xref: /openbmc/linux/drivers/net/phy/micrel.c (revision 9d5dbfe0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/net/phy/micrel.c
4  *
5  * Driver for Micrel PHYs
6  *
7  * Author: David J. Choi
8  *
9  * Copyright (c) 2010-2013 Micrel, Inc.
10  * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11  *
12  * Support : Micrel Phys:
13  *		Giga phys: ksz9021, ksz9031, ksz9131
14  *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15  *			   ksz8021, ksz8031, ksz8051,
16  *			   ksz8081, ksz8091,
17  *			   ksz8061,
18  *		Switch : ksz8873, ksz886x
19  *			 ksz9477
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36 
37 /* Operation Mode Strap Override */
38 #define MII_KSZPHY_OMSO				0x16
39 #define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
40 #define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
41 #define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
42 #define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
43 #define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
44 
45 /* general Interrupt control/status reg in vendor specific block. */
46 #define MII_KSZPHY_INTCS			0x1B
47 #define KSZPHY_INTCS_JABBER			BIT(15)
48 #define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
49 #define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
50 #define KSZPHY_INTCS_PARELLEL			BIT(12)
51 #define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
52 #define KSZPHY_INTCS_LINK_DOWN			BIT(10)
53 #define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
54 #define KSZPHY_INTCS_LINK_UP			BIT(8)
55 #define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
56 						KSZPHY_INTCS_LINK_DOWN)
57 #define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
58 #define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
59 #define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
60 						 KSZPHY_INTCS_LINK_UP_STATUS)
61 
62 /* LinkMD Control/Status */
63 #define KSZ8081_LMD				0x1d
64 #define KSZ8081_LMD_ENABLE_TEST			BIT(15)
65 #define KSZ8081_LMD_STAT_NORMAL			0
66 #define KSZ8081_LMD_STAT_OPEN			1
67 #define KSZ8081_LMD_STAT_SHORT			2
68 #define KSZ8081_LMD_STAT_FAIL			3
69 #define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
70 /* Short cable (<10 meter) has been detected by LinkMD */
71 #define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
72 #define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
73 
74 #define KSZ9x31_LMD				0x12
75 #define KSZ9x31_LMD_VCT_EN			BIT(15)
76 #define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
77 #define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
78 #define KSZ9x31_LMD_VCT_SEL_RESULT		0
79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
81 #define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
82 #define KSZ9x31_LMD_VCT_ST_NORMAL		0
83 #define KSZ9x31_LMD_VCT_ST_OPEN			1
84 #define KSZ9x31_LMD_VCT_ST_SHORT		2
85 #define KSZ9x31_LMD_VCT_ST_FAIL			3
86 #define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
89 #define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
93 #define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
94 
95 #define KSZPHY_WIRE_PAIR_MASK			0x3
96 
97 #define LAN8814_CABLE_DIAG			0x12
98 #define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
100 #define LAN8814_PAIR_BIT_SHIFT			12
101 
102 #define LAN8814_WIRE_PAIR_MASK			0xF
103 
104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
105 #define LAN8814_INTC				0x18
106 #define LAN8814_INTS				0x1B
107 
108 #define LAN8814_INT_LINK_DOWN			BIT(2)
109 #define LAN8814_INT_LINK_UP			BIT(0)
110 #define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
111 						 LAN8814_INT_LINK_DOWN)
112 
113 #define LAN8814_INTR_CTRL_REG			0x34
114 #define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
116 
117 /* Represents 1ppm adjustment in 2^32 format with
118  * each nsec contains 4 clock cycles.
119  * The value is calculated as following: (1/1000000)/((2^-32)/4)
120  */
121 #define LAN8814_1PPM_FORMAT			17179
122 
123 #define PTP_RX_MOD				0x024F
124 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
125 #define PTP_RX_TIMESTAMP_EN			0x024D
126 #define PTP_TX_TIMESTAMP_EN			0x028D
127 
128 #define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
129 #define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
130 #define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
131 #define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
132 
133 #define PTP_TX_PARSE_L2_ADDR_EN			0x0284
134 #define PTP_RX_PARSE_L2_ADDR_EN			0x0244
135 
136 #define PTP_TX_PARSE_IP_ADDR_EN			0x0285
137 #define PTP_RX_PARSE_IP_ADDR_EN			0x0245
138 #define LTC_HARD_RESET				0x023F
139 #define LTC_HARD_RESET_				BIT(0)
140 
141 #define TSU_HARD_RESET				0x02C1
142 #define TSU_HARD_RESET_				BIT(0)
143 
144 #define PTP_CMD_CTL				0x0200
145 #define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
146 #define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
147 #define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
148 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
149 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
150 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
151 
152 #define PTP_CLOCK_SET_SEC_MID			0x0206
153 #define PTP_CLOCK_SET_SEC_LO			0x0207
154 #define PTP_CLOCK_SET_NS_HI			0x0208
155 #define PTP_CLOCK_SET_NS_LO			0x0209
156 
157 #define PTP_CLOCK_READ_SEC_MID			0x022A
158 #define PTP_CLOCK_READ_SEC_LO			0x022B
159 #define PTP_CLOCK_READ_NS_HI			0x022C
160 #define PTP_CLOCK_READ_NS_LO			0x022D
161 
162 #define PTP_OPERATING_MODE			0x0241
163 #define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
164 
165 #define PTP_TX_MOD				0x028F
166 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
167 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
168 
169 #define PTP_RX_PARSE_CONFIG			0x0242
170 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
171 #define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
172 #define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
173 
174 #define PTP_TX_PARSE_CONFIG			0x0282
175 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
176 #define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
177 #define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
178 
179 #define PTP_CLOCK_RATE_ADJ_HI			0x020C
180 #define PTP_CLOCK_RATE_ADJ_LO			0x020D
181 #define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
182 
183 #define PTP_LTC_STEP_ADJ_HI			0x0212
184 #define PTP_LTC_STEP_ADJ_LO			0x0213
185 #define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
186 
187 #define LAN8814_INTR_STS_REG			0x0033
188 #define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
189 #define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
190 #define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
191 #define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
192 
193 #define PTP_CAP_INFO				0x022A
194 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
195 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
196 
197 #define PTP_TX_EGRESS_SEC_HI			0x0296
198 #define PTP_TX_EGRESS_SEC_LO			0x0297
199 #define PTP_TX_EGRESS_NS_HI			0x0294
200 #define PTP_TX_EGRESS_NS_LO			0x0295
201 #define PTP_TX_MSG_HEADER2			0x0299
202 
203 #define PTP_RX_INGRESS_SEC_HI			0x0256
204 #define PTP_RX_INGRESS_SEC_LO			0x0257
205 #define PTP_RX_INGRESS_NS_HI			0x0254
206 #define PTP_RX_INGRESS_NS_LO			0x0255
207 #define PTP_RX_MSG_HEADER2			0x0259
208 
209 #define PTP_TSU_INT_EN				0x0200
210 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
211 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
212 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
213 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
214 
215 #define PTP_TSU_INT_STS				0x0201
216 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
217 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
218 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
219 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
220 
221 #define LAN8814_LED_CTRL_1			0x0
222 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
223 
224 /* PHY Control 1 */
225 #define MII_KSZPHY_CTRL_1			0x1e
226 #define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
227 
228 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
229 #define MII_KSZPHY_CTRL_2			0x1f
230 #define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
231 /* bitmap of PHY register to set interrupt mode */
232 #define KSZ8081_CTRL2_HP_MDIX			BIT(15)
233 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
234 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
235 #define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
236 #define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
237 #define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
238 #define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
239 
240 /* Write/read to/from extended registers */
241 #define MII_KSZPHY_EXTREG			0x0b
242 #define KSZPHY_EXTREG_WRITE			0x8000
243 
244 #define MII_KSZPHY_EXTREG_WRITE			0x0c
245 #define MII_KSZPHY_EXTREG_READ			0x0d
246 
247 /* Extended registers */
248 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
249 #define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
250 #define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
251 
252 #define PS_TO_REG				200
253 #define FIFO_SIZE				8
254 
255 struct kszphy_hw_stat {
256 	const char *string;
257 	u8 reg;
258 	u8 bits;
259 };
260 
261 static struct kszphy_hw_stat kszphy_hw_stats[] = {
262 	{ "phy_receive_errors", 21, 16},
263 	{ "phy_idle_errors", 10, 8 },
264 };
265 
266 struct kszphy_type {
267 	u32 led_mode_reg;
268 	u16 interrupt_level_mask;
269 	u16 cable_diag_reg;
270 	unsigned long pair_mask;
271 	u16 disable_dll_tx_bit;
272 	u16 disable_dll_rx_bit;
273 	u16 disable_dll_mask;
274 	bool has_broadcast_disable;
275 	bool has_nand_tree_disable;
276 	bool has_rmii_ref_clk_sel;
277 };
278 
279 /* Shared structure between the PHYs of the same package. */
280 struct lan8814_shared_priv {
281 	struct phy_device *phydev;
282 	struct ptp_clock *ptp_clock;
283 	struct ptp_clock_info ptp_clock_info;
284 
285 	/* Reference counter to how many ports in the package are enabling the
286 	 * timestamping
287 	 */
288 	u8 ref;
289 
290 	/* Lock for ptp_clock and ref */
291 	struct mutex shared_lock;
292 };
293 
294 struct lan8814_ptp_rx_ts {
295 	struct list_head list;
296 	u32 seconds;
297 	u32 nsec;
298 	u16 seq_id;
299 };
300 
301 struct kszphy_ptp_priv {
302 	struct mii_timestamper mii_ts;
303 	struct phy_device *phydev;
304 
305 	struct sk_buff_head tx_queue;
306 	struct sk_buff_head rx_queue;
307 
308 	struct list_head rx_ts_list;
309 	/* Lock for Rx ts fifo */
310 	spinlock_t rx_ts_lock;
311 
312 	int hwts_tx_type;
313 	enum hwtstamp_rx_filters rx_filter;
314 	int layer;
315 	int version;
316 };
317 
318 struct kszphy_priv {
319 	struct kszphy_ptp_priv ptp_priv;
320 	const struct kszphy_type *type;
321 	int led_mode;
322 	u16 vct_ctrl1000;
323 	bool rmii_ref_clk_sel;
324 	bool rmii_ref_clk_sel_val;
325 	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
326 };
327 
328 static const struct kszphy_type lan8814_type = {
329 	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
330 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
331 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
332 };
333 
334 static const struct kszphy_type ksz886x_type = {
335 	.cable_diag_reg		= KSZ8081_LMD,
336 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
337 };
338 
339 static const struct kszphy_type ksz8021_type = {
340 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
341 	.has_broadcast_disable	= true,
342 	.has_nand_tree_disable	= true,
343 	.has_rmii_ref_clk_sel	= true,
344 };
345 
346 static const struct kszphy_type ksz8041_type = {
347 	.led_mode_reg		= MII_KSZPHY_CTRL_1,
348 };
349 
350 static const struct kszphy_type ksz8051_type = {
351 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
352 	.has_nand_tree_disable	= true,
353 };
354 
355 static const struct kszphy_type ksz8081_type = {
356 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
357 	.has_broadcast_disable	= true,
358 	.has_nand_tree_disable	= true,
359 	.has_rmii_ref_clk_sel	= true,
360 };
361 
362 static const struct kszphy_type ks8737_type = {
363 	.interrupt_level_mask	= BIT(14),
364 };
365 
366 static const struct kszphy_type ksz9021_type = {
367 	.interrupt_level_mask	= BIT(14),
368 };
369 
370 static const struct kszphy_type ksz9131_type = {
371 	.interrupt_level_mask	= BIT(14),
372 	.disable_dll_tx_bit	= BIT(12),
373 	.disable_dll_rx_bit	= BIT(12),
374 	.disable_dll_mask	= BIT_MASK(12),
375 };
376 
377 static const struct kszphy_type lan8841_type = {
378 	.disable_dll_tx_bit	= BIT(14),
379 	.disable_dll_rx_bit	= BIT(14),
380 	.disable_dll_mask	= BIT_MASK(14),
381 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
382 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
383 };
384 
385 static int kszphy_extended_write(struct phy_device *phydev,
386 				u32 regnum, u16 val)
387 {
388 	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
389 	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
390 }
391 
392 static int kszphy_extended_read(struct phy_device *phydev,
393 				u32 regnum)
394 {
395 	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
396 	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
397 }
398 
399 static int kszphy_ack_interrupt(struct phy_device *phydev)
400 {
401 	/* bit[7..0] int status, which is a read and clear register. */
402 	int rc;
403 
404 	rc = phy_read(phydev, MII_KSZPHY_INTCS);
405 
406 	return (rc < 0) ? rc : 0;
407 }
408 
409 static int kszphy_config_intr(struct phy_device *phydev)
410 {
411 	const struct kszphy_type *type = phydev->drv->driver_data;
412 	int temp, err;
413 	u16 mask;
414 
415 	if (type && type->interrupt_level_mask)
416 		mask = type->interrupt_level_mask;
417 	else
418 		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
419 
420 	/* set the interrupt pin active low */
421 	temp = phy_read(phydev, MII_KSZPHY_CTRL);
422 	if (temp < 0)
423 		return temp;
424 	temp &= ~mask;
425 	phy_write(phydev, MII_KSZPHY_CTRL, temp);
426 
427 	/* enable / disable interrupts */
428 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
429 		err = kszphy_ack_interrupt(phydev);
430 		if (err)
431 			return err;
432 
433 		temp = KSZPHY_INTCS_ALL;
434 		err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
435 	} else {
436 		temp = 0;
437 		err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
438 		if (err)
439 			return err;
440 
441 		err = kszphy_ack_interrupt(phydev);
442 	}
443 
444 	return err;
445 }
446 
447 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
448 {
449 	int irq_status;
450 
451 	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
452 	if (irq_status < 0) {
453 		phy_error(phydev);
454 		return IRQ_NONE;
455 	}
456 
457 	if (!(irq_status & KSZPHY_INTCS_STATUS))
458 		return IRQ_NONE;
459 
460 	phy_trigger_machine(phydev);
461 
462 	return IRQ_HANDLED;
463 }
464 
465 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
466 {
467 	int ctrl;
468 
469 	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
470 	if (ctrl < 0)
471 		return ctrl;
472 
473 	if (val)
474 		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
475 	else
476 		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
477 
478 	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
479 }
480 
481 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
482 {
483 	int rc, temp, shift;
484 
485 	switch (reg) {
486 	case MII_KSZPHY_CTRL_1:
487 		shift = 14;
488 		break;
489 	case MII_KSZPHY_CTRL_2:
490 		shift = 4;
491 		break;
492 	default:
493 		return -EINVAL;
494 	}
495 
496 	temp = phy_read(phydev, reg);
497 	if (temp < 0) {
498 		rc = temp;
499 		goto out;
500 	}
501 
502 	temp &= ~(3 << shift);
503 	temp |= val << shift;
504 	rc = phy_write(phydev, reg, temp);
505 out:
506 	if (rc < 0)
507 		phydev_err(phydev, "failed to set led mode\n");
508 
509 	return rc;
510 }
511 
512 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
513  * unique (non-broadcast) address on a shared bus.
