
155 		cmd->in_offset = offset + buf_offset;
156 		cmd->in_length = min(max_cmd_size, len);
157 		memcpy(cmd->in_buf, buf + buf_offset, cmd->in_length);
158 
159 		/* status is output in the last 4-bytes of the command buffer */
160 		cmd_size = sizeof(*cmd) + cmd->in_length + sizeof(u32);
161 
162 		rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev),
163 				ND_CMD_SET_CONFIG_DATA, cmd, cmd_size, &cmd_rc);
164 		if (rc < 0)
165 			break;
166 		if (cmd_rc < 0) {
167 			rc = cmd_rc;
168 			break;
169 		}
170 	}
171 	kvfree(cmd);
172 
173 	return rc;
174 }
175 
176 void nvdimm_set_aliasing(struct device *dev)
177 {
178 	struct nvdimm *nvdimm = to_nvdimm(dev);
179 
180 	set_bit(NDD_ALIASING, &nvdimm->flags);
181 }
182 
183 void nvdimm_set_locked(struct device *dev)
184 {
185 	struct nvdimm *nvdimm = to_nvdimm(dev);
186 
187 	set_bit(NDD_LOCKED, &nvdimm->flags);
188 }
189 
190 void nvdimm_clear_locked(struct device *dev)
191 {
192 	struct nvdimm *nvdimm = to_nvdimm(dev);
193 
194 	clear_bit(NDD_LOCKED, &nvdimm->flags);
195 }
196 
197 static void nvdimm_release(struct device *dev)
198 {
199 	struct nvdimm *nvdimm = to_nvdimm(dev);
200 
201 	ida_simple_remove(&dimm_ida, nvdimm->id);
202 	kfree(nvdimm);
203 }
204 
205 struct nvdimm *to_nvdimm(struct device *dev)
206 {
207 	struct nvdimm *nvdimm = container_of(dev, struct nvdimm, dev);
208 
209 	WARN_ON(!is_nvdimm(dev));
210 	return nvdimm;
211 }
212 EXPORT_SYMBOL_GPL(to_nvdimm);
213 
214 struct nvdimm *nd_blk_region_to_dimm(struct nd_blk_region *ndbr)
215 {
216 	struct nd_region *nd_region = &ndbr->nd_region;
217 	struct nd_mapping *nd_mapping = &nd_region->mapping[0];
218 
219 	return nd_mapping->nvdimm;
220 }
221 EXPORT_SYMBOL_GPL(nd_blk_region_to_dimm);
222 
223 unsigned long nd_blk_memremap_flags(struct nd_blk_region *ndbr)
224 {
225 	/* pmem mapping properties are private to libnvdimm */
226 	return ARCH_MEMREMAP_PMEM;
227 }
228 EXPORT_SYMBOL_GPL(nd_blk_memremap_flags);
229 
230 struct nvdimm_drvdata *to_ndd(struct nd_mapping *nd_mapping)
231 {
232 	struct nvdimm *nvdimm = nd_mapping->nvdimm;
233 
234 	WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev));
235 
236 	return dev_get_drvdata(&nvdimm->dev);
237 }
238 EXPORT_SYMBOL(to_ndd);
239 
240 void nvdimm_drvdata_release(struct kref *kref)
241 {
242 	struct nvdimm_drvdata *ndd = container_of(kref, typeof(*ndd), kref);
243 	struct device *dev = ndd->dev;
244 	struct resource *res, *_r;
245 
246 	dev_dbg(dev, "trace\n");
247 	nvdimm_bus_lock(dev);
248 	for_each_dpa_resource_safe(ndd, res, _r)
249 		nvdimm_free_dpa(ndd, res);
250 	nvdimm_bus_unlock(dev);
251 
252 	kvfree(ndd->data);
253 	kfree(ndd);
254 	put_device(dev);
255 }
256 
257 void get_ndd(struct nvdimm_drvdata *ndd)
258 {
259 	kref_get(&ndd->kref);
260 }
261 
262 void put_ndd(struct nvdimm_drvdata *ndd)
263 {
264 	if (ndd)
265 		kref_put(&ndd->kref, nvdimm_drvdata_release);
266 }
267 
268 const char *nvdimm_name(struct nvdimm *nvdimm)
269 {
270 	return dev_name(&nvdimm->dev);
271 }
272 EXPORT_SYMBOL_GPL(nvdimm_name);
273 
274 struct kobject *nvdimm_kobj(struct nvdimm *nvdimm)
275 {
276 	return &nvdimm->dev.kobj;
277 }
278 EXPORT_SYMBOL_GPL(nvdimm_kobj);
279 
280 unsigned long nvdimm_cmd_mask(struct nvdimm *nvdimm)
281 {
282 	return nvdimm->cmd_mask;
283 }
284 EXPORT_SYMBOL_GPL(nvdimm_cmd_mask);
