1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 /* Operation Mode Strap Override */ 38 #define MII_KSZPHY_OMSO 0x16 39 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 40 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 41 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 42 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 43 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 44 45 /* general Interrupt control/status reg in vendor specific block. */ 46 #define MII_KSZPHY_INTCS 0x1B 47 #define KSZPHY_INTCS_JABBER BIT(15) 48 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 49 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 50 #define KSZPHY_INTCS_PARELLEL BIT(12) 51 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 52 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 53 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 54 #define KSZPHY_INTCS_LINK_UP BIT(8) 55 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 56 KSZPHY_INTCS_LINK_DOWN) 57 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 58 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 59 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 60 KSZPHY_INTCS_LINK_UP_STATUS) 61 62 /* LinkMD Control/Status */ 63 #define KSZ8081_LMD 0x1d 64 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 65 #define KSZ8081_LMD_STAT_NORMAL 0 66 #define KSZ8081_LMD_STAT_OPEN 1 67 #define KSZ8081_LMD_STAT_SHORT 2 68 #define KSZ8081_LMD_STAT_FAIL 3 69 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 70 /* Short cable (<10 meter) has been detected by LinkMD */ 71 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 72 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 73 74 #define KSZ9x31_LMD 0x12 75 #define KSZ9x31_LMD_VCT_EN BIT(15) 76 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 77 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 78 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 81 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 82 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 83 #define KSZ9x31_LMD_VCT_ST_OPEN 1 84 #define KSZ9x31_LMD_VCT_ST_SHORT 2 85 #define KSZ9x31_LMD_VCT_ST_FAIL 3 86 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 89 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 93 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 94 95 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 96 #define LAN8814_INTC 0x18 97 #define LAN8814_INTS 0x1B 98 99 #define LAN8814_INT_LINK_DOWN BIT(2) 100 #define LAN8814_INT_LINK_UP BIT(0) 101 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 102 LAN8814_INT_LINK_DOWN) 103 104 #define LAN8814_INTR_CTRL_REG 0x34 105 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 106 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 107 108 /* Represents 1ppm adjustment in 2^32 format with 109 * each nsec contains 4 clock cycles. 110 * The value is calculated as following: (1/1000000)/((2^-32)/4) 111 */ 112 #define LAN8814_1PPM_FORMAT 17179 113 114 #define PTP_RX_MOD 0x024F 115 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 116 #define PTP_RX_TIMESTAMP_EN 0x024D 117 #define PTP_TX_TIMESTAMP_EN 0x028D 118 119 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 120 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 121 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 122 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 123 124 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 125 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 126 127 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 128 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 129 #define LTC_HARD_RESET 0x023F 130 #define LTC_HARD_RESET_ BIT(0) 131 132 #define TSU_HARD_RESET 0x02C1 133 #define TSU_HARD_RESET_ BIT(0) 134 135 #define PTP_CMD_CTL 0x0200 136 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 137 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 138 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 139 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 140 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 141 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 142 143 #define PTP_CLOCK_SET_SEC_MID 0x0206 144 #define PTP_CLOCK_SET_SEC_LO 0x0207 145 #define PTP_CLOCK_SET_NS_HI 0x0208 146 #define PTP_CLOCK_SET_NS_LO 0x0209 147 148 #define PTP_CLOCK_READ_SEC_MID 0x022A 149 #define PTP_CLOCK_READ_SEC_LO 0x022B 150 #define PTP_CLOCK_READ_NS_HI 0x022C 151 #define PTP_CLOCK_READ_NS_LO 0x022D 152 153 #define PTP_OPERATING_MODE 0x0241 154 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 155 156 #define PTP_TX_MOD 0x028F 157 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 158 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 159 160 #define PTP_RX_PARSE_CONFIG 0x0242 161 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 162 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 163 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 164 165 #define PTP_TX_PARSE_CONFIG 0x0282 166 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 167 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 168 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 169 170 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 171 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 172 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 173 174 #define PTP_LTC_STEP_ADJ_HI 0x0212 175 #define PTP_LTC_STEP_ADJ_LO 0x0213 176 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 177 178 #define LAN8814_INTR_STS_REG 0x0033 179 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 180 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 181 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 182 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 183 184 #define PTP_CAP_INFO 0x022A 185 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 186 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 187 188 #define PTP_TX_EGRESS_SEC_HI 0x0296 189 #define PTP_TX_EGRESS_SEC_LO 0x0297 190 #define PTP_TX_EGRESS_NS_HI 0x0294 191 #define PTP_TX_EGRESS_NS_LO 0x0295 192 #define PTP_TX_MSG_HEADER2 0x0299 193 194 #define PTP_RX_INGRESS_SEC_HI 0x0256 195 #define PTP_RX_INGRESS_SEC_LO 0x0257 196 #define PTP_RX_INGRESS_NS_HI 0x0254 197 #define PTP_RX_INGRESS_NS_LO 0x0255 198 #define PTP_RX_MSG_HEADER2 0x0259 199 200 #define PTP_TSU_INT_EN 0x0200 201 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 202 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 203 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 204 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 205 206 #define PTP_TSU_INT_STS 0x0201 207 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 208 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 209 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 210 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 211 212 /* PHY Control 1 */ 213 #define MII_KSZPHY_CTRL_1 0x1e 214 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 215 216 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 217 #define MII_KSZPHY_CTRL_2 0x1f 218 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 219 /* bitmap of PHY register to set interrupt mode */ 220 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 221 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 222 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 223 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 224 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 225 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 226 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 227 228 /* Write/read to/from extended registers */ 229 #define MII_KSZPHY_EXTREG 0x0b 230 #define KSZPHY_EXTREG_WRITE 0x8000 231 232 #define MII_KSZPHY_EXTREG_WRITE 0x0c 233 #define MII_KSZPHY_EXTREG_READ 0x0d 234 235 /* Extended registers */ 236 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 237 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 238 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 239 240 #define PS_TO_REG 200 241 #define FIFO_SIZE 8 242 243 struct kszphy_hw_stat { 244 const char *string; 245 u8 reg; 246 u8 bits; 247 }; 248 249 static struct kszphy_hw_stat kszphy_hw_stats[] = { 250 { "phy_receive_errors", 21, 16}, 251 { "phy_idle_errors", 10, 8 }, 252 }; 253 254 struct kszphy_type { 255 u32 led_mode_reg; 256 u16 interrupt_level_mask; 257 bool has_broadcast_disable; 258 bool has_nand_tree_disable; 259 bool has_rmii_ref_clk_sel; 260 }; 261 262 /* Shared structure between the PHYs of the same package. */ 263 struct lan8814_shared_priv { 264 struct phy_device *phydev; 265 struct ptp_clock *ptp_clock; 266 struct ptp_clock_info ptp_clock_info; 267 268 /* Reference counter to how many ports in the package are enabling the 269 * timestamping 270 */ 271 u8 ref; 272 273 /* Lock for ptp_clock and ref */ 274 struct mutex shared_lock; 275 }; 276 277 struct lan8814_ptp_rx_ts { 278 struct list_head list; 279 u32 seconds; 280 u32 nsec; 281 u16 seq_id; 282 }; 283 284 struct kszphy_ptp_priv { 285 struct mii_timestamper mii_ts; 286 struct phy_device *phydev; 287 288 struct sk_buff_head tx_queue; 289 struct sk_buff_head rx_queue; 290 291 struct list_head rx_ts_list; 292 /* Lock for Rx ts fifo */ 293 spinlock_t rx_ts_lock; 294 295 int hwts_tx_type; 296 enum hwtstamp_rx_filters rx_filter; 297 int layer; 298 int version; 299 }; 300 301 struct kszphy_priv { 302 struct kszphy_ptp_priv ptp_priv; 303 const struct kszphy_type *type; 304 int led_mode; 305 u16 vct_ctrl1000; 306 bool rmii_ref_clk_sel; 307 bool rmii_ref_clk_sel_val; 308 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 309 }; 310 311 static const struct kszphy_type ksz8021_type = { 312 .led_mode_reg = MII_KSZPHY_CTRL_2, 313 .has_broadcast_disable = true, 314 .has_nand_tree_disable = true, 315 .has_rmii_ref_clk_sel = true, 316 }; 317 318 static const struct kszphy_type ksz8041_type = { 319 .led_mode_reg = MII_KSZPHY_CTRL_1, 320 }; 321 322 static const struct kszphy_type ksz8051_type = { 323 .led_mode_reg = MII_KSZPHY_CTRL_2, 324 .has_nand_tree_disable = true, 325 }; 326 327 static const struct kszphy_type ksz8081_type = { 328 .led_mode_reg = MII_KSZPHY_CTRL_2, 329 .has_broadcast_disable = true, 330 .has_nand_tree_disable = true, 331 .has_rmii_ref_clk_sel = true, 332 }; 333 334 static const struct kszphy_type ks8737_type = { 335 .interrupt_level_mask = BIT(14), 336 }; 337 338 static const struct kszphy_type ksz9021_type = { 339 .interrupt_level_mask = BIT(14), 340 }; 341 342 static int kszphy_extended_write(struct phy_device *phydev, 343 u32 regnum, u16 val) 344 { 345 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 346 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 347 } 348 349 static int kszphy_extended_read(struct phy_device *phydev, 350 u32 regnum) 351 { 352 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 353 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 354 } 355 356 static int kszphy_ack_interrupt(struct phy_device *phydev) 357 { 358 /* bit[7..0] int status, which is a read and clear register. */ 359 int rc; 360 361 rc = phy_read(phydev, MII_KSZPHY_INTCS); 362 363 return (rc < 0) ? rc : 0; 364 } 365 366 static int kszphy_config_intr(struct phy_device *phydev) 367 { 368 const struct kszphy_type *type = phydev->drv->driver_data; 369 int temp, err; 370 u16 mask; 371 372 if (type && type->interrupt_level_mask) 373 mask = type->interrupt_level_mask; 374 else 375 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 376 377 /* set the interrupt pin active low */ 378 temp = phy_read(phydev, MII_KSZPHY_CTRL); 379 if (temp < 0) 380 return temp; 381 temp &= ~mask; 382 phy_write(phydev, MII_KSZPHY_CTRL, temp); 383 384 /* enable / disable interrupts */ 385 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 386 err = kszphy_ack_interrupt(phydev); 387 if (err) 388 return err; 389 390 temp = KSZPHY_INTCS_ALL; 391 err = phy_write(phydev, MII_KSZPHY_INTCS, temp); 392 } else { 393 temp = 0; 394 err = phy_write(phydev, MII_KSZPHY_INTCS, temp); 395 if (err) 396 return err; 397 398 err = kszphy_ack_interrupt(phydev); 399 } 400 401 return err; 402 } 403 404 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 405 { 406 int irq_status; 407 408 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 409 if (irq_status < 0) { 410 phy_error(phydev); 411 return IRQ_NONE; 412 } 413 414 if (!