514  */
515 static int kszphy_broadcast_disable(struct phy_device *phydev)
516 {
517 	int ret;
518 
519 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
520 	if (ret < 0)
521 		goto out;
522 
523 	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
524 out:
525 	if (ret)
526 		phydev_err(phydev, "failed to disable broadcast address\n");
527 
528 	return ret;
529 }
530 
531 static int kszphy_nand_tree_disable(struct phy_device *phydev)
532 {
533 	int ret;
534 
535 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
536 	if (ret < 0)
537 		goto out;
538 
539 	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
540 		return 0;
541 
542 	ret = phy_write(phydev, MII_KSZPHY_OMSO,
543 			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
544 out:
545 	if (ret)
546 		phydev_err(phydev, "failed to disable NAND tree mode\n");
547 
548 	return ret;
549 }
550 
551 /* Some config bits need to be set again on resume, handle them here. */
552 static int kszphy_config_reset(struct phy_device *phydev)
553 {
554 	struct kszphy_priv *priv = phydev->priv;
555 	int ret;
556 
557 	if (priv->rmii_ref_clk_sel) {
558 		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
559 		if (ret) {
560 			phydev_err(phydev,
561 				   "failed to set rmii reference clock\n");
562 			return ret;
563 		}
564 	}
565 
566 	if (priv->type && priv->led_mode >= 0)
567 		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
568 
569 	return 0;
570 }
571 
572 static int kszphy_config_init(struct phy_device *phydev)
573 {
574 	struct kszphy_priv *priv = phydev->priv;
575 	const struct kszphy_type *type;
576 
577 	if (!priv)
578 		return 0;
579 
580 	type = priv->type;
581 
582 	if (type && type->has_broadcast_disable)
583 		kszphy_broadcast_disable(phydev);
584 
585 	if (type && type->has_nand_tree_disable)
586 		kszphy_nand_tree_disable(phydev);
587 
588 	return kszphy_config_reset(phydev);
589 }
590 
591 static int ksz8041_fiber_mode(struct phy_device *phydev)
592 {
593 	struct device_node *of_node = phydev->mdio.dev.of_node;
594 
595 	return of_property_read_bool(of_node, "micrel,fiber-mode");
596 }
597 
598 static int ksz8041_config_init(struct phy_device *phydev)
599 {
600 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
601 
602 	/* Limit supported and advertised modes in fiber mode */
603 	if (ksz8041_fiber_mode(phydev)) {
604 		phydev->dev_flags |= MICREL_PHY_FXEN;
605 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
606 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
607 
608 		linkmode_and(phydev->supported, phydev->supported, mask);
609 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
610 				 phydev->supported);
611 		linkmode_and(phydev->advertising, phydev->advertising, mask);
612 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
613 				 phydev->advertising);
614 		phydev->autoneg = AUTONEG_DISABLE;
615 	}
616 
617 	return kszphy_config_init(phydev);
618 }
619 
620 static int ksz8041_config_aneg(struct phy_device *phydev)
621 {
622 	/* Skip auto-negotiation in fiber mode */
623 	if (phydev->dev_flags & MICREL_PHY_FXEN) {
624 		phydev->speed = SPEED_100;
625 		return 0;
626 	}
627 
628 	return genphy_config_aneg(phydev);
629 }
630 
631 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
632 					    const bool ksz_8051)
633 {
634 	int ret;
635 
636 	if ((phydev->phy_id & MICREL_PHY_ID_MASK) != PHY_ID_KSZ8051)
637 		return 0;
638 
639 	ret = phy_read(phydev, MII_BMSR);
640 	if (ret < 0)
641 		return ret;
642 
643 	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
644 	 * exact PHY ID. However, they can be told apart by the extended
645 	 * capability registers presence. The KSZ8051 PHY has them while
646 	 * the switch does not.
647 	 */
648 	ret &= BMSR_ERCAP;
649 	if (ksz_8051)
650 		return ret;
651 	else
652 		return !ret;
653 }
654 
655 static int ksz8051_match_phy_device(struct phy_device *phydev)
656 {
657 	return ksz8051_ksz8795_match_phy_device(phydev, true);
658 }
659 
660 static int ksz8081_config_init(struct phy_device *phydev)
661 {
662 	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
663 	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
664 	 * pull-down is missing, the factory test mode should be cleared by
665 	 * manually writing a 0.
666 	 */
667 	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
668 
669 	return kszphy_config_init(phydev);
670 }
671 
672 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
673 {
674 	u16 val;
675 
676 	switch (ctrl) {
677 	case ETH_TP_MDI:
678 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
679 		break;
680 	case ETH_TP_MDI_X:
681 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
682 			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
683 		break;
684 	case ETH_TP_MDI_AUTO:
685 		val = 0;
686 		break;
687 	default:
688 		return 0;
689 	}
690 
691 	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
692 			  KSZ8081_CTRL2_HP_MDIX |
693 			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
694 			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
695 			  KSZ8081_CTRL2_HP_MDIX | val);
696 }
697 
698 static int ksz8081_config_aneg(struct phy_device *phydev)
699 {
700 	int ret;
701 
702 	ret = genphy_config_aneg(phydev);
703 	if (ret)
704 		return ret;
705 
706 	/* The MDI-X configuration is automatically changed by the PHY after
707 	 * switching from autoneg off to on. So, take MDI-X configuration under
708 	 * own control and set it after autoneg configuration was done.
709 	 */
710 	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
711 }
712 
713 static int ksz8081_mdix_update(struct phy_device *phydev)
714 {
715 	int ret;
716 
717 	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
718 	if (ret < 0)
719 		return ret;
720 
721 	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
722 		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
723 			phydev->mdix_ctrl = ETH_TP_MDI_X;
724 		else
725 			phydev->mdix_ctrl = ETH_TP_MDI;
726 	} else {
727 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
728 	}
729 
730 	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
731 	if (ret < 0)
732 		return ret;
733 
734 	if (ret & KSZ8081_CTRL1_MDIX_STAT)
735 		phydev->mdix = ETH_TP_MDI;
736 	else
737 		phydev->mdix = ETH_TP_MDI_X;
738 
739 	return 0;
740 }
741 
742 static int ksz8081_read_status(struct phy_device *phydev)
743 {
744 	int ret;
745 
746 	ret = ksz8081_mdix_update(phydev);
747 	if (ret < 0)
748 		return ret;
749 
750 	return genphy_read_status(phydev);
751 }
752 
753 static int ksz8061_config_init(struct phy_device *phydev)
754 {
755 	int ret;
756 
757 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
758 	if (ret)
759 		return ret;
760 
761 	return kszphy_config_init(phydev);
762 }
763 
764 static int ksz8795_match_phy_device(struct phy_device *phydev)
765 {
766 	return ksz8051_ksz8795_match_phy_device(phydev, false);
767 }
768 
769 static int ksz9021_load_values_from_of(struct phy_device *phydev,
770 				       const struct device_node *of_node,
771 				       u16 reg,
772 				       const char *field1, const char *field2,
773 				       const char *field3, const char *field4)
774 {
775 	int val1 = -1;
776 	int val2 = -2;
777 	int val3 = -3;
778 	int val4 = -4;
779 	int newval;
780 	int matches = 0;
781 
782 	if (!of_property_read_u32(of_node, field1, &val1))
783 		matches++;
784 
785 	if (!of_property_read_u32(of_node, field2, &val2))
786 		matches++;
787 
788 	if (!of_property_read_u32(of_node, field3, &val3))
789 		matches++;
790 
791 	if (!of_property_read_u32(of_node, field4, &val4))
792 		matches++;
793 
794 	if (!matches)
795 		return 0;
796 
797 	if (matches < 4)
798 		newval = kszphy_extended_read(phydev, reg);
799 	else
800 		newval = 0;
801 
802 	if (val1 != -1)
803 		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
804 
805 	if (val2 != -2)
806 		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
807 
808 	if (val3 != -3)
809 		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
810 
811 	if (val4 != -4)
812 		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
813 
814 	return kszphy_extended_write(phydev, reg, newval);
815 }
816 
817 static int ksz9021_config_init(struct phy_device *phydev)
818 {
819 	const struct device_node *of_node;
820 	const struct device *dev_walker;
821 
822 	/* The Micrel driver has a deprecated option to place phy OF
823 	 * properties in the MAC node. Walk up the tree of devices to
824 	 * find a device with an OF node.
825 	 */
826 	dev_walker = &phydev->mdio.dev;
827 	do {
828 		of_node = dev_walker->of_node;
829 		dev_walker = dev_walker->parent;
830 
831 	} while (!of_node && dev_walker);
832 
833 	if (of_node) {
834 		ksz9021_load_values_from_of(phydev, of_node,
835 				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
836 				    "txen-skew-ps", "txc-skew-ps",
837 				    "rxdv-skew-ps", "rxc-skew-ps");
838 		ksz9021_load_values_from_of(phydev, of_node,
839 				    MII_KSZPHY_RX_DATA_PAD_SKEW,
840 				    "rxd0-skew-ps", "rxd1-skew-ps",
841 				    "rxd2-skew-ps", "rxd3-skew-ps");
842 		ksz9021_load_values_from_of(phydev, of_node,
843 				    MII_KSZPHY_TX_DATA_PAD_SKEW,
844 				    "txd0-skew-ps", "txd1-skew-ps",
845 				    "txd2-skew-ps", "txd3-skew-ps");
846 	}
847 	return 0;
848 }
849 
850 #define KSZ9031_PS_TO_REG		60
851 
852 /* Extended registers */
853 /* MMD Address 0x0 */
854 #define MII_KSZ9031RN_FLP_BURST_TX_LO	3
855 #define MII_KSZ9031RN_FLP_BURST_TX_HI	4
856 
857 /* MMD Address 0x2 */
858 #define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
859 #define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
860 #define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
861 
862 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
863 #define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
864 #define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
865 #define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
866 #define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
867 
868 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
869 #define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
870 #define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
871 #define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
872 #define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
873 
874 #define MII_KSZ9031RN_CLK_PAD_SKEW	8
875 #define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
876 #define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
877 
878 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
879  * provide different RGMII options we need to configure delay offset
880  * for each pad relative to build in delay.
881  */
882 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
883  * 1.80ns
884  */
885 #define RX_ID				0x7
886 #define RX_CLK_ID			0x19
887 
888 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
889  * internal 1.2ns delay.
