1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 /* Operation Mode Strap Override */ 38 #define MII_KSZPHY_OMSO 0x16 39 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 40 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 41 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 42 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 43 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 44 45 /* general Interrupt control/status reg in vendor specific block. */ 46 #define MII_KSZPHY_INTCS 0x1B 47 #define KSZPHY_INTCS_JABBER BIT(15) 48 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 49 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 50 #define KSZPHY_INTCS_PARELLEL BIT(12) 51 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 52 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 53 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 54 #define KSZPHY_INTCS_LINK_UP BIT(8) 55 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 56 KSZPHY_INTCS_LINK_DOWN) 57 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 58 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 59 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 60 KSZPHY_INTCS_LINK_UP_STATUS) 61 62 /* LinkMD Control/Status */ 63 #define KSZ8081_LMD 0x1d 64 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 65 #define KSZ8081_LMD_STAT_NORMAL 0 66 #define KSZ8081_LMD_STAT_OPEN 1 67 #define KSZ8081_LMD_STAT_SHORT 2 68 #define KSZ8081_LMD_STAT_FAIL 3 69 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 70 /* Short cable (<10 meter) has been detected by LinkMD */ 71 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 72 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 73 74 #define KSZ9x31_LMD 0x12 75 #define KSZ9x31_LMD_VCT_EN BIT(15) 76 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 77 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 78 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 81 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 82 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 83 #define KSZ9x31_LMD_VCT_ST_OPEN 1 84 #define KSZ9x31_LMD_VCT_ST_SHORT 2 85 #define KSZ9x31_LMD_VCT_ST_FAIL 3 86 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 89 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 93 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 94 95 #define KSZPHY_WIRE_PAIR_MASK 0x3 96 97 #define LAN8814_CABLE_DIAG 0x12 98 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 100 #define LAN8814_PAIR_BIT_SHIFT 12 101 102 #define LAN8814_WIRE_PAIR_MASK 0xF 103 104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 105 #define LAN8814_INTC 0x18 106 #define LAN8814_INTS 0x1B 107 108 #define LAN8814_INT_LINK_DOWN BIT(2) 109 #define LAN8814_INT_LINK_UP BIT(0) 110 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 111 LAN8814_INT_LINK_DOWN) 112 113 #define LAN8814_INTR_CTRL_REG 0x34 114 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 116 117 /* Represents 1ppm adjustment in 2^32 format with 118 * each nsec contains 4 clock cycles. 119 * The value is calculated as following: (1/1000000)/((2^-32)/4) 120 */ 121 #define LAN8814_1PPM_FORMAT 17179 122 123 #define PTP_RX_VERSION 0x0248 124 #define PTP_TX_VERSION 0x0288 125 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8) 126 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0)) 127 128 #define PTP_RX_MOD 0x024F 129 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 130 #define PTP_RX_TIMESTAMP_EN 0x024D 131 #define PTP_TX_TIMESTAMP_EN 0x028D 132 133 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 134 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 135 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 136 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 137 138 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 139 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 140 141 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 142 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 143 #define LTC_HARD_RESET 0x023F 144 #define LTC_HARD_RESET_ BIT(0) 145 146 #define TSU_HARD_RESET 0x02C1 147 #define TSU_HARD_RESET_ BIT(0) 148 149 #define PTP_CMD_CTL 0x0200 150 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 151 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 152 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 153 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 154 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 155 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 156 157 #define PTP_CLOCK_SET_SEC_MID 0x0206 158 #define PTP_CLOCK_SET_SEC_LO 0x0207 159 #define PTP_CLOCK_SET_NS_HI 0x0208 160 #define PTP_CLOCK_SET_NS_LO 0x0209 161 162 #define PTP_CLOCK_READ_SEC_MID 0x022A 163 #define PTP_CLOCK_READ_SEC_LO 0x022B 164 #define PTP_CLOCK_READ_NS_HI 0x022C 165 #define PTP_CLOCK_READ_NS_LO 0x022D 166 167 #define PTP_OPERATING_MODE 0x0241 168 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 169 170 #define PTP_TX_MOD 0x028F 171 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 172 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 173 174 #define PTP_RX_PARSE_CONFIG 0x0242 175 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 