(irq_status & KSZPHY_INTCS_STATUS)) 415 return IRQ_NONE; 416 417 phy_trigger_machine(phydev); 418 419 return IRQ_HANDLED; 420 } 421 422 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 423 { 424 int ctrl; 425 426 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 427 if (ctrl < 0) 428 return ctrl; 429 430 if (val) 431 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 432 else 433 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 434 435 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 436 } 437 438 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 439 { 440 int rc, temp, shift; 441 442 switch (reg) { 443 case MII_KSZPHY_CTRL_1: 444 shift = 14; 445 break; 446 case MII_KSZPHY_CTRL_2: 447 shift = 4; 448 break; 449 default: 450 return -EINVAL; 451 } 452 453 temp = phy_read(phydev, reg); 454 if (temp < 0) { 455 rc = temp; 456 goto out; 457 } 458 459 temp &= ~(3 << shift); 460 temp |= val << shift; 461 rc = phy_write(phydev, reg, temp); 462 out: 463 if (rc < 0) 464 phydev_err(phydev, "failed to set led mode\n"); 465 466 return rc; 467 } 468 469 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 470 * unique (non-broadcast) address on a shared bus. 471 */ 472 static int kszphy_broadcast_disable(struct phy_device *phydev) 473 { 474 int ret; 475 476 ret = phy_read(phydev, MII_KSZPHY_OMSO); 477 if (ret < 0) 478 goto out; 479 480 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 481 out: 482 if (ret) 483 phydev_err(phydev, "failed to disable broadcast address\n"); 484 485 return ret; 486 } 487 488 static int kszphy_nand_tree_disable(struct phy_device *phydev) 489 { 490 int ret; 491 492 ret = phy_read(phydev, MII_KSZPHY_OMSO); 493 if (ret < 0) 494 goto out; 495 496 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 497 return 0; 498 499 ret = phy_write(phydev, MII_KSZPHY_OMSO, 500 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 501 out: 502 if (ret) 503 phydev_err(phydev, "failed to disable NAND tree mode\n"); 504 505 return ret; 506 } 507 508 /* Some config bits need to be set again on resume, handle them here. */ 509 static int kszphy_config_reset(struct phy_device *phydev) 510 { 511 struct kszphy_priv *priv = phydev->priv; 512 int ret; 513 514 if (priv->rmii_ref_clk_sel) { 515 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 516 if (ret) { 517 phydev_err(phydev, 518 "failed to set rmii reference clock\n"); 519 return ret; 520 } 521 } 522 523 if (priv->type && priv->led_mode >= 0) 524 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 525 526 return 0; 527 } 528 529 static int kszphy_config_init(struct phy_device *phydev) 530 { 531 struct kszphy_priv *priv = phydev->priv; 532 const struct kszphy_type *type; 533 534 if (!priv) 535 return 0; 536 537 type = priv->type; 538 539 if (type && type->has_broadcast_disable) 540 kszphy_broadcast_disable(phydev); 541 542 if (type && type->has_nand_tree_disable) 543 kszphy_nand_tree_disable(phydev); 544 545 return kszphy_config_reset(phydev); 546 } 547 548 static int ksz8041_fiber_mode(struct phy_device *phydev) 549 { 550 struct device_node *of_node = phydev->mdio.dev.of_node; 551 552 return of_property_read_bool(of_node, "micrel,fiber-mode"); 553 } 554 555 static int ksz8041_config_init(struct phy_device *phydev) 556 { 557 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 558 559 /* Limit supported and advertised modes in fiber mode */ 560 if (ksz8041_fiber_mode(phydev)) { 561 phydev->dev_flags |= MICREL_PHY_FXEN; 562 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 563 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 564 565 linkmode_and(phydev->supported, phydev->supported, mask); 566 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 567 phydev->supported); 568 linkmode_and(phydev->advertising, phydev->advertising, mask); 569 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 570 phydev->advertising); 571 phydev->autoneg = AUTONEG_DISABLE; 572 } 573 574 return kszphy_config_init(phydev); 575 } 576 577 static int ksz8041_config_aneg(struct phy_device *phydev) 578 { 579 /* Skip auto-negotiation in fiber mode */ 580 if (phydev->dev_flags & MICREL_PHY_FXEN) { 581 phydev->speed = SPEED_100; 582 return 0; 583 } 584 585 return genphy_config_aneg(phydev); 586 } 587 588 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 589 const bool ksz_8051) 590 { 591 int ret; 592 593 if ((phydev->phy_id & MICREL_PHY_ID_MASK) != PHY_ID_KSZ8051) 594 return 0; 595 596 ret = phy_read(phydev, MII_BMSR); 597 if (ret < 0) 598 return ret; 599 600 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 601 * exact PHY ID. However, they can be told apart by the extended 602 * capability registers presence. The KSZ8051 PHY has them while 603 * the switch does not. 604 */ 605 ret &= BMSR_ERCAP; 606 if (ksz_8051) 607 return ret; 608 else 609 return !ret; 610 } 611 612 static int ksz8051_match_phy_device(struct phy_device *phydev) 613 { 614 return ksz8051_ksz8795_match_phy_device(phydev, true); 615 } 616 617 static int ksz8081_config_init(struct phy_device *phydev) 618 { 619 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 620 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 621 * pull-down is missing, the factory test mode should be cleared by 622 * manually writing a 0. 623 */ 624 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 625 626 return kszphy_config_init(phydev); 627 } 628 629 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 630 { 631 u16 val; 632 633 switch (ctrl) { 634 case ETH_TP_MDI: 635 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 636 break; 637 case ETH_TP_MDI_X: 638 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 639 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 640 break; 641 case ETH_TP_MDI_AUTO: 642 val = 0; 643 break; 644 default: 645 return 0; 646 } 647 648 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 649 KSZ8081_CTRL2_HP_MDIX | 650 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 651 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 652 KSZ8081_CTRL2_HP_MDIX | val); 653 } 654 655 static int ksz8081_config_aneg(struct phy_device *phydev) 656 { 657 int ret; 658 659 ret = genphy_config_aneg(phydev); 660 if (ret) 661 return ret; 662 663 /* The MDI-X configuration is automatically changed by the PHY after 664 * switching from autoneg off to on. So, take MDI-X configuration under 665 * own control and set it after autoneg configuration was done. 666 */ 667 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 668 } 669 670 static int ksz8081_mdix_update(struct phy_device *phydev) 671 { 672 int ret; 673 674 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 675 if (ret < 0) 676 return ret; 677 678 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 679 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 680 phydev->mdix_ctrl = ETH_TP_MDI_X; 681 else 682 phydev->mdix_ctrl = ETH_TP_MDI; 683 } else { 684 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 685 } 686 687 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 688 if (ret < 0) 689 return ret; 690 691 if (ret & KSZ8081_CTRL1_MDIX_STAT) 692 phydev->mdix = ETH_TP_MDI; 693 else 694 phydev->mdix = ETH_TP_MDI_X; 695 696 return 0; 697 } 698 699 static int ksz8081_read_status(struct phy_device *phydev) 700 { 701 int ret; 702 703 ret = ksz8081_mdix_update(phydev); 704 if (ret < 0) 705 return ret; 706 707 return genphy_read_status(phydev); 708 } 709 710 static int ksz8061_config_init(struct phy_device *phydev) 711 { 712 int ret; 713 714 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 715 if (ret) 716 return ret; 717 718 return kszphy_config_init(phydev); 719 } 720 721 static int ksz8795_match_phy_device(struct phy_device *phydev) 722 { 723 return ksz8051_ksz8795_match_phy_device(phydev, false); 724 } 725 726 static int ksz9021_load_values_from_of(struct phy_device *phydev, 727 const struct device_node *of_node, 728 u16 reg, 729 const char *field1, const char *field2, 730 const char *field3, const char *field4) 731 { 732 int val1 = -1; 733 int val2 = -2; 734 int val3 = -3; 735 int val4 = -4; 736 int newval; 737 int matches = 0; 738 739 if (!of_property_read_u32(of_node, field1, &val1)) 740 matches++; 741 742 if (!of_property_read_u32(of_node, field2, &val2)) 743 matches++; 744 745 if (!of_property_read_u32(of_node, field3, &val3)) 746 matches++; 747 748 if (!of_property_read_u32(of_node, field4, &val4)) 749 matches++; 750 751 if (!matches) 752 return 0; 753 754 if (matches < 4) 755 newval = kszphy_extended_read(phydev, reg); 756 else 757 newval = 0; 758 759 if (val1 != -1) 760 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 761 762 if (val2 != -2) 763 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 764 765 if (val3 != -3) 766 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 767 768 if (val4 != -4) 769 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 770 771 return kszphy_extended_write(phydev, reg, newval); 772 } 773 774 static int ksz9021_config_init(struct phy_device *phydev) 775 { 776 const struct device_node *of_node; 777 const struct device *dev_walker; 778 779 /* The Micrel driver has a deprecated option to place phy OF 780 * properties in the MAC node. Walk up the tree of devices to 781 * find a device with an OF node. 782 */ 783 dev_walker = &phydev->mdio.dev; 784 do { 785 of_node = dev_walker->of_node; 786 dev_walker = dev_walker->parent; 787 788 } while (!of_node && dev_walker); 789 790 if (of_node) { 791 ksz9021_load_values_from_of(phydev, of_node, 792 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 793 "txen-skew-ps", "txc-skew-ps", 794 "rxdv-skew-ps", "rxc-skew-ps"); 795 ksz9021_load_values_from_of(phydev, of_node, 796 MII_KSZPHY_RX_DATA_PAD_SKEW, 797 "rxd0-skew-ps", "rxd1-skew-ps", 798 "rxd2-skew-ps", "rxd3-skew-ps"); 799 ksz9021_load_values_from_of(phydev, of_node, 800 MII_KSZPHY_TX_DATA_PAD_SKEW, 801 "txd0-skew-ps", "txd1-skew-ps", 802 "txd2-skew-ps", "txd3-skew-ps"); 803 } 804 return 0; 805 } 806 807 #define KSZ9031_PS_TO_REG 60 808 809 /* Extended registers */ 810 /* MMD Address 0x0 */ 811 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 812 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 813 814 /* MMD Address 0x2 */ 815 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 816 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 817 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 818 819 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 820 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 821 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 822 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 823 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 824 825 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 826 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 827 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 828 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 829 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 830 831 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 832 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 833 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 834 835 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 836 * provide different RGMII options we need to configure delay offset 837 * for each pad relative to build in delay. 838 */ 839 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 840 * 1.80ns 841 */ 842 #define RX_ID 0x7 843 #define RX_CLK_ID 0x19 844 845 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 846 * internal 1.2ns delay. 