285 
286 void *nvdimm_provider_data(struct nvdimm *nvdimm)
287 {
288 	if (nvdimm)
289 		return nvdimm->provider_data;
290 	return NULL;
291 }
292 EXPORT_SYMBOL_GPL(nvdimm_provider_data);
293 
294 static ssize_t commands_show(struct device *dev,
295 		struct device_attribute *attr, char *buf)
296 {
297 	struct nvdimm *nvdimm = to_nvdimm(dev);
298 	int cmd, len = 0;
299 
300 	if (!nvdimm->cmd_mask)
301 		return sprintf(buf, "\n");
302 
303 	for_each_set_bit(cmd, &nvdimm->cmd_mask, BITS_PER_LONG)
304 		len += sprintf(buf + len, "%s ", nvdimm_cmd_name(cmd));
305 	len += sprintf(buf + len, "\n");
306 	return len;
307 }
308 static DEVICE_ATTR_RO(commands);
309 
310 static ssize_t flags_show(struct device *dev,
311 		struct device_attribute *attr, char *buf)
312 {
313 	struct nvdimm *nvdimm = to_nvdimm(dev);
314 
315 	return sprintf(buf, "%s%s\n",
316 			test_bit(NDD_ALIASING, &nvdimm->flags) ? "alias " : "",
317 			test_bit(NDD_LOCKED, &nvdimm->flags) ? "lock " : "");
318 }
319 static DEVICE_ATTR_RO(flags);
320 
321 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
322 		char *buf)
323 {
324 	struct nvdimm *nvdimm = to_nvdimm(dev);
325 
326 	/*
327 	 * The state may be in the process of changing, userspace should
328 	 * quiesce probing if it wants a static answer
329 	 */
330 	nvdimm_bus_lock(dev);
331 	nvdimm_bus_unlock(dev);
332 	return sprintf(buf, "%s\n", atomic_read(&nvdimm->busy)
333 			? "active" : "idle");
334 }
335 static DEVICE_ATTR_RO(state);
336 
337 static ssize_t available_slots_show(struct device *dev,
338 		struct device_attribute *attr, char *buf)
339 {
340 	struct nvdimm_drvdata *ndd = dev_get_drvdata(dev);
341 	ssize_t rc;
342 	u32 nfree;
343 
344 	if (!ndd)
345 		return -ENXIO;
346 
347 	nvdimm_bus_lock(dev);
348 	nfree = nd_label_nfree(ndd);
349 	if (nfree - 1 > nfree) {
350 		dev_WARN_ONCE(dev, 1, "we ate our last label?\n");
351 		nfree = 0;
352 	} else
353 		nfree--;
354 	rc = sprintf(buf, "%d\n", nfree);
355 	nvdimm_bus_unlock(dev);
356 	return rc;
357 }
358 static DEVICE_ATTR_RO(available_slots);
359 
360 __weak ssize_t security_show(struct device *dev,
361 		struct device_attribute *attr, char *buf)
362 {
363 	struct nvdimm *nvdimm = to_nvdimm(dev);
364 
365 	if (test_bit(NVDIMM_SECURITY_DISABLED, &nvdimm->sec.flags))
366 		return sprintf(buf, "disabled\n");
367 	if (test_bit(NVDIMM_SECURITY_UNLOCKED, &nvdimm->sec.flags))
368 		return sprintf(buf, "unlocked\n");
369 	if (test_bit(NVDIMM_SECURITY_LOCKED, &nvdimm->sec.flags))
370 		return sprintf(buf, "locked\n");
371 	if (test_bit(NVDIMM_SECURITY_OVERWRITE, &nvdimm->sec.flags))
372 		return sprintf(buf, "overwrite\n");
373 	return -ENOTTY;
374 }
375 
376 static ssize_t frozen_show(struct device *dev,
377 		struct device_attribute *attr, char *buf)
378 {
379 	struct nvdimm *nvdimm = to_nvdimm(dev);
380 
381 	return sprintf(buf, "%d\n", test_bit(NVDIMM_SECURITY_FROZEN,
382 				&nvdimm->sec.flags));
383 }
384 static DEVICE_ATTR_RO(frozen);
385 
386 static ssize_t security_store(struct device *dev,
387 		struct device_attribute *attr, const char *buf, size_t len)
388 
389 {
390 	ssize_t rc;
391 
392 	/*
393 	 * Require all userspace triggered security management to be
394 	 * done while probing is idle and the DIMM is not in active use
395 	 * in any region.