176 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 177 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 178 179 #define PTP_TX_PARSE_CONFIG 0x0282 180 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 181 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 182 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 183 184 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 185 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 186 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 187 188 #define PTP_LTC_STEP_ADJ_HI 0x0212 189 #define PTP_LTC_STEP_ADJ_LO 0x0213 190 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 191 192 #define LAN8814_INTR_STS_REG 0x0033 193 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 194 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 195 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 196 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 197 198 #define PTP_CAP_INFO 0x022A 199 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 200 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 201 202 #define PTP_TX_EGRESS_SEC_HI 0x0296 203 #define PTP_TX_EGRESS_SEC_LO 0x0297 204 #define PTP_TX_EGRESS_NS_HI 0x0294 205 #define PTP_TX_EGRESS_NS_LO 0x0295 206 #define PTP_TX_MSG_HEADER2 0x0299 207 208 #define PTP_RX_INGRESS_SEC_HI 0x0256 209 #define PTP_RX_INGRESS_SEC_LO 0x0257 210 #define PTP_RX_INGRESS_NS_HI 0x0254 211 #define PTP_RX_INGRESS_NS_LO 0x0255 212 #define PTP_RX_MSG_HEADER2 0x0259 213 214 #define PTP_TSU_INT_EN 0x0200 215 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 216 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 217 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 218 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 219 220 #define PTP_TSU_INT_STS 0x0201 221 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 222 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 223 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 224 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 225 226 #define LAN8814_LED_CTRL_1 0x0 227 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 228 229 /* PHY Control 1 */ 230 #define MII_KSZPHY_CTRL_1 0x1e 231 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 232 233 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 234 #define MII_KSZPHY_CTRL_2 0x1f 235 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 236 /* bitmap of PHY register to set interrupt mode */ 237 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 238 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 239 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 240 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 241 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 242 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 243 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 244 245 /* Write/read to/from extended registers */ 246 #define MII_KSZPHY_EXTREG 0x0b 247 #define KSZPHY_EXTREG_WRITE 0x8000 248 249 #define MII_KSZPHY_EXTREG_WRITE 0x0c 250 #define MII_KSZPHY_EXTREG_READ 0x0d 251 252 /* Extended registers */ 253 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 254 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 255 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 256 257 #define PS_TO_REG 200 258 #define FIFO_SIZE 8 259 260 /* Delay used to get the second part from the LTC */ 261 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 262 263 struct kszphy_hw_stat { 264 const char *string; 265 u8 reg; 266 u8 bits; 267 }; 268 269 static struct kszphy_hw_stat kszphy_hw_stats[] = { 270 { "phy_receive_errors", 21, 16}, 271 { "phy_idle_errors", 10, 8 }, 272 }; 273 274 struct kszphy_type { 275 u32 led_mode_reg; 276 u16 interrupt_level_mask; 277 u16 cable_diag_reg; 278 unsigned long pair_mask; 279 u16 disable_dll_tx_bit; 280 u16 disable_dll_rx_bit; 281 u16 disable_dll_mask; 282 bool has_broadcast_disable; 283 bool has_nand_tree_disable; 284 bool has_rmii_ref_clk_sel; 285 }; 286 287 /* Shared structure between the PHYs of the same package. */ 288 struct lan8814_shared_priv { 289 struct phy_device *phydev; 290 struct ptp_clock *ptp_clock; 291 struct ptp_clock_info ptp_clock_info; 292 293 /* Reference counter to how many ports in the package are enabling the 294 * timestamping 295 */ 296 u8 ref; 297 298 /* Lock for ptp_clock and ref */ 299 struct mutex shared_lock; 300 }; 301 302 struct lan8814_ptp_rx_ts { 303 struct list_head list; 304 u32 seconds; 305 u32 nsec; 306 u16 seq_id; 307 }; 308 309 struct kszphy_ptp_priv { 310 struct mii_timestamper mii_ts; 311 struct phy_device *phydev; 312 313 struct sk_buff_head tx_queue; 314 struct sk_buff_head rx_queue; 315 316 struct list_head rx_ts_list; 317 /* Lock for Rx ts fifo */ 318 spinlock_t rx_ts_lock; 319 320 int hwts_tx_type; 321 enum hwtstamp_rx_filters rx_filter; 322 int layer; 323 int version; 324 325 struct ptp_clock *ptp_clock; 326 struct ptp_clock_info ptp_clock_info; 327 /* Lock for ptp_clock */ 328 struct mutex ptp_lock; 329 struct ptp_pin_desc *pin_config; 330 331 s64 seconds; 332 /* Lock for accessing seconds */ 333 spinlock_t seconds_lock; 334 }; 335 336 struct kszphy_priv { 337 struct kszphy_ptp_priv ptp_priv; 338 const struct kszphy_type *type; 339 int led_mode; 340 u16 vct_ctrl1000; 341 bool rmii_ref_clk_sel; 342 bool rmii_ref_clk_sel_val; 343 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 344 }; 345 346 static const struct kszphy_type lan8814_type = { 347 .led_mode_reg = ~LAN8814_LED_CTRL_1, 348 .cable_diag_reg = LAN8814_CABLE_DIAG, 349 .pair_mask = LAN8814_WIRE_PAIR_MASK, 350 }; 351 352 static const struct kszphy_type ksz886x_type = { 353 .cable_diag_reg = KSZ8081_LMD, 354 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 355 }; 356 357 static const struct kszphy_type ksz8021_type = { 358 .led_mode_reg = MII_KSZPHY_CTRL_2, 359 .has_broadcast_disable = true, 360 .has_nand_tree_disable = true, 361 .has_rmii_ref_clk_sel = true, 362 }; 363 364 static const struct kszphy_type ksz8041_type = { 365 .led_mode_reg = MII_KSZPHY_CTRL_1, 366 }; 367 368 static const struct kszphy_type ksz8051_type = { 369 .led_mode_reg = MII_KSZPHY_CTRL_2, 370 .has_nand_tree_disable = true, 371 }; 372 373 static const struct kszphy_type ksz8081_type = { 374 .led_mode_reg = MII_KSZPHY_CTRL_2, 375 .has_broadcast_disable = true, 376 .has_nand_tree_disable = true, 377 .has_rmii_ref_clk_sel = true, 378 }; 379 380 static const struct kszphy_type ks8737_type = { 381 .interrupt_level_mask = BIT(14), 382 }; 383 384 static const struct kszphy_type ksz9021_type = { 385 .interrupt_level_mask = BIT(14), 386 }; 387 388 static const struct kszphy_type ksz9131_type = { 389 .interrupt_level_mask = BIT(14), 390 .disable_dll_tx_bit = BIT(12), 391 .disable_dll_rx_bit = BIT(12), 392 .disable_dll_mask = BIT_MASK(12), 393 }; 394 395 static const struct kszphy_type lan8841_type = { 396 .disable_dll_tx_bit = BIT(14), 397 .disable_dll_rx_bit = BIT(14), 398 .disable_dll_mask = BIT_MASK(14), 399 .cable_diag_reg = LAN8814_CABLE_DIAG, 400 .pair_mask = LAN8814_WIRE_PAIR_MASK, 401 }; 402 403 static int kszphy_extended_write(struct phy_device *phydev, 404 u32 regnum, u16 val) 405 { 406 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 407 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 408 } 409 410 static int kszphy_extended_read(struct phy_device *phydev, 411 u32 regnum) 412 { 413 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 414 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 415 } 416 417 static int kszphy_ack_interrupt(struct phy_device *phydev) 418 { 419 /* bit[7..0] int status, which is a read and clear register. */ 420 int rc; 421 422 rc = phy_read(phydev, MII_KSZPHY_INTCS); 423 424 return (rc < 0) ? rc : 0; 425 } 426 427 static int kszphy_config_intr(struct phy_device *phydev) 428 { 429 const struct kszphy_type *type = phydev->drv->driver_data; 430 int temp, err; 431 u16 mask; 432 433 if (type && type->interrupt_level_mask) 434 mask = type->interrupt_level_mask; 435 else 436 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 437 438 /* set the interrupt pin active low */ 439 temp = phy_read(phydev, MII_KSZPHY_CTRL); 440 if (temp < 0) 441 return temp; 442 temp &= ~mask; 443 phy_write(phydev, MII_KSZPHY_CTRL, temp); 444 445 /* enable / disable interrupts */ 446 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 447 err = kszphy_ack_interrupt(phydev); 448 if (err) 449 return err; 450 451 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 452 } else { 453 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 454 if (err) 455 return err; 456 457 err = kszphy_ack_interrupt(phydev); 458 } 459 460 return err; 461 } 462 463 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 464 { 465 int irq_status; 466 467 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 468 if (irq_status < 0) { 469 phy_error(phydev); 470 return IRQ_NONE; 471 } 472 473 if (!(irq_status & KSZPHY_INTCS_STATUS)) 474 return IRQ_NONE; 475 476 phy_trigger_machine(phydev); 477 478 return IRQ_HANDLED; 479 } 480 481 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 482 { 483 int ctrl; 484 485 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 486 if (ctrl < 0) 487 return ctrl; 488 489 if (val) 490 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 491 else 492 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 493 494 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 495 } 496 497 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 498 { 499 int rc, temp, shift; 500 501 switch (reg) { 502 case MII_KSZPHY_CTRL_1: 503 shift = 14; 504 break; 505 case MII_KSZPHY_CTRL_2: 506 shift = 4; 507 break; 508 default: 509 return -EINVAL; 510 } 511 512 temp = phy_read(phydev, reg); 513 if (temp < 0) { 514 rc = temp; 515 goto out; 516 } 517 518 temp &= ~(3 << shift); 519 temp |= val << shift; 520 rc = phy_write(phydev, reg, temp); 521 out: 522 if (rc < 0) 523 phydev_err(phydev, "failed to set led mode\n"); 524 525 return rc; 526 } 527 528 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 529 * unique (non-broadcast) address on a shared bus. 530 */ 531 static int kszphy_broadcast_disable(struct phy_device *phydev) 532 { 533 int ret; 534 535 ret = phy_read(phydev, MII_KSZPHY_OMSO); 536 if (ret < 0) 537 goto out; 538 539 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 540 out: 541 if (ret) 542 