890  */
891 #define RX_ND				0xc
892 #define RX_CLK_ND			0x0
893 
894 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
895 #define TX_ID				0x0
896 #define TX_CLK_ID			0x1f
897 
898 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
899  * dealy
900  */
901 #define TX_ND				0x7
902 #define TX_CLK_ND			0xf
903 
904 /* MMD Address 0x1C */
905 #define MII_KSZ9031RN_EDPD		0x23
906 #define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
907 
908 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
909 				       const struct device_node *of_node,
910 				       u16 reg, size_t field_sz,
911 				       const char *field[], u8 numfields,
912 				       bool *update)
913 {
914 	int val[4] = {-1, -2, -3, -4};
915 	int matches = 0;
916 	u16 mask;
917 	u16 maxval;
918 	u16 newval;
919 	int i;
920 
921 	for (i = 0; i < numfields; i++)
922 		if (!of_property_read_u32(of_node, field[i], val + i))
923 			matches++;
924 
925 	if (!matches)
926 		return 0;
927 
928 	*update |= true;
929 
930 	if (matches < numfields)
931 		newval = phy_read_mmd(phydev, 2, reg);
932 	else
933 		newval = 0;
934 
935 	maxval = (field_sz == 4) ? 0xf : 0x1f;
936 	for (i = 0; i < numfields; i++)
937 		if (val[i] != -(i + 1)) {
938 			mask = 0xffff;
939 			mask ^= maxval << (field_sz * i);
940 			newval = (newval & mask) |
941 				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
942 					<< (field_sz * i));
943 		}
944 
945 	return phy_write_mmd(phydev, 2, reg, newval);
946 }
947 
948 /* Center KSZ9031RNX FLP timing at 16ms. */
949 static int ksz9031_center_flp_timing(struct phy_device *phydev)
950 {
951 	int result;
952 
953 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
954 			       0x0006);
955 	if (result)
956 		return result;
957 
958 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
959 			       0x1A80);
960 	if (result)
961 		return result;
962 
963 	return genphy_restart_aneg(phydev);
964 }
965 
966 /* Enable energy-detect power-down mode */
967 static int ksz9031_enable_edpd(struct phy_device *phydev)
968 {
969 	int reg;
970 
971 	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
972 	if (reg < 0)
973 		return reg;
974 	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
975 			     reg | MII_KSZ9031RN_EDPD_ENABLE);
976 }
977 
978 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
979 {
980 	u16 rx, tx, rx_clk, tx_clk;
981 	int ret;
982 
983 	switch (phydev->interface) {
984 	case PHY_INTERFACE_MODE_RGMII:
985 		tx = TX_ND;
986 		tx_clk = TX_CLK_ND;
987 		rx = RX_ND;
988 		rx_clk = RX_CLK_ND;
989 		break;
990 	case PHY_INTERFACE_MODE_RGMII_ID:
991 		tx = TX_ID;
992 		tx_clk = TX_CLK_ID;
993 		rx = RX_ID;
994 		rx_clk = RX_CLK_ID;
995 		break;
996 	case PHY_INTERFACE_MODE_RGMII_RXID:
997 		tx = TX_ND;
998 		tx_clk = TX_CLK_ND;
999 		rx = RX_ID;
1000 		rx_clk = RX_CLK_ID;
1001 		break;
1002 	case PHY_INTERFACE_MODE_RGMII_TXID:
1003 		tx = TX_ID;
1004 		tx_clk = TX_CLK_ID;
1005 		rx = RX_ND;
1006 		rx_clk = RX_CLK_ND;
1007 		break;
1008 	default:
1009 		return 0;
1010 	}
1011 
1012 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1013 			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1014 			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1015 	if (ret < 0)
1016 		return ret;
1017 
1018 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1019 			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1020 			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1021 			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1022 			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1023 	if (ret < 0)
1024 		return ret;
1025 
1026 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1027 			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1028 			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1029 			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1030 			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1031 	if (ret < 0)
1032 		return ret;
1033 
1034 	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1035 			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1036 			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1037 }
1038 
1039 static int ksz9031_config_init(struct phy_device *phydev)
1040 {
1041 	const struct device_node *of_node;
1042 	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1043 	static const char *rx_data_skews[4] = {
1044 		"rxd0-skew-ps", "rxd1-skew-ps",
1045 		"rxd2-skew-ps", "rxd3-skew-ps"
1046 	};
1047 	static const char *tx_data_skews[4] = {
1048 		"txd0-skew-ps", "txd1-skew-ps",
1049 		"txd2-skew-ps", "txd3-skew-ps"
1050 	};
1051 	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1052 	const struct device *dev_walker;
1053 	int result;
1054 
1055 	result = ksz9031_enable_edpd(phydev);
1056 	if (result < 0)
1057 		return result;
1058 
1059 	/* The Micrel driver has a deprecated option to place phy OF
1060 	 * properties in the MAC node. Walk up the tree of devices to
1061 	 * find a device with an OF node.
1062 	 */
1063 	dev_walker = &phydev->mdio.dev;
1064 	do {
1065 		of_node = dev_walker->of_node;
1066 		dev_walker = dev_walker->parent;
1067 	} while (!of_node && dev_walker);
1068 
1069 	if (of_node) {
1070 		bool update = false;
1071 
1072 		if (phy_interface_is_rgmii(phydev)) {
1073 			result = ksz9031_config_rgmii_delay(phydev);
1074 			if (result < 0)
1075 				return result;
1076 		}
1077 
1078 		ksz9031_of_load_skew_values(phydev, of_node,
1079 				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1080 				clk_skews, 2, &update);
1081 
1082 		ksz9031_of_load_skew_values(phydev, of_node,
1083 				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1084 				control_skews, 2, &update);
1085 
1086 		ksz9031_of_load_skew_values(phydev, of_node,
1087 				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1088 				rx_data_skews, 4, &update);
1089 
1090 		ksz9031_of_load_skew_values(phydev, of_node,
1091 				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1092 				tx_data_skews, 4, &update);
1093 
1094 		if (update && !phy_interface_is_rgmii(phydev))
1095 			phydev_warn(phydev,
1096 				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1097 
1098 		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1099 		 * When the device links in the 1000BASE-T slave mode only,
1100 		 * the optional 125MHz reference output clock (CLK125_NDO)
1101 		 * has wide duty cycle variation.
1102 		 *
1103 		 * The optional CLK125_NDO clock does not meet the RGMII
1104 		 * 45/55 percent (min/max) duty cycle requirement and therefore
1105 		 * cannot be used directly by the MAC side for clocking
1106 		 * applications that have setup/hold time requirements on
1107 		 * rising and falling clock edges.
1108 		 *
1109 		 * Workaround:
1110 		 * Force the phy to be the master to receive a stable clock
1111 		 * which meets the duty cycle requirement.
1112 		 */
1113 		if (of_property_read_bool(of_node, "micrel,force-master")) {
1114 			result = phy_read(phydev, MII_CTRL1000);
1115 			if (result < 0)
1116 				goto err_force_master;
1117 
1118 			/* enable master mode, config & prefer master */
1119 			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1120 			result = phy_write(phydev, MII_CTRL1000, result);
1121 			if (result < 0)
1122 				goto err_force_master;
1123 		}
1124 	}
1125 
1126 	return ksz9031_center_flp_timing(phydev);
1127 
1128 err_force_master:
1129 	phydev_err(phydev, "failed to force the phy to master mode\n");
1130 	return result;
1131 }
1132 
1133 #define KSZ9131_SKEW_5BIT_MAX	2400
1134 #define KSZ9131_SKEW_4BIT_MAX	800
1135 #define KSZ9131_OFFSET		700
1136 #define KSZ9131_STEP		100
1137 
1138 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1139 				       struct device_node *of_node,
1140 				       u16 reg, size_t field_sz,
1141 				       char *field[], u8 numfields)
1142 {
1143 	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1144 		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1145 	int skewval, skewmax = 0;
1146 	int matches = 0;
1147 	u16 maxval;
1148 	u16 newval;
1149 	u16 mask;
1150 	int i;
1151 
1152 	/* psec properties in dts should mean x pico seconds */
1153 	if (field_sz == 5)
1154 		skewmax = KSZ9131_SKEW_5BIT_MAX;
1155 	else
1156 		skewmax = KSZ9131_SKEW_4BIT_MAX;
1157 
1158 	for (i = 0; i < numfields; i++)
1159 		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1160 			if (skewval < -KSZ9131_OFFSET)
1161 				skewval = -KSZ9131_OFFSET;
1162 			else if (skewval > skewmax)
1163 				skewval = skewmax;
1164 
1165 			val[i] = skewval + KSZ9131_OFFSET;
1166 			matches++;
1167 		}
1168 
1169 	if (!matches)
1170 		return 0;
1171 
1172 	if (matches < numfields)
1173 		newval = phy_read_mmd(phydev, 2, reg);
1174 	else
1175 		newval = 0;
1176 
1177 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1178 	for (i = 0; i < numfields; i++)
1179 		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1180 			mask = 0xffff;
1181 			mask ^= maxval << (field_sz * i);
1182 			newval = (newval & mask) |
1183 				(((val[i] / KSZ9131_STEP) & maxval)
1184 					<< (field_sz * i));
1185 		}
1186 
1187 	return phy_write_mmd(phydev, 2, reg, newval);
1188 }
1189 
1190 #define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1191 #define KSZ9131RN_RXC_DLL_CTRL		76
1192 #define KSZ9131RN_TXC_DLL_CTRL		77
1193 #define KSZ9131RN_DLL_ENABLE_DELAY	0
1194 
1195 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1196 {
1197 	const struct kszphy_type *type = phydev->drv->driver_data;
1198 	u16 rxcdll_val, txcdll_val;
1199 	int ret;
1200 
1201 	switch (phydev->interface) {
1202 	case PHY_INTERFACE_MODE_RGMII:
1203 		rxcdll_val = type->disable_dll_rx_bit;
1204 		txcdll_val = type->disable_dll_tx_bit;
1205 		break;
1206 	case PHY_INTERFACE_MODE_RGMII_ID:
1207 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1208 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1209 		break;
1210 	case PHY_INTERFACE_MODE_RGMII_RXID:
1211 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1212 		txcdll_val = type->disable_dll_tx_bit;
1213 		break;
1214 	case PHY_INTERFACE_MODE_RGMII_TXID:
1215 		rxcdll_val = type->disable_dll_rx_bit;
1216 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1217 		break;
1218 	default:
1219 		return 0;
1220 	}
1221 
1222 	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1223 			     KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1224 			     rxcdll_val);
1225 	if (ret < 0)
1226 		return ret;
1227 
1228 	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1229 			      KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1230 			      txcdll_val);
1231 }
1232 
1233 /* Silicon Errata DS80000693B
1234  *
1235  * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1236  * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1237  * according to the datasheet (off if there is no link).
1238  */
1239 static int ksz9131_led_errata(struct phy_device *phydev)
1240 {
1241 	int reg;
1242 
1243 	reg = phy_read_mmd(phydev, 2, 0);
1244 	if (reg < 0)
1245 		return reg;
1246 
1247 	if (!(reg & BIT(4)))
1248 		return 0;
1249 
1250 	return phy_set_bits(phydev, 0x1e, BIT(9));
1251 }
1252 
1253 static int ksz9131_config_init(struct phy_device *phydev)
1254 {
1255 	struct device_node *of_node;
1256 	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1257 	char *rx_data_skews[4] = {
1258 		"rxd0-skew-psec", "rxd1-skew-psec",
1259 		"rxd2-skew-psec", "rxd3-skew-psec"
1260 	};
1261 	char *tx_data_skews[4] = {
1262 		"txd0-skew-psec", "txd1-skew-psec",
1263 		"txd2-skew-psec", "txd3-skew-psec"
1264 	};
1265 	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1266 	const struct device *dev_walker;
1267 	int ret;
1268 
1269 	dev_walker = &phydev->mdio.dev;
1270 	do {
1271 		of_node = dev_walker->of_node;
1272 		dev_walker = dev_walker->parent;
1273 	} while (!of_node && dev_walker);
1274 
1275 	if (!of_node)
1276 		return 0;
1277 
1278 	if (phy_interface_is_rgmii(phydev)) {
1279 		ret = ksz9131_config_rgmii_delay(phydev);
1280 		if (ret < 0)
1281 			return ret;
1282 	}
1283 
1284 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1285 					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1286 					  clk_skews, 2);
1287 	if (ret < 0)
1288 		return ret;
1289 
1290 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1291 					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1292 					  control_skews, 2);
1293 	if (ret < 0)
1294 		return ret;
1295 
1296 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1297 					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1298 					  rx_data_skews, 4);
1299 	if (ret < 0)
1300 		return ret;
1301 
1302 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1303 					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1304 					  tx_data_skews, 4);
1305 	if (ret < 0)
1306 		return ret;
1307 
1308 	ret = ksz9131_led_errata(phydev);
1309 	if (ret < 0)
1310 		return ret;
1311 
1312 	return 0;
1313 }
1314 
1315 #define MII_KSZ9131_AUTO_MDIX		0x1C
1316 #define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1317 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1318 
1319 static int ksz9131_mdix_update(struct phy_device *phydev)
1320 {
1321 	int ret;
1322 
1323 	ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX);
1324 	if (ret < 0)
1325 		return ret;
1326 
1327 	if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) {
1328 		if (ret & MII_KSZ9131_AUTO_MDI_SET)
1329 			phydev->mdix_ctrl = ETH_TP_MDI;
1330 		else
1331 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1332 	} else {
1333 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1334 	}
1335 
1336 	if (ret & MII_KSZ9131_AUTO_MDI_SET)
1337 		phydev->mdix = ETH_TP_MDI;
1338 	else
1339 		phydev->mdix = ETH_TP_MDI_X;
1340 
1341 	return 0;
1342 }
1343 
1344 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1345 {
1346 	u16 val;
1347 
1348 	switch (ctrl) {
1349 	case ETH_TP_MDI:
1350 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1351 		      MII_KSZ9131_AUTO_MDI_SET;
1352 		break;
1353 	case ETH_TP_MDI_X:
1354 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1355 		break;
1356 	case ETH_TP_MDI_AUTO:
1357 		val = 0;
1358 		break;
1359 	default:
1360 		return 0;
1361 	}
1362 
1363 	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1364 			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1365 			  MII_KSZ9131_AUTO_MDI_SET, val);
1366 }
1367 
1368 static int ksz9131_read_status(struct phy_device *phydev)
1369 {
1370 	int ret;
1371 
1372 	ret = ksz9131_mdix_update(phydev);
1373 	if (ret < 0)
1374 		return ret;
1375 
1376 	return genphy_read_status(phydev);
1377 }
1378 
1379 static int ksz9131_config_aneg(struct phy_device *phydev)
1380 {
1381 	int ret;
1382 
1383 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1384 	if (ret)
1385 		return ret;
1386 
1387 	return genphy_config_aneg(phydev);
1388 }
1389 
1390 #define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1391 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1392 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1393 static int ksz8873mll_read_status(struct phy_device *phydev)
1394 {
1395 	int regval;
1396 
1397 	/* dummy read */
1398 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1399 
1400 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1401 
1402 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1403 		phydev->duplex = DUPLEX_HALF;
1404 	else
1405 		phydev->duplex = DUPLEX_FULL;
1406 
1407 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1408 		phydev->speed = SPEED_10;
1409 	else
1410 		phydev->speed = SPEED_100;
1411 
1412 	phydev->link = 1;
1413 	phydev->pause = phydev->asym_pause = 0;
1414 
1415 	return 0;
1416 }
1417 
1418 static int ksz9031_get_features(struct phy_device *phydev)
1419 {
1420 	int ret;
1421 
1422 	ret = genphy_read_abilities(phydev);
1423 	if (ret < 0)
1424 		return ret;
1425 
1426 	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1427 	 * Whenever the device's Asymmetric Pause capability is set to 1,
1428 	 * link-up may fail after a link-up to link-down transition.