396 	 */
397 	nd_device_lock(dev);
398 	nvdimm_bus_lock(dev);
399 	wait_nvdimm_bus_probe_idle(dev);
400 	rc = nvdimm_security_store(dev, buf, len);
401 	nvdimm_bus_unlock(dev);
402 	nd_device_unlock(dev);
403 
404 	return rc;
405 }
406 static DEVICE_ATTR_RW(security);
407 
408 static struct attribute *nvdimm_attributes[] = {
409 	&dev_attr_state.attr,
410 	&dev_attr_flags.attr,
411 	&dev_attr_commands.attr,
412 	&dev_attr_available_slots.attr,
413 	&dev_attr_security.attr,
414 	&dev_attr_frozen.attr,
415 	NULL,
416 };
417 
418 static umode_t nvdimm_visible(struct kobject *kobj, struct attribute *a, int n)
419 {
420 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
421 	struct nvdimm *nvdimm = to_nvdimm(dev);
422 
423 	if (a != &dev_attr_security.attr && a != &dev_attr_frozen.attr)
424 		return a->mode;
425 	if (!nvdimm->sec.flags)
426 		return 0;
427 
428 	if (a == &dev_attr_security.attr) {
429 		/* Are there any state mutation ops (make writable)? */
430 		if (nvdimm->sec.ops->freeze || nvdimm->sec.ops->disable
431 				|| nvdimm->sec.ops->change_key
432 				|| nvdimm->sec.ops->erase
433 				|| nvdimm->sec.ops->overwrite)
434 			return a->mode;
435 		return 0444;
436 	}
437 
438 	if (nvdimm->sec.ops->freeze)
439 		return a->mode;
440 	return 0;
441 }
442 
443 static const struct attribute_group nvdimm_attribute_group = {
444 	.attrs = nvdimm_attributes,
445 	.is_visible = nvdimm_visible,
446 };
447 
448 static const struct attribute_group *nvdimm_attribute_groups[] = {
449 	&nd_device_attribute_group,
450 	&nvdimm_attribute_group,
451 	NULL,
452 };
453 
454 static const struct device_type nvdimm_device_type = {
455 	.name = "nvdimm",
456 	.release = nvdimm_release,
457 	.groups = nvdimm_attribute_groups,
458 };
459 
460 bool is_nvdimm(struct device *dev)
461 {
462 	return dev->type == &nvdimm_device_type;
463 }
464 
465 struct nvdimm *__nvdimm_create(struct nvdimm_bus *nvdimm_bus,
466 		void *provider_data, const struct attribute_group **groups,
467 		unsigned long flags, unsigned long cmd_mask, int num_flush,
468 		struct resource *flush_wpq, const char *dimm_id,
469 		const struct nvdimm_security_ops *sec_ops)
470 {
471 	struct nvdimm *nvdimm = kzalloc(sizeof(*nvdimm), GFP_KERNEL);
472 	struct device *dev;
473 
474 	if (!nvdimm)
475 		return NULL;
476 
477 	nvdimm->id = ida_simple_get(&dimm_ida, 0, 0, GFP_KERNEL);
478 	if (nvdimm->id < 0) {
479 		kfree(nvdimm);
480 		return NULL;
481 	}
482 
483 	nvdimm->dimm_id = dimm_id;
484 	nvdimm->provider_data = provider_data;
485 	if (noblk)
486 		flags |= 1 << NDD_NOBLK;
487 	nvdimm->flags = flags;
488 	nvdimm->cmd_mask = cmd_mask;
489 	nvdimm->num_flush = num_flush;
490 	nvdimm->flush_wpq = flush_wpq;
491 	atomic_set(&nvdimm->busy, 0);
492 	dev = &nvdimm->dev;
493 	dev_set_name(dev, "nmem%d", nvdimm->id);
494 	dev->parent = &nvdimm_bus->dev;
495 	dev->type = &nvdimm_device_type;
496 	dev->devt = MKDEV(nvdimm_major, nvdimm->id);
497 	dev->groups = groups;
498 	nvdimm->sec.ops = sec_ops;
499 	nvdimm->sec.overwrite_tmo = 0;
500 	INIT_DELAYED_WORK(&nvdimm->dwork, nvdimm_security_overwrite_query);
501 	/*
502 	 * Security state must be initialized before device_add() for
503 	 * attribute visibility.
