xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/wmi.c (revision e23feb16)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/skbuff.h>
19 
20 #include "core.h"
21 #include "htc.h"
22 #include "debug.h"
23 #include "wmi.h"
24 #include "mac.h"
25 
26 void ath10k_wmi_flush_tx(struct ath10k *ar)
27 {
28 	int ret;
29 
30 	lockdep_assert_held(&ar->conf_mutex);
31 
32 	if (ar->state == ATH10K_STATE_WEDGED) {
33 		ath10k_warn("wmi flush skipped - device is wedged anyway\n");
34 		return;
35 	}
36 
37 	ret = wait_event_timeout(ar->wmi.wq,
38 				 atomic_read(&ar->wmi.pending_tx_count) == 0,
39 				 5*HZ);
40 	if (atomic_read(&ar->wmi.pending_tx_count) == 0)
41 		return;
42 
43 	if (ret == 0)
44 		ret = -ETIMEDOUT;
45 
46 	if (ret < 0)
47 		ath10k_warn("wmi flush failed (%d)\n", ret);
48 }
49 
50 int ath10k_wmi_wait_for_service_ready(struct ath10k *ar)
51 {
52 	int ret;
53 	ret = wait_for_completion_timeout(&ar->wmi.service_ready,
54 					  WMI_SERVICE_READY_TIMEOUT_HZ);
55 	return ret;
56 }
57 
58 int ath10k_wmi_wait_for_unified_ready(struct ath10k *ar)
59 {
60 	int ret;
61 	ret = wait_for_completion_timeout(&ar->wmi.unified_ready,
62 					  WMI_UNIFIED_READY_TIMEOUT_HZ);
63 	return ret;
64 }
65 
66 static struct sk_buff *ath10k_wmi_alloc_skb(u32 len)
67 {
68 	struct sk_buff *skb;
69 	u32 round_len = roundup(len, 4);
70 
71 	skb = ath10k_htc_alloc_skb(WMI_SKB_HEADROOM + round_len);
72 	if (!skb)
73 		return NULL;
74 
75 	skb_reserve(skb, WMI_SKB_HEADROOM);
76 	if (!IS_ALIGNED((unsigned long)skb->data, 4))
77 		ath10k_warn("Unaligned WMI skb\n");
78 
79 	skb_put(skb, round_len);
80 	memset(skb->data, 0, round_len);
81 
82 	return skb;
83 }
84 
85 static void ath10k_wmi_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
86 {
87 	dev_kfree_skb(skb);
88 
89 	if (atomic_sub_return(1, &ar->wmi.pending_tx_count) == 0)
90 		wake_up(&ar->wmi.wq);
91 }
92 
93 /* WMI command API */
94 static int ath10k_wmi_cmd_send(struct ath10k *ar, struct sk_buff *skb,
95 			       enum wmi_cmd_id cmd_id)
96 {
97 	struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb);
98 	struct wmi_cmd_hdr *cmd_hdr;
99 	int status;
100 	u32 cmd = 0;
101 
102 	if (skb_push(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
103 		return -ENOMEM;
104 
105 	cmd |= SM(cmd_id, WMI_CMD_HDR_CMD_ID);
106 
107 	cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
108 	cmd_hdr->cmd_id = __cpu_to_le32(cmd);
109 
110 	if (atomic_add_return(1, &ar->wmi.pending_tx_count) >
111 	    WMI_MAX_PENDING_TX_COUNT) {
112 		/* avoid using up memory when FW hangs */
113 		atomic_dec(&ar->wmi.pending_tx_count);
114 		return -EBUSY;
115 	}
116 
117 	memset(skb_cb, 0, sizeof(*skb_cb));
118 
119 	trace_ath10k_wmi_cmd(cmd_id, skb->data, skb->len);
120 
121 	status = ath10k_htc_send(&ar->htc, ar->wmi.eid, skb);
122 	if (status) {
123 		dev_kfree_skb_any(skb);
124 		atomic_dec(&ar->wmi.pending_tx_count);
125 		return status;
126 	}
127 
128 	return 0;
129 }
130 
131 static int ath10k_wmi_event_scan(struct ath10k *ar, struct sk_buff *skb)
132 {
133 	struct wmi_scan_event *event = (struct wmi_scan_event *)skb->data;
134 	enum wmi_scan_event_type event_type;
135 	enum wmi_scan_completion_reason reason;
136 	u32 freq;
137 	u32 req_id;
138 	u32 scan_id;
139 	u32 vdev_id;
140 
141 	event_type = __le32_to_cpu(event->event_type);
142 	reason     = __le32_to_cpu(event->reason);
143 	freq       = __le32_to_cpu(event->channel_freq);
144 	req_id     = __le32_to_cpu(event->scan_req_id);
145 	scan_id    = __le32_to_cpu(event->scan_id);
146 	vdev_id    = __le32_to_cpu(event->vdev_id);
147 
148 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENTID\n");
149 	ath10k_dbg(ATH10K_DBG_WMI,
150 		   "scan event type %d reason %d freq %d req_id %d "
151 		   "scan_id %d vdev_id %d\n",
152 		   event_type, reason, freq, req_id, scan_id, vdev_id);
153 
154 	spin_lock_bh(&ar->data_lock);
155 
156 	switch (event_type) {
157 	case WMI_SCAN_EVENT_STARTED:
158 		ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_STARTED\n");
159 		if (ar->scan.in_progress && ar->scan.is_roc)
160 			ieee80211_ready_on_channel(ar->hw);
161 
162 		complete(&ar->scan.started);
163 		break;
164 	case WMI_SCAN_EVENT_COMPLETED:
165 		ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_COMPLETED\n");
166 		switch (reason) {
167 		case WMI_SCAN_REASON_COMPLETED:
168 			ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_COMPLETED\n");
169 			break;
170 		case WMI_SCAN_REASON_CANCELLED:
171 			ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_CANCELED\n");
172 			break;
173 		case WMI_SCAN_REASON_PREEMPTED:
174 			ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_PREEMPTED\n");
175 			break;
176 		case WMI_SCAN_REASON_TIMEDOUT:
177 			ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_TIMEDOUT\n");
178 			break;
179 		default:
180 			break;
181 		}
182 
183 		ar->scan_channel = NULL;
184 		if (!ar->scan.in_progress) {
185 			ath10k_warn("no scan requested, ignoring\n");
186 			break;
187 		}
188 
189 		if (ar->scan.is_roc) {
190 			ath10k_offchan_tx_purge(ar);
191 
192 			if (!ar->scan.aborting)
193 				ieee80211_remain_on_channel_expired(ar->hw);
194 		} else {
195 			ieee80211_scan_completed(ar->hw, ar->scan.aborting);
196 		}
197 
198 		del_timer(&ar->scan.timeout);
199 		complete_all(&ar->scan.completed);
200 		ar->scan.in_progress = false;
201 		break;
202 	case WMI_SCAN_EVENT_BSS_CHANNEL:
203 		ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_BSS_CHANNEL\n");
204 		ar->scan_channel = NULL;
205 		break;
206 	case WMI_SCAN_EVENT_FOREIGN_CHANNEL:
207 		ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_FOREIGN_CHANNEL\n");
208 		ar->scan_channel = ieee80211_get_channel(ar->hw->wiphy, freq);
209 		if (ar->scan.in_progress && ar->scan.is_roc &&
210 		    ar->scan.roc_freq == freq) {
211 			complete(&ar->scan.on_channel);
212 		}
213 		break;
214 	case WMI_SCAN_EVENT_DEQUEUED:
215 		ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_DEQUEUED\n");
216 		break;
217 	case WMI_SCAN_EVENT_PREEMPTED:
218 		ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_PREEMPTED\n");
219 		break;
220 	case WMI_SCAN_EVENT_START_FAILED:
221 		ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_START_FAILED\n");
222 		break;
223 	default:
224 		break;
225 	}
226 
227 	spin_unlock_bh(&ar->data_lock);
228 	return 0;
229 }
230 
231 static inline enum ieee80211_band phy_mode_to_band(u32 phy_mode)
232 {
233 	enum ieee80211_band band;
234 
235 	switch (phy_mode) {
236 	case MODE_11A:
237 	case MODE_11NA_HT20:
238 	case MODE_11NA_HT40:
239 	case MODE_11AC_VHT20:
240 	case MODE_11AC_VHT40:
241 	case MODE_11AC_VHT80:
242 		band = IEEE80211_BAND_5GHZ;
243 		break;
244 	case MODE_11G:
245 	case MODE_11B:
246 	case MODE_11GONLY:
247 	case MODE_11NG_HT20:
248 	case MODE_11NG_HT40:
249 	case MODE_11AC_VHT20_2G:
250 	case MODE_11AC_VHT40_2G:
251 	case MODE_11AC_VHT80_2G:
252 	default:
253 		band = IEEE80211_BAND_2GHZ;
254 	}
255 
256 	return band;
257 }
258 
259 static inline u8 get_rate_idx(u32 rate, enum ieee80211_band band)
260 {
261 	u8 rate_idx = 0;
262 
263 	/* rate in Kbps */
264 	switch (rate) {
265 	case 1000:
266 		rate_idx = 0;
267 		break;
268 	case 2000:
269 		rate_idx = 1;
270 		break;
271 	case 5500:
272 		rate_idx = 2;
273 		break;
274 	case 11000:
275 		rate_idx = 3;
276 		break;
277 	case 6000:
278 		rate_idx = 4;
279 		break;
280 	case 9000:
281 		rate_idx = 5;
282 		break;
283 	case 12000:
284 		rate_idx = 6;
285 		break;
286 	case 18000:
287 		rate_idx = 7;
288 		break;
289 	case 24000:
290 		rate_idx = 8;
291 		break;
292 	case 36000:
293 		rate_idx = 9;
294 		break;
295 	case 48000:
296 		rate_idx = 10;
297 		break;
298 	case 54000:
299 		rate_idx = 11;
300 		break;
301 	default:
302 		break;
303 	}
304 
305 	if (band == IEEE80211_BAND_5GHZ) {
306 		if (rate_idx > 3)
307 			/* Omit CCK rates */
308 			rate_idx -= 4;
309 		else
310 			rate_idx = 0;
311 	}
312 
313 	return rate_idx;
314 }
315 
316 static int ath10k_wmi_event_mgmt_rx(struct ath10k *ar, struct sk_buff *skb)
317 {
318 	struct wmi_mgmt_rx_event *event = (struct wmi_mgmt_rx_event *)skb->data;
319 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
320 	struct ieee80211_hdr *hdr;
321 	u32 rx_status;
322 	u32 channel;
323 	u32 phy_mode;
324 	u32 snr;
325 	u32 rate;
326 	u32 buf_len;
327 	u16 fc;
328 
329 	channel   = __le32_to_cpu(event->hdr.channel);
330 	buf_len   = __le32_to_cpu(event->hdr.buf_len);
331 	rx_status = __le32_to_cpu(event->hdr.status);
332 	snr       = __le32_to_cpu(event->hdr.snr);
333 	phy_mode  = __le32_to_cpu(event->hdr.phy_mode);
334 	rate	  = __le32_to_cpu(event->hdr.rate);
335 
336 	memset(status, 0, sizeof(*status));
337 
338 	ath10k_dbg(ATH10K_DBG_MGMT,
339 		   "event mgmt rx status %08x\n", rx_status);
340 
341 	if (rx_status & WMI_RX_STATUS_ERR_DECRYPT) {
342 		dev_kfree_skb(skb);
343 		return 0;
344 	}
345 
346 	if (rx_status & WMI_RX_STATUS_ERR_KEY_CACHE_MISS) {
347 		dev_kfree_skb(skb);
348 		return 0;
349 	}
350 