847 */ 848 #define RX_ND 0xc 849 #define RX_CLK_ND 0x0 850 851 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 852 #define TX_ID 0x0 853 #define TX_CLK_ID 0x1f 854 855 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 856 * dealy 857 */ 858 #define TX_ND 0x7 859 #define TX_CLK_ND 0xf 860 861 /* MMD Address 0x1C */ 862 #define MII_KSZ9031RN_EDPD 0x23 863 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 864 865 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 866 const struct device_node *of_node, 867 u16 reg, size_t field_sz, 868 const char *field[], u8 numfields, 869 bool *update) 870 { 871 int val[4] = {-1, -2, -3, -4}; 872 int matches = 0; 873 u16 mask; 874 u16 maxval; 875 u16 newval; 876 int i; 877 878 for (i = 0; i < numfields; i++) 879 if (!of_property_read_u32(of_node, field[i], val + i)) 880 matches++; 881 882 if (!matches) 883 return 0; 884 885 *update |= true; 886 887 if (matches < numfields) 888 newval = phy_read_mmd(phydev, 2, reg); 889 else 890 newval = 0; 891 892 maxval = (field_sz == 4) ? 0xf : 0x1f; 893 for (i = 0; i < numfields; i++) 894 if (val[i] != -(i + 1)) { 895 mask = 0xffff; 896 mask ^= maxval << (field_sz * i); 897 newval = (newval & mask) | 898 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 899 << (field_sz * i)); 900 } 901 902 return phy_write_mmd(phydev, 2, reg, newval); 903 } 904 905 /* Center KSZ9031RNX FLP timing at 16ms. */ 906 static int ksz9031_center_flp_timing(struct phy_device *phydev) 907 { 908 int result; 909 910 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 911 0x0006); 912 if (result) 913 return result; 914 915 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 916 0x1A80); 917 if (result) 918 return result; 919 920 return genphy_restart_aneg(phydev); 921 } 922 923 /* Enable energy-detect power-down mode */ 924 static int ksz9031_enable_edpd(struct phy_device *phydev) 925 { 926 int reg; 927 928 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 929 if (reg < 0) 930 return reg; 931 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 932 reg | MII_KSZ9031RN_EDPD_ENABLE); 933 } 934 935 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 936 { 937 u16 rx, tx, rx_clk, tx_clk; 938 int ret; 939 940 switch (phydev->interface) { 941 case PHY_INTERFACE_MODE_RGMII: 942 tx = TX_ND; 943 tx_clk = TX_CLK_ND; 944 rx = RX_ND; 945 rx_clk = RX_CLK_ND; 946 break; 947 case PHY_INTERFACE_MODE_RGMII_ID: 948 tx = TX_ID; 949 tx_clk = TX_CLK_ID; 950 rx = RX_ID; 951 rx_clk = RX_CLK_ID; 952 break; 953 case PHY_INTERFACE_MODE_RGMII_RXID: 954 tx = TX_ND; 955 tx_clk = TX_CLK_ND; 956 rx = RX_ID; 957 rx_clk = RX_CLK_ID; 958 break; 959 case PHY_INTERFACE_MODE_RGMII_TXID: 960 tx = TX_ID; 961 tx_clk = TX_CLK_ID; 962 rx = RX_ND; 963 rx_clk = RX_CLK_ND; 964 break; 965 default: 966 return 0; 967 } 968 969 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 970 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 971 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 972 if (ret < 0) 973 return ret; 974 975 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 976 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 977 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 978 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 979 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 980 if (ret < 0) 981 return ret; 982 983 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 984 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 985 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 986 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 987 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 988 if (ret < 0) 989 return ret; 990 991 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 992 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 993 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 994 } 995 996 static int ksz9031_config_init(struct phy_device *phydev) 997 { 998 const struct device_node *of_node; 999 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1000 static const char *rx_data_skews[4] = { 1001 "rxd0-skew-ps", "rxd1-skew-ps", 1002 "rxd2-skew-ps", "rxd3-skew-ps" 1003 }; 1004 static const char *tx_data_skews[4] = { 1005 "txd0-skew-ps", "txd1-skew-ps", 1006 "txd2-skew-ps", "txd3-skew-ps" 1007 }; 1008 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1009 const struct device *dev_walker; 1010 int result; 1011 1012 result = ksz9031_enable_edpd(phydev); 1013 if (result < 0) 1014 return result; 1015 1016 /* The Micrel driver has a deprecated option to place phy OF 1017 * properties in the MAC node. Walk up the tree of devices to 1018 * find a device with an OF node. 1019 */ 1020 dev_walker = &phydev->mdio.dev; 1021 do { 1022 of_node = dev_walker->of_node; 1023 dev_walker = dev_walker->parent; 1024 } while (!of_node && dev_walker); 1025 1026 if (of_node) { 1027 bool update = false; 1028 1029 if (phy_interface_is_rgmii(phydev)) { 1030 result = ksz9031_config_rgmii_delay(phydev); 1031 if (result < 0) 1032 return result; 1033 } 1034 1035 ksz9031_of_load_skew_values(phydev, of_node, 1036 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1037 clk_skews, 2, &update); 1038 1039 ksz9031_of_load_skew_values(phydev, of_node, 1040 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1041 control_skews, 2, &update); 1042 1043 ksz9031_of_load_skew_values(phydev, of_node, 1044 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1045 rx_data_skews, 4, &update); 1046 1047 ksz9031_of_load_skew_values(phydev, of_node, 1048 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1049 tx_data_skews, 4, &update); 1050 1051 if (update && !phy_interface_is_rgmii(phydev)) 1052 phydev_warn(phydev, 1053 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1054 1055 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1056 * When the device links in the 1000BASE-T slave mode only, 1057 * the optional 125MHz reference output clock (CLK125_NDO) 1058 * has wide duty cycle variation. 1059 * 1060 * The optional CLK125_NDO clock does not meet the RGMII 1061 * 45/55 percent (min/max) duty cycle requirement and therefore 1062 * cannot be used directly by the MAC side for clocking 1063 * applications that have setup/hold time requirements on 1064 * rising and falling clock edges. 1065 * 1066 * Workaround: 1067 * Force the phy to be the master to receive a stable clock 1068 * which meets the duty cycle requirement. 1069 */ 1070 if (of_property_read_bool(of_node, "micrel,force-master")) { 1071 result = phy_read(phydev, MII_CTRL1000); 1072 if (result < 0) 1073 goto err_force_master; 1074 1075 /* enable master mode, config & prefer master */ 1076 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1077 result = phy_write(phydev, MII_CTRL1000, result); 1078 if (result < 0) 1079 goto err_force_master; 1080 } 1081 } 1082 1083 return ksz9031_center_flp_timing(phydev); 1084 1085 err_force_master: 1086 phydev_err(phydev, "failed to force the phy to master mode\n"); 1087 return result; 1088 } 1089 1090 #define KSZ9131_SKEW_5BIT_MAX 2400 1091 #define KSZ9131_SKEW_4BIT_MAX 800 1092 #define KSZ9131_OFFSET 700 1093 #define KSZ9131_STEP 100 1094 1095 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1096 struct device_node *of_node, 1097 u16 reg, size_t field_sz, 1098 char *field[], u8 numfields) 1099 { 1100 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1101 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1102 int skewval, skewmax = 0; 1103 int matches = 0; 1104 u16 maxval; 1105 u16 newval; 1106 u16 mask; 1107 int i; 1108 1109 /* psec properties in dts should mean x pico seconds */ 1110 if (field_sz == 5) 1111 skewmax = KSZ9131_SKEW_5BIT_MAX; 1112 else 1113 skewmax = KSZ9131_SKEW_4BIT_MAX; 1114 1115 for (i = 0; i < numfields; i++) 1116 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1117 if (skewval < -KSZ9131_OFFSET) 1118 skewval = -KSZ9131_OFFSET; 1119 else if (skewval > skewmax) 1120 skewval = skewmax; 1121 1122 val[i] = skewval + KSZ9131_OFFSET; 1123 matches++; 1124 } 1125 1126 if (!matches) 1127 return 0; 1128 1129 if (matches < numfields) 1130 newval = phy_read_mmd(phydev, 2, reg); 1131 else 1132 newval = 0; 1133 1134 maxval = (field_sz == 4) ? 0xf : 0x1f; 1135 for (i = 0; i < numfields; i++) 1136 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1137 mask = 0xffff; 1138 mask ^= maxval << (field_sz * i); 1139 newval = (newval & mask) | 1140 (((val[i] / KSZ9131_STEP) & maxval) 1141 << (field_sz * i)); 1142 } 1143 1144 return phy_write_mmd(phydev, 2, reg, newval); 1145 } 1146 1147 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1148 #define KSZ9131RN_RXC_DLL_CTRL 76 1149 #define KSZ9131RN_TXC_DLL_CTRL 77 1150 #define KSZ9131RN_DLL_CTRL_BYPASS BIT_MASK(12) 1151 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1152 #define KSZ9131RN_DLL_DISABLE_DELAY BIT(12) 1153 1154 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1155 { 1156 u16 rxcdll_val, txcdll_val; 1157 int ret; 1158 1159 switch (phydev->interface) { 1160 case PHY_INTERFACE_MODE_RGMII: 1161 rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY; 1162 txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY; 1163 break; 1164 case PHY_INTERFACE_MODE_RGMII_ID: 1165 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1166 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1167 break; 1168 case PHY_INTERFACE_MODE_RGMII_RXID: 1169 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1170 txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY; 1171 break; 1172 case PHY_INTERFACE_MODE_RGMII_TXID: 1173 rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY; 1174 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1175 break; 1176 default: 1177 return 0; 1178 } 1179 1180 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1181 KSZ9131RN_RXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS, 1182 rxcdll_val); 1183 if (ret < 0) 1184 return ret; 1185 1186 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1187 KSZ9131RN_TXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS, 1188 txcdll_val); 1189 } 1190 1191 /* Silicon Errata DS80000693B 1192 * 1193 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1194 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1195 * according to the datasheet (off if there is no link). 1196 */ 1197 static int ksz9131_led_errata(struct phy_device *phydev) 1198 { 1199 int reg; 1200 1201 reg = phy_read_mmd(phydev, 2, 0); 1202 if (reg < 0) 1203 return reg; 1204 1205 if (!