1429 	 *
1430 	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1431 	 *
1432 	 * Workaround:
1433 	 * Do not enable the Asymmetric Pause capability bit.
1434 	 */
1435 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1436 
1437 	/* We force setting the Pause capability as the core will force the
1438 	 * Asymmetric Pause capability to 1 otherwise.
1439 	 */
1440 	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1441 
1442 	return 0;
1443 }
1444 
1445 static int ksz9031_read_status(struct phy_device *phydev)
1446 {
1447 	int err;
1448 	int regval;
1449 
1450 	err = genphy_read_status(phydev);
1451 	if (err)
1452 		return err;
1453 
1454 	/* Make sure the PHY is not broken. Read idle error count,
1455 	 * and reset the PHY if it is maxed out.
1456 	 */
1457 	regval = phy_read(phydev, MII_STAT1000);
1458 	if ((regval & 0xFF) == 0xFF) {
1459 		phy_init_hw(phydev);
1460 		phydev->link = 0;
1461 		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1462 			phydev->drv->config_intr(phydev);
1463 		return genphy_config_aneg(phydev);
1464 	}
1465 
1466 	return 0;
1467 }
1468 
1469 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1470 {
1471 	struct kszphy_priv *priv = phydev->priv;
1472 	int ret;
1473 
1474 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1475 	 * Prior to running the cable diagnostics, Auto-negotiation should
1476 	 * be disabled, full duplex set and the link speed set to 1000Mbps
1477 	 * via the Basic Control Register.
1478 	 */
1479 	ret = phy_modify(phydev, MII_BMCR,
1480 			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1481 			 BMCR_ANENABLE | BMCR_SPEED100,
1482 			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1483 	if (ret)
1484 		return ret;
1485 
1486 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1487 	 * The Master-Slave configuration should be set to Slave by writing
1488 	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1489 	 * Register.
1490 	 */
1491 	ret = phy_read(phydev, MII_CTRL1000);
1492 	if (ret < 0)
1493 		return ret;
1494 
1495 	/* Cache these bits, they need to be restored once LinkMD finishes. */
1496 	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1497 	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1498 	ret |= CTL1000_ENABLE_MASTER;
1499 
1500 	return phy_write(phydev, MII_CTRL1000, ret);
1501 }
1502 
1503 static int ksz9x31_cable_test_result_trans(u16 status)
1504 {
1505 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1506 	case KSZ9x31_LMD_VCT_ST_NORMAL:
1507 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1508 	case KSZ9x31_LMD_VCT_ST_OPEN:
1509 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1510 	case KSZ9x31_LMD_VCT_ST_SHORT:
1511 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1512 	case KSZ9x31_LMD_VCT_ST_FAIL:
1513 		fallthrough;
1514 	default:
1515 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1516 	}
1517 }
1518 
1519 static bool ksz9x31_cable_test_failed(u16 status)
1520 {
1521 	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1522 
1523 	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1524 }
1525 
1526 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1527 {
1528 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1529 	case KSZ9x31_LMD_VCT_ST_OPEN:
1530 		fallthrough;
1531 	case KSZ9x31_LMD_VCT_ST_SHORT:
1532 		return true;
1533 	}
1534 	return false;
1535 }
1536 
1537 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1538 {
1539 	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1540 
1541 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1542 	 *
1543 	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1544 	 */
1545 	if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_KSZ9131)
1546 		dt = clamp(dt - 22, 0, 255);
1547 
1548 	return (dt * 400) / 10;
1549 }
1550 
1551 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1552 {
1553 	int val, ret;
1554 
1555 	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1556 				    !(val & KSZ9x31_LMD_VCT_EN),
1557 				    30000, 100000, true);
1558 
1559 	return ret < 0 ? ret : 0;
1560 }
1561 
1562 static int ksz9x31_cable_test_get_pair(int pair)
1563 {
1564 	static const int ethtool_pair[] = {
1565 		ETHTOOL_A_CABLE_PAIR_A,
1566 		ETHTOOL_A_CABLE_PAIR_B,
1567 		ETHTOOL_A_CABLE_PAIR_C,
1568 		ETHTOOL_A_CABLE_PAIR_D,
1569 	};
1570 
1571 	return ethtool_pair[pair];
1572 }
1573 
1574 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1575 {
1576 	int ret, val;
1577 
1578 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1579 	 * To test each individual cable pair, set the cable pair in the Cable
1580 	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1581 	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1582 	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1583 	 * will self clear when the test is concluded.
1584 	 */
1585 	ret = phy_write(phydev, KSZ9x31_LMD,
1586 			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1587 	if (ret)
1588 		return ret;
1589 
1590 	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1591 	if (ret)
1592 		return ret;
1593 
1594 	val = phy_read(phydev, KSZ9x31_LMD);
1595 	if (val < 0)
1596 		return val;
1597 
1598 	if (ksz9x31_cable_test_failed(val))
1599 		return -EAGAIN;
1600 
1601 	ret = ethnl_cable_test_result(phydev,
1602 				      ksz9x31_cable_test_get_pair(pair),
1603 				      ksz9x31_cable_test_result_trans(val));
1604 	if (ret)
1605 		return ret;
1606 
1607 	if (!ksz9x31_cable_test_fault_length_valid(val))
1608 		return 0;
1609 
1610 	return ethnl_cable_test_fault_length(phydev,
1611 					     ksz9x31_cable_test_get_pair(pair),
1612 					     ksz9x31_cable_test_fault_length(phydev, val));
1613 }
1614 
1615 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1616 					 bool *finished)
1617 {
1618 	struct kszphy_priv *priv = phydev->priv;
1619 	unsigned long pair_mask = 0xf;
1620 	int retries = 20;
1621 	int pair, ret, rv;
1622 
1623 	*finished = false;
1624 
1625 	/* Try harder if link partner is active */
1626 	while (pair_mask && retries--) {
1627 		for_each_set_bit(pair, &pair_mask, 4) {
1628 			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1629 			if (ret == -EAGAIN)
1630 				continue;
1631 			if (ret < 0)
1632 				return ret;
1633 			clear_bit(pair, &pair_mask);
1634 		}
1635 		/* If link partner is in autonegotiation mode it will send 2ms
1636 		 * of FLPs with at least 6ms of silence.
1637 		 * Add 2ms sleep to have better chances to hit this silence.
1638 		 */
1639 		if (pair_mask)
1640 			usleep_range(2000, 3000);
1641 	}
1642 
1643 	/* Report remaining unfinished pair result as unknown. */
1644 	for_each_set_bit(pair, &pair_mask, 4) {
1645 		ret = ethnl_cable_test_result(phydev,
1646 					      ksz9x31_cable_test_get_pair(pair),
1647 					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1648 	}
1649 
1650 	*finished = true;
1651 
1652 	/* Restore cached bits from before LinkMD got started. */
1653 	rv = phy_modify(phydev, MII_CTRL1000,
1654 			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1655 			priv->vct_ctrl1000);
1656 	if (rv)
1657 		return rv;
1658 
1659 	return ret;
1660 }
1661 
1662 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1663 {
1664 	return 0;
1665 }
1666 
1667 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1668 {
1669 	u16 val;
1670 
1671 	switch (ctrl) {
1672 	case ETH_TP_MDI:
1673 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1674 		break;
1675 	case ETH_TP_MDI_X:
1676 		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1677 		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1678 		 * sheet seems to be missing:
1679 		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1680 		 * 0 = Normal operation (transmit on TX+/TX- pins)
1681 		 */
1682 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1683 		break;
1684 	case ETH_TP_MDI_AUTO:
1685 		val = 0;
1686 		break;
1687 	default:
1688 		return 0;
1689 	}
1690 
1691 	return phy_modify(phydev, MII_BMCR,
1692 			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1693 			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1694 			  KSZ886X_BMCR_HP_MDIX | val);
1695 }
1696 
1697 static int ksz886x_config_aneg(struct phy_device *phydev)
1698 {
1699 	int ret;
1700 
1701 	ret = genphy_config_aneg(phydev);
1702 	if (ret)
1703 		return ret;
1704 
1705 	/* The MDI-X configuration is automatically changed by the PHY after
1706 	 * switching from autoneg off to on. So, take MDI-X configuration under
1707 	 * own control and set it after autoneg configuration was done.
1708 	 */
1709 	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1710 }
1711 
1712 static int ksz886x_mdix_update(struct phy_device *phydev)
1713 {
1714 	int ret;
1715 
1716 	ret = phy_read(phydev, MII_BMCR);
1717 	if (ret < 0)
1718 		return ret;
1719 
1720 	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1721 		if (ret & KSZ886X_BMCR_FORCE_MDI)
1722 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1723 		else
1724 			phydev->mdix_ctrl = ETH_TP_MDI;
1725 	} else {
1726 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1727 	}
1728 
1729 	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1730 	if (ret < 0)
1731 		return ret;
1732 
1733 	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1734 	if (ret & KSZ886X_CTRL_MDIX_STAT)
1735 		phydev->mdix = ETH_TP_MDI_X;
1736 	else
1737 		phydev->mdix = ETH_TP_MDI;
1738 
1739 	return 0;
1740 }
1741 
1742 static int ksz886x_read_status(struct phy_device *phydev)
1743 {
1744 	int ret;
1745 
1746 	ret = ksz886x_mdix_update(phydev);
1747 	if (ret < 0)
1748 		return ret;
1749 
1750 	return genphy_read_status(phydev);
1751 }
1752 
1753 static int kszphy_get_sset_count(struct phy_device *phydev)
1754 {
1755 	return ARRAY_SIZE(kszphy_hw_stats);
1756 }
1757 
1758 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
1759 {
1760 	int i;
1761 
1762 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
1763 		strscpy(data + i * ETH_GSTRING_LEN,
1764 			kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
1765 	}
1766 }
1767 
1768 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
1769 {
1770 	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
1771 	struct kszphy_priv *priv = phydev->priv;
1772 	int val;
1773 	u64 ret;
1774 
1775 	val = phy_read(phydev, stat.reg);
1776 	if (val < 0) {
1777 		ret = U64_MAX;
1778 	} else {
1779 		val = val & ((1 << stat.bits) - 1);
1780 		priv->stats[i] += val;
1781 		ret = priv->stats[i];
1782 	}
1783 
1784 	return ret;
1785 }
1786 
1787 static void kszphy_get_stats(struct phy_device *phydev,
1788 			     struct ethtool_stats *stats, u64 *data)
1789 {
1790 	int i;
1791 
1792 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
1793 		data[i] = kszphy_get_stat(phydev, i);
1794 }
1795 
1796 static int kszphy_suspend(struct phy_device *phydev)
1797 {
1798 	/* Disable PHY Interrupts */
1799 	if (phy_interrupt_is_valid(phydev)) {
1800 		phydev->interrupts = PHY_INTERRUPT_DISABLED;
1801 		if (phydev->drv->config_intr)
1802 			phydev->drv->config_intr(phydev);
1803 	}
1804 
1805 	return genphy_suspend(phydev);
1806 }
1807 
1808 static void kszphy_parse_led_mode(struct phy_device *phydev)
1809 {
1810 	const struct kszphy_type *type = phydev->drv->driver_data;
1811 	const struct device_node *np = phydev->mdio.dev.of_node;
1812 	struct kszphy_priv *priv = phydev->priv;
1813 	int ret;
1814 
1815 	if (type && type->led_mode_reg) {
1816 		ret = of_property_read_u32(np, "micrel,led-mode",
1817 					   &priv->led_mode);
1818 
1819 		if (ret)
1820 			priv->led_mode = -1;
1821 
1822 		if (priv->led_mode > 3) {
1823 			phydev_err(phydev, "invalid led mode: 0x%02x\n",
1824 				   priv->led_mode);
1825 			priv->led_mode = -1;
1826 		}
1827 	} else {
1828 		priv->led_mode = -1;
1829 	}
1830 }
1831 
1832 static int kszphy_resume(struct phy_device *phydev)
1833 {
1834 	int ret;
1835 
1836 	genphy_resume(phydev);
1837 
1838 	/* After switching from power-down to normal mode, an internal global
1839 	 * reset is automatically generated. Wait a minimum of 1 ms before
1840 	 * read/write access to the PHY registers.
1841 	 */
1842 	usleep_range(1000, 2000);
1843 
1844 	ret = kszphy_config_reset(phydev);
1845 	if (ret)
1846 		return ret;
1847 
1848 	/* Enable PHY Interrupts */
1849 	if (phy_interrupt_is_valid(phydev)) {
1850 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
1851 		if (phydev->drv->config_intr)
1852 			phydev->drv->config_intr(phydev);
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 static int kszphy_probe(struct phy_device *phydev)
1859 {
1860 	const struct kszphy_type *type = phydev->drv->driver_data;
1861 	const struct device_node *np = phydev->mdio.dev.of_node;
1862 	struct kszphy_priv *priv;
1863 	struct clk *clk;
1864 
1865 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
1866 	if (!priv)
1867 		return -ENOMEM;
1868 
1869 	phydev->priv = priv;
1870 
1871 	priv->type = type;
1872 
1873 	kszphy_parse_led_mode(phydev);
1874 
1875 	clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref");
1876 	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
1877 	if (!IS_ERR_OR_NULL(clk)) {
1878 		unsigned long rate = clk_get_rate(clk);
1879 		bool rmii_ref_clk_sel_25_mhz;
1880 
1881 		if (type)
1882 			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
1883 		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
1884 				"micrel,rmii-reference-clock-select-25-mhz");
1885 
1886 		if (rate > 24500000 && rate < 25500000) {
1887 			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
1888 		} else if (rate > 49500000 && rate < 50500000) {
1889 			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
1890 		} else {
1891 			phydev_err(phydev, "Clock rate out of range: %ld\n",
1892 				   rate);
1893 			return -EINVAL;
1894 		}
1895 	}
1896 
1897 	if (ksz8041_fiber_mode(phydev))
1898 		phydev->port = PORT_FIBRE;
1899 
1900 	/* Support legacy board-file configuration */
1901 	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
1902 		priv->rmii_ref_clk_sel = true;
1903 		priv->rmii_ref_clk_sel_val = true;
1904 	}
1905 
1906 	return 0;
1907 }
1908 
1909 static int lan8814_cable_test_start(struct phy_device *phydev)
1910 {
1911 	/* If autoneg is enabled, we won't be able to test cross pair
1912 	 * short. In this case, the PHY will "detect" a link and
1913 	 * confuse the internal state machine - disable auto neg here.