351 	if (rx_status & WMI_RX_STATUS_ERR_CRC)
352 		status->flag |= RX_FLAG_FAILED_FCS_CRC;
353 	if (rx_status & WMI_RX_STATUS_ERR_MIC)
354 		status->flag |= RX_FLAG_MMIC_ERROR;
355 
356 	status->band = phy_mode_to_band(phy_mode);
357 	status->freq = ieee80211_channel_to_frequency(channel, status->band);
358 	status->signal = snr + ATH10K_DEFAULT_NOISE_FLOOR;
359 	status->rate_idx = get_rate_idx(rate, status->band);
360 
361 	skb_pull(skb, sizeof(event->hdr));
362 
363 	hdr = (struct ieee80211_hdr *)skb->data;
364 	fc = le16_to_cpu(hdr->frame_control);
365 
366 	if (fc & IEEE80211_FCTL_PROTECTED) {
367 		status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED |
368 				RX_FLAG_MMIC_STRIPPED;
369 		hdr->frame_control = __cpu_to_le16(fc &
370 					~IEEE80211_FCTL_PROTECTED);
371 	}
372 
373 	ath10k_dbg(ATH10K_DBG_MGMT,
374 		   "event mgmt rx skb %p len %d ftype %02x stype %02x\n",
375 		   skb, skb->len,
376 		   fc & IEEE80211_FCTL_FTYPE, fc & IEEE80211_FCTL_STYPE);
377 
378 	ath10k_dbg(ATH10K_DBG_MGMT,
379 		   "event mgmt rx freq %d band %d snr %d, rate_idx %d\n",
380 		   status->freq, status->band, status->signal,
381 		   status->rate_idx);
382 
383 	/*
384 	 * packets from HTC come aligned to 4byte boundaries
385 	 * because they can originally come in along with a trailer
386 	 */
387 	skb_trim(skb, buf_len);
388 
389 	ieee80211_rx(ar->hw, skb);
390 	return 0;
391 }
392 
393 static int freq_to_idx(struct ath10k *ar, int freq)
394 {
395 	struct ieee80211_supported_band *sband;
396 	int band, ch, idx = 0;
397 
398 	for (band = IEEE80211_BAND_2GHZ; band < IEEE80211_NUM_BANDS; band++) {
399 		sband = ar->hw->wiphy->bands[band];
400 		if (!sband)
401 			continue;
402 
403 		for (ch = 0; ch < sband->n_channels; ch++, idx++)
404 			if (sband->channels[ch].center_freq == freq)
405 				goto exit;
406 	}
407 
408 exit:
409 	return idx;
410 }
411 
412 static void ath10k_wmi_event_chan_info(struct ath10k *ar, struct sk_buff *skb)
413 {
414 	struct wmi_chan_info_event *ev;
415 	struct survey_info *survey;
416 	u32 err_code, freq, cmd_flags, noise_floor, rx_clear_count, cycle_count;
417 	int idx;
418 
419 	ev = (struct wmi_chan_info_event *)skb->data;
420 
421 	err_code = __le32_to_cpu(ev->err_code);
422 	freq = __le32_to_cpu(ev->freq);
423 	cmd_flags = __le32_to_cpu(ev->cmd_flags);
424 	noise_floor = __le32_to_cpu(ev->noise_floor);
425 	rx_clear_count = __le32_to_cpu(ev->rx_clear_count);
426 	cycle_count = __le32_to_cpu(ev->cycle_count);
427 
428 	ath10k_dbg(ATH10K_DBG_WMI,
429 		   "chan info err_code %d freq %d cmd_flags %d noise_floor %d rx_clear_count %d cycle_count %d\n",
430 		   err_code, freq, cmd_flags, noise_floor, rx_clear_count,
431 		   cycle_count);
432 
433 	spin_lock_bh(&ar->data_lock);
434 
435 	if (!ar->scan.in_progress) {
436 		ath10k_warn("chan info event without a scan request?\n");
437 		goto exit;
438 	}
439 
440 	idx = freq_to_idx(ar, freq);
441 	if (idx >= ARRAY_SIZE(ar->survey)) {
442 		ath10k_warn("chan info: invalid frequency %d (idx %d out of bounds)\n",
443 			    freq, idx);
444 		goto exit;
445 	}
446 
447 	if (cmd_flags & WMI_CHAN_INFO_FLAG_COMPLETE) {
448 		/* During scanning chan info is reported twice for each
449 		 * visited channel. The reported cycle count is global
450 		 * and per-channel cycle count must be calculated */
451 
452 		cycle_count -= ar->survey_last_cycle_count;
453 		rx_clear_count -= ar->survey_last_rx_clear_count;
454 
455 		survey = &ar->survey[idx];
456 		survey->channel_time = WMI_CHAN_INFO_MSEC(cycle_count);
457 		survey->channel_time_rx = WMI_CHAN_INFO_MSEC(rx_clear_count);
458 		survey->noise = noise_floor;
459 		survey->filled = SURVEY_INFO_CHANNEL_TIME |
460 				 SURVEY_INFO_CHANNEL_TIME_RX |
461 				 SURVEY_INFO_NOISE_DBM;
462 	}
463 
464 	ar->survey_last_rx_clear_count = rx_clear_count;
465 	ar->survey_last_cycle_count = cycle_count;
466 
467 exit:
468 	spin_unlock_bh(&ar->data_lock);
469 }
470 
471 static void ath10k_wmi_event_echo(struct ath10k *ar, struct sk_buff *skb)
472 {
473 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_ECHO_EVENTID\n");
474 }
475 
476 static void ath10k_wmi_event_debug_mesg(struct ath10k *ar, struct sk_buff *skb)
477 {
478 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_MESG_EVENTID\n");
479 }
480 
481 static void ath10k_wmi_event_update_stats(struct ath10k *ar,
482 					  struct sk_buff *skb)
483 {
484 	struct wmi_stats_event *ev = (struct wmi_stats_event *)skb->data;
485 
486 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_UPDATE_STATS_EVENTID\n");
487 
488 	ath10k_debug_read_target_stats(ar, ev);
489 }
490 
491 static void ath10k_wmi_event_vdev_start_resp(struct ath10k *ar,
492 					     struct sk_buff *skb)
493 {
494 	struct wmi_vdev_start_response_event *ev;
495 
496 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_START_RESP_EVENTID\n");
497 
498 	ev = (struct wmi_vdev_start_response_event *)skb->data;
499 
500 	if (WARN_ON(__le32_to_cpu(ev->status)))
501 		return;
502 
503 	complete(&ar->vdev_setup_done);
504 }
505 
506 static void ath10k_wmi_event_vdev_stopped(struct ath10k *ar,
507 					  struct sk_buff *skb)
508 {
509 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_STOPPED_EVENTID\n");
510 	complete(&ar->vdev_setup_done);
511 }
512 
513 static void ath10k_wmi_event_peer_sta_kickout(struct ath10k *ar,
514 					      struct sk_buff *skb)
515 {
516 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_PEER_STA_KICKOUT_EVENTID\n");
517 }
518 
519 /*
520  * FIXME
521  *
522  * We don't report to mac80211 sleep state of connected
523  * stations. Due to this mac80211 can't fill in TIM IE
524  * correctly.
525  *
526  * I know of no way of getting nullfunc frames that contain
527  * sleep transition from connected stations - these do not
528  * seem to be sent from the target to the host. There also
529  * doesn't seem to be a dedicated event for that. So the
530  * only way left to do this would be to read tim_bitmap
531  * during SWBA.
532  *
533  * We could probably try using tim_bitmap from SWBA to tell
534  * mac80211 which stations are asleep and which are not. The
535  * problem here is calling mac80211 functions so many times
536  * could take too long and make us miss the time to submit
537  * the beacon to the target.
538  *
539  * So as a workaround we try to extend the TIM IE if there
540  * is unicast buffered for stations with aid > 7 and fill it
541  * in ourselves.
542  */
543 static void ath10k_wmi_update_tim(struct ath10k *ar,
544 				  struct ath10k_vif *arvif,
545 				  struct sk_buff *bcn,
546 				  struct wmi_bcn_info *bcn_info)
547 {
548 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)bcn->data;
549 	struct ieee80211_tim_ie *tim;
550 	u8 *ies, *ie;
551 	u8 ie_len, pvm_len;
552 
553 	/* if next SWBA has no tim_changed the tim_bitmap is garbage.
554 	 * we must copy the bitmap upon change and reuse it later */
555 	if (__le32_to_cpu(bcn_info->tim_info.tim_changed)) {
556 		int i;
557 
558 		BUILD_BUG_ON(sizeof(arvif->u.ap.tim_bitmap) !=
559 			     sizeof(bcn_info->tim_info.tim_bitmap));
560 
561 		for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++) {
562 			__le32 t = bcn_info->tim_info.tim_bitmap[i / 4];
563 			u32 v = __le32_to_cpu(t);
564 			arvif->u.ap.tim_bitmap[i] = (v >> ((i % 4) * 8)) & 0xFF;
565 		}
566 
567 		/* FW reports either length 0 or 16
568 		 * so we calculate this on our own */
569 		arvif->u.ap.tim_len = 0;
570 		for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++)
571 			if (arvif->u.ap.tim_bitmap[i])
572 				arvif->u.ap.tim_len = i;
573 
574 		arvif->u.ap.tim_len++;
575 	}
576 
577 	ies = bcn->data;
578 	ies += ieee80211_hdrlen(hdr->frame_control);
579 	ies += 12; /* fixed parameters */
580 
581 	ie = (u8 *)cfg80211_find_ie(WLAN_EID_TIM, ies,
582 				    (u8 *)skb_tail_pointer(bcn) - ies);
583 	if (!ie) {
584 		if (arvif->vdev_type != WMI_VDEV_TYPE_IBSS)
585 			ath10k_warn("no tim ie found;\n");
586 		return;
587 	}
588 
589 	tim = (void *)ie + 2;
590 	ie_len = ie[1];
591 	pvm_len = ie_len - 3; /* exclude dtim count, dtim period, bmap ctl */
592 
593 	if (pvm_len < arvif->u.ap.tim_len) {
594 		int expand_size = sizeof(arvif->u.ap.tim_bitmap) - pvm_len;
595 		int move_size = skb_tail_pointer(bcn) - (ie + 2 + ie_len);
596 		void *next_ie = ie + 2 + ie_len;
597 
598 		if (skb_put(bcn, expand_size)) {
599 			memmove(next_ie + expand_size, next_ie, move_size);
600 
601 			ie[1] += expand_size;
602 			ie_len += expand_size;
603 			pvm_len += expand_size;
604 		} else {
605 			ath10k_warn("tim expansion failed\n");
606 		}
607 	}
608 
609 	if (pvm_len > sizeof(arvif->u.ap.tim_bitmap)) {
610 		ath10k_warn("tim pvm length is too great (%d)\n", pvm_len);
611 		return;
612 	}
613 
614 	tim->bitmap_ctrl = !!__le32_to_cpu(bcn_info->tim_info.tim_mcast);
615 	memcpy(tim->virtual_map, arvif->u.ap.tim_bitmap, pvm_len);
616 
617 	ath10k_dbg(ATH10K_DBG_MGMT, "dtim %d/%d mcast %d pvmlen %d\n",
618 		   tim->dtim_count, tim->dtim_period,