504 	 */
505 	/* get security state and extended (master) state */
506 	nvdimm->sec.flags = nvdimm_security_flags(nvdimm, NVDIMM_USER);
507 	nvdimm->sec.ext_flags = nvdimm_security_flags(nvdimm, NVDIMM_MASTER);
508 	nd_device_register(dev);
509 
510 	return nvdimm;
511 }
512 EXPORT_SYMBOL_GPL(__nvdimm_create);
513 
514 static void shutdown_security_notify(void *data)
515 {
516 	struct nvdimm *nvdimm = data;
517 
518 	sysfs_put(nvdimm->sec.overwrite_state);
519 }
520 
521 int nvdimm_security_setup_events(struct device *dev)
522 {
523 	struct nvdimm *nvdimm = to_nvdimm(dev);
524 
525 	if (!nvdimm->sec.flags || !nvdimm->sec.ops
526 			|| !nvdimm->sec.ops->overwrite)
527 		return 0;
528 	nvdimm->sec.overwrite_state = sysfs_get_dirent(dev->kobj.sd, "security");
529 	if (!nvdimm->sec.overwrite_state)
530 		return -ENOMEM;
531 
532 	return devm_add_action_or_reset(dev, shutdown_security_notify, nvdimm);
533 }
534 EXPORT_SYMBOL_GPL(nvdimm_security_setup_events);
535 
536 int nvdimm_in_overwrite(struct nvdimm *nvdimm)
537 {
538 	return test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags);
539 }
540 EXPORT_SYMBOL_GPL(nvdimm_in_overwrite);
541 
542 int nvdimm_security_freeze(struct nvdimm *nvdimm)
543 {
544 	int rc;
545 
546 	WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev));
547 
548 	if (!nvdimm->sec.ops || !nvdimm->sec.ops->freeze)
549 		return -EOPNOTSUPP;
550 
551 	if (!nvdimm->sec.flags)
552 		return -EIO;
553 
554 	if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
555 		dev_warn(&nvdimm->dev, "Overwrite operation in progress.\n");
556 		return -EBUSY;
557 	}
558 
559 	rc = nvdimm->sec.ops->freeze(nvdimm);
560 	nvdimm->sec.flags = nvdimm_security_flags(nvdimm, NVDIMM_USER);
561 
562 	return rc;
563 }
564 
565 int alias_dpa_busy(struct device *dev, void *data)
566 {
567 	resource_size_t map_end, blk_start, new;
568 	struct blk_alloc_info *info = data;
569 	struct nd_mapping *nd_mapping;
570 	struct nd_region *nd_region;
571 	struct nvdimm_drvdata *ndd;
572 	struct resource *res;
573 	int i;
574 
575 	if (!is_memory(dev))
576 		return 0;
577 
578 	nd_region = to_nd_region(dev);
579 	for (i = 0; i < nd_region->ndr_mappings; i++) {
580 		nd_mapping  = &nd_region->mapping[i];
581 		if (nd_mapping->nvdimm == info->nd_mapping->nvdimm)
582 			break;
583 	}
584 
585 	if (i >= nd_region->ndr_mappings)
586 		return 0;
587 
588 	ndd = to_ndd(nd_mapping);
589 	map_end = nd_mapping->start + nd_mapping->size - 1;
590 	blk_start = nd_mapping->start;
591 
592 	/*
593 	 * In the allocation case ->res is set to free space that we are
594 	 * looking to validate against PMEM aliasing collision rules
595 	 * (i.e. BLK is allocated after all aliased PMEM).