(reg & BIT(4))) 1206 return 0; 1207 1208 return phy_set_bits(phydev, 0x1e, BIT(9)); 1209 } 1210 1211 static int ksz9131_config_init(struct phy_device *phydev) 1212 { 1213 struct device_node *of_node; 1214 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1215 char *rx_data_skews[4] = { 1216 "rxd0-skew-psec", "rxd1-skew-psec", 1217 "rxd2-skew-psec", "rxd3-skew-psec" 1218 }; 1219 char *tx_data_skews[4] = { 1220 "txd0-skew-psec", "txd1-skew-psec", 1221 "txd2-skew-psec", "txd3-skew-psec" 1222 }; 1223 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1224 const struct device *dev_walker; 1225 int ret; 1226 1227 dev_walker = &phydev->mdio.dev; 1228 do { 1229 of_node = dev_walker->of_node; 1230 dev_walker = dev_walker->parent; 1231 } while (!of_node && dev_walker); 1232 1233 if (!of_node) 1234 return 0; 1235 1236 if (phy_interface_is_rgmii(phydev)) { 1237 ret = ksz9131_config_rgmii_delay(phydev); 1238 if (ret < 0) 1239 return ret; 1240 } 1241 1242 ret = ksz9131_of_load_skew_values(phydev, of_node, 1243 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1244 clk_skews, 2); 1245 if (ret < 0) 1246 return ret; 1247 1248 ret = ksz9131_of_load_skew_values(phydev, of_node, 1249 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1250 control_skews, 2); 1251 if (ret < 0) 1252 return ret; 1253 1254 ret = ksz9131_of_load_skew_values(phydev, of_node, 1255 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1256 rx_data_skews, 4); 1257 if (ret < 0) 1258 return ret; 1259 1260 ret = ksz9131_of_load_skew_values(phydev, of_node, 1261 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1262 tx_data_skews, 4); 1263 if (ret < 0) 1264 return ret; 1265 1266 ret = ksz9131_led_errata(phydev); 1267 if (ret < 0) 1268 return ret; 1269 1270 return 0; 1271 } 1272 1273 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1274 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1275 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1276 static int ksz8873mll_read_status(struct phy_device *phydev) 1277 { 1278 int regval; 1279 1280 /* dummy read */ 1281 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1282 1283 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1284 1285 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1286 phydev->duplex = DUPLEX_HALF; 1287 else 1288 phydev->duplex = DUPLEX_FULL; 1289 1290 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1291 phydev->speed = SPEED_10; 1292 else 1293 phydev->speed = SPEED_100; 1294 1295 phydev->link = 1; 1296 phydev->pause = phydev->asym_pause = 0; 1297 1298 return 0; 1299 } 1300 1301 static int ksz9031_get_features(struct phy_device *phydev) 1302 { 1303 int ret; 1304 1305 ret = genphy_read_abilities(phydev); 1306 if (ret < 0) 1307 return ret; 1308 1309 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1310 * Whenever the device's Asymmetric Pause capability is set to 1, 1311 * link-up may fail after a link-up to link-down transition. 1312 * 1313 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1314 * 1315 * Workaround: 1316 * Do not enable the Asymmetric Pause capability bit. 1317 */ 1318 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1319 1320 /* We force setting the Pause capability as the core will force the 1321 * Asymmetric Pause capability to 1 otherwise. 1322 */ 1323 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1324 1325 return 0; 1326 } 1327 1328 static int ksz9031_read_status(struct phy_device *phydev) 1329 { 1330 int err; 1331 int regval; 1332 1333 err = genphy_read_status(phydev); 1334 if (err) 1335 return err; 1336 1337 /* Make sure the PHY is not broken. Read idle error count, 1338 * and reset the PHY if it is maxed out. 1339 */ 1340 regval = phy_read(phydev, MII_STAT1000); 1341 if ((regval & 0xFF) == 0xFF) { 1342 phy_init_hw(phydev); 1343 phydev->link = 0; 1344 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1345 phydev->drv->config_intr(phydev); 1346 return genphy_config_aneg(phydev); 1347 } 1348 1349 return 0; 1350 } 1351 1352 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1353 { 1354 struct kszphy_priv *priv = phydev->priv; 1355 int ret; 1356 1357 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1358 * Prior to running the cable diagnostics, Auto-negotiation should 1359 * be disabled, full duplex set and the link speed set to 1000Mbps 1360 * via the Basic Control Register. 1361 */ 1362 ret = phy_modify(phydev, MII_BMCR, 1363 BMCR_SPEED1000 | BMCR_FULLDPLX | 1364 BMCR_ANENABLE | BMCR_SPEED100, 1365 BMCR_SPEED1000 | BMCR_FULLDPLX); 1366 if (ret) 1367 return ret; 1368 1369 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1370 * The Master-Slave configuration should be set to Slave by writing 1371 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1372 * Register. 1373 */ 1374 ret = phy_read(phydev, MII_CTRL1000); 1375 if (ret < 0) 1376 return ret; 1377 1378 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1379 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1380 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1381 ret |= CTL1000_ENABLE_MASTER; 1382 1383 return phy_write(phydev, MII_CTRL1000, ret); 1384 } 1385 1386 static int ksz9x31_cable_test_result_trans(u16 status) 1387 { 1388 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1389 case KSZ9x31_LMD_VCT_ST_NORMAL: 1390 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1391 case KSZ9x31_LMD_VCT_ST_OPEN: 1392 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1393 case KSZ9x31_LMD_VCT_ST_SHORT: 1394 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1395 case KSZ9x31_LMD_VCT_ST_FAIL: 1396 fallthrough; 1397 default: 1398 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1399 } 1400 } 1401 1402 static bool ksz9x31_cable_test_failed(u16 status) 1403 { 1404 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1405 1406 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1407 } 1408 1409 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1410 { 1411 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1412 case KSZ9x31_LMD_VCT_ST_OPEN: 1413 fallthrough; 1414 case KSZ9x31_LMD_VCT_ST_SHORT: 1415 return true; 1416 } 1417 return false; 1418 } 1419 1420 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1421 { 1422 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1423 1424 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1425 * 1426 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1427 */ 1428 if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_KSZ9131) 1429 dt = clamp(dt - 22, 0, 255); 1430 1431 return (dt * 400) / 10; 1432 } 1433 1434 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1435 { 1436 int val, ret; 1437 1438 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1439 !(val & KSZ9x31_LMD_VCT_EN), 1440 30000, 100000, true); 1441 1442 return ret < 0 ? ret : 0; 1443 } 1444 1445 static int ksz9x31_cable_test_get_pair(int pair) 1446 { 1447 static const int ethtool_pair[] = { 1448 ETHTOOL_A_CABLE_PAIR_A, 1449 ETHTOOL_A_CABLE_PAIR_B, 1450 ETHTOOL_A_CABLE_PAIR_C, 1451 ETHTOOL_A_CABLE_PAIR_D, 1452 }; 1453 1454 return ethtool_pair[pair]; 1455 } 1456 1457 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1458 { 1459 int ret, val; 1460 1461 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1462 * To test each individual cable pair, set the cable pair in the Cable 1463 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1464 * Diagnostic Register, along with setting the Cable Diagnostics Test 1465 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1466 * will self clear when the test is concluded. 1467 */ 1468 ret = phy_write(phydev, KSZ9x31_LMD, 1469 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1470 if (ret) 1471 return ret; 1472 1473 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1474 if (ret) 1475 return ret; 1476 1477 val = phy_read(phydev, KSZ9x31_LMD); 1478 if (val < 0) 1479 return val; 1480 1481 if (ksz9x31_cable_test_failed(val)) 1482 return -EAGAIN; 1483 1484 ret = ethnl_cable_test_result(phydev, 1485 ksz9x31_cable_test_get_pair(pair), 1486 ksz9x31_cable_test_result_trans(val)); 1487 if (ret) 1488 return ret; 1489 1490 if (!ksz9x31_cable_test_fault_length_valid(val)) 1491 return 0; 1492 1493 return ethnl_cable_test_fault_length(phydev, 1494 ksz9x31_cable_test_get_pair(pair), 1495 ksz9x31_cable_test_fault_length(phydev, val)); 1496 } 1497 1498 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1499 bool *finished) 1500 { 1501 struct kszphy_priv *priv = phydev->priv; 1502 unsigned long pair_mask = 0xf; 1503 int retries = 20; 1504 int pair, ret, rv; 1505 1506 *finished = false; 1507 1508 /* Try harder if link partner is active */ 1509 while (pair_mask && retries--) { 1510 for_each_set_bit(pair, &pair_mask, 4) { 1511 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1512 if (ret == -EAGAIN) 1513 continue; 1514 if (ret < 0) 1515 return ret; 1516 clear_bit(pair, &pair_mask); 1517 } 1518 /* If link partner is in autonegotiation mode it will send 2ms 1519 * of FLPs with at least 6ms of silence. 1520 * Add 2ms sleep to have better chances to hit this silence. 1521 */ 1522 if (pair_mask) 1523 usleep_range(2000, 3000); 1524 } 1525 1526 /* Report remaining unfinished pair result as unknown. */ 1527 for_each_set_bit(pair, &pair_mask, 4) { 1528 ret = ethnl_cable_test_result(phydev, 1529 ksz9x31_cable_test_get_pair(pair), 1530 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1531 } 1532 1533 *finished = true; 1534 1535 /* Restore cached bits from before LinkMD got started. */ 1536 rv = phy_modify(phydev, MII_CTRL1000, 1537 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1538 priv->vct_ctrl1000); 1539 if (rv) 1540 return rv; 1541 1542 return ret; 1543 } 1544 1545 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1546 { 1547 return 0; 1548 } 1549 1550 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1551 { 1552 u16 val; 1553 1554 switch (ctrl) { 1555 case ETH_TP_MDI: 1556 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1557 break; 1558 case ETH_TP_MDI_X: 1559 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1560 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1561 * sheet seems to be missing: 1562 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1563 * 0 = Normal operation (transmit on TX+/TX- pins) 1564 */ 1565 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1566 break; 1567 case ETH_TP_MDI_AUTO: 1568 val = 0; 1569 break; 1570 default: 1571 return 0; 1572 } 1573 1574 return phy_modify(phydev, MII_BMCR, 1575 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1576 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1577 KSZ886X_BMCR_HP_MDIX | val); 1578 } 1579 1580 static int ksz886x_config_aneg(struct phy_device *phydev) 1581 { 1582 int ret; 1583 1584 ret = genphy_config_aneg(phydev); 1585 if (ret) 1586 return ret; 1587 1588 /* The MDI-X configuration is automatically changed by the PHY after 1589 * switching from autoneg off to on. So, take MDI-X configuration under 1590 * own control and set it after autoneg configuration was done. 1591 */ 1592 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1593 } 1594 1595 static int ksz886x_mdix_update(struct phy_device *phydev) 1596 { 1597 int ret; 1598 1599 ret = phy_read(phydev, MII_BMCR); 1600 if (ret < 0) 1601 return ret; 1602 1603 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1604 if (ret & KSZ886X_BMCR_FORCE_MDI) 1605 phydev->mdix_ctrl = ETH_TP_MDI_X; 1606 else 1607 phydev->mdix_ctrl = ETH_TP_MDI; 1608 } else { 1609 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1610 } 1611 1612 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1613 if (ret < 0) 1614 return ret; 1615 1616 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1617 if (ret & KSZ886X_CTRL_MDIX_STAT) 1618 phydev->mdix = ETH_TP_MDI_X; 1619 else 1620 phydev->mdix = ETH_TP_MDI; 1621 1622 return 0; 1623 } 1624 1625 static int ksz886x_read_status(struct phy_device *phydev) 1626 { 1627 int ret; 1628 1629 ret = ksz886x_mdix_update(phydev); 1630 if (ret < 0) 1631 return ret; 1632 1633 return genphy_read_status(phydev); 1634 } 1635 1636 static int kszphy_get_sset_count(struct phy_device *phydev) 1637 { 1638 return ARRAY_SIZE(kszphy_hw_stats); 1639 } 1640 1641 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 1642 { 1643 int i; 1644 1645 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) { 1646 strlcpy(data + i * ETH_GSTRING_LEN, 1647 kszphy_hw_stats[i].string, ETH_GSTRING_LEN); 1648 } 1649 } 1650 1651 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 1652 { 1653 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 1654 struct kszphy_priv *priv = phydev->priv; 1655 int val; 1656 u64 ret; 1657 1658 val = phy_read(phydev, stat.reg); 1659 if (val < 0) { 1660 ret = U64_MAX; 1661 } else { 1662 val = val & ((1 << stat.bits) - 1); 1663 priv->stats[i] += val; 1664 ret = priv->stats[i]; 1665 } 1666 1667 return ret; 1668 } 1669 1670 static void kszphy_get_stats(struct phy_device *phydev, 1671 struct ethtool_stats *stats, u64 *data) 1672 { 1673 int i; 1674 1675 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 1676 data[i] = kszphy_get_stat(phydev, i); 1677 } 1678 1679 static int kszphy_suspend(struct phy_device *phydev) 1680 { 1681 /* Disable PHY Interrupts */ 1682 if (phy_interrupt_is_valid(phydev)) { 1683 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1684 if (phydev->drv->config_intr) 1685 phydev->drv->config_intr(phydev); 1686 } 1687 1688 return genphy_suspend(phydev); 1689 } 1690 1691 static int kszphy_resume(struct phy_device *phydev) 1692 { 1693 int ret; 1694 1695 genphy_resume(phydev); 1696 1697 /* After switching from power-down to normal mode, an internal global 1698 * reset is automatically generated. Wait a minimum of 1 ms before 1699 * read/write access to the PHY registers. 