619 		   tim->bitmap_ctrl, pvm_len);
620 }
621 
622 static void ath10k_p2p_fill_noa_ie(u8 *data, u32 len,
623 				   struct wmi_p2p_noa_info *noa)
624 {
625 	struct ieee80211_p2p_noa_attr *noa_attr;
626 	u8  ctwindow_oppps = noa->ctwindow_oppps;
627 	u8 ctwindow = ctwindow_oppps >> WMI_P2P_OPPPS_CTWINDOW_OFFSET;
628 	bool oppps = !!(ctwindow_oppps & WMI_P2P_OPPPS_ENABLE_BIT);
629 	__le16 *noa_attr_len;
630 	u16 attr_len;
631 	u8 noa_descriptors = noa->num_descriptors;
632 	int i;
633 
634 	/* P2P IE */
635 	data[0] = WLAN_EID_VENDOR_SPECIFIC;
636 	data[1] = len - 2;
637 	data[2] = (WLAN_OUI_WFA >> 16) & 0xff;
638 	data[3] = (WLAN_OUI_WFA >> 8) & 0xff;
639 	data[4] = (WLAN_OUI_WFA >> 0) & 0xff;
640 	data[5] = WLAN_OUI_TYPE_WFA_P2P;
641 
642 	/* NOA ATTR */
643 	data[6] = IEEE80211_P2P_ATTR_ABSENCE_NOTICE;
644 	noa_attr_len = (__le16 *)&data[7]; /* 2 bytes */
645 	noa_attr = (struct ieee80211_p2p_noa_attr *)&data[9];
646 
647 	noa_attr->index = noa->index;
648 	noa_attr->oppps_ctwindow = ctwindow;
649 	if (oppps)
650 		noa_attr->oppps_ctwindow |= IEEE80211_P2P_OPPPS_ENABLE_BIT;
651 
652 	for (i = 0; i < noa_descriptors; i++) {
653 		noa_attr->desc[i].count =
654 			__le32_to_cpu(noa->descriptors[i].type_count);
655 		noa_attr->desc[i].duration = noa->descriptors[i].duration;
656 		noa_attr->desc[i].interval = noa->descriptors[i].interval;
657 		noa_attr->desc[i].start_time = noa->descriptors[i].start_time;
658 	}
659 
660 	attr_len = 2; /* index + oppps_ctwindow */
661 	attr_len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
662 	*noa_attr_len = __cpu_to_le16(attr_len);
663 }
664 
665 static u32 ath10k_p2p_calc_noa_ie_len(struct wmi_p2p_noa_info *noa)
666 {
667 	u32 len = 0;
668 	u8 noa_descriptors = noa->num_descriptors;
669 	u8 opp_ps_info = noa->ctwindow_oppps;
670 	bool opps_enabled = !!(opp_ps_info & WMI_P2P_OPPPS_ENABLE_BIT);
671 
672 
673 	if (!noa_descriptors && !opps_enabled)
674 		return len;
675 
676 	len += 1 + 1 + 4; /* EID + len + OUI */
677 	len += 1 + 2; /* noa attr  + attr len */
678 	len += 1 + 1; /* index + oppps_ctwindow */
679 	len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
680 
681 	return len;
682 }
683 
684 static void ath10k_wmi_update_noa(struct ath10k *ar, struct ath10k_vif *arvif,
685 				  struct sk_buff *bcn,
686 				  struct wmi_bcn_info *bcn_info)
687 {
688 	struct wmi_p2p_noa_info *noa = &bcn_info->p2p_noa_info;
689 	u8 *new_data, *old_data = arvif->u.ap.noa_data;
690 	u32 new_len;
691 
692 	if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
693 		return;
694 
695 	ath10k_dbg(ATH10K_DBG_MGMT, "noa changed: %d\n", noa->changed);
696 	if (noa->changed & WMI_P2P_NOA_CHANGED_BIT) {
697 		new_len = ath10k_p2p_calc_noa_ie_len(noa);
698 		if (!new_len)
699 			goto cleanup;
700 
701 		new_data = kmalloc(new_len, GFP_ATOMIC);
702 		if (!new_data)
703 			goto cleanup;
704 
705 		ath10k_p2p_fill_noa_ie(new_data, new_len, noa);
706 
707 		spin_lock_bh(&ar->data_lock);
708 		arvif->u.ap.noa_data = new_data;
709 		arvif->u.ap.noa_len = new_len;
710 		spin_unlock_bh(&ar->data_lock);
711 		kfree(old_data);
712 	}
713 
714 	if (arvif->u.ap.noa_data)
715 		if (!pskb_expand_head(bcn, 0, arvif->u.ap.noa_len, GFP_ATOMIC))
716 			memcpy(skb_put(bcn, arvif->u.ap.noa_len),
717 			       arvif->u.ap.noa_data,
718 			       arvif->u.ap.noa_len);
719 	return;
720 
721 cleanup:
722 	spin_lock_bh(&ar->data_lock);
723 	arvif->u.ap.noa_data = NULL;
724 	arvif->u.ap.noa_len = 0;
725 	spin_unlock_bh(&ar->data_lock);
726 	kfree(old_data);
727 }
728 
729 
730 static void ath10k_wmi_event_host_swba(struct ath10k *ar, struct sk_buff *skb)
731 {
732 	struct wmi_host_swba_event *ev;
733 	u32 map;
734 	int i = -1;
735 	struct wmi_bcn_info *bcn_info;
736 	struct ath10k_vif *arvif;
737 	struct wmi_bcn_tx_arg arg;
738 	struct sk_buff *bcn;
739 	int vdev_id = 0;
740 	int ret;
741 
742 	ath10k_dbg(ATH10K_DBG_MGMT, "WMI_HOST_SWBA_EVENTID\n");
743 
744 	ev = (struct wmi_host_swba_event *)skb->data;
745 	map = __le32_to_cpu(ev->vdev_map);
746 
747 	ath10k_dbg(ATH10K_DBG_MGMT, "host swba:\n"
748 		   "-vdev map 0x%x\n",
749 		   ev->vdev_map);
750 
751 	for (; map; map >>= 1, vdev_id++) {
752 		if (!(map & 0x1))
753 			continue;
754 
755 		i++;
756 
757 		if (i >= WMI_MAX_AP_VDEV) {
758 			ath10k_warn("swba has corrupted vdev map\n");
759 			break;
760 		}
761 
762 		bcn_info = &ev->bcn_info[i];
763 
764 		ath10k_dbg(ATH10K_DBG_MGMT,
765 			   "-bcn_info[%d]:\n"
766 			   "--tim_len %d\n"
767 			   "--tim_mcast %d\n"
768 			   "--tim_changed %d\n"
769 			   "--tim_num_ps_pending %d\n"
770 			   "--tim_bitmap 0x%08x%08x%08x%08x\n",
771 			   i,
772 			   __le32_to_cpu(bcn_info->tim_info.tim_len),
773 			   __le32_to_cpu(bcn_info->tim_info.tim_mcast),
774 			   __le32_to_cpu(bcn_info->tim_info.tim_changed),
775 			   __le32_to_cpu(bcn_info->tim_info.tim_num_ps_pending),
776 			   __le32_to_cpu(bcn_info->tim_info.tim_bitmap[3]),
777 			   __le32_to_cpu(bcn_info->tim_info.tim_bitmap[2]),
778 			   __le32_to_cpu(bcn_info->tim_info.tim_bitmap[1]),
779 			   __le32_to_cpu(bcn_info->tim_info.tim_bitmap[0]));
780 
781 		arvif = ath10k_get_arvif(ar, vdev_id);
782 		if (arvif == NULL) {
783 			ath10k_warn("no vif for vdev_id %d found\n", vdev_id);
784 			continue;
785 		}
786 
787 		bcn = ieee80211_beacon_get(ar->hw, arvif->vif);
788 		if (!bcn) {
789 			ath10k_warn("could not get mac80211 beacon\n");
790 			continue;
791 		}
792 
793 		ath10k_tx_h_seq_no(bcn);
794 		ath10k_wmi_update_tim(ar, arvif, bcn, bcn_info);
795 		ath10k_wmi_update_noa(ar, arvif, bcn, bcn_info);
796 
797 		arg.vdev_id = arvif->vdev_id;
798 		arg.tx_rate = 0;
799 		arg.tx_power = 0;
800 		arg.bcn = bcn->data;
801 		arg.bcn_len = bcn->len;
802 
803 		ret = ath10k_wmi_beacon_send(ar, &arg);
804 		if (ret)
805 			ath10k_warn("could not send beacon (%d)\n", ret);
806 
807 		dev_kfree_skb_any(bcn);
808 	}
809 }
810 
811 static void ath10k_wmi_event_tbttoffset_update(struct ath10k *ar,
812 					       struct sk_buff *skb)
813 {
814 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_TBTTOFFSET_UPDATE_EVENTID\n");
815 }
816 
817 static void ath10k_wmi_event_phyerr(struct ath10k *ar, struct sk_buff *skb)
818 {
819 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_PHYERR_EVENTID\n");
820 }
821 
822 static void ath10k_wmi_event_roam(struct ath10k *ar, struct sk_buff *skb)
823 {
824 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_ROAM_EVENTID\n");
825 }
826 
827 static void ath10k_wmi_event_profile_match(struct ath10k *ar,
828 				    struct sk_buff *skb)
829 {
830 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_PROFILE_MATCH\n");
831 }
832 
833 static void ath10k_wmi_event_debug_print(struct ath10k *ar,
834 				  struct sk_buff *skb)
835 {
836 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_PRINT_EVENTID\n");
837 }
838 
839 static void ath10k_wmi_event_pdev_qvit(struct ath10k *ar, struct sk_buff *skb)
840 {
841 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_QVIT_EVENTID\n");
842 }
843 
844 static void ath10k_wmi_event_wlan_profile_data(struct ath10k *ar,
845 					       struct sk_buff *skb)
846 {
847 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_WLAN_PROFILE_DATA_EVENTID\n");
848 }
849 
850 static void ath10k_wmi_event_rtt_measurement_report(struct ath10k *ar,
851 					     struct sk_buff *skb)
852 {
853 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_MEASUREMENT_REPORT_EVENTID\n");
854 }
855 
856 static void ath10k_wmi_event_tsf_measurement_report(struct ath10k *ar,
857 					     struct sk_buff *skb)
858 {
859 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_TSF_MEASUREMENT_REPORT_EVENTID\n");
860 }
861 
862 static void ath10k_wmi_event_rtt_error_report(struct ath10k *ar,
863 					      struct sk_buff *skb)
864 {
865 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_ERROR_REPORT_EVENTID\n");
866 }
867 
868 static void ath10k_wmi_event_wow_wakeup_host(struct ath10k *ar,
869 					     struct sk_buff *skb)
870 {
871 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_WOW_WAKEUP_HOST_EVENTID\n");
872 }
873 
874 static void ath10k_wmi_event_dcs_interference(struct ath10k *ar,
875 					      struct sk_buff *skb)
876 {
877 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_DCS_INTERFERENCE_EVENTID\n");
878 }
879 
880 static void ath10k_wmi_event_pdev_tpc_config(struct ath10k *ar,
881 					     struct sk_buff *skb)
882 {
883 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_TPC_CONFIG_EVENTID\n");
884 }
885 
886 static void ath10k_wmi_event_pdev_ftm_intg(struct ath10k *ar,
887 					   struct sk_buff *skb)
888 {
889 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_FTM_INTG_EVENTID\n");
890 }
891 
892 static void ath10k_wmi_event_gtk_offload_status(struct ath10k *ar,
893 					 struct sk_buff *skb)
894 {
895 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_OFFLOAD_STATUS_EVENTID\n");
896 }
897 
898 static void ath10k_wmi_event_gtk_rekey_fail(struct ath10k *ar,
899 					    struct sk_buff *skb)
900 {