1914 	 * Set the speed to 1000mbit and full duplex.
1915 	 */
1916 	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
1917 			  BMCR_SPEED1000 | BMCR_FULLDPLX);
1918 }
1919 
1920 static int ksz886x_cable_test_start(struct phy_device *phydev)
1921 {
1922 	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
1923 		return -EOPNOTSUPP;
1924 
1925 	/* If autoneg is enabled, we won't be able to test cross pair
1926 	 * short. In this case, the PHY will "detect" a link and
1927 	 * confuse the internal state machine - disable auto neg here.
1928 	 * If autoneg is disabled, we should set the speed to 10mbit.
1929 	 */
1930 	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
1931 }
1932 
1933 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
1934 {
1935 	switch (FIELD_GET(mask, status)) {
1936 	case KSZ8081_LMD_STAT_NORMAL:
1937 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1938 	case KSZ8081_LMD_STAT_SHORT:
1939 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1940 	case KSZ8081_LMD_STAT_OPEN:
1941 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1942 	case KSZ8081_LMD_STAT_FAIL:
1943 		fallthrough;
1944 	default:
1945 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1946 	}
1947 }
1948 
1949 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
1950 {
1951 	return FIELD_GET(mask, status) ==
1952 		KSZ8081_LMD_STAT_FAIL;
1953 }
1954 
1955 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
1956 {
1957 	switch (FIELD_GET(mask, status)) {
1958 	case KSZ8081_LMD_STAT_OPEN:
1959 		fallthrough;
1960 	case KSZ8081_LMD_STAT_SHORT:
1961 		return true;
1962 	}
1963 	return false;
1964 }
1965 
1966 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
1967 							   u16 status, u16 data_mask)
1968 {
1969 	int dt;
1970 
1971 	/* According to the data sheet the distance to the fault is
1972 	 * DELTA_TIME * 0.4 meters for ksz phys.
1973 	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
1974 	 */
1975 	dt = FIELD_GET(data_mask, status);
1976 
1977 	if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_LAN8814)
1978 		return ((dt - 22) * 800) / 10;
1979 	else
1980 		return (dt * 400) / 10;
1981 }
1982 
1983 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
1984 {
1985 	const struct kszphy_type *type = phydev->drv->driver_data;
1986 	int val, ret;
1987 
1988 	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
1989 				    !(val & KSZ8081_LMD_ENABLE_TEST),
1990 				    30000, 100000, true);
1991 
1992 	return ret < 0 ? ret : 0;
1993 }
1994 
1995 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
1996 {
1997 	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
1998 					    ETHTOOL_A_CABLE_PAIR_B,
1999 					    ETHTOOL_A_CABLE_PAIR_C,
2000 					    ETHTOOL_A_CABLE_PAIR_D,
2001 					  };
2002 	u32 fault_length;
2003 	int ret;
2004 	int val;
2005 
2006 	val = KSZ8081_LMD_ENABLE_TEST;
2007 	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2008 
2009 	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2010 	if (ret < 0)
2011 		return ret;
2012 
2013 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2014 	if (ret)
2015 		return ret;
2016 
2017 	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2018 	if (val < 0)
2019 		return val;
2020 
2021 	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2022 		return -EAGAIN;
2023 
2024 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2025 				      ksz886x_cable_test_result_trans(val,
2026 								      LAN8814_CABLE_DIAG_STAT_MASK
2027 								      ));
2028 	if (ret)
2029 		return ret;
2030 
2031 	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2032 		return 0;
2033 
2034 	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2035 						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2036 
2037 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2038 }
2039 
2040 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2041 {
2042 	static const int ethtool_pair[] = {
2043 		ETHTOOL_A_CABLE_PAIR_A,
2044 		ETHTOOL_A_CABLE_PAIR_B,
2045 	};
2046 	int ret, val, mdix;
2047 	u32 fault_length;
2048 
2049 	/* There is no way to choice the pair, like we do one ksz9031.
2050 	 * We can workaround this limitation by using the MDI-X functionality.
2051 	 */
2052 	if (pair == 0)
2053 		mdix = ETH_TP_MDI;
2054 	else
2055 		mdix = ETH_TP_MDI_X;
2056 
2057 	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2058 	case PHY_ID_KSZ8081:
2059 		ret = ksz8081_config_mdix(phydev, mdix);
2060 		break;
2061 	case PHY_ID_KSZ886X:
2062 		ret = ksz886x_config_mdix(phydev, mdix);
2063 		break;
2064 	default:
2065 		ret = -ENODEV;
2066 	}
2067 
2068 	if (ret)
2069 		return ret;
2070 
2071 	/* Now we are ready to fire. This command will send a 100ns pulse
2072 	 * to the pair.
2073 	 */
2074 	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2075 	if (ret)
2076 		return ret;
2077 
2078 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2079 	if (ret)
2080 		return ret;
2081 
2082 	val = phy_read(phydev, KSZ8081_LMD);
2083 	if (val < 0)
2084 		return val;
2085 
2086 	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2087 		return -EAGAIN;
2088 
2089 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2090 				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2091 	if (ret)
2092 		return ret;
2093 
2094 	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2095 		return 0;
2096 
2097 	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2098 
2099 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2100 }
2101 
2102 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2103 					 bool *finished)
2104 {
2105 	const struct kszphy_type *type = phydev->drv->driver_data;
2106 	unsigned long pair_mask = type->pair_mask;
2107 	int retries = 20;
2108 	int ret = 0;
2109 	int pair;
2110 
2111 	*finished = false;
2112 
2113 	/* Try harder if link partner is active */
2114 	while (pair_mask && retries--) {
2115 		for_each_set_bit(pair, &pair_mask, 4) {
2116 			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2117 				ret = lan8814_cable_test_one_pair(phydev, pair);
2118 			else
2119 				ret = ksz886x_cable_test_one_pair(phydev, pair);
2120 			if (ret == -EAGAIN)
2121 				continue;
2122 			if (ret < 0)
2123 				return ret;
2124 			clear_bit(pair, &pair_mask);
2125 		}
2126 		/* If link partner is in autonegotiation mode it will send 2ms
2127 		 * of FLPs with at least 6ms of silence.
2128 		 * Add 2ms sleep to have better chances to hit this silence.
2129 		 */
2130 		if (pair_mask)
2131 			msleep(2);
2132 	}
2133 
2134 	*finished = true;
2135 
2136 	return ret;
2137 }
2138 
2139 #define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2140 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2141 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2142 
2143 #define LAN8814_QSGMII_SOFT_RESET			0x43
2144 #define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2145 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2146 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2147 #define LAN8814_ALIGN_SWAP				0x4a
2148 #define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2149 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2150 
2151 #define LAN8804_ALIGN_SWAP				0x4a
2152 #define LAN8804_ALIGN_TX_A_B_SWAP			0x1
2153 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2154 #define LAN8814_CLOCK_MANAGEMENT			0xd
2155 #define LAN8814_LINK_QUALITY				0x8e
2156 
2157 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2158 {
2159 	int data;
2160 
2161 	phy_lock_mdio_bus(phydev);
2162 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2163 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2164 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2165 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2166 	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2167 	phy_unlock_mdio_bus(phydev);
2168 
2169 	return data;
2170 }
2171 
2172 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2173 				 u16 val)
2174 {
2175 	phy_lock_mdio_bus(phydev);
2176 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2177 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2178 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2179 		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2180 
2181 	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2182 	if (val != 0)
2183 		phydev_err(phydev, "Error: phy_write has returned error %d\n",
2184 			   val);
2185 	phy_unlock_mdio_bus(phydev);
2186 	return val;
2187 }
2188 
2189 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2190 {
2191 	u16 val = 0;
2192 
2193 	if (enable)
2194 		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2195 		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2196 		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2197 		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2198 
2199 	return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2200 }
2201 
2202 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2203 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2204 {
2205 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2206 	*seconds = (*seconds << 16) |
2207 		   lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2208 
2209 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2210 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2211 			lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2212 
2213 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2214 }
2215 
2216 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2217 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2218 {
2219 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2220 	*seconds = *seconds << 16 |
2221 		   lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2222 
2223 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2224 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2225 			lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2226 
2227 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2228 }
2229 
2230 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
2231 {
2232 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2233 	struct phy_device *phydev = ptp_priv->phydev;
2234 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2235 
2236 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2237 				SOF_TIMESTAMPING_RX_HARDWARE |
2238 				SOF_TIMESTAMPING_RAW_HARDWARE;
2239 
2240 	info->phc_index = ptp_clock_index(shared->ptp_clock);
2241 
2242 	info->tx_types =
2243 		(1 << HWTSTAMP_TX_OFF) |
2244 		(1 << HWTSTAMP_TX_ON) |
2245 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
2246 
2247 	info->rx_filters =
2248 		(1 << HWTSTAMP_FILTER_NONE) |
2249 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2250 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2251 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2252 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2253 
2254 	return 0;
2255 }
2256 
2257 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2258 {
2259 	int i;
2260 
2261 	for (i = 0; i < FIFO_SIZE; ++i)
2262 		lanphy_read_page_reg(phydev, 5,
2263 				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2264 
2265 	/* Read to clear overflow status bit */
2266 	lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2267 }
2268 
2269 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
2270 {
2271 	struct kszphy_ptp_priv *ptp_priv =
2272 			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2273 	struct phy_device *phydev = ptp_priv->phydev;
2274 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2275 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2276 	struct hwtstamp_config config;
2277 	int txcfg = 0, rxcfg = 0;
2278 	int pkt_ts_enable;
2279 
2280 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2281 		return -EFAULT;
2282 
2283 	ptp_priv->hwts_tx_type = config.tx_type;
2284 	ptp_priv->rx_filter = config.rx_filter;
2285 
2286 	switch (config.rx_filter) {
2287 	case HWTSTAMP_FILTER_NONE:
2288 		ptp_priv->layer = 0;
2289 		ptp_priv->version = 0;
2290 		break;
2291 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2292 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2293 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2294 		ptp_priv->layer = PTP_CLASS_L4;
2295 		ptp_priv->version = PTP_CLASS_V2;
2296 		break;
2297 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2298 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2299 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2300 		ptp_priv->layer = PTP_CLASS_L2;
2301 		ptp_priv->version = PTP_CLASS_V2;
2302 		break;
2303 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2304 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2305 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2306 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2307 		ptp_priv->version = PTP_CLASS_V2;
2308 		break;
2309 	default:
2310 		return -ERANGE;
2311 	}
2312 
2313 	if (ptp_priv->layer & PTP_CLASS_L2) {
2314 		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2315 		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2316 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
2317 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2318 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2319 	}
2320 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2321 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2322 
2323 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2324 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2325 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2326 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2327 
2328 	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC)
2329 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2330 				      PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2331 
2332 	if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2333 		lan8814_config_ts_intr(ptp_priv->phydev, true);
2334 	else
2335 		lan8814_config_ts_intr(ptp_priv->phydev, false);
2336 
2337 	mutex_lock(&shared->shared_lock);
2338 	if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2339 		shared->ref++;
2340 	else
2341 		shared->ref--;
2342 
2343 	if (shared->ref)
2344 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2345 				      PTP_CMD_CTL_PTP_ENABLE_);
2346 	else
2347 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2348 				      PTP_CMD_CTL_PTP_DISABLE_);
2349 	mutex_unlock(&shared->shared_lock);
2350 
2351 	/* In case of multiple starts and stops, these needs to be cleared */
2352 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2353 		list_del(&rx_ts->list);
2354 		kfree(rx_ts);
2355 	}
2356 	skb_queue_purge(&ptp_priv->rx_queue);
2357 	skb_queue_purge(&ptp_priv->tx_queue);
2358 
2359 	lan8814_flush_fifo(ptp_priv->phydev, false);
2360 	lan8814_flush_fifo(ptp_priv->phydev, true);
2361 
2362 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
2363 }
2364 
2365 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2366 			     struct sk_buff *skb, int type)
2367 {
2368 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2369 
2370 	switch (ptp_priv->hwts_tx_type) {
2371 	case HWTSTAMP_TX_ONESTEP_SYNC:
2372 		if (ptp_msg_is_sync(skb, type)) {
2373 			kfree_skb(skb);
2374 			return;
2375 		}
2376 		fallthrough;
2377 	case HWTSTAMP_TX_ON:
2378 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2379 		skb_queue_tail(&ptp_priv->tx_queue, skb);
2380 		break;
2381 	case HWTSTAMP_TX_OFF:
2382 	default:
2383 		kfree_skb(skb);
2384 		break;
2385 	}
2386 }
2387 
2388 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2389 {