1700 */ 1701 usleep_range(1000, 2000); 1702 1703 ret = kszphy_config_reset(phydev); 1704 if (ret) 1705 return ret; 1706 1707 /* Enable PHY Interrupts */ 1708 if (phy_interrupt_is_valid(phydev)) { 1709 phydev->interrupts = PHY_INTERRUPT_ENABLED; 1710 if (phydev->drv->config_intr) 1711 phydev->drv->config_intr(phydev); 1712 } 1713 1714 return 0; 1715 } 1716 1717 static int kszphy_probe(struct phy_device *phydev) 1718 { 1719 const struct kszphy_type *type = phydev->drv->driver_data; 1720 const struct device_node *np = phydev->mdio.dev.of_node; 1721 struct kszphy_priv *priv; 1722 struct clk *clk; 1723 int ret; 1724 1725 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 1726 if (!priv) 1727 return -ENOMEM; 1728 1729 phydev->priv = priv; 1730 1731 priv->type = type; 1732 1733 if (type && type->led_mode_reg) { 1734 ret = of_property_read_u32(np, "micrel,led-mode", 1735 &priv->led_mode); 1736 if (ret) 1737 priv->led_mode = -1; 1738 1739 if (priv->led_mode > 3) { 1740 phydev_err(phydev, "invalid led mode: 0x%02x\n", 1741 priv->led_mode); 1742 priv->led_mode = -1; 1743 } 1744 } else { 1745 priv->led_mode = -1; 1746 } 1747 1748 clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref"); 1749 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 1750 if (!IS_ERR_OR_NULL(clk)) { 1751 unsigned long rate = clk_get_rate(clk); 1752 bool rmii_ref_clk_sel_25_mhz; 1753 1754 if (type) 1755 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 1756 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 1757 "micrel,rmii-reference-clock-select-25-mhz"); 1758 1759 if (rate > 24500000 && rate < 25500000) { 1760 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 1761 } else if (rate > 49500000 && rate < 50500000) { 1762 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 1763 } else { 1764 phydev_err(phydev, "Clock rate out of range: %ld\n", 1765 rate); 1766 return -EINVAL; 1767 } 1768 } 1769 1770 if (ksz8041_fiber_mode(phydev)) 1771 phydev->port = PORT_FIBRE; 1772 1773 /* Support legacy board-file configuration */ 1774 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 1775 priv->rmii_ref_clk_sel = true; 1776 priv->rmii_ref_clk_sel_val = true; 1777 } 1778 1779 return 0; 1780 } 1781 1782 static int ksz886x_cable_test_start(struct phy_device *phydev) 1783 { 1784 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 1785 return -EOPNOTSUPP; 1786 1787 /* If autoneg is enabled, we won't be able to test cross pair 1788 * short. In this case, the PHY will "detect" a link and 1789 * confuse the internal state machine - disable auto neg here. 1790 * If autoneg is disabled, we should set the speed to 10mbit. 1791 */ 1792 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 1793 } 1794 1795 static int ksz886x_cable_test_result_trans(u16 status) 1796 { 1797 switch (FIELD_GET(KSZ8081_LMD_STAT_MASK, status)) { 1798 case KSZ8081_LMD_STAT_NORMAL: 1799 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1800 case KSZ8081_LMD_STAT_SHORT: 1801 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1802 case KSZ8081_LMD_STAT_OPEN: 1803 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1804 case KSZ8081_LMD_STAT_FAIL: 1805 fallthrough; 1806 default: 1807 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1808 } 1809 } 1810 1811 static bool ksz886x_cable_test_failed(u16 status) 1812 { 1813 return FIELD_GET(KSZ8081_LMD_STAT_MASK, status) == 1814 KSZ8081_LMD_STAT_FAIL; 1815 } 1816 1817 static bool ksz886x_cable_test_fault_length_valid(u16 status) 1818 { 1819 switch (FIELD_GET(KSZ8081_LMD_STAT_MASK, status)) { 1820 case KSZ8081_LMD_STAT_OPEN: 1821 fallthrough; 1822 case KSZ8081_LMD_STAT_SHORT: 1823 return true; 1824 } 1825 return false; 1826 } 1827 1828 static int ksz886x_cable_test_fault_length(u16 status) 1829 { 1830 int dt; 1831 1832 /* According to the data sheet the distance to the fault is 1833 * DELTA_TIME * 0.4 meters. 1834 */ 1835 dt = FIELD_GET(KSZ8081_LMD_DELTA_TIME_MASK, status); 1836 1837 return (dt * 400) / 10; 1838 } 1839 1840 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 1841 { 1842 int val, ret; 1843 1844 ret = phy_read_poll_timeout(phydev, KSZ8081_LMD, val, 1845 !(val & KSZ8081_LMD_ENABLE_TEST), 1846 30000, 100000, true); 1847 1848 return ret < 0 ? ret : 0; 1849 } 1850 1851 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 1852 { 1853 static const int ethtool_pair[] = { 1854 ETHTOOL_A_CABLE_PAIR_A, 1855 ETHTOOL_A_CABLE_PAIR_B, 1856 }; 1857 int ret, val, mdix; 1858 1859 /* There is no way to choice the pair, like we do one ksz9031. 1860 * We can workaround this limitation by using the MDI-X functionality. 1861 */ 1862 if (pair == 0) 1863 mdix = ETH_TP_MDI; 1864 else 1865 mdix = ETH_TP_MDI_X; 1866 1867 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 1868 case PHY_ID_KSZ8081: 1869 ret = ksz8081_config_mdix(phydev, mdix); 1870 break; 1871 case PHY_ID_KSZ886X: 1872 ret = ksz886x_config_mdix(phydev, mdix); 1873 break; 1874 default: 1875 ret = -ENODEV; 1876 } 1877 1878 if (ret) 1879 return ret; 1880 1881 /* Now we are ready to fire. This command will send a 100ns pulse 1882 * to the pair. 1883 */ 1884 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 1885 if (ret) 1886 return ret; 1887 1888 ret = ksz886x_cable_test_wait_for_completion(phydev); 1889 if (ret) 1890 return ret; 1891 1892 val = phy_read(phydev, KSZ8081_LMD); 1893 if (val < 0) 1894 return val; 1895 1896 if (ksz886x_cable_test_failed(val)) 1897 return -EAGAIN; 1898 1899 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 1900 ksz886x_cable_test_result_trans(val)); 1901 if (ret) 1902 return ret; 1903 1904 if (!ksz886x_cable_test_fault_length_valid(val)) 1905 return 0; 1906 1907 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], 1908 ksz886x_cable_test_fault_length(val)); 1909 } 1910 1911 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 1912 bool *finished) 1913 { 1914 unsigned long pair_mask = 0x3; 1915 int retries = 20; 1916 int pair, ret; 1917 1918 *finished = false; 1919 1920 /* Try harder if link partner is active */ 1921 while (pair_mask && retries--) { 1922 for_each_set_bit(pair, &pair_mask, 4) { 1923 ret = ksz886x_cable_test_one_pair(phydev, pair); 1924 if (ret == -EAGAIN) 1925 continue; 1926 if (ret < 0) 1927 return ret; 1928 clear_bit(pair, &pair_mask); 1929 } 1930 /* If link partner is in autonegotiation mode it will send 2ms 1931 * of FLPs with at least 6ms of silence. 1932 * Add 2ms sleep to have better chances to hit this silence. 1933 */ 1934 if (pair_mask) 1935 msleep(2); 1936 } 1937 1938 *finished = true; 1939 1940 return ret; 1941 } 1942 1943 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 1944 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 1945 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 1946 1947 #define LAN8814_QSGMII_SOFT_RESET 0x43 1948 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 1949 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 1950 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 1951 #define LAN8814_ALIGN_SWAP 0x4a 1952 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 1953 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 1954 1955 #define LAN8804_ALIGN_SWAP 0x4a 1956 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 1957 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 1958 #define LAN8814_CLOCK_MANAGEMENT 0xd 1959 #define LAN8814_LINK_QUALITY 0x8e 1960 1961 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 1962 { 1963 int data; 1964 1965 phy_lock_mdio_bus(phydev); 1966 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 1967 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 1968 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 1969 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 1970 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 1971 phy_unlock_mdio_bus(phydev); 1972 1973 return data; 1974 } 1975 1976 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 1977 u16 val) 1978 { 1979 phy_lock_mdio_bus(phydev); 1980 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 1981 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 1982 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 1983 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 1984 1985 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 1986 if (val != 0) 1987 phydev_err(phydev, "Error: phy_write has returned error %d\n", 1988 val); 1989 phy_unlock_mdio_bus(phydev); 1990 return val; 1991 } 1992 1993 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 1994 { 1995 u16 val = 0; 1996 1997 if (enable) 1998 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 1999 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2000 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2001 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2002 2003 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val); 2004 } 2005 2006 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2007 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2008 { 2009 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI); 2010 *seconds = (*seconds << 16) | 2011 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO); 2012 2013 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI); 2014 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2015 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO); 2016 2017 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2); 2018 } 2019 2020 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2021 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2022 { 2023 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI); 2024 *seconds = *seconds << 16 | 2025 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO); 2026 2027 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI); 2028 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2029 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO); 2030 2031 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2); 2032 } 2033 2034 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info) 2035 { 2036 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2037 struct phy_device *phydev = ptp_priv->phydev; 2038 struct lan8814_shared_priv *shared = phydev->shared->priv; 2039 2040 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2041 SOF_TIMESTAMPING_RX_HARDWARE | 2042 SOF_TIMESTAMPING_RAW_HARDWARE; 2043 2044 info->phc_index = ptp_clock_index(shared->ptp_clock); 2045 2046 info->tx_types = 2047 (1 << HWTSTAMP_TX_OFF) | 2048 (1 << HWTSTAMP_TX_ON) | 2049 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 2050 2051 info->rx_filters = 2052 (1 << HWTSTAMP_FILTER_NONE) | 2053 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2054 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 2055 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 2056 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2057 2058 return 0; 2059 } 2060 2061 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 2062 { 2063 int i; 2064 2065 for (i = 0; i < FIFO_SIZE; ++i) 2066 lanphy_read_page_reg(phydev, 5, 2067 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 2068 2069 /* Read to clear overflow status bit */ 2070 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2071 } 2072 2073 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr) 2074 { 2075 struct kszphy_ptp_priv *ptp_priv = 2076 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2077 struct phy_device *phydev = ptp_priv->phydev; 2078 struct