901 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_REKEY_FAIL_EVENTID\n");
902 }
903 
904 static void ath10k_wmi_event_delba_complete(struct ath10k *ar,
905 					    struct sk_buff *skb)
906 {
907 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_DELBA_COMPLETE_EVENTID\n");
908 }
909 
910 static void ath10k_wmi_event_addba_complete(struct ath10k *ar,
911 					    struct sk_buff *skb)
912 {
913 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_ADDBA_COMPLETE_EVENTID\n");
914 }
915 
916 static void ath10k_wmi_event_vdev_install_key_complete(struct ath10k *ar,
917 						struct sk_buff *skb)
918 {
919 	ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID\n");
920 }
921 
922 static void ath10k_wmi_service_ready_event_rx(struct ath10k *ar,
923 					      struct sk_buff *skb)
924 {
925 	struct wmi_service_ready_event *ev = (void *)skb->data;
926 
927 	if (skb->len < sizeof(*ev)) {
928 		ath10k_warn("Service ready event was %d B but expected %zu B. Wrong firmware version?\n",
929 			    skb->len, sizeof(*ev));
930 		return;
931 	}
932 
933 	ar->hw_min_tx_power = __le32_to_cpu(ev->hw_min_tx_power);
934 	ar->hw_max_tx_power = __le32_to_cpu(ev->hw_max_tx_power);
935 	ar->ht_cap_info = __le32_to_cpu(ev->ht_cap_info);
936 	ar->vht_cap_info = __le32_to_cpu(ev->vht_cap_info);
937 	ar->fw_version_major =
938 		(__le32_to_cpu(ev->sw_version) & 0xff000000) >> 24;
939 	ar->fw_version_minor = (__le32_to_cpu(ev->sw_version) & 0x00ffffff);
940 	ar->fw_version_release =
941 		(__le32_to_cpu(ev->sw_version_1) & 0xffff0000) >> 16;
942 	ar->fw_version_build = (__le32_to_cpu(ev->sw_version_1) & 0x0000ffff);
943 	ar->phy_capability = __le32_to_cpu(ev->phy_capability);
944 	ar->num_rf_chains = __le32_to_cpu(ev->num_rf_chains);
945 
946 	if (ar->num_rf_chains > WMI_MAX_SPATIAL_STREAM) {
947 		ath10k_warn("hardware advertises support for more spatial streams than it should (%d > %d)\n",
948 			    ar->num_rf_chains, WMI_MAX_SPATIAL_STREAM);
949 		ar->num_rf_chains = WMI_MAX_SPATIAL_STREAM;
950 	}
951 
952 	ar->ath_common.regulatory.current_rd =
953 		__le32_to_cpu(ev->hal_reg_capabilities.eeprom_rd);
954 
955 	ath10k_debug_read_service_map(ar, ev->wmi_service_bitmap,
956 				      sizeof(ev->wmi_service_bitmap));
957 
958 	if (strlen(ar->hw->wiphy->fw_version) == 0) {
959 		snprintf(ar->hw->wiphy->fw_version,
960 			 sizeof(ar->hw->wiphy->fw_version),
961 			 "%u.%u.%u.%u",
962 			 ar->fw_version_major,
963 			 ar->fw_version_minor,
964 			 ar->fw_version_release,
965 			 ar->fw_version_build);
966 	}
967 
968 	/* FIXME: it probably should be better to support this */
969 	if (__le32_to_cpu(ev->num_mem_reqs) > 0) {
970 		ath10k_warn("target requested %d memory chunks; ignoring\n",
971 			    __le32_to_cpu(ev->num_mem_reqs));
972 	}
973 
974 	ath10k_dbg(ATH10K_DBG_WMI,
975 		   "wmi event service ready sw_ver 0x%08x sw_ver1 0x%08x abi_ver %u phy_cap 0x%08x ht_cap 0x%08x vht_cap 0x%08x vht_supp_msc 0x%08x sys_cap_info 0x%08x mem_reqs %u num_rf_chains %u\n",
976 		   __le32_to_cpu(ev->sw_version),
977 		   __le32_to_cpu(ev->sw_version_1),
978 		   __le32_to_cpu(ev->abi_version),
979 		   __le32_to_cpu(ev->phy_capability),
980 		   __le32_to_cpu(ev->ht_cap_info),
981 		   __le32_to_cpu(ev->vht_cap_info),
982 		   __le32_to_cpu(ev->vht_supp_mcs),
983 		   __le32_to_cpu(ev->sys_cap_info),
984 		   __le32_to_cpu(ev->num_mem_reqs),
985 		   __le32_to_cpu(ev->num_rf_chains));
986 
987 	complete(&ar->wmi.service_ready);
988 }
989 
990 static int ath10k_wmi_ready_event_rx(struct ath10k *ar, struct sk_buff *skb)
991 {
992 	struct wmi_ready_event *ev = (struct wmi_ready_event *)skb->data;
993 
994 	if (WARN_ON(skb->len < sizeof(*ev)))
995 		return -EINVAL;
996 
997 	memcpy(ar->mac_addr, ev->mac_addr.addr, ETH_ALEN);
998 
999 	ath10k_dbg(ATH10K_DBG_WMI,
1000 		   "wmi event ready sw_version %u abi_version %u mac_addr %pM status %d\n",
1001 		   __le32_to_cpu(ev->sw_version),
1002 		   __le32_to_cpu(ev->abi_version),
1003 		   ev->mac_addr.addr,
1004 		   __le32_to_cpu(ev->status));
1005 
1006 	complete(&ar->wmi.unified_ready);
1007 	return 0;
1008 }
1009 
1010 static void ath10k_wmi_event_process(struct ath10k *ar, struct sk_buff *skb)
1011 {
1012 	struct wmi_cmd_hdr *cmd_hdr;
1013 	enum wmi_event_id id;
1014 	u16 len;
1015 
1016 	cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
1017 	id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
1018 
1019 	if (skb_pull(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
1020 		return;
1021 
1022 	len = skb->len;
1023 
1024 	trace_ath10k_wmi_event(id, skb->data, skb->len);
1025 
1026 	switch (id) {
1027 	case WMI_MGMT_RX_EVENTID:
1028 		ath10k_wmi_event_mgmt_rx(ar, skb);
1029 		/* mgmt_rx() owns the skb now! */
1030 		return;
1031 	case WMI_SCAN_EVENTID:
1032 		ath10k_wmi_event_scan(ar, skb);
1033 		break;
1034 	case WMI_CHAN_INFO_EVENTID:
1035 		ath10k_wmi_event_chan_info(ar, skb);
1036 		break;
1037 	case WMI_ECHO_EVENTID:
1038 		ath10k_wmi_event_echo(ar, skb);
1039 		break;
1040 	case WMI_DEBUG_MESG_EVENTID:
1041 		ath10k_wmi_event_debug_mesg(ar, skb);
1042 		break;
1043 	case WMI_UPDATE_STATS_EVENTID:
1044 		ath10k_wmi_event_update_stats(ar, skb);
1045 		break;
1046 	case WMI_VDEV_START_RESP_EVENTID:
1047 		ath10k_wmi_event_vdev_start_resp(ar, skb);
1048 		break;
1049 	case WMI_VDEV_STOPPED_EVENTID:
1050 		ath10k_wmi_event_vdev_stopped(ar, skb);
1051 		break;
1052 	case WMI_PEER_STA_KICKOUT_EVENTID:
1053 		ath10k_wmi_event_peer_sta_kickout(ar, skb);
1054 		break;
1055 	case WMI_HOST_SWBA_EVENTID:
1056 		ath10k_wmi_event_host_swba(ar, skb);
1057 		break;
1058 	case WMI_TBTTOFFSET_UPDATE_EVENTID:
1059 		ath10k_wmi_event_tbttoffset_update(ar, skb);
1060 		break;
1061 	case WMI_PHYERR_EVENTID:
1062 		ath10k_wmi_event_phyerr(ar, skb);
1063 		break;
1064 	case WMI_ROAM_EVENTID:
1065 		ath10k_wmi_event_roam(ar, skb);
1066 		break;
1067 	case WMI_PROFILE_MATCH:
1068 		ath10k_wmi_event_profile_match(ar, skb);
1069 		break;
1070 	case WMI_DEBUG_PRINT_EVENTID:
1071 		ath10k_wmi_event_debug_print(ar, skb);
1072 		break;
1073 	case WMI_PDEV_QVIT_EVENTID:
1074 		ath10k_wmi_event_pdev_qvit(ar, skb);
1075 		break;
1076 	case WMI_WLAN_PROFILE_DATA_EVENTID:
1077 		ath10k_wmi_event_wlan_profile_data(ar, skb);
1078 		break;
1079 	case WMI_RTT_MEASUREMENT_REPORT_EVENTID:
1080 		ath10k_wmi_event_rtt_measurement_report(ar, skb);
1081 		break;
1082 	case WMI_TSF_MEASUREMENT_REPORT_EVENTID:
1083 		ath10k_wmi_event_tsf_measurement_report(ar, skb);
1084 		break;
1085 	case WMI_RTT_ERROR_REPORT_EVENTID:
1086 		ath10k_wmi_event_rtt_error_report(ar, skb);
1087 		break;
1088 	case WMI_WOW_WAKEUP_HOST_EVENTID:
1089 		ath10k_wmi_event_wow_wakeup_host(ar, skb);
1090 		break;
1091 	case WMI_DCS_INTERFERENCE_EVENTID:
1092 		ath10k_wmi_event_dcs_interference(ar, skb);
1093 		break;
1094 	case WMI_PDEV_TPC_CONFIG_EVENTID:
1095 		ath10k_wmi_event_pdev_tpc_config(ar, skb);
1096 		break;
1097 	case WMI_PDEV_FTM_INTG_EVENTID:
1098 		ath10k_wmi_event_pdev_ftm_intg(ar, skb);
1099 		break;
1100 	case WMI_GTK_OFFLOAD_STATUS_EVENTID:
1101 		ath10k_wmi_event_gtk_offload_status(ar, skb);
1102 		break;
1103 	case WMI_GTK_REKEY_FAIL_EVENTID:
1104 		ath10k_wmi_event_gtk_rekey_fail(ar, skb);
1105 		break;
1106 	case WMI_TX_DELBA_COMPLETE_EVENTID:
1107 		ath10k_wmi_event_delba_complete(ar, skb);
1108 		break;
1109 	case WMI_TX_ADDBA_COMPLETE_EVENTID:
1110 		ath10k_wmi_event_addba_complete(ar, skb);
1111 		break;
1112 	case WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID:
1113 		ath10k_wmi_event_vdev_install_key_complete(ar, skb);
1114 		break;
1115 	case WMI_SERVICE_READY_EVENTID:
1116 		ath10k_wmi_service_ready_event_rx(ar, skb);
1117 		break;
1118 	case WMI_READY_EVENTID:
1119 		ath10k_wmi_ready_event_rx(ar, skb);
1120 		break;
1121 	default:
1122 		ath10k_warn("Unknown eventid: %d\n", id);
1123 		break;
1124 	}
1125 
1126 	dev_kfree_skb(skb);
1127 }
1128 
1129 static void ath10k_wmi_event_work(struct work_struct *work)
1130 {
1131 	struct ath10k *ar = container_of(work, struct ath10k,
1132 					 wmi.wmi_event_work);
1133 	struct sk_buff *skb;
1134 
1135 	for (;;) {
1136 		skb = skb_dequeue(&ar->wmi.wmi_event_list);
1137 		if (!skb)
1138 			break;
1139 
1140 		ath10k_wmi_event_process(ar, skb);
1141 	}
1142 }
1143 
1144 static void ath10k_wmi_process_rx(struct ath10k *ar, struct sk_buff *skb)
1145 {
1146 	struct wmi_cmd_hdr *cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
1147 	enum wmi_event_id event_id;
1148 
1149 	event_id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
1150 
1151 	/* some events require to be handled ASAP
1152 	 * thus can't be defered to a worker thread */
1153 	switch (event_id) {
1154 	case WMI_HOST_SWBA_EVENTID:
1155 	case WMI_MGMT_RX_EVENTID:
1156 		ath10k_wmi_event_process(ar, skb);
1157 		return;
1158 	default:
1159 		break;
1160 	}
1161 
1162 	skb_queue_tail(&ar->wmi.wmi_event_list, skb);
1163 	queue_work(ar->workqueue, &ar->wmi.wmi_event_work);
1164 }
1165 
1166 /* WMI Initialization functions */