2390 	struct ptp_header *ptp_header;
2391 	u32 type;
2392 
2393 	skb_push(skb, ETH_HLEN);
2394 	type = ptp_classify_raw(skb);
2395 	ptp_header = ptp_parse_header(skb, type);
2396 	skb_pull_inline(skb, ETH_HLEN);
2397 
2398 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2399 }
2400 
2401 static bool lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
2402 				struct sk_buff *skb)
2403 {
2404 	struct skb_shared_hwtstamps *shhwtstamps;
2405 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2406 	unsigned long flags;
2407 	bool ret = false;
2408 	u16 skb_sig;
2409 
2410 	lan8814_get_sig_rx(skb, &skb_sig);
2411 
2412 	/* Iterate over all RX timestamps and match it with the received skbs */
2413 	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2414 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2415 		/* Check if we found the signature we were looking for. */
2416 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2417 			continue;
2418 
2419 		shhwtstamps = skb_hwtstamps(skb);
2420 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2421 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2422 						  rx_ts->nsec);
2423 		list_del(&rx_ts->list);
2424 		kfree(rx_ts);
2425 
2426 		ret = true;
2427 		break;
2428 	}
2429 	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2430 
2431 	if (ret)
2432 		netif_rx(skb);
2433 	return ret;
2434 }
2435 
2436 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2437 {
2438 	struct kszphy_ptp_priv *ptp_priv =
2439 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2440 
2441 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2442 	    type == PTP_CLASS_NONE)
2443 		return false;
2444 
2445 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2446 		return false;
2447 
2448 	/* If we failed to match then add it to the queue for when the timestamp
2449 	 * will come
2450 	 */
2451 	if (!lan8814_match_rx_ts(ptp_priv, skb))
2452 		skb_queue_tail(&ptp_priv->rx_queue, skb);
2453 
2454 	return true;
2455 }
2456 
2457 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2458 				  u32 seconds, u32 nano_seconds)
2459 {
2460 	u32 sec_low, sec_high, nsec_low, nsec_high;
2461 
2462 	sec_low = seconds & 0xffff;
2463 	sec_high = (seconds >> 16) & 0xffff;
2464 	nsec_low = nano_seconds & 0xffff;
2465 	nsec_high = (nano_seconds >> 16) & 0x3fff;
2466 
2467 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low);
2468 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high);
2469 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low);
2470 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high);
2471 
2472 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2473 }
2474 
2475 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2476 				  u32 *seconds, u32 *nano_seconds)
2477 {
2478 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2479 
2480 	*seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2481 	*seconds = (*seconds << 16) |
2482 		   lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2483 
2484 	*nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2485 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2486 			lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2487 }
2488 
2489 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2490 				   struct timespec64 *ts)
2491 {
2492 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2493 							  ptp_clock_info);
2494 	struct phy_device *phydev = shared->phydev;
2495 	u32 nano_seconds;
2496 	u32 seconds;
2497 
2498 	mutex_lock(&shared->shared_lock);
2499 	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2500 	mutex_unlock(&shared->shared_lock);
2501 	ts->tv_sec = seconds;
2502 	ts->tv_nsec = nano_seconds;
2503 
2504 	return 0;
2505 }
2506 
2507 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2508 				   const struct timespec64 *ts)
2509 {
2510 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2511 							  ptp_clock_info);
2512 	struct phy_device *phydev = shared->phydev;
2513 
2514 	mutex_lock(&shared->shared_lock);
2515 	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2516 	mutex_unlock(&shared->shared_lock);
2517 
2518 	return 0;
2519 }
2520 
2521 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2522 				   s64 time_step_ns)
2523 {
2524 	u32 nano_seconds_step;
2525 	u64 abs_time_step_ns;
2526 	u32 unsigned_seconds;
2527 	u32 nano_seconds;
2528 	u32 remainder;
2529 	s32 seconds;
2530 
2531 	if (time_step_ns >  15000000000LL) {
2532 		/* convert to clock set */
2533 		lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2534 		unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2535 						&remainder);
2536 		nano_seconds += remainder;
2537 		if (nano_seconds >= 1000000000) {
2538 			unsigned_seconds++;
2539 			nano_seconds -= 1000000000;
2540 		}
2541 		lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds);
2542 		return;
2543 	} else if (time_step_ns < -15000000000LL) {
2544 		/* convert to clock set */
2545 		time_step_ns = -time_step_ns;
2546 
2547 		lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2548 		unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2549 						&remainder);
2550 		nano_seconds_step = remainder;
2551 		if (nano_seconds < nano_seconds_step) {
2552 			unsigned_seconds--;
2553 			nano_seconds += 1000000000;
2554 		}
2555 		nano_seconds -= nano_seconds_step;
2556 		lan8814_ptp_clock_set(phydev, unsigned_seconds,
2557 				      nano_seconds);
2558 		return;
2559 	}
2560 
2561 	/* do clock step */
2562 	if (time_step_ns >= 0) {
2563 		abs_time_step_ns = (u64)time_step_ns;
2564 		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2565 					   &remainder);
2566 		nano_seconds = remainder;
2567 	} else {
2568 		abs_time_step_ns = (u64)(-time_step_ns);
2569 		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2570 			    &remainder));
2571 		nano_seconds = remainder;
2572 		if (nano_seconds > 0) {
2573 			/* subtracting nano seconds is not allowed
2574 			 * convert to subtracting from seconds,
2575 			 * and adding to nanoseconds
2576 			 */
2577 			seconds--;
2578 			nano_seconds = (1000000000 - nano_seconds);
2579 		}
2580 	}
2581 
2582 	if (nano_seconds > 0) {
2583 		/* add 8 ns to cover the likely normal increment */
2584 		nano_seconds += 8;
2585 	}
2586 
2587 	if (nano_seconds >= 1000000000) {
2588 		/* carry into seconds */
2589 		seconds++;
2590 		nano_seconds -= 1000000000;
2591 	}
2592 
2593 	while (seconds) {
2594 		if (seconds > 0) {
2595 			u32 adjustment_value = (u32)seconds;
2596 			u16 adjustment_value_lo, adjustment_value_hi;
2597 
2598 			if (adjustment_value > 0xF)
2599 				adjustment_value = 0xF;
2600 
2601 			adjustment_value_lo = adjustment_value & 0xffff;
2602 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2603 
2604 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2605 					      adjustment_value_lo);
2606 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2607 					      PTP_LTC_STEP_ADJ_DIR_ |
2608 					      adjustment_value_hi);
2609 			seconds -= ((s32)adjustment_value);
2610 		} else {
2611 			u32 adjustment_value = (u32)(-seconds);
2612 			u16 adjustment_value_lo, adjustment_value_hi;
2613 
2614 			if (adjustment_value > 0xF)
2615 				adjustment_value = 0xF;
2616 
2617 			adjustment_value_lo = adjustment_value & 0xffff;
2618 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2619 
2620 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2621 					      adjustment_value_lo);
2622 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2623 					      adjustment_value_hi);
2624 			seconds += ((s32)adjustment_value);
2625 		}
2626 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2627 				      PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2628 	}
2629 	if (nano_seconds) {
2630 		u16 nano_seconds_lo;
2631 		u16 nano_seconds_hi;
2632 
2633 		nano_seconds_lo = nano_seconds & 0xffff;
2634 		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2635 
2636 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2637 				      nano_seconds_lo);
2638 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2639 				      PTP_LTC_STEP_ADJ_DIR_ |
2640 				      nano_seconds_hi);
2641 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2642 				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2643 	}
2644 }
2645 
2646 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2647 {
2648 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2649 							  ptp_clock_info);
2650 	struct phy_device *phydev = shared->phydev;
2651 
2652 	mutex_lock(&shared->shared_lock);
2653 	lan8814_ptp_clock_step(phydev, delta);
2654 	mutex_unlock(&shared->shared_lock);
2655 
2656 	return 0;
2657 }
2658 
2659 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
2660 {
2661 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2662 							  ptp_clock_info);
2663 	struct phy_device *phydev = shared->phydev;
2664 	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
2665 	bool positive = true;
2666 	u32 kszphy_rate_adj;
2667 
2668 	if (scaled_ppm < 0) {
2669 		scaled_ppm = -scaled_ppm;
2670 		positive = false;
2671 	}
2672 
2673 	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
2674 	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
2675 
2676 	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
2677 	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
2678 
2679 	if (positive)
2680 		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
2681 
2682 	mutex_lock(&shared->shared_lock);
2683 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
2684 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
2685 	mutex_unlock(&shared->shared_lock);
2686 
2687 	return 0;
2688 }
2689 
2690 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
2691 {
2692 	struct ptp_header *ptp_header;
2693 	u32 type;
2694 
2695 	type = ptp_classify_raw(skb);
2696 	ptp_header = ptp_parse_header(skb, type);
2697 
2698 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2699 }
2700 
2701 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
2702 {
2703 	struct phy_device *phydev = ptp_priv->phydev;
2704 	struct skb_shared_hwtstamps shhwtstamps;
2705 	struct sk_buff *skb, *skb_tmp;
2706 	unsigned long flags;
2707 	u32 seconds, nsec;
2708 	bool ret = false;
2709 	u16 skb_sig;
2710 	u16 seq_id;
2711 
2712 	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
2713 
2714 	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
2715 	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
2716 		lan8814_get_sig_tx(skb, &skb_sig);
2717 
2718 		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
2719 			continue;
2720 
2721 		__skb_unlink(skb, &ptp_priv->tx_queue);
2722 		ret = true;
2723 		break;
2724 	}
2725 	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
2726 
2727 	if (ret) {
2728 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2729 		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
2730 		skb_complete_tx_timestamp(skb, &shhwtstamps);
2731 	}
2732 }
2733 
2734 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
2735 {
2736 	struct phy_device *phydev = ptp_priv->phydev;
2737 	u32 reg;
2738 
2739 	do {
2740 		lan8814_dequeue_tx_skb(ptp_priv);
2741 
2742 		/* If other timestamps are available in the FIFO,
2743 		 * process them.
2744 		 */
2745 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2746 	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
2747 }
2748 
2749 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
2750 			      struct lan8814_ptp_rx_ts *rx_ts)
2751 {
2752 	struct skb_shared_hwtstamps *shhwtstamps;
2753 	struct sk_buff *skb, *skb_tmp;
2754 	unsigned long flags;
2755 	bool ret = false;
2756 	u16 skb_sig;
2757 
2758 	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
2759 	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
2760 		lan8814_get_sig_rx(skb, &skb_sig);
2761 
2762 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2763 			continue;
2764 
2765 		__skb_unlink(skb, &ptp_priv->rx_queue);
2766 
2767 		ret = true;
2768 		break;
2769 	}
2770 	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
2771 
2772 	if (ret) {
2773 		shhwtstamps = skb_hwtstamps(skb);
2774 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2775 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
2776 		netif_rx(skb);
2777 	}
2778 
2779 	return ret;
2780 }
2781 
2782 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
2783 {
2784 	struct phy_device *phydev = ptp_priv->phydev;
2785 	struct lan8814_ptp_rx_ts *rx_ts;
2786 	unsigned long flags;
2787 	u32 reg;
2788 
2789 	do {
2790 		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
2791 		if (!rx_ts)
2792 			return;
2793 
2794 		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
2795 				      &rx_ts->seq_id);
2796 
2797 		/* If we failed to match the skb add it to the queue for when
2798 		 * the frame will come
2799 		 */
2800 		if (!lan8814_match_skb(ptp_priv, rx_ts)) {
2801 			spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2802 			list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
2803 			spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2804 		} else {
2805 			kfree(rx_ts);
2806 		}
2807 
2808 		/* If other timestamps are available in the FIFO,
2809 		 * process them.
2810 		 */
2811 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2812 	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
2813 }
2814 
2815 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
2816 {
2817 	struct kszphy_priv *priv = phydev->priv;
2818 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2819 
2820 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
2821 		lan8814_get_tx_ts(ptp_priv);
2822 
2823 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
2824 		lan8814_get_rx_ts(ptp_priv);
2825 
2826 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
2827 		lan8814_flush_fifo(phydev, true);
2828 		skb_queue_purge(&ptp_priv->tx_queue);
2829 	}
2830 
2831 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
2832 		lan8814_flush_fifo(phydev, false);
2833 		skb_queue_purge(&ptp_priv->rx_queue);
2834 	}
2835 }
2836 
2837 static int lan8804_config_init(struct phy_device *phydev)
2838 {
2839 	int val;
2840 
2841 	/* MDI-X setting for swap A,B transmit */
2842 	val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
2843 	val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
2844 	val |= LAN8804_ALIGN_TX_A_B_SWAP;
2845 	lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
2846 
2847 	/* Make sure that the PHY will not stop generating the clock when the
2848 	 * link partner goes down
2849 	 */
2850 	lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
2851 	lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
2852 
2853 	return 0;
2854 }
2855 
2856 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
2857 {
2858 	int status;
2859 
2860 	status = phy_read(phydev, LAN8814_INTS);
2861 	if (status < 0) {
2862 		phy_error(phydev);
2863 		return IRQ_NONE;
2864 	}
2865 
2866 	if (status > 0)
2867 		phy_trigger_machine(phydev);
2868 
2869 	return IRQ_HANDLED;
2870 }
2871 
2872 #define LAN8804_OUTPUT_CONTROL			25
2873 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
2874 #define LAN8804_CONTROL				31
2875 #define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
2876 
2877 static int lan8804_config_intr(struct phy_device *phydev)
2878 {
2879 	int err;
2880 
2881 	/* This is an internal PHY of lan966x and is not possible to change the
2882 	 * polarity on the GIC found in lan966x, therefore change the polarity
2883 	 * of the interrupt in the PHY from being active low instead of active
2884 	 * high.