phydev_err(phydev, "failed to disable broadcast address\n"); 543 544 return ret; 545 } 546 547 static int kszphy_nand_tree_disable(struct phy_device *phydev) 548 { 549 int ret; 550 551 ret = phy_read(phydev, MII_KSZPHY_OMSO); 552 if (ret < 0) 553 goto out; 554 555 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 556 return 0; 557 558 ret = phy_write(phydev, MII_KSZPHY_OMSO, 559 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 560 out: 561 if (ret) 562 phydev_err(phydev, "failed to disable NAND tree mode\n"); 563 564 return ret; 565 } 566 567 /* Some config bits need to be set again on resume, handle them here. */ 568 static int kszphy_config_reset(struct phy_device *phydev) 569 { 570 struct kszphy_priv *priv = phydev->priv; 571 int ret; 572 573 if (priv->rmii_ref_clk_sel) { 574 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 575 if (ret) { 576 phydev_err(phydev, 577 "failed to set rmii reference clock\n"); 578 return ret; 579 } 580 } 581 582 if (priv->type && priv->led_mode >= 0) 583 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 584 585 return 0; 586 } 587 588 static int kszphy_config_init(struct phy_device *phydev) 589 { 590 struct kszphy_priv *priv = phydev->priv; 591 const struct kszphy_type *type; 592 593 if (!priv) 594 return 0; 595 596 type = priv->type; 597 598 if (type && type->has_broadcast_disable) 599 kszphy_broadcast_disable(phydev); 600 601 if (type && type->has_nand_tree_disable) 602 kszphy_nand_tree_disable(phydev); 603 604 return kszphy_config_reset(phydev); 605 } 606 607 static int ksz8041_fiber_mode(struct phy_device *phydev) 608 { 609 struct device_node *of_node = phydev->mdio.dev.of_node; 610 611 return of_property_read_bool(of_node, "micrel,fiber-mode"); 612 } 613 614 static int ksz8041_config_init(struct phy_device *phydev) 615 { 616 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 617 618 /* Limit supported and advertised modes in fiber mode */ 619 if (ksz8041_fiber_mode(phydev)) { 620 phydev->dev_flags |= MICREL_PHY_FXEN; 621 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 622 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 623 624 linkmode_and(phydev->supported, phydev->supported, mask); 625 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 626 phydev->supported); 627 linkmode_and(phydev->advertising, phydev->advertising, mask); 628 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 629 phydev->advertising); 630 phydev->autoneg = AUTONEG_DISABLE; 631 } 632 633 return kszphy_config_init(phydev); 634 } 635 636 static int ksz8041_config_aneg(struct phy_device *phydev) 637 { 638 /* Skip auto-negotiation in fiber mode */ 639 if (phydev->dev_flags & MICREL_PHY_FXEN) { 640 phydev->speed = SPEED_100; 641 return 0; 642 } 643 644 return genphy_config_aneg(phydev); 645 } 646 647 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 648 const bool ksz_8051) 649 { 650 int ret; 651 652 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 653 return 0; 654 655 ret = phy_read(phydev, MII_BMSR); 656 if (ret < 0) 657 return ret; 658 659 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 660 * exact PHY ID. However, they can be told apart by the extended 661 * capability registers presence. The KSZ8051 PHY has them while 662 * the switch does not. 663 */ 664 ret &= BMSR_ERCAP; 665 if (ksz_8051) 666 return ret; 667 else 668 return !ret; 669 } 670 671 static int ksz8051_match_phy_device(struct phy_device *phydev) 672 { 673 return ksz8051_ksz8795_match_phy_device(phydev, true); 674 } 675 676 static int ksz8081_config_init(struct phy_device *phydev) 677 { 678 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 679 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 680 * pull-down is missing, the factory test mode should be cleared by 681 * manually writing a 0. 682 */ 683 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 684 685 return kszphy_config_init(phydev); 686 } 687 688 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 689 { 690 u16 val; 691 692 switch (ctrl) { 693 case ETH_TP_MDI: 694 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 695 break; 696 case ETH_TP_MDI_X: 697 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 698 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 699 break; 700 case ETH_TP_MDI_AUTO: 701 val = 0; 702 break; 703 default: 704 return 0; 705 } 706 707 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 708 KSZ8081_CTRL2_HP_MDIX | 709 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 710 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 711 KSZ8081_CTRL2_HP_MDIX | val); 712 } 713 714 static int ksz8081_config_aneg(struct phy_device *phydev) 715 { 716 int ret; 717 718 ret = genphy_config_aneg(phydev); 719 if (ret) 720 return ret; 721 722 /* The MDI-X configuration is automatically changed by the PHY after 723 * switching from autoneg off to on. So, take MDI-X configuration under 724 * own control and set it after autoneg configuration was done. 725 */ 726 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 727 } 728 729 static int ksz8081_mdix_update(struct phy_device *phydev) 730 { 731 int ret; 732 733 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 734 if (ret < 