596 	 */
597 	if (info->res) {
598 		if (info->res->start >= nd_mapping->start
599 				&& info->res->start < map_end)
600 			/* pass */;
601 		else
602 			return 0;
603 	}
604 
605  retry:
606 	/*
607 	 * Find the free dpa from the end of the last pmem allocation to
608 	 * the end of the interleave-set mapping.
609 	 */
610 	for_each_dpa_resource(ndd, res) {
611 		if (strncmp(res->name, "pmem", 4) != 0)
612 			continue;
613 		if ((res->start >= blk_start && res->start < map_end)
614 				|| (res->end >= blk_start
615 					&& res->end <= map_end)) {
616 			new = max(blk_start, min(map_end + 1, res->end + 1));
617 			if (new != blk_start) {
618 				blk_start = new;
619 				goto retry;
620 			}
621 		}
622 	}
623 
624 	/* update the free space range with the probed blk_start */
625 	if (info->res && blk_start > info->res->start) {
626 		info->res->start = max(info->res->start, blk_start);
627 		if (info->res->start > info->res->end)
628 			info->res->end = info->res->start - 1;
629 		return 1;
630 	}
631 
632 	info->available -= blk_start - nd_mapping->start;
633 
634 	return 0;
635 }
636 
637 /**
638  * nd_blk_available_dpa - account the unused dpa of BLK region
639  * @nd_mapping: container of dpa-resource-root + labels
640  *
641  * Unlike PMEM, BLK namespaces can occupy discontiguous DPA ranges, but
642  * we arrange for them to never start at an lower dpa than the last
643  * PMEM allocation in an aliased region.
644  */
645 resource_size_t nd_blk_available_dpa(struct nd_region *nd_region)
646 {
647 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
648 	struct nd_mapping *nd_mapping = &nd_region->mapping[0];
649 	struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
650 	struct blk_alloc_info info = {
651 		.nd_mapping = nd_mapping,
652 		.available = nd_mapping->size,
653 		.res = NULL,
654 	};
655 	struct resource *res;
656 
657 	if (!ndd)
658 		return 0;
659 
660 	device_for_each_child(&nvdimm_bus->dev, &info, alias_dpa_busy);
661 
662 	/* now account for busy blk allocations in unaliased dpa */
663 	for_each_dpa_resource(ndd, res) {
664 		if (strncmp(res->name, "blk", 3) != 0)
665 			continue;
666 		info.available -= resource_size(res);
667 	}
668 
669 	return info.available;
670 }
671 
672 /**
673  * nd_pmem_max_contiguous_dpa - For the given dimm+region, return the max
674  *			   contiguous unallocated dpa range.
675  * @nd_region: constrain available space check to this reference region
676  * @nd_mapping: container of dpa-resource-root + labels
677  */
678 resource_size_t nd_pmem_max_contiguous_dpa(struct nd_region *nd_region,
679 					   struct nd_mapping *nd_mapping)
680 {
681 	struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
682 	struct nvdimm_bus *nvdimm_bus;
683 	resource_size_t max = 0;
684 	struct resource *res;
685 
686 	/* if a dimm is disabled the available capacity is zero */
687 	if (!ndd)
688 		return 0;
689 
690 	nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
691 	if (__reserve_free_pmem(&nd_region->dev, nd_mapping->nvdimm))
692 		return 0;
693 	for_each_dpa_resource(ndd, res) {
694 		if (strcmp(res->name, "pmem-reserve") != 0)
695 			continue;
696 		if (resource_size(res) > max)
697 			max = resource_size(res);
698 	}
699 	release_free_pmem(nvdimm_bus, nd_mapping);
700 	return max;
701 }
702 
703 /**
704  * nd_pmem_available_dpa - for the given dimm+region account unallocated dpa
705  * @nd_mapping: container of dpa-resource-root + labels
706  * @nd_region: constrain available space check to this reference region
707  * @overlap: calculate available space assuming this level of overlap
708  *
709  * Validate that a PMEM label, if present, aligns with the start of an
710  * interleave set and truncate the available size at the lowest BLK
711  * overlap point.
712  *
713  * The expectation is that this routine is called multiple times as it
714  * probes for the largest BLK encroachment for any single member DIMM of
715  * the interleave set.  Once that value is determined the PMEM-limit for
716  * the set can be established.