1167 int ath10k_wmi_attach(struct ath10k *ar)
1168 {
1169 	init_completion(&ar->wmi.service_ready);
1170 	init_completion(&ar->wmi.unified_ready);
1171 	init_waitqueue_head(&ar->wmi.wq);
1172 
1173 	skb_queue_head_init(&ar->wmi.wmi_event_list);
1174 	INIT_WORK(&ar->wmi.wmi_event_work, ath10k_wmi_event_work);
1175 
1176 	return 0;
1177 }
1178 
1179 void ath10k_wmi_detach(struct ath10k *ar)
1180 {
1181 	/* HTC should've drained the packets already */
1182 	if (WARN_ON(atomic_read(&ar->wmi.pending_tx_count) > 0))
1183 		ath10k_warn("there are still pending packets\n");
1184 
1185 	cancel_work_sync(&ar->wmi.wmi_event_work);
1186 	skb_queue_purge(&ar->wmi.wmi_event_list);
1187 }
1188 
1189 int ath10k_wmi_connect_htc_service(struct ath10k *ar)
1190 {
1191 	int status;
1192 	struct ath10k_htc_svc_conn_req conn_req;
1193 	struct ath10k_htc_svc_conn_resp conn_resp;
1194 
1195 	memset(&conn_req, 0, sizeof(conn_req));
1196 	memset(&conn_resp, 0, sizeof(conn_resp));
1197 
1198 	/* these fields are the same for all service endpoints */
1199 	conn_req.ep_ops.ep_tx_complete = ath10k_wmi_htc_tx_complete;
1200 	conn_req.ep_ops.ep_rx_complete = ath10k_wmi_process_rx;
1201 
1202 	/* connect to control service */
1203 	conn_req.service_id = ATH10K_HTC_SVC_ID_WMI_CONTROL;
1204 
1205 	status = ath10k_htc_connect_service(&ar->htc, &conn_req, &conn_resp);
1206 	if (status) {
1207 		ath10k_warn("failed to connect to WMI CONTROL service status: %d\n",
1208 			    status);
1209 		return status;
1210 	}
1211 
1212 	ar->wmi.eid = conn_resp.eid;
1213 	return 0;
1214 }
1215 
1216 int ath10k_wmi_pdev_set_regdomain(struct ath10k *ar, u16 rd, u16 rd2g,
1217 				  u16 rd5g, u16 ctl2g, u16 ctl5g)
1218 {
1219 	struct wmi_pdev_set_regdomain_cmd *cmd;
1220 	struct sk_buff *skb;
1221 
1222 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1223 	if (!skb)
1224 		return -ENOMEM;
1225 
1226 	cmd = (struct wmi_pdev_set_regdomain_cmd *)skb->data;
1227 	cmd->reg_domain = __cpu_to_le32(rd);
1228 	cmd->reg_domain_2G = __cpu_to_le32(rd2g);
1229 	cmd->reg_domain_5G = __cpu_to_le32(rd5g);
1230 	cmd->conformance_test_limit_2G = __cpu_to_le32(ctl2g);
1231 	cmd->conformance_test_limit_5G = __cpu_to_le32(ctl5g);
1232 
1233 	ath10k_dbg(ATH10K_DBG_WMI,
1234 		   "wmi pdev regdomain rd %x rd2g %x rd5g %x ctl2g %x ctl5g %x\n",
1235 		   rd, rd2g, rd5g, ctl2g, ctl5g);
1236 
1237 	return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_REGDOMAIN_CMDID);
1238 }
1239 
1240 int ath10k_wmi_pdev_set_channel(struct ath10k *ar,
1241 				const struct wmi_channel_arg *arg)
1242 {
1243 	struct wmi_set_channel_cmd *cmd;
1244 	struct sk_buff *skb;
1245 
1246 	if (arg->passive)
1247 		return -EINVAL;
1248 
1249 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1250 	if (!skb)
1251 		return -ENOMEM;
1252 
1253 	cmd = (struct wmi_set_channel_cmd *)skb->data;
1254 	cmd->chan.mhz               = __cpu_to_le32(arg->freq);
1255 	cmd->chan.band_center_freq1 = __cpu_to_le32(arg->freq);
1256 	cmd->chan.mode              = arg->mode;
1257 	cmd->chan.min_power         = arg->min_power;
1258 	cmd->chan.max_power         = arg->max_power;
1259 	cmd->chan.reg_power         = arg->max_reg_power;
1260 	cmd->chan.reg_classid       = arg->reg_class_id;
1261 	cmd->chan.antenna_max       = arg->max_antenna_gain;
1262 
1263 	ath10k_dbg(ATH10K_DBG_WMI,
1264 		   "wmi set channel mode %d freq %d\n",
1265 		   arg->mode, arg->freq);
1266 
1267 	return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_CHANNEL_CMDID);
1268 }
1269 
1270 int ath10k_wmi_pdev_suspend_target(struct ath10k *ar)
1271 {
1272 	struct wmi_pdev_suspend_cmd *cmd;
1273 	struct sk_buff *skb;
1274 
1275 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1276 	if (!skb)
1277 		return -ENOMEM;
1278 
1279 	cmd = (struct wmi_pdev_suspend_cmd *)skb->data;
1280 	cmd->suspend_opt = WMI_PDEV_SUSPEND;
1281 
1282 	return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SUSPEND_CMDID);
1283 }
1284 
1285 int ath10k_wmi_pdev_resume_target(struct ath10k *ar)
1286 {
1287 	struct sk_buff *skb;
1288 
1289 	skb = ath10k_wmi_alloc_skb(0);
1290 	if (skb == NULL)
1291 		return -ENOMEM;
1292 
1293 	return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_RESUME_CMDID);
1294 }
1295 
1296 int ath10k_wmi_pdev_set_param(struct ath10k *ar, enum wmi_pdev_param id,
1297 			      u32 value)
1298 {
1299 	struct wmi_pdev_set_param_cmd *cmd;
1300 	struct sk_buff *skb;
1301 
1302 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1303 	if (!skb)
1304 		return -ENOMEM;
1305 
1306 	cmd = (struct wmi_pdev_set_param_cmd *)skb->data;
1307 	cmd->param_id    = __cpu_to_le32(id);
1308 	cmd->param_value = __cpu_to_le32(value);
1309 
1310 	ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set param %d value %d\n",
1311 		   id, value);
1312 	return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_PARAM_CMDID);
1313 }
1314 
1315 int ath10k_wmi_cmd_init(struct ath10k *ar)
1316 {
1317 	struct wmi_init_cmd *cmd;
1318 	struct sk_buff *buf;
1319 	struct wmi_resource_config config = {};
1320 	u32 val;
1321 
1322 	config.num_vdevs = __cpu_to_le32(TARGET_NUM_VDEVS);
1323 	config.num_peers = __cpu_to_le32(TARGET_NUM_PEERS + TARGET_NUM_VDEVS);
1324 	config.num_offload_peers = __cpu_to_le32(TARGET_NUM_OFFLOAD_PEERS);
1325 
1326 	config.num_offload_reorder_bufs =
1327 		__cpu_to_le32(TARGET_NUM_OFFLOAD_REORDER_BUFS);
1328 
1329 	config.num_peer_keys = __cpu_to_le32(TARGET_NUM_PEER_KEYS);
1330 	config.num_tids = __cpu_to_le32(TARGET_NUM_TIDS);
1331 	config.ast_skid_limit = __cpu_to_le32(TARGET_AST_SKID_LIMIT);
1332 	config.tx_chain_mask = __cpu_to_le32(TARGET_TX_CHAIN_MASK);
1333 	config.rx_chain_mask = __cpu_to_le32(TARGET_RX_CHAIN_MASK);
1334 	config.rx_timeout_pri_vo = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
1335 	config.rx_timeout_pri_vi = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
1336 	config.rx_timeout_pri_be = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
1337 	config.rx_timeout_pri_bk = __cpu_to_le32(TARGET_RX_TIMEOUT_HI_PRI);
1338 	config.rx_decap_mode = __cpu_to_le32(TARGET_RX_DECAP_MODE);
1339 
1340 	config.scan_max_pending_reqs =
1341 		__cpu_to_le32(TARGET_SCAN_MAX_PENDING_REQS);
1342 
1343 	config.bmiss_offload_max_vdev =
1344 		__cpu_to_le32(TARGET_BMISS_OFFLOAD_MAX_VDEV);
1345 
1346 	config.roam_offload_max_vdev =
1347 		__cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_VDEV);
1348 
1349 	config.roam_offload_max_ap_profiles =
1350 		__cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_AP_PROFILES);
1351 
1352 	config.num_mcast_groups = __cpu_to_le32(TARGET_NUM_MCAST_GROUPS);
1353 	config.num_mcast_table_elems =
1354 		__cpu_to_le32(TARGET_NUM_MCAST_TABLE_ELEMS);
1355 
1356 	config.mcast2ucast_mode = __cpu_to_le32(TARGET_MCAST2UCAST_MODE);
1357 	config.tx_dbg_log_size = __cpu_to_le32(TARGET_TX_DBG_LOG_SIZE);
1358 	config.num_wds_entries = __cpu_to_le32(TARGET_NUM_WDS_ENTRIES);
1359 	config.dma_burst_size = __cpu_to_le32(TARGET_DMA_BURST_SIZE);
1360 	config.mac_aggr_delim = __cpu_to_le32(TARGET_MAC_AGGR_DELIM);
1361 
1362 	val = TARGET_RX_SKIP_DEFRAG_TIMEOUT_DUP_DETECTION_CHECK;
1363 	config.rx_skip_defrag_timeout_dup_detection_check = __cpu_to_le32(val);
1364 
1365 	config.vow_config = __cpu_to_le32(TARGET_VOW_CONFIG);
1366 
1367 	config.gtk_offload_max_vdev =
1368 		__cpu_to_le32(TARGET_GTK_OFFLOAD_MAX_VDEV);
1369 
1370 	config.num_msdu_desc = __cpu_to_le32(TARGET_NUM_MSDU_DESC);
1371 	config.max_frag_entries = __cpu_to_le32(TARGET_MAX_FRAG_ENTRIES);
1372 
1373 	buf = ath10k_wmi_alloc_skb(sizeof(*cmd));
1374 	if (!buf)
1375 		return -ENOMEM;
1376 
1377 	cmd = (struct wmi_init_cmd *)buf->data;
1378 	cmd->num_host_mem_chunks = 0;
1379 	memcpy(&cmd->resource_config, &config, sizeof(config));
1380 
1381 	ath10k_dbg(ATH10K_DBG_WMI, "wmi init\n");
1382 	return ath10k_wmi_cmd_send(ar, buf, WMI_INIT_CMDID);
1383 }
1384 
1385 static int ath10k_wmi_start_scan_calc_len(const struct wmi_start_scan_arg *arg)
1386 {
1387 	int len;
1388 
1389 	len = sizeof(struct wmi_start_scan_cmd);
1390 
1391 	if (arg->ie_len) {
1392 		if (!arg->ie)
1393 			return -EINVAL;
1394 		if (arg->ie_len > WLAN_SCAN_PARAMS_MAX_IE_LEN)
1395 			return -EINVAL;
1396 
1397 		len += sizeof(struct wmi_ie_data);
1398 		len += roundup(arg->ie_len, 4);
1399 	}
1400 
1401 	if (arg->n_channels) {
1402 		if (!arg->channels)
1403 			return -EINVAL;
1404 		if (arg->n_channels > ARRAY_SIZE(arg->channels))
1405 			return -EINVAL;
1406 
1407 		len += sizeof(struct wmi_chan_list);
1408 		len += sizeof(__le32) * arg->n_channels;
1409 	}
1410 
1411 	if (arg->n_ssids) {
1412 		if (!arg->ssids)
1413 			return -EINVAL;
1414 		if (arg->n_ssids > WLAN_SCAN_PARAMS_MAX_SSID)
1415 			return -EINVAL;
1416 
1417 		len += sizeof(struct wmi_ssid_list);
1418 		len += sizeof(struct wmi_ssid) * arg->n_ssids;
1419 	}
1420 
1421 	if (arg->n_bssids) {
1422 		if (!arg->bssids)
1423 			return -EINVAL;
1424 		if (arg->n_bssids > WLAN_SCAN_PARAMS_MAX_BSSID)
1425 			return -EINVAL;
1426 