2885 	 */
2886 	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
2887 
2888 	/* By default interrupt buffer is open-drain in which case the interrupt
2889 	 * can be active only low. Therefore change the interrupt buffer to be
2890 	 * push-pull to be able to change interrupt polarity
2891 	 */
2892 	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
2893 		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
2894 
2895 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
2896 		err = phy_read(phydev, LAN8814_INTS);
2897 		if (err < 0)
2898 			return err;
2899 
2900 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
2901 		if (err)
2902 			return err;
2903 	} else {
2904 		err = phy_write(phydev, LAN8814_INTC, 0);
2905 		if (err)
2906 			return err;
2907 
2908 		err = phy_read(phydev, LAN8814_INTS);
2909 		if (err < 0)
2910 			return err;
2911 	}
2912 
2913 	return 0;
2914 }
2915 
2916 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
2917 {
2918 	int ret = IRQ_NONE;
2919 	int irq_status;
2920 
2921 	irq_status = phy_read(phydev, LAN8814_INTS);
2922 	if (irq_status < 0) {
2923 		phy_error(phydev);
2924 		return IRQ_NONE;
2925 	}
2926 
2927 	if (irq_status & LAN8814_INT_LINK) {
2928 		phy_trigger_machine(phydev);
2929 		ret = IRQ_HANDLED;
2930 	}
2931 
2932 	while (true) {
2933 		irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2934 		if (!irq_status)
2935 			break;
2936 
2937 		lan8814_handle_ptp_interrupt(phydev, irq_status);
2938 		ret = IRQ_HANDLED;
2939 	}
2940 
2941 	return ret;
2942 }
2943 
2944 static int lan8814_ack_interrupt(struct phy_device *phydev)
2945 {
2946 	/* bit[12..0] int status, which is a read and clear register. */
2947 	int rc;
2948 
2949 	rc = phy_read(phydev, LAN8814_INTS);
2950 
2951 	return (rc < 0) ? rc : 0;
2952 }
2953 
2954 static int lan8814_config_intr(struct phy_device *phydev)
2955 {
2956 	int err;
2957 
2958 	lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
2959 			      LAN8814_INTR_CTRL_REG_POLARITY |
2960 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
2961 
2962 	/* enable / disable interrupts */
2963 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
2964 		err = lan8814_ack_interrupt(phydev);
2965 		if (err)
2966 			return err;
2967 
2968 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
2969 	} else {
2970 		err = phy_write(phydev, LAN8814_INTC, 0);
2971 		if (err)
2972 			return err;
2973 
2974 		err = lan8814_ack_interrupt(phydev);
2975 	}
2976 
2977 	return err;
2978 }
2979 
2980 static void lan8814_ptp_init(struct phy_device *phydev)
2981 {
2982 	struct kszphy_priv *priv = phydev->priv;
2983 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2984 	u32 temp;
2985 
2986 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
2987 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
2988 		return;
2989 
2990 	lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
2991 
2992 	temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
2993 	temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
2994 	lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
2995 
2996 	temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
2997 	temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
2998 	lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
2999 
3000 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3001 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3002 
3003 	/* Removing default registers configs related to L2 and IP */
3004 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3005 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3006 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3007 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3008 
3009 	skb_queue_head_init(&ptp_priv->tx_queue);
3010 	skb_queue_head_init(&ptp_priv->rx_queue);
3011 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3012 	spin_lock_init(&ptp_priv->rx_ts_lock);
3013 
3014 	ptp_priv->phydev = phydev;
3015 
3016 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3017 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3018 	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3019 	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
3020 
3021 	phydev->mii_ts = &ptp_priv->mii_ts;
3022 }
3023 
3024 static int lan8814_ptp_probe_once(struct phy_device *phydev)
3025 {
3026 	struct lan8814_shared_priv *shared = phydev->shared->priv;
3027 
3028 	/* Initialise shared lock for clock*/
3029 	mutex_init(&shared->shared_lock);
3030 
3031 	shared->ptp_clock_info.owner = THIS_MODULE;
3032 	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3033 	shared->ptp_clock_info.max_adj = 31249999;
3034 	shared->ptp_clock_info.n_alarm = 0;
3035 	shared->ptp_clock_info.n_ext_ts = 0;
3036 	shared->ptp_clock_info.n_pins = 0;
3037 	shared->ptp_clock_info.pps = 0;
3038 	shared->ptp_clock_info.pin_config = NULL;
3039 	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3040 	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3041 	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3042 	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3043 	shared->ptp_clock_info.getcrosststamp = NULL;
3044 
3045 	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3046 					       &phydev->mdio.dev);
3047 	if (IS_ERR(shared->ptp_clock)) {
3048 		phydev_err(phydev, "ptp_clock_register failed %lu\n",
3049 			   PTR_ERR(shared->ptp_clock));
3050 		return -EINVAL;
3051 	}
3052 
3053 	/* Check if PHC support is missing at the configuration level */
3054 	if (!shared->ptp_clock)
3055 		return 0;
3056 
3057 	phydev_dbg(phydev, "successfully registered ptp clock\n");
3058 
3059 	shared->phydev = phydev;
3060 
3061 	/* The EP.4 is shared between all the PHYs in the package and also it
3062 	 * can be accessed by any of the PHYs
3063 	 */
3064 	lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3065 	lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3066 			      PTP_OPERATING_MODE_STANDALONE_);
3067 
3068 	return 0;
3069 }
3070 
3071 static void lan8814_setup_led(struct phy_device *phydev, int val)
3072 {
3073 	int temp;
3074 
3075 	temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3076 
3077 	if (val)
3078 		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3079 	else
3080 		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3081 
3082 	lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3083 }
3084 
3085 static int lan8814_config_init(struct phy_device *phydev)
3086 {
3087 	struct kszphy_priv *lan8814 = phydev->priv;
3088 	int val;
3089 
3090 	/* Reset the PHY */
3091 	val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3092 	val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3093 	lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3094 
3095 	/* Disable ANEG with QSGMII PCS Host side */
3096 	val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3097 	val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3098 	lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3099 
3100 	/* MDI-X setting for swap A,B transmit */
3101 	val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3102 	val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3103 	val |= LAN8814_ALIGN_TX_A_B_SWAP;
3104 	lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3105 
3106 	if (lan8814->led_mode >= 0)
3107 		lan8814_setup_led(phydev, lan8814->led_mode);
3108 
3109 	return 0;
3110 }
3111 
3112 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3113  * function called in suspend. Because the GPIO line can be shared, so if one of
3114  * the phys goes back in coma mode, then all the other PHYs will go, which is
3115  * wrong.
3116  */
3117 static int lan8814_release_coma_mode(struct phy_device *phydev)
3118 {
3119 	struct gpio_desc *gpiod;
3120 
3121 	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3122 					GPIOD_OUT_HIGH_OPEN_DRAIN |
3123 					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
3124 	if (IS_ERR(gpiod))
3125 		return PTR_ERR(gpiod);
3126 
3127 	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
3128 	gpiod_set_value_cansleep(gpiod, 0);
3129 
3130 	return 0;
3131 }
3132 
3133 static int lan8814_probe(struct phy_device *phydev)
3134 {
3135 	const struct kszphy_type *type = phydev->drv->driver_data;
3136 	struct kszphy_priv *priv;
3137 	u16 addr;
3138 	int err;
3139 
3140 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
3141 	if (!priv)
3142 		return -ENOMEM;
3143 
3144 	phydev->priv = priv;
3145 
3146 	priv->type = type;
3147 
3148 	kszphy_parse_led_mode(phydev);
3149 
3150 	/* Strap-in value for PHY address, below register read gives starting
3151 	 * phy address value
3152 	 */
3153 	addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
3154 	devm_phy_package_join(&phydev->mdio.dev, phydev,
3155 			      addr, sizeof(struct lan8814_shared_priv));
3156 
3157 	if (phy_package_init_once(phydev)) {
3158 		err = lan8814_release_coma_mode(phydev);
3159 		if (err)
3160 			return err;
3161 
3162 		err = lan8814_ptp_probe_once(phydev);
3163 		if (err)
3164 			return err;
3165 	}
3166 
3167 	lan8814_ptp_init(phydev);
3168 
3169 	return 0;
3170 }
3171 
3172 #define LAN8841_MMD_TIMER_REG			0
3173 #define LAN8841_MMD0_REGISTER_17		17
3174 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x)	((x) & 0x3)
3175 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS	BIT(3)
3176 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG	2
3177 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK	BIT(14)
3178 #define LAN8841_MMD_ANALOG_REG			28
3179 #define LAN8841_ANALOG_CONTROL_1		1
3180 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x)	(((x) & 0x3) << 5)
3181 #define LAN8841_ANALOG_CONTROL_10		13
3182 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x)	((x) & 0x3)
3183 #define LAN8841_ANALOG_CONTROL_11		14
3184 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x)	(((x) & 0x7) << 12)
3185 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT	69
3186 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
3187 #define LAN8841_BTRX_POWER_DOWN			70
3188 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A	BIT(0)
3189 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A	BIT(1)
3190 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B	BIT(2)
3191 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B	BIT(3)
3192 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C	BIT(5)
3193 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D	BIT(7)
3194 #define LAN8841_ADC_CHANNEL_MASK		198
3195 
3196 static int lan8841_config_init(struct phy_device *phydev)
3197 {
3198 	int ret;
3199 
3200 	ret = ksz9131_config_init(phydev);
3201 	if (ret)
3202 		return ret;
3203 
3204 	/* 100BT Clause 40 improvenent errata */
3205 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3206 		      LAN8841_ANALOG_CONTROL_1,
3207 		      LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
3208 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3209 		      LAN8841_ANALOG_CONTROL_10,
3210 		      LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
3211 
3212 	/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
3213 	 * Magnetics
3214 	 */
3215 	ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3216 			   LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
3217 	if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
3218 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3219 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
3220 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
3221 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3222 			      LAN8841_BTRX_POWER_DOWN,
3223 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
3224 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
3225 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
3226 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
3227 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
3228 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
3229 	}
3230 
3231 	/* LDO Adjustment errata */
3232 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3233 		      LAN8841_ANALOG_CONTROL_11,
3234 		      LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
3235 
3236 	/* 100BT RGMII latency tuning errata */
3237 	phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
3238 		      LAN8841_ADC_CHANNEL_MASK, 0x0);
3239 	phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
3240 		      LAN8841_MMD0_REGISTER_17,
3241 		      LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
3242 		      LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
3243 
3244 	return 0;
3245 }
3246 
3247 #define LAN8841_OUTPUT_CTRL			25
3248 #define LAN8841_OUTPUT_CTRL_INT_BUFFER		BIT(14)
3249 
3250 static int lan8841_config_intr(struct phy_device *phydev)
3251 {
3252 	int err;
3253 
3254 	phy_modify(phydev, LAN8841_OUTPUT_CTRL,
3255 		   LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
3256 
3257 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3258 		err = phy_read(phydev, LAN8814_INTS);
3259 		if (err)
3260 			return err;
3261 
3262 		err = phy_write(phydev, LAN8814_INTC,
3263 				LAN8814_INT_LINK);
3264 	} else {
3265 		err = phy_write(phydev, LAN8814_INTC, 0);
3266 		if (err)
3267 			return err;
3268 
3269 		err = phy_read(phydev, LAN8814_INTS);
3270 	}
3271 
3272 	return err;
3273 }
3274 
3275 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
3276 {
3277 	int irq_status;
3278 
3279 	irq_status = phy_read(phydev, LAN8814_INTS);
3280 	if (irq_status < 0) {
3281 		phy_error(phydev);
3282 		return IRQ_NONE;
3283 	}
3284 
3285 	if (irq_status & LAN8814_INT_LINK) {
3286 		phy_trigger_machine(phydev);
3287 		return IRQ_HANDLED;
3288 	}
3289 
3290 	return IRQ_NONE;
3291 }
3292 
3293 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
3294 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
3295 
3296 static int lan8841_probe(struct phy_device *phydev)
3297 {
3298 	int err;
3299 
3300 	err = kszphy_probe(phydev);
3301 	if (err)
3302 		return err;
3303 
3304 	if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3305 			 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
3306 	    LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
3307 		phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
3308 
3309 	return 0;
3310 }
3311 
3312 static struct phy_driver ksphy_driver[] = {
3313 {
3314 	.phy_id		= PHY_ID_KS8737,
3315 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3316 	.name		= "Micrel KS8737",
3317 	/* PHY_BASIC_FEATURES */
3318 	.driver_data	= &ks8737_type,
3319 	.probe		= kszphy_probe,
3320 	.config_init	= kszphy_config_init,
3321 	.config_intr	= kszphy_config_intr,
3322 	.handle_interrupt = kszphy_handle_interrupt,
3323 	.suspend	= kszphy_suspend,
3324 	.resume		= kszphy_resume,
3325 }, {
3326 	.phy_id		= PHY_ID_KSZ8021,
3327 	.phy_id_mask	= 0x00ffffff,
3328 	.name		= "Micrel KSZ8021 or KSZ8031",
3329 	/* PHY_BASIC_FEATURES */
3330 	.driver_data	= &ksz8021_type,
3331 	.probe		= kszphy_probe,
3332 	.config_init	= kszphy_config_init,
3333 	.config_intr	= kszphy_config_intr,
3334 	.handle_interrupt = kszphy_handle_interrupt,
3335 	.get_sset_count = kszphy_get_sset_count,
3336 	.get_strings	= kszphy_get_strings,
3337 	.get_stats	= kszphy_get_stats,
3338 	.suspend	= kszphy_suspend,
3339 	.resume		= kszphy_resume,
3340 }, {
3341 	.phy_id		= PHY_ID_KSZ8031,
3342 	.phy_id_mask	= 0x00ffffff,
3343 	.name		= "Micrel KSZ8031",
3344 	/* PHY_BASIC_FEATURES */
3345 	.driver_data	= &ksz8021_type,
3346 	.probe		= kszphy_probe,
3347 	.config_init	= kszphy_config_init,
3348 	.config_intr	= kszphy_config_intr,
3349 	.handle_interrupt = kszphy_handle_interrupt,
3350 	.get_sset_count = kszphy_get_sset_count,
3351 	.get_strings	= kszphy_get_strings,
3352 	.get_stats	= kszphy_get_stats,
3353 	.suspend	= kszphy_suspend,
3354 	.resume		= kszphy_resume,
3355 }, {
3356 	.phy_id		= PHY_ID_KSZ8041,
3357 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3358 	.name		= "Micrel KSZ8041",
3359 	/* PHY_BASIC_FEATURES */
3360 	.driver_data	= &ksz8041_type,
3361 	.probe		= kszphy_probe,
3362 	.config_init	= ksz8041_config_init,
3363 	.config_aneg	= ksz8041_config_aneg,
3364 	.config_intr	= kszphy_config_intr,
3365 	.handle_interrupt = kszphy_handle_interrupt,
3366 	.get_sset_count = kszphy_get_sset_count,
3367 	.get_strings	= kszphy_get_strings,
3368 	.get_stats	= kszphy_get_stats,
3369 	/* No suspend/resume callbacks because of errata DS80000700A,
3370 	 * receiver error following software power down.