lan8814_shared_priv *shared = phydev->shared->priv; 2079 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2080 struct hwtstamp_config config; 2081 int txcfg = 0, rxcfg = 0; 2082 int pkt_ts_enable; 2083 2084 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2085 return -EFAULT; 2086 2087 ptp_priv->hwts_tx_type = config.tx_type; 2088 ptp_priv->rx_filter = config.rx_filter; 2089 2090 switch (config.rx_filter) { 2091 case HWTSTAMP_FILTER_NONE: 2092 ptp_priv->layer = 0; 2093 ptp_priv->version = 0; 2094 break; 2095 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2096 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2097 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2098 ptp_priv->layer = PTP_CLASS_L4; 2099 ptp_priv->version = PTP_CLASS_V2; 2100 break; 2101 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2102 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2103 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2104 ptp_priv->layer = PTP_CLASS_L2; 2105 ptp_priv->version = PTP_CLASS_V2; 2106 break; 2107 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2108 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2109 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2110 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 2111 ptp_priv->version = PTP_CLASS_V2; 2112 break; 2113 default: 2114 return -ERANGE; 2115 } 2116 2117 if (ptp_priv->layer & PTP_CLASS_L2) { 2118 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 2119 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 2120 } else if (ptp_priv->layer & PTP_CLASS_L4) { 2121 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 2122 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 2123 } 2124 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg); 2125 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg); 2126 2127 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 2128 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 2129 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 2130 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 2131 2132 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) 2133 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2134 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2135 2136 if (config.rx_filter != HWTSTAMP_FILTER_NONE) 2137 lan8814_config_ts_intr(ptp_priv->phydev, true); 2138 else 2139 lan8814_config_ts_intr(ptp_priv->phydev, false); 2140 2141 mutex_lock(&shared->shared_lock); 2142 if (config.rx_filter != HWTSTAMP_FILTER_NONE) 2143 shared->ref++; 2144 else 2145 shared->ref--; 2146 2147 if (shared->ref) 2148 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2149 PTP_CMD_CTL_PTP_ENABLE_); 2150 else 2151 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2152 PTP_CMD_CTL_PTP_DISABLE_); 2153 mutex_unlock(&shared->shared_lock); 2154 2155 /* In case of multiple starts and stops, these needs to be cleared */ 2156 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2157 list_del(&rx_ts->list); 2158 kfree(rx_ts); 2159 } 2160 skb_queue_purge(&ptp_priv->rx_queue); 2161 skb_queue_purge(&ptp_priv->tx_queue); 2162 2163 lan8814_flush_fifo(ptp_priv->phydev, false); 2164 lan8814_flush_fifo(ptp_priv->phydev, true); 2165 2166 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; 2167 } 2168 2169 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 2170 struct sk_buff *skb, int type) 2171 { 2172 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2173 2174 switch (ptp_priv->hwts_tx_type) { 2175 case HWTSTAMP_TX_ONESTEP_SYNC: 2176 if (ptp_msg_is_sync(skb, type)) { 2177 kfree_skb(skb); 2178 return; 2179 } 2180 fallthrough; 2181 case HWTSTAMP_TX_ON: 2182 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2183 skb_queue_tail(&ptp_priv->tx_queue, skb); 2184 break; 2185 case HWTSTAMP_TX_OFF: 2186 default: 2187 kfree_skb(skb); 2188 break; 2189 } 2190 } 2191 2192 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 2193 { 2194 struct ptp_header *ptp_header; 2195 u32 type; 2196 2197 skb_push(skb, ETH_HLEN); 2198 type = ptp_classify_raw(skb); 2199 ptp_header = ptp_parse_header(skb, type); 2200 skb_pull_inline(skb, ETH_HLEN); 2201 2202 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2203 } 2204 2205 static bool lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 2206 struct sk_buff *skb) 2207 { 2208 struct skb_shared_hwtstamps *shhwtstamps; 2209 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2210 unsigned long flags; 2211 bool ret = false; 2212 u16 skb_sig; 2213 2214 lan8814_get_sig_rx(skb, &skb_sig); 2215 2216 /* Iterate over all RX timestamps and match it with the received skbs */ 2217 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2218 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2219 /* Check if we found the signature we were looking for. */ 2220 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2221 continue; 2222 2223 shhwtstamps = skb_hwtstamps(skb); 2224 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2225 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 2226 rx_ts->nsec); 2227 list_del(&rx_ts->list); 2228 kfree(rx_ts); 2229 2230 ret = true; 2231 break; 2232 } 2233 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2234 2235 if (ret) 2236 netif_rx(skb); 2237 return ret; 2238 } 2239 2240 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 2241 { 2242 struct kszphy_ptp_priv *ptp_priv = 2243 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2244 2245 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 2246 type == PTP_CLASS_NONE) 2247 return false; 2248 2249 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 2250 return false; 2251 2252 /* If we failed to match then add it to the queue for when the timestamp 2253 * will come 2254 */ 2255 if (!lan8814_match_rx_ts(ptp_priv, skb)) 2256 skb_queue_tail(&ptp_priv->rx_queue, skb); 2257 2258 return true; 2259 } 2260 2261 static void lan8814_ptp_clock_set(struct phy_device *phydev, 2262 u32 seconds, u32 nano_seconds) 2263 { 2264 u32 sec_low, sec_high, nsec_low, nsec_high; 2265 2266 sec_low = seconds & 0xffff; 2267 sec_high = (seconds >> 16) & 0xffff; 2268 nsec_low = nano_seconds & 0xffff; 2269 nsec_high = (nano_seconds >> 16) & 0x3fff; 2270 2271 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low); 2272 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high); 2273 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low); 2274 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high); 2275 2276 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_); 2277 } 2278 2279 static void lan8814_ptp_clock_get(struct phy_device *phydev, 2280 u32 *seconds, u32 *nano_seconds) 2281 { 2282 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_); 2283 2284 *seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID); 2285 *seconds = (*seconds << 16) | 2286 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO); 2287 2288 *nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI); 2289 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2290 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO); 2291 } 2292 2293 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 2294 struct timespec64 *ts) 2295 { 2296 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2297 ptp_clock_info); 2298 struct phy_device *phydev = shared->phydev; 2299 u32 nano_seconds; 2300 u32 seconds; 2301 2302 mutex_lock(&shared->shared_lock); 2303 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 2304 mutex_unlock(&shared->shared_lock); 2305 ts->tv_sec = seconds; 2306 ts->tv_nsec = nano_seconds; 2307 2308 return 0; 2309 } 2310 2311 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 2312 const struct timespec64 *ts) 2313 { 2314 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2315 ptp_clock_info); 2316 struct phy_device *phydev = shared->phydev; 2317 2318 mutex_lock(&shared->shared_lock); 2319 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 2320 mutex_unlock(&shared->shared_lock); 2321 2322 return 0; 2323 } 2324 2325 static void lan8814_ptp_clock_step(struct phy_device *phydev, 2326 s64 time_step_ns) 2327 { 2328 u32 nano_seconds_step; 2329 u64 abs_time_step_ns; 2330 u32 unsigned_seconds; 2331 u32 nano_seconds; 2332 u32 remainder; 2333 s32 seconds; 2334 2335 if (time_step_ns > 15000000000LL) { 2336 /* convert to clock set */ 2337 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2338 unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL, 2339 &remainder); 2340 nano_seconds += remainder; 2341 if (nano_seconds >= 1000000000) { 2342 unsigned_seconds++; 2343 nano_seconds -= 1000000000; 2344 } 2345 lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds); 2346 return; 2347 } else if (time_step_ns < -15000000000LL) { 2348 /* convert to clock set */ 2349 time_step_ns = -time_step_ns; 2350 2351 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2352 unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 2353 &remainder); 2354 nano_seconds_step = remainder; 2355 if (nano_seconds < nano_seconds_step) { 2356 unsigned_seconds--; 2357 nano_seconds += 1000000000; 2358 } 2359 nano_seconds -= nano_seconds_step; 2360 lan8814_ptp_clock_set(phydev, unsigned_seconds, 2361 nano_seconds); 2362 return; 2363 } 2364 2365 /* do clock step */ 2366 if (time_step_ns >= 0) { 2367 abs_time_step_ns = (u64)time_step_ns; 2368 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 2369 &remainder); 2370 nano_seconds = remainder; 2371 } else { 2372 abs_time_step_ns = (u64)(-time_step_ns); 2373 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 2374 &remainder)); 2375 nano_seconds = remainder; 2376 if (nano_seconds > 0) { 2377 /* subtracting nano seconds is not allowed 2378 * convert to subtracting from seconds, 2379 * and adding to nanoseconds 2380 */ 2381 seconds--; 2382 nano_seconds = (1000000000 - nano_seconds); 2383 } 2384 } 2385 2386 if (nano_seconds > 0) { 2387 /* add 8 ns to cover the likely normal increment */ 2388 nano_seconds += 8; 2389 } 2390 2391 if (nano_seconds >= 1000000000) { 2392 /* carry into seconds */ 2393 seconds++; 2394 nano_seconds -= 1000000000; 2395 } 2396 2397 while (seconds) { 2398 if (seconds > 0) { 2399 u32 adjustment_value = (u32)seconds; 2400 u16 adjustment_value_lo, adjustment_value_hi; 2401 2402 if (adjustment_value > 0xF) 2403 adjustment_value = 0xF; 2404 2405 adjustment_value_lo = adjustment_value & 0xffff; 2406 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2407 2408 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2409 adjustment_value_lo); 2410 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2411 PTP_LTC_STEP_ADJ_DIR_ | 2412 adjustment_value_hi); 2413 seconds -= ((s32)adjustment_value); 2414 } else { 2415 u32 adjustment_value = (u32)(-seconds); 2416 u16 adjustment_value_lo, adjustment_value_hi; 2417 2418 if (adjustment_value > 0xF) 2419 adjustment_value = 0xF; 2420 2421 adjustment_value_lo = adjustment_value & 0xffff; 2422 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2423 2424 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2425 adjustment_value_lo); 2426 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2427 adjustment_value_hi); 2428 seconds += ((s32)adjustment_value); 2429 } 2430 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2431 PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 2432 } 2433 if (nano_seconds) { 2434 u16 nano_seconds_lo; 2435 u16 nano_seconds_hi; 2436 2437 nano_seconds_lo = nano_seconds & 0xffff; 2438 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 2439 2440 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2441 nano_seconds_lo); 2442 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2443 PTP_LTC_STEP_ADJ_DIR_ | 2444 nano_seconds_hi); 2445 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2446 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 2447 } 2448 } 2449 2450 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 2451 { 2452 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2453 