0) 735 return ret; 736 737 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 738 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 739 phydev->mdix_ctrl = ETH_TP_MDI_X; 740 else 741 phydev->mdix_ctrl = ETH_TP_MDI; 742 } else { 743 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 744 } 745 746 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 747 if (ret < 0) 748 return ret; 749 750 if (ret & KSZ8081_CTRL1_MDIX_STAT) 751 phydev->mdix = ETH_TP_MDI; 752 else 753 phydev->mdix = ETH_TP_MDI_X; 754 755 return 0; 756 } 757 758 static int ksz8081_read_status(struct phy_device *phydev) 759 { 760 int ret; 761 762 ret = ksz8081_mdix_update(phydev); 763 if (ret < 0) 764 return ret; 765 766 return genphy_read_status(phydev); 767 } 768 769 static int ksz8061_config_init(struct phy_device *phydev) 770 { 771 int ret; 772 773 /* Chip can be powered down by the bootstrap code. */ 774 ret = phy_read(phydev, MII_BMCR); 775 if (ret < 0) 776 return ret; 777 if (ret & BMCR_PDOWN) { 778 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN); 779 if (ret < 0) 780 return ret; 781 usleep_range(1000, 2000); 782 } 783 784 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 785 if (ret) 786 return ret; 787 788 return kszphy_config_init(phydev); 789 } 790 791 static int ksz8795_match_phy_device(struct phy_device *phydev) 792 { 793 return ksz8051_ksz8795_match_phy_device(phydev, false); 794 } 795 796 static int ksz9021_load_values_from_of(struct phy_device *phydev, 797 const struct device_node *of_node, 798 u16 reg, 799 const char *field1, const char *field2, 800 const char *field3, const char *field4) 801 { 802 int val1 = -1; 803 int val2 = -2; 804 int val3 = -3; 805 int val4 = -4; 806 int newval; 807 int matches = 0; 808 809 if (!of_property_read_u32(of_node, field1, &val1)) 810 matches++; 811 812 if (!of_property_read_u32(of_node, field2, &val2)) 813 matches++; 814 815 if (!of_property_read_u32(of_node, field3, &val3)) 816 matches++; 817 818 if (!of_property_read_u32(of_node, field4, &val4)) 819 matches++; 820 821 if (!matches) 822 return 0; 823 824 if (matches < 4) 825 newval = kszphy_extended_read(phydev, reg); 826 else 827 newval = 0; 828 829 if (val1 != -1) 830 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 831 832 if (val2 != -2) 833 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 834 835 if (val3 != -3) 836 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 837 838 if (val4 != -4) 839 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 840 841 return kszphy_extended_write(phydev, reg, newval); 842 } 843 844 static int ksz9021_config_init(struct phy_device *phydev) 845 { 846 const struct device_node *of_node; 847 const struct device *dev_walker; 848 849 /* The Micrel driver has a deprecated option to place phy OF 850 * properties in the MAC node. Walk up the tree of devices to 851 * find a device with an OF node. 852 */ 853 dev_walker = &phydev->mdio.dev; 854 do { 855 of_node = dev_walker->of_node; 856 dev_walker = dev_walker->parent; 857 858 } while (!of_node && dev_walker); 859 860 if (of_node) { 861 ksz9021_load_values_from_of(phydev, of_node, 862 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 863 "txen-skew-ps", "txc-skew-ps", 864 "rxdv-skew-ps", "rxc-skew-ps"); 865 ksz9021_load_values_from_of(phydev, of_node, 866 MII_KSZPHY_RX_DATA_PAD_SKEW, 867 "rxd0-skew-ps", "rxd1-skew-ps", 868 "rxd2-skew-ps", "rxd3-skew-ps"); 869 ksz9021_load_values_from_of(phydev, of_node, 870 MII_KSZPHY_TX_DATA_PAD_SKEW, 871 "txd0-skew-ps", "txd1-skew-ps", 872 "txd2-skew-ps", "txd3-skew-ps"); 873 } 874 return 0; 875 } 876 877 #define KSZ9031_PS_TO_REG 60 878 879 /* Extended registers */ 880 /* MMD Address 0x0 */ 881 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 882 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 883 884 /* MMD Address 0x2 */ 885 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 886 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 887 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 888 889 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 890 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 891 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 892 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 893 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 894 895 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 896 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 897 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 898 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 899 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 900 901 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 902 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 903 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 904 905 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 906 * provide different RGMII options we need to configure delay offset 907 * for each pad relative to build in delay. 908 */ 909 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 910 * 1.80ns 911 */ 912 #define RX_ID 0x7 913 #define RX_CLK_ID 0x19 914 915 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 916 * internal 1.2ns delay. 