1427 		len += sizeof(struct wmi_bssid_list);
1428 		len += sizeof(struct wmi_mac_addr) * arg->n_bssids;
1429 	}
1430 
1431 	return len;
1432 }
1433 
1434 int ath10k_wmi_start_scan(struct ath10k *ar,
1435 			  const struct wmi_start_scan_arg *arg)
1436 {
1437 	struct wmi_start_scan_cmd *cmd;
1438 	struct sk_buff *skb;
1439 	struct wmi_ie_data *ie;
1440 	struct wmi_chan_list *channels;
1441 	struct wmi_ssid_list *ssids;
1442 	struct wmi_bssid_list *bssids;
1443 	u32 scan_id;
1444 	u32 scan_req_id;
1445 	int off;
1446 	int len = 0;
1447 	int i;
1448 
1449 	len = ath10k_wmi_start_scan_calc_len(arg);
1450 	if (len < 0)
1451 		return len; /* len contains error code here */
1452 
1453 	skb = ath10k_wmi_alloc_skb(len);
1454 	if (!skb)
1455 		return -ENOMEM;
1456 
1457 	scan_id  = WMI_HOST_SCAN_REQ_ID_PREFIX;
1458 	scan_id |= arg->scan_id;
1459 
1460 	scan_req_id  = WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
1461 	scan_req_id |= arg->scan_req_id;
1462 
1463 	cmd = (struct wmi_start_scan_cmd *)skb->data;
1464 	cmd->scan_id            = __cpu_to_le32(scan_id);
1465 	cmd->scan_req_id        = __cpu_to_le32(scan_req_id);
1466 	cmd->vdev_id            = __cpu_to_le32(arg->vdev_id);
1467 	cmd->scan_priority      = __cpu_to_le32(arg->scan_priority);
1468 	cmd->notify_scan_events = __cpu_to_le32(arg->notify_scan_events);
1469 	cmd->dwell_time_active  = __cpu_to_le32(arg->dwell_time_active);
1470 	cmd->dwell_time_passive = __cpu_to_le32(arg->dwell_time_passive);
1471 	cmd->min_rest_time      = __cpu_to_le32(arg->min_rest_time);
1472 	cmd->max_rest_time      = __cpu_to_le32(arg->max_rest_time);
1473 	cmd->repeat_probe_time  = __cpu_to_le32(arg->repeat_probe_time);
1474 	cmd->probe_spacing_time = __cpu_to_le32(arg->probe_spacing_time);
1475 	cmd->idle_time          = __cpu_to_le32(arg->idle_time);
1476 	cmd->max_scan_time      = __cpu_to_le32(arg->max_scan_time);
1477 	cmd->probe_delay        = __cpu_to_le32(arg->probe_delay);
1478 	cmd->scan_ctrl_flags    = __cpu_to_le32(arg->scan_ctrl_flags);
1479 
1480 	/* TLV list starts after fields included in the struct */
1481 	off = sizeof(*cmd);
1482 
1483 	if (arg->n_channels) {
1484 		channels = (void *)skb->data + off;
1485 		channels->tag = __cpu_to_le32(WMI_CHAN_LIST_TAG);
1486 		channels->num_chan = __cpu_to_le32(arg->n_channels);
1487 
1488 		for (i = 0; i < arg->n_channels; i++)
1489 			channels->channel_list[i] =
1490 				__cpu_to_le32(arg->channels[i]);
1491 
1492 		off += sizeof(*channels);
1493 		off += sizeof(__le32) * arg->n_channels;
1494 	}
1495 
1496 	if (arg->n_ssids) {
1497 		ssids = (void *)skb->data + off;
1498 		ssids->tag = __cpu_to_le32(WMI_SSID_LIST_TAG);
1499 		ssids->num_ssids = __cpu_to_le32(arg->n_ssids);
1500 
1501 		for (i = 0; i < arg->n_ssids; i++) {
1502 			ssids->ssids[i].ssid_len =
1503 				__cpu_to_le32(arg->ssids[i].len);
1504 			memcpy(&ssids->ssids[i].ssid,
1505 			       arg->ssids[i].ssid,
1506 			       arg->ssids[i].len);
1507 		}
1508 
1509 		off += sizeof(*ssids);
1510 		off += sizeof(struct wmi_ssid) * arg->n_ssids;
1511 	}
1512 
1513 	if (arg->n_bssids) {
1514 		bssids = (void *)skb->data + off;
1515 		bssids->tag = __cpu_to_le32(WMI_BSSID_LIST_TAG);
1516 		bssids->num_bssid = __cpu_to_le32(arg->n_bssids);
1517 
1518 		for (i = 0; i < arg->n_bssids; i++)
1519 			memcpy(&bssids->bssid_list[i],
1520 			       arg->bssids[i].bssid,
1521 			       ETH_ALEN);
1522 
1523 		off += sizeof(*bssids);
1524 		off += sizeof(struct wmi_mac_addr) * arg->n_bssids;
1525 	}
1526 
1527 	if (arg->ie_len) {
1528 		ie = (void *)skb->data + off;
1529 		ie->tag = __cpu_to_le32(WMI_IE_TAG);
1530 		ie->ie_len = __cpu_to_le32(arg->ie_len);
1531 		memcpy(ie->ie_data, arg->ie, arg->ie_len);
1532 
1533 		off += sizeof(*ie);
1534 		off += roundup(arg->ie_len, 4);
1535 	}
1536 
1537 	if (off != skb->len) {
1538 		dev_kfree_skb(skb);
1539 		return -EINVAL;
1540 	}
1541 
1542 	ath10k_dbg(ATH10K_DBG_WMI, "wmi start scan\n");
1543 	return ath10k_wmi_cmd_send(ar, skb, WMI_START_SCAN_CMDID);
1544 }
1545 
1546 void ath10k_wmi_start_scan_init(struct ath10k *ar,
1547 				struct wmi_start_scan_arg *arg)
1548 {
1549 	/* setup commonly used values */
1550 	arg->scan_req_id = 1;
1551 	arg->scan_priority = WMI_SCAN_PRIORITY_LOW;
1552 	arg->dwell_time_active = 50;
1553 	arg->dwell_time_passive = 150;
1554 	arg->min_rest_time = 50;
1555 	arg->max_rest_time = 500;
1556 	arg->repeat_probe_time = 0;
1557 	arg->probe_spacing_time = 0;
1558 	arg->idle_time = 0;
1559 	arg->max_scan_time = 5000;
1560 	arg->probe_delay = 5;
1561 	arg->notify_scan_events = WMI_SCAN_EVENT_STARTED
1562 		| WMI_SCAN_EVENT_COMPLETED
1563 		| WMI_SCAN_EVENT_BSS_CHANNEL
1564 		| WMI_SCAN_EVENT_FOREIGN_CHANNEL
1565 		| WMI_SCAN_EVENT_DEQUEUED;
1566 	arg->scan_ctrl_flags |= WMI_SCAN_ADD_OFDM_RATES;
1567 	arg->scan_ctrl_flags |= WMI_SCAN_CHAN_STAT_EVENT;
1568 	arg->n_bssids = 1;
1569 	arg->bssids[0].bssid = "\xFF\xFF\xFF\xFF\xFF\xFF";
1570 }
1571 
1572 int ath10k_wmi_stop_scan(struct ath10k *ar, const struct wmi_stop_scan_arg *arg)
1573 {
1574 	struct wmi_stop_scan_cmd *cmd;
1575 	struct sk_buff *skb;
1576 	u32 scan_id;
1577 	u32 req_id;
1578 
1579 	if (arg->req_id > 0xFFF)
1580 		return -EINVAL;
1581 	if (arg->req_type == WMI_SCAN_STOP_ONE && arg->u.scan_id > 0xFFF)
1582 		return -EINVAL;
1583 
1584 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1585 	if (!skb)
1586 		return -ENOMEM;
1587 
1588 	scan_id = arg->u.scan_id;
1589 	scan_id |= WMI_HOST_SCAN_REQ_ID_PREFIX;
1590 
1591 	req_id = arg->req_id;
1592 	req_id |= WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
1593 
1594 	cmd = (struct wmi_stop_scan_cmd *)skb->data;
1595 	cmd->req_type    = __cpu_to_le32(arg->req_type);
1596 	cmd->vdev_id     = __cpu_to_le32(arg->u.vdev_id);
1597 	cmd->scan_id     = __cpu_to_le32(scan_id);
1598 	cmd->scan_req_id = __cpu_to_le32(req_id);
1599 
1600 	ath10k_dbg(ATH10K_DBG_WMI,
1601 		   "wmi stop scan reqid %d req_type %d vdev/scan_id %d\n",
1602 		   arg->req_id, arg->req_type, arg->u.scan_id);
1603 	return ath10k_wmi_cmd_send(ar, skb, WMI_STOP_SCAN_CMDID);
1604 }
1605 
1606 int ath10k_wmi_vdev_create(struct ath10k *ar, u32 vdev_id,
1607 			   enum wmi_vdev_type type,
1608 			   enum wmi_vdev_subtype subtype,
1609 			   const u8 macaddr[ETH_ALEN])
1610 {
1611 	struct wmi_vdev_create_cmd *cmd;
1612 	struct sk_buff *skb;
1613 
1614 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1615 	if (!skb)
1616 		return -ENOMEM;
1617 
1618 	cmd = (struct wmi_vdev_create_cmd *)skb->data;
1619 	cmd->vdev_id      = __cpu_to_le32(vdev_id);
1620 	cmd->vdev_type    = __cpu_to_le32(type);
1621 	cmd->vdev_subtype = __cpu_to_le32(subtype);
1622 	memcpy(cmd->vdev_macaddr.addr, macaddr, ETH_ALEN);
1623 
1624 	ath10k_dbg(ATH10K_DBG_WMI,
1625 		   "WMI vdev create: id %d type %d subtype %d macaddr %pM\n",
1626 		   vdev_id, type, subtype, macaddr);
1627 
1628 	return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_CREATE_CMDID);
1629 }
1630 
1631 int ath10k_wmi_vdev_delete(struct ath10k *ar, u32 vdev_id)
1632 {
1633 	struct wmi_vdev_delete_cmd *cmd;
1634 	struct sk_buff *skb;
1635 
1636 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1637 	if (!skb)
1638 		return -ENOMEM;
1639 
1640 	cmd = (struct wmi_vdev_delete_cmd *)skb->data;
1641 	cmd->vdev_id = __cpu_to_le32(vdev_id);
1642 
1643 	ath10k_dbg(ATH10K_DBG_WMI,
1644 		   "WMI vdev delete id %d\n", vdev_id);
1645 
1646 	return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DELETE_CMDID);
1647 }
1648 
1649 static int ath10k_wmi_vdev_start_restart(struct ath10k *ar,
1650 				const struct wmi_vdev_start_request_arg *arg,
1651 				enum wmi_cmd_id cmd_id)
1652 {
1653 	struct wmi_vdev_start_request_cmd *cmd;
1654 	struct sk_buff *skb;
1655 	const char *cmdname;
1656 	u32 flags = 0;
1657 
1658 	if (cmd_id != WMI_VDEV_START_REQUEST_CMDID &&
1659 	    cmd_id != WMI_VDEV_RESTART_REQUEST_CMDID)
1660 		return -EINVAL;
1661 	if (WARN_ON(arg->ssid && arg->ssid_len == 0))
1662 		return -EINVAL;
1663 	if (WARN_ON(arg->hidden_ssid && !arg->ssid))
1664 		return -EINVAL;
1665 	if (WARN_ON(arg->ssid_len > sizeof(cmd->ssid.ssid)))
1666 		return -EINVAL;
1667 
1668 	if (cmd_id == WMI_VDEV_START_REQUEST_CMDID)
1669 		cmdname = "start";
1670 	else if (cmd_id == WMI_VDEV_RESTART_REQUEST_CMDID)
1671 		cmdname = "restart";
1672 	else
1673 		return -EINVAL; /* should not happen, we already check cmd_id */
1674 
1675 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1676 	if (!skb)
1677 		return -ENOMEM;
1678 
1679 	if (arg->hidden_ssid)
1680 		flags |= WMI_VDEV_START_HIDDEN_SSID;
1681 	if (arg->pmf_enabled)
1682 		flags |= WMI_VDEV_START_PMF_ENABLED;
1683 
1684 	cmd = (struct wmi_vdev_start_request_cmd *)skb->data;
1685 	cmd->vdev_id         = __cpu_to_le32(arg->vdev_id);
1686 	cmd->disable_hw_ack  = __cpu_to_le32(arg->disable_hw_ack);
1687 	cmd->beacon_interval = __cpu_to_le32(arg->bcn_intval);
1688 	cmd->dtim_period     = __cpu_to_le32(arg->dtim_period);
1689 	cmd->flags           = __cpu_to_le32(flags);