717  */
718 resource_size_t nd_pmem_available_dpa(struct nd_region *nd_region,
719 		struct nd_mapping *nd_mapping, resource_size_t *overlap)
720 {
721 	resource_size_t map_start, map_end, busy = 0, available, blk_start;
722 	struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
723 	struct resource *res;
724 	const char *reason;
725 
726 	if (!ndd)
727 		return 0;
728 
729 	map_start = nd_mapping->start;
730 	map_end = map_start + nd_mapping->size - 1;
731 	blk_start = max(map_start, map_end + 1 - *overlap);
732 	for_each_dpa_resource(ndd, res) {
733 		if (res->start >= map_start && res->start < map_end) {
734 			if (strncmp(res->name, "blk", 3) == 0)
735 				blk_start = min(blk_start,
736 						max(map_start, res->start));
737 			else if (res->end > map_end) {
738 				reason = "misaligned to iset";
739 				goto err;
740 			} else
741 				busy += resource_size(res);
742 		} else if (res->end >= map_start && res->end <= map_end) {
743 			if (strncmp(res->name, "blk", 3) == 0) {
744 				/*
745 				 * If a BLK allocation overlaps the start of
746 				 * PMEM the entire interleave set may now only
747 				 * be used for BLK.
748 				 */
749 				blk_start = map_start;
750 			} else
751 				busy += resource_size(res);
752 		} else if (map_start > res->start && map_start < res->end) {
753 			/* total eclipse of the mapping */
754 			busy += nd_mapping->size;
755 			blk_start = map_start;
756 		}
757 	}
758 
759 	*overlap = map_end + 1 - blk_start;
760 	available = blk_start - map_start;
761 	if (busy < available)
762 		return available - busy;
763 	return 0;
764 
765  err:
766 	nd_dbg_dpa(nd_region, ndd, res, "%s\n", reason);
767 	return 0;
768 }
769 
770 void nvdimm_free_dpa(struct nvdimm_drvdata *ndd, struct resource *res)
771 {
772 	WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev));
773 	kfree(res->name);
774 	__release_region(&ndd->dpa, res->start, resource_size(res));
775 }
776 
777 struct resource *nvdimm_allocate_dpa(struct nvdimm_drvdata *ndd,
778 		struct nd_label_id *label_id, resource_size_t start,
779 		resource_size_t n)
780 {
781 	char *name = kmemdup(label_id, sizeof(*label_id), GFP_KERNEL);
782 	struct resource *res;
783 
784 	if (!name)
785 		return NULL;
786 
787 	WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev));
788 	res = __request_region(&ndd->dpa, start, n, name, 0);
789 	if (!res)
790 		kfree(name);
791 	return res;
792 }
793 
794 /**
795  * nvdimm_allocated_dpa - sum up the dpa currently allocated to this label_id
796  * @nvdimm: container of dpa-resource-root + labels
797  * @label_id: dpa resource name of the form {pmem|blk}-<human readable uuid>
798  */
799 resource_size_t nvdimm_allocated_dpa(struct nvdimm_drvdata *ndd,
800 		struct nd_label_id *label_id)
801 {
802 	resource_size_t allocated = 0;
803 	struct resource *res;
804 
805 	for_each_dpa_resource(ndd, res)
806 		if (strcmp(res->name, label_id->id) == 0)
807 			allocated += resource_size(res);
808 
809 	return allocated;
810 }
811 
812 static int count_dimms(struct device *dev, void *c)
813 {
814 	int *count = c;
815 
816 	if (is_nvdimm(dev))
817 		(*count)++;
818 	return 0;
819 }
820 
821 int nvdimm_bus_check_dimm_count(struct nvdimm_bus *nvdimm_bus, int dimm_count)
822 {
823 	int count = 0;
824 	/* Flush any possible dimm registration failures */
825 	nd_synchronize();
826 
827 	device_for_each_child(&nvdimm_bus->dev, &count, count_dimms);
828 	dev_dbg(&nvdimm_bus->dev, "count: %d\n", count);
829 	if (count != dimm_count)
830 		return -ENXIO;
831 	return 0;
832 }
833 EXPORT_SYMBOL_GPL(nvdimm_bus_check_dimm_count);
834 
835 void __exit nvdimm_devs_exit(void)
836 {
837 	ida_destroy(&dimm_ida);
838 }
839