917 */ 918 #define RX_ND 0xc 919 #define RX_CLK_ND 0x0 920 921 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 922 #define TX_ID 0x0 923 #define TX_CLK_ID 0x1f 924 925 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 926 * dealy 927 */ 928 #define TX_ND 0x7 929 #define TX_CLK_ND 0xf 930 931 /* MMD Address 0x1C */ 932 #define MII_KSZ9031RN_EDPD 0x23 933 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 934 935 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 936 const struct device_node *of_node, 937 u16 reg, size_t field_sz, 938 const char *field[], u8 numfields, 939 bool *update) 940 { 941 int val[4] = {-1, -2, -3, -4}; 942 int matches = 0; 943 u16 mask; 944 u16 maxval; 945 u16 newval; 946 int i; 947 948 for (i = 0; i < numfields; i++) 949 if (!of_property_read_u32(of_node, field[i], val + i)) 950 matches++; 951 952 if (!matches) 953 return 0; 954 955 *update |= true; 956 957 if (matches < numfields) 958 newval = phy_read_mmd(phydev, 2, reg); 959 else 960 newval = 0; 961 962 maxval = (field_sz == 4) ? 0xf : 0x1f; 963 for (i = 0; i < numfields; i++) 964 if (val[i] != -(i + 1)) { 965 mask = 0xffff; 966 mask ^= maxval << (field_sz * i); 967 newval = (newval & mask) | 968 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 969 << (field_sz * i)); 970 } 971 972 return phy_write_mmd(phydev, 2, reg, newval); 973 } 974 975 /* Center KSZ9031RNX FLP timing at 16ms. */ 976 static int ksz9031_center_flp_timing(struct phy_device *phydev) 977 { 978 int result; 979 980 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 981 0x0006); 982 if (result) 983 return result; 984 985 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 986 0x1A80); 987 if (result) 988 return result; 989 990 return genphy_restart_aneg(phydev); 991 } 992 993 /* Enable energy-detect power-down mode */ 994 static int ksz9031_enable_edpd(struct phy_device *phydev) 995 { 996 int reg; 997 998 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 999 if (reg < 0) 1000 return reg; 1001 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 1002 reg | MII_KSZ9031RN_EDPD_ENABLE); 1003 } 1004 1005 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 1006 { 1007 u16 rx, tx, rx_clk, tx_clk; 1008 int ret; 1009 1010 switch (phydev->interface) { 1011 case PHY_INTERFACE_MODE_RGMII: 1012 tx = TX_ND; 1013 tx_clk = TX_CLK_ND; 1014 rx = RX_ND; 1015 rx_clk = RX_CLK_ND; 1016 break; 1017 case PHY_INTERFACE_MODE_RGMII_ID: 1018 tx = TX_ID; 1019 tx_clk = TX_CLK_ID; 1020 rx = RX_ID; 1021 rx_clk = RX_CLK_ID; 1022 break; 1023 case PHY_INTERFACE_MODE_RGMII_RXID: 1024 tx = TX_ND; 1025 tx_clk = TX_CLK_ND; 1026 rx = RX_ID; 1027 rx_clk = RX_CLK_ID; 1028 break; 1029 case PHY_INTERFACE_MODE_RGMII_TXID: 1030 tx = TX_ID; 1031 tx_clk = TX_CLK_ID; 1032 rx = RX_ND; 1033 rx_clk = RX_CLK_ND; 1034 break; 1035 default: 1036 return 0; 1037 } 1038 1039 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1040 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1041 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1042 if (ret < 0) 1043 return ret; 1044 1045 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1046 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1047 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1048 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1049 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1050 if (ret < 0) 1051 return ret; 1052 1053 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1054 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1055 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1056 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1057 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1058 if (ret < 0) 1059 return ret; 1060 1061 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1062 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1063 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1064 } 1065 1066 static int ksz9031_config_init(struct phy_device *phydev) 1067 { 1068 const struct device_node *of_node; 1069 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1070 static const char *rx_data_skews[4] = { 1071 "rxd0-skew-ps", "rxd1-skew-ps", 1072 "rxd2-skew-ps", "rxd3-skew-ps" 1073 }; 1074 static const char *tx_data_skews[4] = { 1075 "txd0-skew-ps", "txd1-skew-ps", 1076 "txd2-skew-ps", "txd3-skew-ps" 1077 }; 1078 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1079 const struct device *dev_walker; 1080 int result; 1081 1082 result = ksz9031_enable_edpd(phydev); 1083 if (result < 0) 1084 return result; 1085 1086 /* The Micrel driver has a deprecated option to place phy OF 1087 * properties in the MAC node. Walk up the tree of devices to 1088 * find a device with an OF node. 1089 */ 1090 dev_walker = &phydev->mdio.dev; 1091 do { 1092 of_node = dev_walker->of_node; 1093 dev_walker = dev_walker->parent; 1094 } while (!of_node && dev_walker); 1095 1096 if (of_node) { 1097 bool update = false; 1098 1099 if (phy_interface_is_rgmii(phydev)) { 1100 result = ksz9031_config_rgmii_delay(phydev); 1101 if (result < 0) 1102 return result; 1103 } 1104 1105 ksz9031_of_load_skew_values(phydev, of_node, 1106 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1107 clk_skews, 2, &update); 