1690 	cmd->bcn_tx_rate     = __cpu_to_le32(arg->bcn_tx_rate);
1691 	cmd->bcn_tx_power    = __cpu_to_le32(arg->bcn_tx_power);
1692 
1693 	if (arg->ssid) {
1694 		cmd->ssid.ssid_len = __cpu_to_le32(arg->ssid_len);
1695 		memcpy(cmd->ssid.ssid, arg->ssid, arg->ssid_len);
1696 	}
1697 
1698 	cmd->chan.mhz = __cpu_to_le32(arg->channel.freq);
1699 
1700 	cmd->chan.band_center_freq1 =
1701 		__cpu_to_le32(arg->channel.band_center_freq1);
1702 
1703 	cmd->chan.mode = arg->channel.mode;
1704 	cmd->chan.min_power = arg->channel.min_power;
1705 	cmd->chan.max_power = arg->channel.max_power;
1706 	cmd->chan.reg_power = arg->channel.max_reg_power;
1707 	cmd->chan.reg_classid = arg->channel.reg_class_id;
1708 	cmd->chan.antenna_max = arg->channel.max_antenna_gain;
1709 
1710 	ath10k_dbg(ATH10K_DBG_WMI,
1711 		   "wmi vdev %s id 0x%x freq %d, mode %d, ch_flags: 0x%0X,"
1712 		   "max_power: %d\n", cmdname, arg->vdev_id, arg->channel.freq,
1713 		   arg->channel.mode, flags, arg->channel.max_power);
1714 
1715 	return ath10k_wmi_cmd_send(ar, skb, cmd_id);
1716 }
1717 
1718 int ath10k_wmi_vdev_start(struct ath10k *ar,
1719 			  const struct wmi_vdev_start_request_arg *arg)
1720 {
1721 	return ath10k_wmi_vdev_start_restart(ar, arg,
1722 					     WMI_VDEV_START_REQUEST_CMDID);
1723 }
1724 
1725 int ath10k_wmi_vdev_restart(struct ath10k *ar,
1726 		     const struct wmi_vdev_start_request_arg *arg)
1727 {
1728 	return ath10k_wmi_vdev_start_restart(ar, arg,
1729 					     WMI_VDEV_RESTART_REQUEST_CMDID);
1730 }
1731 
1732 int ath10k_wmi_vdev_stop(struct ath10k *ar, u32 vdev_id)
1733 {
1734 	struct wmi_vdev_stop_cmd *cmd;
1735 	struct sk_buff *skb;
1736 
1737 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1738 	if (!skb)
1739 		return -ENOMEM;
1740 
1741 	cmd = (struct wmi_vdev_stop_cmd *)skb->data;
1742 	cmd->vdev_id = __cpu_to_le32(vdev_id);
1743 
1744 	ath10k_dbg(ATH10K_DBG_WMI, "wmi vdev stop id 0x%x\n", vdev_id);
1745 
1746 	return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_STOP_CMDID);
1747 }
1748 
1749 int ath10k_wmi_vdev_up(struct ath10k *ar, u32 vdev_id, u32 aid, const u8 *bssid)
1750 {
1751 	struct wmi_vdev_up_cmd *cmd;
1752 	struct sk_buff *skb;
1753 
1754 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1755 	if (!skb)
1756 		return -ENOMEM;
1757 
1758 	cmd = (struct wmi_vdev_up_cmd *)skb->data;
1759 	cmd->vdev_id       = __cpu_to_le32(vdev_id);
1760 	cmd->vdev_assoc_id = __cpu_to_le32(aid);
1761 	memcpy(&cmd->vdev_bssid.addr, bssid, 6);
1762 
1763 	ath10k_dbg(ATH10K_DBG_WMI,
1764 		   "wmi mgmt vdev up id 0x%x assoc id %d bssid %pM\n",
1765 		   vdev_id, aid, bssid);
1766 
1767 	return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_UP_CMDID);
1768 }
1769 
1770 int ath10k_wmi_vdev_down(struct ath10k *ar, u32 vdev_id)
1771 {
1772 	struct wmi_vdev_down_cmd *cmd;
1773 	struct sk_buff *skb;
1774 
1775 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1776 	if (!skb)
1777 		return -ENOMEM;
1778 
1779 	cmd = (struct wmi_vdev_down_cmd *)skb->data;
1780 	cmd->vdev_id = __cpu_to_le32(vdev_id);
1781 
1782 	ath10k_dbg(ATH10K_DBG_WMI,
1783 		   "wmi mgmt vdev down id 0x%x\n", vdev_id);
1784 
1785 	return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DOWN_CMDID);
1786 }
1787 
1788 int ath10k_wmi_vdev_set_param(struct ath10k *ar, u32 vdev_id,
1789 			      enum wmi_vdev_param param_id, u32 param_value)
1790 {
1791 	struct wmi_vdev_set_param_cmd *cmd;
1792 	struct sk_buff *skb;
1793 
1794 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1795 	if (!skb)
1796 		return -ENOMEM;
1797 
1798 	cmd = (struct wmi_vdev_set_param_cmd *)skb->data;
1799 	cmd->vdev_id     = __cpu_to_le32(vdev_id);
1800 	cmd->param_id    = __cpu_to_le32(param_id);
1801 	cmd->param_value = __cpu_to_le32(param_value);
1802 
1803 	ath10k_dbg(ATH10K_DBG_WMI,
1804 		   "wmi vdev id 0x%x set param %d value %d\n",
1805 		   vdev_id, param_id, param_value);
1806 
1807 	return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_SET_PARAM_CMDID);
1808 }
1809 
1810 int ath10k_wmi_vdev_install_key(struct ath10k *ar,
1811 				const struct wmi_vdev_install_key_arg *arg)
1812 {
1813 	struct wmi_vdev_install_key_cmd *cmd;
1814 	struct sk_buff *skb;
1815 
1816 	if (arg->key_cipher == WMI_CIPHER_NONE && arg->key_data != NULL)
1817 		return -EINVAL;
1818 	if (arg->key_cipher != WMI_CIPHER_NONE && arg->key_data == NULL)
1819 		return -EINVAL;
1820 
1821 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->key_len);
1822 	if (!skb)
1823 		return -ENOMEM;
1824 
1825 	cmd = (struct wmi_vdev_install_key_cmd *)skb->data;
1826 	cmd->vdev_id       = __cpu_to_le32(arg->vdev_id);
1827 	cmd->key_idx       = __cpu_to_le32(arg->key_idx);
1828 	cmd->key_flags     = __cpu_to_le32(arg->key_flags);
1829 	cmd->key_cipher    = __cpu_to_le32(arg->key_cipher);
1830 	cmd->key_len       = __cpu_to_le32(arg->key_len);
1831 	cmd->key_txmic_len = __cpu_to_le32(arg->key_txmic_len);
1832 	cmd->key_rxmic_len = __cpu_to_le32(arg->key_rxmic_len);
1833 
1834 	if (arg->macaddr)
1835 		memcpy(cmd->peer_macaddr.addr, arg->macaddr, ETH_ALEN);
1836 	if (arg->key_data)
1837 		memcpy(cmd->key_data, arg->key_data, arg->key_len);
1838 
1839 	ath10k_dbg(ATH10K_DBG_WMI,
1840 		   "wmi vdev install key idx %d cipher %d len %d\n",
1841 		   arg->key_idx, arg->key_cipher, arg->key_len);
1842 	return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_INSTALL_KEY_CMDID);
1843 }
1844 
1845 int ath10k_wmi_peer_create(struct ath10k *ar, u32 vdev_id,
1846 			   const u8 peer_addr[ETH_ALEN])
1847 {
1848 	struct wmi_peer_create_cmd *cmd;
1849 	struct sk_buff *skb;
1850 
1851 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1852 	if (!skb)
1853 		return -ENOMEM;
1854 
1855 	cmd = (struct wmi_peer_create_cmd *)skb->data;
1856 	cmd->vdev_id = __cpu_to_le32(vdev_id);
1857 	memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
1858 
1859 	ath10k_dbg(ATH10K_DBG_WMI,
1860 		   "wmi peer create vdev_id %d peer_addr %pM\n",
1861 		   vdev_id, peer_addr);
1862 	return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_CREATE_CMDID);
1863 }
1864 
1865 int ath10k_wmi_peer_delete(struct ath10k *ar, u32 vdev_id,
1866 			   const u8 peer_addr[ETH_ALEN])
1867 {
1868 	struct wmi_peer_delete_cmd *cmd;
1869 	struct sk_buff *skb;
1870 
1871 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1872 	if (!skb)
1873 		return -ENOMEM;
1874 
1875 	cmd = (struct wmi_peer_delete_cmd *)skb->data;
1876 	cmd->vdev_id = __cpu_to_le32(vdev_id);
1877 	memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
1878 
1879 	ath10k_dbg(ATH10K_DBG_WMI,
1880 		   "wmi peer delete vdev_id %d peer_addr %pM\n",
1881 		   vdev_id, peer_addr);
1882 	return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_DELETE_CMDID);
1883 }
1884 
1885 int ath10k_wmi_peer_flush(struct ath10k *ar, u32 vdev_id,
1886 			  const u8 peer_addr[ETH_ALEN], u32 tid_bitmap)
1887 {
1888 	struct wmi_peer_flush_tids_cmd *cmd;
1889 	struct sk_buff *skb;
1890 
1891 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1892 	if (!skb)
1893 		return -ENOMEM;
1894 
1895 	cmd = (struct wmi_peer_flush_tids_cmd *)skb->data;
1896 	cmd->vdev_id         = __cpu_to_le32(vdev_id);
1897 	cmd->peer_tid_bitmap = __cpu_to_le32(tid_bitmap);
1898 	memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
1899 
1900 	ath10k_dbg(ATH10K_DBG_WMI,
1901 		   "wmi peer flush vdev_id %d peer_addr %pM tids %08x\n",
1902 		   vdev_id, peer_addr, tid_bitmap);
1903 	return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_FLUSH_TIDS_CMDID);
1904 }
1905 
1906 int ath10k_wmi_peer_set_param(struct ath10k *ar, u32 vdev_id,
1907 			      const u8 *peer_addr, enum wmi_peer_param param_id,
1908 			      u32 param_value)
1909 {
1910 	struct wmi_peer_set_param_cmd *cmd;
1911 	struct sk_buff *skb;
1912 
1913 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1914 	if (!skb)
1915 		return -ENOMEM;
1916 
1917 	cmd = (struct wmi_peer_set_param_cmd *)skb->data;
1918 	cmd->vdev_id     = __cpu_to_le32(vdev_id);
1919 	cmd->param_id    = __cpu_to_le32(param_id);
1920 	cmd->param_value = __cpu_to_le32(param_value);
1921 	memcpy(&cmd->peer_macaddr.addr, peer_addr, 6);
1922 
1923 	ath10k_dbg(ATH10K_DBG_WMI,
1924 		   "wmi vdev %d peer 0x%pM set param %d value %d\n",
1925 		   vdev_id, peer_addr, param_id, param_value);
1926 
1927 	return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_SET_PARAM_CMDID);
1928 }
1929 
1930 int ath10k_wmi_set_psmode(struct ath10k *ar, u32 vdev_id,
1931 			  enum wmi_sta_ps_mode psmode)
1932 {
1933 	struct wmi_sta_powersave_mode_cmd *cmd;
1934 	struct sk_buff *skb;
1935 
1936 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1937 	if (!skb)
1938 		return -ENOMEM;
1939 
1940 	cmd = (struct wmi_sta_powersave_mode_cmd *)skb->data;
1941 	cmd->vdev_id     = __cpu_to_le32(vdev_id);
1942 	cmd->sta_ps_mode = __cpu_to_le32(psmode);
1943 
1944 	ath10k_dbg(ATH10K_DBG_WMI,
1945 		   "wmi set powersave id 0x%x mode %d\n",
1946 		   vdev_id, psmode);
1947 
1948 	return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_MODE_CMDID);