ptp_clock_info); 2454 struct phy_device *phydev = shared->phydev; 2455 2456 mutex_lock(&shared->shared_lock); 2457 lan8814_ptp_clock_step(phydev, delta); 2458 mutex_unlock(&shared->shared_lock); 2459 2460 return 0; 2461 } 2462 2463 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 2464 { 2465 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2466 ptp_clock_info); 2467 struct phy_device *phydev = shared->phydev; 2468 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 2469 bool positive = true; 2470 u32 kszphy_rate_adj; 2471 2472 if (scaled_ppm < 0) { 2473 scaled_ppm = -scaled_ppm; 2474 positive = false; 2475 } 2476 2477 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 2478 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 2479 2480 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 2481 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 2482 2483 if (positive) 2484 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 2485 2486 mutex_lock(&shared->shared_lock); 2487 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi); 2488 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo); 2489 mutex_unlock(&shared->shared_lock); 2490 2491 return 0; 2492 } 2493 2494 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 2495 { 2496 struct ptp_header *ptp_header; 2497 u32 type; 2498 2499 type = ptp_classify_raw(skb); 2500 ptp_header = ptp_parse_header(skb, type); 2501 2502 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2503 } 2504 2505 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 2506 { 2507 struct phy_device *phydev = ptp_priv->phydev; 2508 struct skb_shared_hwtstamps shhwtstamps; 2509 struct sk_buff *skb, *skb_tmp; 2510 unsigned long flags; 2511 u32 seconds, nsec; 2512 bool ret = false; 2513 u16 skb_sig; 2514 u16 seq_id; 2515 2516 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 2517 2518 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 2519 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 2520 lan8814_get_sig_tx(skb, &skb_sig); 2521 2522 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 2523 continue; 2524 2525 __skb_unlink(skb, &ptp_priv->tx_queue); 2526 ret = true; 2527 break; 2528 } 2529 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 2530 2531 if (ret) { 2532 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2533 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 2534 skb_complete_tx_timestamp(skb, &shhwtstamps); 2535 } 2536 } 2537 2538 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 2539 { 2540 struct phy_device *phydev = ptp_priv->phydev; 2541 u32 reg; 2542 2543 do { 2544 lan8814_dequeue_tx_skb(ptp_priv); 2545 2546 /* If other timestamps are available in the FIFO, 2547 * process them. 2548 */ 2549 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2550 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 2551 } 2552 2553 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 2554 struct lan8814_ptp_rx_ts *rx_ts) 2555 { 2556 struct skb_shared_hwtstamps *shhwtstamps; 2557 struct sk_buff *skb, *skb_tmp; 2558 unsigned long flags; 2559 bool ret = false; 2560 u16 skb_sig; 2561 2562 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 2563 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 2564 lan8814_get_sig_rx(skb, &skb_sig); 2565 2566 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2567 continue; 2568 2569 __skb_unlink(skb, &ptp_priv->rx_queue); 2570 2571 ret = true; 2572 break; 2573 } 2574 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 2575 2576 if (ret) { 2577 shhwtstamps = skb_hwtstamps(skb); 2578 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2579 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 2580 netif_rx(skb); 2581 } 2582 2583 return ret; 2584 } 2585 2586 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 2587 { 2588 struct phy_device *phydev = ptp_priv->phydev; 2589 struct lan8814_ptp_rx_ts *rx_ts; 2590 unsigned long flags; 2591 u32 reg; 2592 2593 do { 2594 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 2595 if (!rx_ts) 2596 return; 2597 2598 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 2599 &rx_ts->seq_id); 2600 2601 /* If we failed to match the skb add it to the queue for when 2602 * the frame will come 2603 */ 2604 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 2605 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2606 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 2607 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2608 } else { 2609 kfree(rx_ts); 2610 } 2611 2612 /* If other timestamps are available in the FIFO, 2613 * process them. 2614 */ 2615 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2616 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 2617 } 2618 2619 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev) 2620 { 2621 struct kszphy_priv *priv = phydev->priv; 2622 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 2623 u16 status; 2624 2625 status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2626 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 2627 lan8814_get_tx_ts(ptp_priv); 2628 2629 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 2630 lan8814_get_rx_ts(ptp_priv); 2631 2632 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 2633 lan8814_flush_fifo(phydev, true); 2634 skb_queue_purge(&ptp_priv->tx_queue); 2635 } 2636 2637 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 2638 lan8814_flush_fifo(phydev, false); 2639 skb_queue_purge(&ptp_priv->rx_queue); 2640 } 2641 } 2642 2643 static int lan8804_config_init(struct phy_device *phydev) 2644 { 2645 int val; 2646 2647 /* MDI-X setting for swap A,B transmit */ 2648 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP); 2649 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK; 2650 val |= LAN8804_ALIGN_TX_A_B_SWAP; 2651 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val); 2652 2653 /* Make sure that the PHY will not stop generating the clock when the 2654 * link partner goes down 2655 */ 2656 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e); 2657 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY); 2658 2659 return 0; 2660 } 2661 2662 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 2663 { 2664 int irq_status, tsu_irq_status; 2665 2666 irq_status = phy_read(phydev, LAN8814_INTS); 2667 if (irq_status > 0 && (irq_status & LAN8814_INT_LINK)) 2668 phy_trigger_machine(phydev); 2669 2670 if (irq_status < 0) { 2671 phy_error(phydev); 2672 return IRQ_NONE; 2673 } 2674 2675 while (1) { 2676 tsu_irq_status = lanphy_read_page_reg(phydev, 4, 2677 LAN8814_INTR_STS_REG); 2678 2679 if (tsu_irq_status > 0 && 2680 (tsu_irq_status & (LAN8814_INTR_STS_REG_1588_TSU0_ | 2681 LAN8814_INTR_STS_REG_1588_TSU1_ | 2682 LAN8814_INTR_STS_REG_1588_TSU2_ | 2683 LAN8814_INTR_STS_REG_1588_TSU3_))) 2684 lan8814_handle_ptp_interrupt(phydev); 2685 else 2686 break; 2687 } 2688 return IRQ_HANDLED; 2689 } 2690 2691 static int lan8814_ack_interrupt(struct phy_device *phydev) 2692 { 2693 /* bit[12..0] int status, which is a read and clear register. */ 2694 int rc; 2695 2696 rc = phy_read(phydev, LAN8814_INTS); 2697 2698 return (rc < 0) ? rc : 0; 2699 } 2700 2701 static int lan8814_config_intr(struct phy_device *phydev) 2702 { 2703 int err; 2704 2705 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG, 2706 LAN8814_INTR_CTRL_REG_POLARITY | 2707 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 2708 2709 /* enable / disable interrupts */ 2710 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 2711 err = lan8814_ack_interrupt(phydev); 2712 if (err) 2713 return err; 2714 2715 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 2716 } else { 2717 err = phy_write(phydev, LAN8814_INTC, 0); 2718 if (err) 2719 return err; 2720 2721 err = lan8814_ack_interrupt(phydev); 2722 } 2723 2724 return err; 2725 } 2726 2727 static void lan8814_ptp_init(struct phy_device *phydev) 2728 { 2729 struct kszphy_priv *priv = phydev->priv; 2730 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 2731 u32 temp; 2732 2733 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 2734 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 2735 return; 2736 2737 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_); 2738 2739 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD); 2740 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 2741 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp); 2742 2743 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD); 2744 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 2745 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp); 2746 2747 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0); 2748 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0); 2749 2750 /* Removing default registers configs related to L2 and IP */ 2751 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0); 2752 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0); 2753 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0); 2754 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0); 2755 2756 skb_queue_head_init(&ptp_priv->tx_queue); 2757 skb_queue_head_init(&ptp_priv->rx_queue); 2758 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 2759 spin_lock_init(&ptp_priv->rx_ts_lock); 2760 2761 ptp_priv->phydev = phydev; 2762 2763 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 2764 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 2765 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 2766 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 2767 2768 phydev->mii_ts = &ptp_priv->mii_ts; 2769 } 2770 2771 static int lan8814_ptp_probe_once(struct phy_device *phydev) 2772 { 2773 struct lan8814_shared_priv *shared = phydev->shared->priv; 2774 2775 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 2776 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 2777 return 0; 2778 2779 /* Initialise shared lock for clock*/ 2780 mutex_init(&shared->shared_lock); 2781 2782 shared->ptp_clock_info.owner = THIS_MODULE; 2783 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 2784 shared->ptp_clock_info.max_adj = 31249999; 2785 shared->ptp_clock_info.n_alarm = 0; 2786 shared->ptp_clock_info.n_ext_ts = 0; 2787 shared->ptp_clock_info.n_pins = 0; 2788 shared->ptp_clock_info.pps = 0; 2789 shared->ptp_clock_info.pin_config = NULL; 2790 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 2791 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 2792 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 2793 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 2794 shared->ptp_clock_info.getcrosststamp = NULL; 2795 2796 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 2797 &phydev->mdio.dev); 2798 if (IS_ERR_OR_NULL(shared->ptp_clock)) { 2799 phydev_err(phydev, "ptp_clock_register failed %lu\n", 2800 PTR_ERR(shared->ptp_clock)); 2801 return -EINVAL; 2802 } 2803 2804 phydev_dbg(phydev, "successfully registered ptp clock\n"); 2805 2806 shared->phydev = phydev; 2807 2808 /* The EP.4 is shared between all the PHYs in the package and also it 2809 * can be accessed by any of the PHYs 2810 */ 2811 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_); 2812 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE, 2813 PTP_OPERATING_MODE_STANDALONE_); 2814 2815 return 0; 2816 } 2817 2818 static int lan8814_config_init(struct phy_device *phydev) 2819 { 2820 int val; 2821 2822 /* Reset the PHY */ 2823 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET); 2824 val |= LAN8814_QSGMII_SOFT_RESET_BIT; 2825 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val); 2826 2827 /* Disable ANEG with QSGMII PCS Host side */ 2828 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG); 2829 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA; 2830 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val); 2831 2832 /* MDI-X setting for swap A,B transmit */ 2833 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP); 