1108 1109 ksz9031_of_load_skew_values(phydev, of_node, 1110 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1111 control_skews, 2, &update); 1112 1113 ksz9031_of_load_skew_values(phydev, of_node, 1114 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1115 rx_data_skews, 4, &update); 1116 1117 ksz9031_of_load_skew_values(phydev, of_node, 1118 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1119 tx_data_skews, 4, &update); 1120 1121 if (update && !phy_interface_is_rgmii(phydev)) 1122 phydev_warn(phydev, 1123 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1124 1125 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1126 * When the device links in the 1000BASE-T slave mode only, 1127 * the optional 125MHz reference output clock (CLK125_NDO) 1128 * has wide duty cycle variation. 1129 * 1130 * The optional CLK125_NDO clock does not meet the RGMII 1131 * 45/55 percent (min/max) duty cycle requirement and therefore 1132 * cannot be used directly by the MAC side for clocking 1133 * applications that have setup/hold time requirements on 1134 * rising and falling clock edges. 1135 * 1136 * Workaround: 1137 * Force the phy to be the master to receive a stable clock 1138 * which meets the duty cycle requirement. 1139 */ 1140 if (of_property_read_bool(of_node, "micrel,force-master")) { 1141 result = phy_read(phydev, MII_CTRL1000); 1142 if (result < 0) 1143 goto err_force_master; 1144 1145 /* enable master mode, config & prefer master */ 1146 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1147 result = phy_write(phydev, MII_CTRL1000, result); 1148 if (result < 0) 1149 goto err_force_master; 1150 } 1151 } 1152 1153 return ksz9031_center_flp_timing(phydev); 1154 1155 err_force_master: 1156 phydev_err(phydev, "failed to force the phy to master mode\n"); 1157 return result; 1158 } 1159 1160 #define KSZ9131_SKEW_5BIT_MAX 2400 1161 #define KSZ9131_SKEW_4BIT_MAX 800 1162 #define KSZ9131_OFFSET 700 1163 #define KSZ9131_STEP 100 1164 1165 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1166 struct device_node *of_node, 1167 u16 reg, size_t field_sz, 1168 char *field[], u8 numfields) 1169 { 1170 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1171 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1172 int skewval, skewmax = 0; 1173 int matches = 0; 1174 u16 maxval; 1175 u16 newval; 1176 u16 mask; 1177 int i; 1178 1179 /* psec properties in dts should mean x pico seconds */ 1180 if (field_sz == 5) 1181 skewmax = KSZ9131_SKEW_5BIT_MAX; 1182 else 1183 skewmax = KSZ9131_SKEW_4BIT_MAX; 1184 1185 for (i = 0; i < numfields; i++) 1186 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1187 if (skewval < -KSZ9131_OFFSET) 1188 skewval = -KSZ9131_OFFSET; 1189 else if (skewval > skewmax) 1190 skewval = skewmax; 1191 1192 val[i] = skewval + KSZ9131_OFFSET; 1193 matches++; 1194 } 1195 1196 if (!matches) 1197 return 0; 1198 1199 if (matches < numfields) 1200 newval = phy_read_mmd(phydev, 2, reg); 1201 else 1202 newval = 0; 1203 1204 maxval = (field_sz == 4) ? 0xf : 0x1f; 1205 for (i = 0; i < numfields; i++) 1206 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1207 mask = 0xffff; 1208 mask ^= maxval << (field_sz * i); 1209 newval = (newval & mask) | 1210 (((val[i] / KSZ9131_STEP) & maxval) 1211 << (field_sz * i)); 1212 } 1213 1214 return phy_write_mmd(phydev, 2, reg, newval); 1215 } 1216 1217 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1218 #define KSZ9131RN_RXC_DLL_CTRL 76 1219 #define KSZ9131RN_TXC_DLL_CTRL 77 1220 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1221 1222 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1223 { 1224 const struct kszphy_type *type = phydev->drv->driver_data; 1225 u16 rxcdll_val, txcdll_val; 1226 int ret; 1227 1228 switch (phydev->interface) { 1229 case PHY_INTERFACE_MODE_RGMII: 1230 rxcdll_val = type->disable_dll_rx_bit; 1231 txcdll_val = type->disable_dll_tx_bit; 1232 break; 1233 case PHY_INTERFACE_MODE_RGMII_ID: 1234 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1235 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1236 break; 1237 case PHY_INTERFACE_MODE_RGMII_RXID: 1238 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1239 txcdll_val = type->disable_dll_tx_bit; 1240 break; 1241 case PHY_INTERFACE_MODE_RGMII_TXID: 1242 rxcdll_val = type->disable_dll_rx_bit; 1243 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1244 break; 1245 default: 1246 return 0; 1247 } 1248 1249 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1250 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1251 rxcdll_val); 1252 if (ret < 0) 1253 return ret; 1254 1255 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1256 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1257 txcdll_val); 1258 } 1259 1260 /* Silicon Errata DS80000693B 1261 * 1262 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1263 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1264 * according to the datasheet (off if there is no link). 1265 */ 1266 static int ksz9131_led_errata(struct phy_device *phydev) 1267 { 1268 int reg; 1269 1270 reg = phy_read_mmd(phydev, 2, 0); 1271 if (reg < 0) 1272 return reg; 1273 1274 if (!