3371 	 */
3372 }, {
3373 	.phy_id		= PHY_ID_KSZ8041RNLI,
3374 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3375 	.name		= "Micrel KSZ8041RNLI",
3376 	/* PHY_BASIC_FEATURES */
3377 	.driver_data	= &ksz8041_type,
3378 	.probe		= kszphy_probe,
3379 	.config_init	= kszphy_config_init,
3380 	.config_intr	= kszphy_config_intr,
3381 	.handle_interrupt = kszphy_handle_interrupt,
3382 	.get_sset_count = kszphy_get_sset_count,
3383 	.get_strings	= kszphy_get_strings,
3384 	.get_stats	= kszphy_get_stats,
3385 	.suspend	= kszphy_suspend,
3386 	.resume		= kszphy_resume,
3387 }, {
3388 	.name		= "Micrel KSZ8051",
3389 	/* PHY_BASIC_FEATURES */
3390 	.driver_data	= &ksz8051_type,
3391 	.probe		= kszphy_probe,
3392 	.config_init	= kszphy_config_init,
3393 	.config_intr	= kszphy_config_intr,
3394 	.handle_interrupt = kszphy_handle_interrupt,
3395 	.get_sset_count = kszphy_get_sset_count,
3396 	.get_strings	= kszphy_get_strings,
3397 	.get_stats	= kszphy_get_stats,
3398 	.match_phy_device = ksz8051_match_phy_device,
3399 	.suspend	= kszphy_suspend,
3400 	.resume		= kszphy_resume,
3401 }, {
3402 	.phy_id		= PHY_ID_KSZ8001,
3403 	.name		= "Micrel KSZ8001 or KS8721",
3404 	.phy_id_mask	= 0x00fffffc,
3405 	/* PHY_BASIC_FEATURES */
3406 	.driver_data	= &ksz8041_type,
3407 	.probe		= kszphy_probe,
3408 	.config_init	= kszphy_config_init,
3409 	.config_intr	= kszphy_config_intr,
3410 	.handle_interrupt = kszphy_handle_interrupt,
3411 	.get_sset_count = kszphy_get_sset_count,
3412 	.get_strings	= kszphy_get_strings,
3413 	.get_stats	= kszphy_get_stats,
3414 	.suspend	= kszphy_suspend,
3415 	.resume		= kszphy_resume,
3416 }, {
3417 	.phy_id		= PHY_ID_KSZ8081,
3418 	.name		= "Micrel KSZ8081 or KSZ8091",
3419 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3420 	.flags		= PHY_POLL_CABLE_TEST,
3421 	/* PHY_BASIC_FEATURES */
3422 	.driver_data	= &ksz8081_type,
3423 	.probe		= kszphy_probe,
3424 	.config_init	= ksz8081_config_init,
3425 	.soft_reset	= genphy_soft_reset,
3426 	.config_aneg	= ksz8081_config_aneg,
3427 	.read_status	= ksz8081_read_status,
3428 	.config_intr	= kszphy_config_intr,
3429 	.handle_interrupt = kszphy_handle_interrupt,
3430 	.get_sset_count = kszphy_get_sset_count,
3431 	.get_strings	= kszphy_get_strings,
3432 	.get_stats	= kszphy_get_stats,
3433 	.suspend	= kszphy_suspend,
3434 	.resume		= kszphy_resume,
3435 	.cable_test_start	= ksz886x_cable_test_start,
3436 	.cable_test_get_status	= ksz886x_cable_test_get_status,
3437 }, {
3438 	.phy_id		= PHY_ID_KSZ8061,
3439 	.name		= "Micrel KSZ8061",
3440 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3441 	/* PHY_BASIC_FEATURES */
3442 	.probe		= kszphy_probe,
3443 	.config_init	= ksz8061_config_init,
3444 	.config_intr	= kszphy_config_intr,
3445 	.handle_interrupt = kszphy_handle_interrupt,
3446 	.suspend	= kszphy_suspend,
3447 	.resume		= kszphy_resume,
3448 }, {
3449 	.phy_id		= PHY_ID_KSZ9021,
3450 	.phy_id_mask	= 0x000ffffe,
3451 	.name		= "Micrel KSZ9021 Gigabit PHY",
3452 	/* PHY_GBIT_FEATURES */
3453 	.driver_data	= &ksz9021_type,
3454 	.probe		= kszphy_probe,
3455 	.get_features	= ksz9031_get_features,
3456 	.config_init	= ksz9021_config_init,
3457 	.config_intr	= kszphy_config_intr,
3458 	.handle_interrupt = kszphy_handle_interrupt,
3459 	.get_sset_count = kszphy_get_sset_count,
3460 	.get_strings	= kszphy_get_strings,
3461 	.get_stats	= kszphy_get_stats,
3462 	.suspend	= kszphy_suspend,
3463 	.resume		= kszphy_resume,
3464 	.read_mmd	= genphy_read_mmd_unsupported,
3465 	.write_mmd	= genphy_write_mmd_unsupported,
3466 }, {
3467 	.phy_id		= PHY_ID_KSZ9031,
3468 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3469 	.name		= "Micrel KSZ9031 Gigabit PHY",
3470 	.flags		= PHY_POLL_CABLE_TEST,
3471 	.driver_data	= &ksz9021_type,
3472 	.probe		= kszphy_probe,
3473 	.get_features	= ksz9031_get_features,
3474 	.config_init	= ksz9031_config_init,
3475 	.soft_reset	= genphy_soft_reset,
3476 	.read_status	= ksz9031_read_status,
3477 	.config_intr	= kszphy_config_intr,
3478 	.handle_interrupt = kszphy_handle_interrupt,
3479 	.get_sset_count = kszphy_get_sset_count,
3480 	.get_strings	= kszphy_get_strings,
3481 	.get_stats	= kszphy_get_stats,
3482 	.suspend	= kszphy_suspend,
3483 	.resume		= kszphy_resume,
3484 	.cable_test_start	= ksz9x31_cable_test_start,
3485 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
3486 }, {
3487 	.phy_id		= PHY_ID_LAN8814,
3488 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3489 	.name		= "Microchip INDY Gigabit Quad PHY",
3490 	.flags          = PHY_POLL_CABLE_TEST,
3491 	.config_init	= lan8814_config_init,
3492 	.driver_data	= &lan8814_type,
3493 	.probe		= lan8814_probe,
3494 	.soft_reset	= genphy_soft_reset,
3495 	.read_status	= ksz9031_read_status,
3496 	.get_sset_count	= kszphy_get_sset_count,
3497 	.get_strings	= kszphy_get_strings,
3498 	.get_stats	= kszphy_get_stats,
3499 	.suspend	= genphy_suspend,
3500 	.resume		= kszphy_resume,
3501 	.config_intr	= lan8814_config_intr,
3502 	.handle_interrupt = lan8814_handle_interrupt,
3503 	.cable_test_start	= lan8814_cable_test_start,
3504 	.cable_test_get_status	= ksz886x_cable_test_get_status,
3505 }, {
3506 	.phy_id		= PHY_ID_LAN8804,
3507 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3508 	.name		= "Microchip LAN966X Gigabit PHY",
3509 	.config_init	= lan8804_config_init,
3510 	.driver_data	= &ksz9021_type,
3511 	.probe		= kszphy_probe,
3512 	.soft_reset	= genphy_soft_reset,
3513 	.read_status	= ksz9031_read_status,
3514 	.get_sset_count	= kszphy_get_sset_count,
3515 	.get_strings	= kszphy_get_strings,
3516 	.get_stats	= kszphy_get_stats,
3517 	.suspend	= genphy_suspend,
3518 	.resume		= kszphy_resume,
3519 	.config_intr	= lan8804_config_intr,
3520 	.handle_interrupt = lan8804_handle_interrupt,
3521 }, {
3522 	.phy_id		= PHY_ID_LAN8841,
3523 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3524 	.name		= "Microchip LAN8841 Gigabit PHY",
3525 	.flags		= PHY_POLL_CABLE_TEST,
3526 	.driver_data	= &lan8841_type,
3527 	.config_init	= lan8841_config_init,
3528 	.probe		= lan8841_probe,
3529 	.soft_reset	= genphy_soft_reset,
3530 	.config_intr	= lan8841_config_intr,
3531 	.handle_interrupt = lan8841_handle_interrupt,
3532 	.get_sset_count = kszphy_get_sset_count,
3533 	.get_strings	= kszphy_get_strings,
3534 	.get_stats	= kszphy_get_stats,
3535 	.suspend	= genphy_suspend,
3536 	.resume		= genphy_resume,
3537 	.cable_test_start	= lan8814_cable_test_start,
3538 	.cable_test_get_status	= ksz886x_cable_test_get_status,
3539 }, {
3540 	.phy_id		= PHY_ID_KSZ9131,
3541 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3542 	.name		= "Microchip KSZ9131 Gigabit PHY",
3543 	/* PHY_GBIT_FEATURES */
3544 	.flags		= PHY_POLL_CABLE_TEST,
3545 	.driver_data	= &ksz9131_type,
3546 	.probe		= kszphy_probe,
3547 	.config_init	= ksz9131_config_init,
3548 	.config_intr	= kszphy_config_intr,
3549 	.config_aneg	= ksz9131_config_aneg,
3550 	.read_status	= ksz9131_read_status,
3551 	.handle_interrupt = kszphy_handle_interrupt,
3552 	.get_sset_count = kszphy_get_sset_count,
3553 	.get_strings	= kszphy_get_strings,
3554 	.get_stats	= kszphy_get_stats,
3555 	.suspend	= kszphy_suspend,
3556 	.resume		= kszphy_resume,
3557 	.cable_test_start	= ksz9x31_cable_test_start,
3558 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
3559 }, {
3560 	.phy_id		= PHY_ID_KSZ8873MLL,
3561 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3562 	.name		= "Micrel KSZ8873MLL Switch",
3563 	/* PHY_BASIC_FEATURES */
3564 	.config_init	= kszphy_config_init,
3565 	.config_aneg	= ksz8873mll_config_aneg,
3566 	.read_status	= ksz8873mll_read_status,
3567 	.suspend	= genphy_suspend,
3568 	.resume		= genphy_resume,
3569 }, {
3570 	.phy_id		= PHY_ID_KSZ886X,
3571 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3572 	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
3573 	.driver_data	= &ksz886x_type,
3574 	/* PHY_BASIC_FEATURES */
3575 	.flags		= PHY_POLL_CABLE_TEST,
3576 	.config_init	= kszphy_config_init,
3577 	.config_aneg	= ksz886x_config_aneg,
3578 	.read_status	= ksz886x_read_status,
3579 	.suspend	= genphy_suspend,
3580 	.resume		= genphy_resume,
3581 	.cable_test_start	= ksz886x_cable_test_start,
3582 	.cable_test_get_status	= ksz886x_cable_test_get_status,
3583 }, {
3584 	.name		= "Micrel KSZ87XX Switch",
3585 	/* PHY_BASIC_FEATURES */
3586 	.config_init	= kszphy_config_init,
3587 	.match_phy_device = ksz8795_match_phy_device,
3588 	.suspend	= genphy_suspend,
3589 	.resume		= genphy_resume,
3590 }, {
3591 	.phy_id		= PHY_ID_KSZ9477,
3592 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3593 	.name		= "Microchip KSZ9477",
3594 	/* PHY_GBIT_FEATURES */
3595 	.config_init	= kszphy_config_init,
3596 	.config_intr	= kszphy_config_intr,
3597 	.handle_interrupt = kszphy_handle_interrupt,
3598 	.suspend	= genphy_suspend,
3599 	.resume		= genphy_resume,
3600 } };
3601 
3602 module_phy_driver(ksphy_driver);
3603 
3604 MODULE_DESCRIPTION("Micrel PHY driver");
3605 MODULE_AUTHOR("David J. Choi");
3606 MODULE_LICENSE("GPL");
3607 
3608 static struct mdio_device_id __maybe_unused micrel_tbl[] = {
3609 	{ PHY_ID_KSZ9021, 0x000ffffe },
3610 	{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
3611 	{ PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
3612 	{ PHY_ID_KSZ8001, 0x00fffffc },
3613 	{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
3614 	{ PHY_ID_KSZ8021, 0x00ffffff },
3615 	{ PHY_ID_KSZ8031, 0x00ffffff },
3616 	{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
3617 	{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
3618 	{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
3619 	{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
3620 	{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
3621 	{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
3622 	{ PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
3623 	{ PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
3624 	{ PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
3625 	{ }
3626 };
3627 
3628 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
3629