1949 }
1950 
1951 int ath10k_wmi_set_sta_ps_param(struct ath10k *ar, u32 vdev_id,
1952 				enum wmi_sta_powersave_param param_id,
1953 				u32 value)
1954 {
1955 	struct wmi_sta_powersave_param_cmd *cmd;
1956 	struct sk_buff *skb;
1957 
1958 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1959 	if (!skb)
1960 		return -ENOMEM;
1961 
1962 	cmd = (struct wmi_sta_powersave_param_cmd *)skb->data;
1963 	cmd->vdev_id     = __cpu_to_le32(vdev_id);
1964 	cmd->param_id    = __cpu_to_le32(param_id);
1965 	cmd->param_value = __cpu_to_le32(value);
1966 
1967 	ath10k_dbg(ATH10K_DBG_WMI,
1968 		   "wmi sta ps param vdev_id 0x%x param %d value %d\n",
1969 		   vdev_id, param_id, value);
1970 	return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_PARAM_CMDID);
1971 }
1972 
1973 int ath10k_wmi_set_ap_ps_param(struct ath10k *ar, u32 vdev_id, const u8 *mac,
1974 			       enum wmi_ap_ps_peer_param param_id, u32 value)
1975 {
1976 	struct wmi_ap_ps_peer_cmd *cmd;
1977 	struct sk_buff *skb;
1978 
1979 	if (!mac)
1980 		return -EINVAL;
1981 
1982 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1983 	if (!skb)
1984 		return -ENOMEM;
1985 
1986 	cmd = (struct wmi_ap_ps_peer_cmd *)skb->data;
1987 	cmd->vdev_id = __cpu_to_le32(vdev_id);
1988 	cmd->param_id = __cpu_to_le32(param_id);
1989 	cmd->param_value = __cpu_to_le32(value);
1990 	memcpy(&cmd->peer_macaddr, mac, ETH_ALEN);
1991 
1992 	ath10k_dbg(ATH10K_DBG_WMI,
1993 		   "wmi ap ps param vdev_id 0x%X param %d value %d mac_addr %pM\n",
1994 		   vdev_id, param_id, value, mac);
1995 
1996 	return ath10k_wmi_cmd_send(ar, skb, WMI_AP_PS_PEER_PARAM_CMDID);
1997 }
1998 
1999 int ath10k_wmi_scan_chan_list(struct ath10k *ar,
2000 			      const struct wmi_scan_chan_list_arg *arg)
2001 {
2002 	struct wmi_scan_chan_list_cmd *cmd;
2003 	struct sk_buff *skb;
2004 	struct wmi_channel_arg *ch;
2005 	struct wmi_channel *ci;
2006 	int len;
2007 	int i;
2008 
2009 	len = sizeof(*cmd) + arg->n_channels * sizeof(struct wmi_channel);
2010 
2011 	skb = ath10k_wmi_alloc_skb(len);
2012 	if (!skb)
2013 		return -EINVAL;
2014 
2015 	cmd = (struct wmi_scan_chan_list_cmd *)skb->data;
2016 	cmd->num_scan_chans = __cpu_to_le32(arg->n_channels);
2017 
2018 	for (i = 0; i < arg->n_channels; i++) {
2019 		u32 flags = 0;
2020 
2021 		ch = &arg->channels[i];
2022 		ci = &cmd->chan_info[i];
2023 
2024 		if (ch->passive)
2025 			flags |= WMI_CHAN_FLAG_PASSIVE;
2026 		if (ch->allow_ibss)
2027 			flags |= WMI_CHAN_FLAG_ADHOC_ALLOWED;
2028 		if (ch->allow_ht)
2029 			flags |= WMI_CHAN_FLAG_ALLOW_HT;
2030 		if (ch->allow_vht)
2031 			flags |= WMI_CHAN_FLAG_ALLOW_VHT;
2032 		if (ch->ht40plus)
2033 			flags |= WMI_CHAN_FLAG_HT40_PLUS;
2034 
2035 		ci->mhz               = __cpu_to_le32(ch->freq);
2036 		ci->band_center_freq1 = __cpu_to_le32(ch->freq);
2037 		ci->band_center_freq2 = 0;
2038 		ci->min_power         = ch->min_power;
2039 		ci->max_power         = ch->max_power;
2040 		ci->reg_power         = ch->max_reg_power;
2041 		ci->antenna_max       = ch->max_antenna_gain;
2042 		ci->antenna_max       = 0;
2043 
2044 		/* mode & flags share storage */
2045 		ci->mode              = ch->mode;
2046 		ci->flags            |= __cpu_to_le32(flags);
2047 	}
2048 
2049 	return ath10k_wmi_cmd_send(ar, skb, WMI_SCAN_CHAN_LIST_CMDID);
2050 }
2051 
2052 int ath10k_wmi_peer_assoc(struct ath10k *ar,
2053 			  const struct wmi_peer_assoc_complete_arg *arg)
2054 {
2055 	struct wmi_peer_assoc_complete_cmd *cmd;
2056 	struct sk_buff *skb;
2057 
2058 	if (arg->peer_mpdu_density > 16)
2059 		return -EINVAL;
2060 	if (arg->peer_legacy_rates.num_rates > MAX_SUPPORTED_RATES)
2061 		return -EINVAL;
2062 	if (arg->peer_ht_rates.num_rates > MAX_SUPPORTED_RATES)
2063 		return -EINVAL;
2064 
2065 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2066 	if (!skb)
2067 		return -ENOMEM;
2068 
2069 	cmd = (struct wmi_peer_assoc_complete_cmd *)skb->data;
2070 	cmd->vdev_id            = __cpu_to_le32(arg->vdev_id);
2071 	cmd->peer_new_assoc     = __cpu_to_le32(arg->peer_reassoc ? 0 : 1);
2072 	cmd->peer_associd       = __cpu_to_le32(arg->peer_aid);
2073 	cmd->peer_flags         = __cpu_to_le32(arg->peer_flags);
2074 	cmd->peer_caps          = __cpu_to_le32(arg->peer_caps);
2075 	cmd->peer_listen_intval = __cpu_to_le32(arg->peer_listen_intval);
2076 	cmd->peer_ht_caps       = __cpu_to_le32(arg->peer_ht_caps);
2077 	cmd->peer_max_mpdu      = __cpu_to_le32(arg->peer_max_mpdu);
2078 	cmd->peer_mpdu_density  = __cpu_to_le32(arg->peer_mpdu_density);
2079 	cmd->peer_rate_caps     = __cpu_to_le32(arg->peer_rate_caps);
2080 	cmd->peer_nss           = __cpu_to_le32(arg->peer_num_spatial_streams);
2081 	cmd->peer_vht_caps      = __cpu_to_le32(arg->peer_vht_caps);
2082 	cmd->peer_phymode       = __cpu_to_le32(arg->peer_phymode);
2083 
2084 	memcpy(cmd->peer_macaddr.addr, arg->addr, ETH_ALEN);
2085 
2086 	cmd->peer_legacy_rates.num_rates =
2087 		__cpu_to_le32(arg->peer_legacy_rates.num_rates);
2088 	memcpy(cmd->peer_legacy_rates.rates, arg->peer_legacy_rates.rates,
2089 	       arg->peer_legacy_rates.num_rates);
2090 
2091 	cmd->peer_ht_rates.num_rates =
2092 		__cpu_to_le32(arg->peer_ht_rates.num_rates);
2093 	memcpy(cmd->peer_ht_rates.rates, arg->peer_ht_rates.rates,
2094 	       arg->peer_ht_rates.num_rates);
2095 
2096 	cmd->peer_vht_rates.rx_max_rate =
2097 		__cpu_to_le32(arg->peer_vht_rates.rx_max_rate);
2098 	cmd->peer_vht_rates.rx_mcs_set =
2099 		__cpu_to_le32(arg->peer_vht_rates.rx_mcs_set);
2100 	cmd->peer_vht_rates.tx_max_rate =
2101 		__cpu_to_le32(arg->peer_vht_rates.tx_max_rate);
2102 	cmd->peer_vht_rates.tx_mcs_set =
2103 		__cpu_to_le32(arg->peer_vht_rates.tx_mcs_set);
2104 
2105 	ath10k_dbg(ATH10K_DBG_WMI,
2106 		   "wmi peer assoc vdev %d addr %pM\n",
2107 		   arg->vdev_id, arg->addr);
2108 	return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_ASSOC_CMDID);
2109 }
2110 
2111 int ath10k_wmi_beacon_send(struct ath10k *ar, const struct wmi_bcn_tx_arg *arg)
2112 {
2113 	struct wmi_bcn_tx_cmd *cmd;
2114 	struct sk_buff *skb;
2115 
2116 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->bcn_len);
2117 	if (!skb)
2118 		return -ENOMEM;
2119 
2120 	cmd = (struct wmi_bcn_tx_cmd *)skb->data;
2121 	cmd->hdr.vdev_id  = __cpu_to_le32(arg->vdev_id);
2122 	cmd->hdr.tx_rate  = __cpu_to_le32(arg->tx_rate);
2123 	cmd->hdr.tx_power = __cpu_to_le32(arg->tx_power);
2124 	cmd->hdr.bcn_len  = __cpu_to_le32(arg->bcn_len);
2125 	memcpy(cmd->bcn, arg->bcn, arg->bcn_len);
2126 
2127 	return ath10k_wmi_cmd_send(ar, skb, WMI_BCN_TX_CMDID);
2128 }
2129 
2130 static void ath10k_wmi_pdev_set_wmm_param(struct wmi_wmm_params *params,
2131 					  const struct wmi_wmm_params_arg *arg)
2132 {
2133 	params->cwmin  = __cpu_to_le32(arg->cwmin);
2134 	params->cwmax  = __cpu_to_le32(arg->cwmax);
2135 	params->aifs   = __cpu_to_le32(arg->aifs);
2136 	params->txop   = __cpu_to_le32(arg->txop);
2137 	params->acm    = __cpu_to_le32(arg->acm);
2138 	params->no_ack = __cpu_to_le32(arg->no_ack);
2139 }
2140 
2141 int ath10k_wmi_pdev_set_wmm_params(struct ath10k *ar,
2142 			const struct wmi_pdev_set_wmm_params_arg *arg)
2143 {
2144 	struct wmi_pdev_set_wmm_params *cmd;
2145 	struct sk_buff *skb;
2146 
2147 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2148 	if (!skb)
2149 		return -ENOMEM;
2150 
2151 	cmd = (struct wmi_pdev_set_wmm_params *)skb->data;
2152 	ath10k_wmi_pdev_set_wmm_param(&cmd->ac_be, &arg->ac_be);
2153 	ath10k_wmi_pdev_set_wmm_param(&cmd->ac_bk, &arg->ac_bk);
2154 	ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vi, &arg->ac_vi);
2155 	ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vo, &arg->ac_vo);
2156 
2157 	ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set wmm params\n");
2158 	return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_WMM_PARAMS_CMDID);
2159 }
2160 
2161 int ath10k_wmi_request_stats(struct ath10k *ar, enum wmi_stats_id stats_id)
2162 {
2163 	struct wmi_request_stats_cmd *cmd;
2164 	struct sk_buff *skb;
2165 
2166 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2167 	if (!skb)
2168 		return -ENOMEM;
2169 
2170 	cmd = (struct wmi_request_stats_cmd *)skb->data;
2171 	cmd->stats_id = __cpu_to_le32(stats_id);
2172 
2173 	ath10k_dbg(ATH10K_DBG_WMI, "wmi request stats %d\n", (int)stats_id);
2174 	return ath10k_wmi_cmd_send(ar, skb, WMI_REQUEST_STATS_CMDID);
2175 }
2176 
2177 int ath10k_wmi_force_fw_hang(struct ath10k *ar,
2178 			     enum wmi_force_fw_hang_type type, u32 delay_ms)
2179 {
2180 	struct wmi_force_fw_hang_cmd *cmd;
2181 	struct sk_buff *skb;
2182 
2183 	skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2184 	if (!skb)
2185 		return -ENOMEM;
2186 
2187 	cmd = (struct wmi_force_fw_hang_cmd *)skb->data;
2188 	cmd->type = __cpu_to_le32(type);
2189 	cmd->delay_ms = __cpu_to_le32(delay_ms);
2190 
2191 	ath10k_dbg(ATH10K_DBG_WMI, "wmi force fw hang %d delay %d\n",
2192 		   type, delay_ms);
2193 	return ath10k_wmi_cmd_send(ar, skb, WMI_FORCE_FW_HANG_CMDID);
2194 }
2195