2834 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK; 2835 val |= LAN8814_ALIGN_TX_A_B_SWAP; 2836 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val); 2837 2838 return 0; 2839 } 2840 2841 static int lan8814_release_coma_mode(struct phy_device *phydev) 2842 { 2843 struct gpio_desc *gpiod; 2844 2845 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 2846 GPIOD_OUT_HIGH_OPEN_DRAIN); 2847 if (IS_ERR(gpiod)) 2848 return PTR_ERR(gpiod); 2849 2850 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 2851 gpiod_set_value_cansleep(gpiod, 0); 2852 2853 return 0; 2854 } 2855 2856 static int lan8814_probe(struct phy_device *phydev) 2857 { 2858 struct kszphy_priv *priv; 2859 u16 addr; 2860 int err; 2861 2862 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 2863 if (!priv) 2864 return -ENOMEM; 2865 2866 priv->led_mode = -1; 2867 2868 phydev->priv = priv; 2869 2870 /* Strap-in value for PHY address, below register read gives starting 2871 * phy address value 2872 */ 2873 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F; 2874 devm_phy_package_join(&phydev->mdio.dev, phydev, 2875 addr, sizeof(struct lan8814_shared_priv)); 2876 2877 if (phy_package_init_once(phydev)) { 2878 err = lan8814_release_coma_mode(phydev); 2879 if (err) 2880 return err; 2881 2882 err = lan8814_ptp_probe_once(phydev); 2883 if (err) 2884 return err; 2885 } 2886 2887 lan8814_ptp_init(phydev); 2888 2889 return 0; 2890 } 2891 2892 static struct phy_driver ksphy_driver[] = { 2893 { 2894 .phy_id = PHY_ID_KS8737, 2895 .phy_id_mask = MICREL_PHY_ID_MASK, 2896 .name = "Micrel KS8737", 2897 /* PHY_BASIC_FEATURES */ 2898 .driver_data = &ks8737_type, 2899 .probe = kszphy_probe, 2900 .config_init = kszphy_config_init, 2901 .config_intr = kszphy_config_intr, 2902 .handle_interrupt = kszphy_handle_interrupt, 2903 .suspend = kszphy_suspend, 2904 .resume = kszphy_resume, 2905 }, { 2906 .phy_id = PHY_ID_KSZ8021, 2907 .phy_id_mask = 0x00ffffff, 2908 .name = "Micrel KSZ8021 or KSZ8031", 2909 /* PHY_BASIC_FEATURES */ 2910 .driver_data = &ksz8021_type, 2911 .probe = kszphy_probe, 2912 .config_init = kszphy_config_init, 2913 .config_intr = kszphy_config_intr, 2914 .handle_interrupt = kszphy_handle_interrupt, 2915 .get_sset_count = kszphy_get_sset_count, 2916 .get_strings = kszphy_get_strings, 2917 .get_stats = kszphy_get_stats, 2918 .suspend = kszphy_suspend, 2919 .resume = kszphy_resume, 2920 }, { 2921 .phy_id = PHY_ID_KSZ8031, 2922 .phy_id_mask = 0x00ffffff, 2923 .name = "Micrel KSZ8031", 2924 /* PHY_BASIC_FEATURES */ 2925 .driver_data = &ksz8021_type, 2926 .probe = kszphy_probe, 2927 .config_init = kszphy_config_init, 2928 .config_intr = kszphy_config_intr, 2929 .handle_interrupt = kszphy_handle_interrupt, 2930 .get_sset_count = kszphy_get_sset_count, 2931 .get_strings = kszphy_get_strings, 2932 .get_stats = kszphy_get_stats, 2933 .suspend = kszphy_suspend, 2934 .resume = kszphy_resume, 2935 }, { 2936 .phy_id = PHY_ID_KSZ8041, 2937 .phy_id_mask = MICREL_PHY_ID_MASK, 2938 .name = "Micrel KSZ8041", 2939 /* PHY_BASIC_FEATURES */ 2940 .driver_data = &ksz8041_type, 2941 .probe = kszphy_probe, 2942 .config_init = ksz8041_config_init, 2943 .config_aneg = ksz8041_config_aneg, 2944 .config_intr = kszphy_config_intr, 2945 .handle_interrupt = kszphy_handle_interrupt, 2946 .get_sset_count = kszphy_get_sset_count, 2947 .get_strings = kszphy_get_strings, 2948 .get_stats = kszphy_get_stats, 2949 /* No suspend/resume callbacks because of errata DS80000700A, 2950 * receiver error following software power down. 2951 */ 2952 }, { 2953 .phy_id = PHY_ID_KSZ8041RNLI, 2954 .phy_id_mask = MICREL_PHY_ID_MASK, 2955 .name = "Micrel KSZ8041RNLI", 2956 /* PHY_BASIC_FEATURES */ 2957 .driver_data = &ksz8041_type, 2958 .probe = kszphy_probe, 2959 .config_init = kszphy_config_init, 2960 .config_intr = kszphy_config_intr, 2961 .handle_interrupt = kszphy_handle_interrupt, 2962 .get_sset_count = kszphy_get_sset_count, 2963 .get_strings = kszphy_get_strings, 2964 .get_stats = kszphy_get_stats, 2965 .suspend = kszphy_suspend, 2966 .resume = kszphy_resume, 2967 }, { 2968 .name = "Micrel KSZ8051", 2969 /* PHY_BASIC_FEATURES */ 2970 .driver_data = &ksz8051_type, 2971 .probe = kszphy_probe, 2972 .config_init = kszphy_config_init, 2973 .config_intr = kszphy_config_intr, 2974 .handle_interrupt = kszphy_handle_interrupt, 2975 .get_sset_count = kszphy_get_sset_count, 2976 .get_strings = kszphy_get_strings, 2977 .get_stats = kszphy_get_stats, 2978 .match_phy_device = ksz8051_match_phy_device, 2979 .suspend = kszphy_suspend, 2980 .resume = kszphy_resume, 2981 }, { 2982 .phy_id = PHY_ID_KSZ8001, 2983 .name = "Micrel KSZ8001 or KS8721", 2984 .phy_id_mask = 0x00fffffc, 2985 /* PHY_BASIC_FEATURES */ 2986 .driver_data = &ksz8041_type, 2987 .probe = kszphy_probe, 2988 .config_init = kszphy_config_init, 2989 .config_intr = kszphy_config_intr, 2990 .handle_interrupt = kszphy_handle_interrupt, 2991 .get_sset_count = kszphy_get_sset_count, 2992 .get_strings = kszphy_get_strings, 2993 .get_stats = kszphy_get_stats, 2994 .suspend = kszphy_suspend, 2995 .resume = kszphy_resume, 2996 }, { 2997 .phy_id = PHY_ID_KSZ8081, 2998 .name = "Micrel KSZ8081 or KSZ8091", 2999 .phy_id_mask = MICREL_PHY_ID_MASK, 3000 .flags = PHY_POLL_CABLE_TEST, 3001 /* PHY_BASIC_FEATURES */ 3002 .driver_data = &ksz8081_type, 3003 .probe = kszphy_probe, 3004 .config_init = ksz8081_config_init, 3005 .soft_reset = genphy_soft_reset, 3006 .config_aneg = ksz8081_config_aneg, 3007 .read_status = ksz8081_read_status, 3008 .config_intr = kszphy_config_intr, 3009 .handle_interrupt = kszphy_handle_interrupt, 3010 .get_sset_count = kszphy_get_sset_count, 3011 .get_strings = kszphy_get_strings, 3012 .get_stats = kszphy_get_stats, 3013 .suspend = kszphy_suspend, 3014 .resume = kszphy_resume, 3015 .cable_test_start = ksz886x_cable_test_start, 3016 .cable_test_get_status = ksz886x_cable_test_get_status, 3017 }, { 3018 .phy_id = PHY_ID_KSZ8061, 3019 .name = "Micrel KSZ8061", 3020 .phy_id_mask = MICREL_PHY_ID_MASK, 3021 /* PHY_BASIC_FEATURES */ 3022 .probe = kszphy_probe, 3023 .config_init = ksz8061_config_init, 3024 .config_intr = kszphy_config_intr, 3025 .handle_interrupt = kszphy_handle_interrupt, 3026 .suspend = kszphy_suspend, 3027 .resume = kszphy_resume, 3028 }, { 3029 .phy_id = PHY_ID_KSZ9021, 3030 .phy_id_mask = 0x000ffffe, 3031 .name = "Micrel KSZ9021 Gigabit PHY", 3032 /* PHY_GBIT_FEATURES */ 3033 .driver_data = &ksz9021_type, 3034 .probe = kszphy_probe, 3035 .get_features = ksz9031_get_features, 3036 .config_init = ksz9021_config_init, 3037 .config_intr = kszphy_config_intr, 3038 .handle_interrupt = kszphy_handle_interrupt, 3039 .get_sset_count = kszphy_get_sset_count, 3040 .get_strings = kszphy_get_strings, 3041 .get_stats = kszphy_get_stats, 3042 .suspend = kszphy_suspend, 3043 .resume = kszphy_resume, 3044 .read_mmd = genphy_read_mmd_unsupported, 3045 .write_mmd = genphy_write_mmd_unsupported, 3046 }, { 3047 .phy_id = PHY_ID_KSZ9031, 3048 .phy_id_mask = MICREL_PHY_ID_MASK, 3049 .name = "Micrel KSZ9031 Gigabit PHY", 3050 .flags = PHY_POLL_CABLE_TEST, 3051 .driver_data = &ksz9021_type, 3052 .probe = kszphy_probe, 3053 .get_features = ksz9031_get_features, 3054 .config_init = ksz9031_config_init, 3055 .soft_reset = genphy_soft_reset, 3056 .read_status = ksz9031_read_status, 3057 .config_intr = kszphy_config_intr, 3058 .handle_interrupt = kszphy_handle_interrupt, 3059 .get_sset_count = kszphy_get_sset_count, 3060 .get_strings = kszphy_get_strings, 3061 .get_stats = kszphy_get_stats, 3062 .suspend = kszphy_suspend, 3063 .resume = kszphy_resume, 3064 .cable_test_start = ksz9x31_cable_test_start, 3065 .cable_test_get_status = ksz9x31_cable_test_get_status, 3066 }, { 3067 .phy_id = PHY_ID_LAN8814, 3068 .phy_id_mask = MICREL_PHY_ID_MASK, 3069 .name = "Microchip INDY Gigabit Quad PHY", 3070 .config_init = lan8814_config_init, 3071 .probe = lan8814_probe, 3072 .soft_reset = genphy_soft_reset, 3073 .read_status = ksz9031_read_status, 3074 .get_sset_count = kszphy_get_sset_count, 3075 .get_strings = kszphy_get_strings, 3076 .get_stats = kszphy_get_stats, 3077 .suspend = genphy_suspend, 3078 .resume = kszphy_resume, 3079 .config_intr = lan8814_config_intr, 3080 .handle_interrupt = lan8814_handle_interrupt, 3081 }, { 3082 .phy_id = PHY_ID_LAN8804, 3083 .phy_id_mask = MICREL_PHY_ID_MASK, 3084 .name = "Microchip LAN966X Gigabit PHY", 3085 .config_init = lan8804_config_init, 3086 .driver_data = &ksz9021_type, 3087 .probe = kszphy_probe, 3088 .soft_reset = genphy_soft_reset, 3089 .read_status = ksz9031_read_status, 3090 .get_sset_count = kszphy_get_sset_count, 3091 .get_strings = kszphy_get_strings, 3092 .get_stats = kszphy_get_stats, 3093 .suspend = genphy_suspend, 3094 .resume = kszphy_resume, 3095 }, { 3096 .phy_id = PHY_ID_KSZ9131, 3097 .phy_id_mask = MICREL_PHY_ID_MASK, 3098 .name = "Microchip KSZ9131 Gigabit PHY", 3099 /* PHY_GBIT_FEATURES */ 3100 .flags = PHY_POLL_CABLE_TEST, 3101 .driver_data = &ksz9021_type, 3102 .probe = kszphy_probe, 3103 .config_init = ksz9131_config_init, 3104 .config_intr = kszphy_config_intr, 3105 .handle_interrupt = kszphy_handle_interrupt, 3106 .get_sset_count = kszphy_get_sset_count, 3107 .get_strings = kszphy_get_strings, 3108 .get_stats = kszphy_get_stats, 3109 .suspend = kszphy_suspend, 3110 .resume = kszphy_resume, 3111 .cable_test_start = ksz9x31_cable_test_start, 3112 .cable_test_get_status = ksz9x31_cable_test_get_status, 3113 }, { 3114 .phy_id = PHY_ID_KSZ8873MLL, 3115 .phy_id_mask = MICREL_PHY_ID_MASK, 3116 .name = "Micrel KSZ8873MLL Switch", 3117 /* PHY_BASIC_FEATURES */ 3118 .config_init = kszphy_config_init, 3119 .config_aneg = ksz8873mll_config_aneg, 3120 .read_status = ksz8873mll_read_status, 3121 .suspend = genphy_suspend, 3122 .resume = genphy_resume, 3123 }, { 3124 .phy_id = PHY_ID_KSZ886X, 3125 .phy_id_mask = MICREL_PHY_ID_MASK, 3126 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 3127 /* PHY_BASIC_FEATURES */ 3128 .flags = PHY_POLL_CABLE_TEST, 3129 .config_init = kszphy_config_init, 3130 .config_aneg = ksz886x_config_aneg, 3131 .read_status = ksz886x_read_status, 3132 .suspend = genphy_suspend, 3133 .resume = genphy_resume, 3134 .cable_test_start = ksz886x_cable_test_start, 3135 .cable_test_get_status = ksz886x_cable_test_get_status, 3136 }, { 3137 .name = "Micrel KSZ87XX Switch", 3138 /* PHY_BASIC_FEATURES */ 3139 .config_init = kszphy_config_init, 3140 .match_phy_device = ksz8795_match_phy_device, 3141 .suspend = genphy_suspend, 3142 .resume = genphy_resume, 3143 }, { 3144 .phy_id = PHY_ID_KSZ9477, 3145 .phy_id_mask = MICREL_PHY_ID_MASK, 3146 .name = "Microchip KSZ9477", 3147 /* PHY_GBIT_FEATURES */ 3148 .config_init = kszphy_config_init, 3149 .suspend = genphy_suspend, 3150 .resume = genphy_resume, 3151 } }; 3152 3153 module_phy_driver(ksphy_driver); 3154 3155 MODULE_DESCRIPTION("Micrel PHY driver"); 3156 MODULE_AUTHOR("David J. Choi"); 3157 MODULE_LICENSE("GPL"); 3158 3159 static struct mdio_device_id __maybe_unused micrel_tbl[] = { 3160 { PHY_ID_KSZ9021, 0x000ffffe }, 3161 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK }, 3162 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK }, 3163 { PHY_ID_KSZ8001, 0x00fffffc }, 3164 { PHY_ID_KS8737, MICREL_PHY_ID_MASK }, 3165 { PHY_ID_KSZ8021, 0x00ffffff }, 3166 { PHY_ID_KSZ8031, 0x00ffffff }, 3167 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK }, 3168 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK }, 3169 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK }, 3170 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK }, 3171 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK }, 3172 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK }, 3173 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK }, 3174 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK }, 3175 { } 3176 }; 3177 3178 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 3179