(reg & BIT(4))) 1275 return 0; 1276 1277 return phy_set_bits(phydev, 0x1e, BIT(9)); 1278 } 1279 1280 static int ksz9131_config_init(struct phy_device *phydev) 1281 { 1282 struct device_node *of_node; 1283 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1284 char *rx_data_skews[4] = { 1285 "rxd0-skew-psec", "rxd1-skew-psec", 1286 "rxd2-skew-psec", "rxd3-skew-psec" 1287 }; 1288 char *tx_data_skews[4] = { 1289 "txd0-skew-psec", "txd1-skew-psec", 1290 "txd2-skew-psec", "txd3-skew-psec" 1291 }; 1292 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1293 const struct device *dev_walker; 1294 int ret; 1295 1296 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1297 1298 dev_walker = &phydev->mdio.dev; 1299 do { 1300 of_node = dev_walker->of_node; 1301 dev_walker = dev_walker->parent; 1302 } while (!of_node && dev_walker); 1303 1304 if (!of_node) 1305 return 0; 1306 1307 if (phy_interface_is_rgmii(phydev)) { 1308 ret = ksz9131_config_rgmii_delay(phydev); 1309 if (ret < 0) 1310 return ret; 1311 } 1312 1313 ret = ksz9131_of_load_skew_values(phydev, of_node, 1314 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1315 clk_skews, 2); 1316 if (ret < 0) 1317 return ret; 1318 1319 ret = ksz9131_of_load_skew_values(phydev, of_node, 1320 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1321 control_skews, 2); 1322 if (ret < 0) 1323 return ret; 1324 1325 ret = ksz9131_of_load_skew_values(phydev, of_node, 1326 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1327 rx_data_skews, 4); 1328 if (ret < 0) 1329 return ret; 1330 1331 ret = ksz9131_of_load_skew_values(phydev, of_node, 1332 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1333 tx_data_skews, 4); 1334 if (ret < 0) 1335 return ret; 1336 1337 ret = ksz9131_led_errata(phydev); 1338 if (ret < 0) 1339 return ret; 1340 1341 return 0; 1342 } 1343 1344 #define MII_KSZ9131_AUTO_MDIX 0x1C 1345 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1346 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1347 #define MII_KSZ9131_DIG_AXAN_STS 0x14 1348 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14) 1349 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12) 1350 1351 static int ksz9131_mdix_update(struct phy_device *phydev) 1352 { 1353 int ret; 1354 1355 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) { 1356 phydev->mdix = phydev->mdix_ctrl; 1357 } else { 1358 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS); 1359 if (ret < 0) 1360 return ret; 1361 1362 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) { 1363 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT) 1364 phydev->mdix = ETH_TP_MDI; 1365 else 1366 phydev->mdix = ETH_TP_MDI_X; 1367 } else { 1368 phydev->mdix = ETH_TP_MDI_INVALID; 1369 } 1370 } 1371 1372 return 0; 1373 } 1374 1375 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1376 { 1377 u16 val; 1378 1379 switch (ctrl) { 1380 case ETH_TP_MDI: 1381 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1382 MII_KSZ9131_AUTO_MDI_SET; 1383 break; 1384 case ETH_TP_MDI_X: 1385 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1386 break; 1387 case ETH_TP_MDI_AUTO: 1388 val = 0; 1389 break; 1390 default: 1391 return 0; 1392 } 1393 1394 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1395 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1396 MII_KSZ9131_AUTO_MDI_SET, val); 1397 } 1398 1399 static int ksz9131_read_status(struct phy_device *phydev) 1400 { 1401 int ret; 1402 1403 ret = ksz9131_mdix_update(phydev); 1404 if (ret < 0) 1405 return ret; 1406 1407 return genphy_read_status(phydev); 1408 } 1409 1410 static int ksz9131_config_aneg(struct phy_device *phydev) 1411 { 1412 int ret; 1413 1414 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1415 if (ret) 1416 return ret; 1417 1418 return genphy_config_aneg(phydev); 1419 } 1420 1421 static int ksz9477_get_features(struct phy_device *phydev) 1422 { 1423 int ret; 1424 1425 ret = genphy_read_abilities(phydev); 1426 if (ret) 1427 return ret; 1428 1429 /* The "EEE control and capability 1" (Register 3.20) seems to be 1430 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1431 * on the 7.60 will affect 3.20. So, we need to construct our own list 1432 * of caps. 1433 * KSZ8563R should have 100BaseTX/Full only. 1434 */ 1435 linkmode_and(phydev->supported_eee, phydev->supported, 1436 PHY_EEE_CAP1_FEATURES); 1437 1438 return 0; 1439 } 1440 1441 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1442 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1443 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1444 static int ksz8873mll_read_status(struct phy_device *phydev) 1445 { 1446 int regval; 1447 1448 /* dummy read */ 1449 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1450 1451 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1452 1453 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1454 phydev->duplex = DUPLEX_HALF; 1455 else 1456 phydev->duplex = DUPLEX_FULL; 1457 1458 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1459 phydev->speed = SPEED_10; 1460 else 1461 phydev->speed = SPEED_100; 1462 1463 phydev->link = 1; 1464 phydev->pause = phydev->asym_pause = 0; 1465 1466 return 0; 1467 } 1468 1469 static int ksz9031_get_features(struct phy_device *phydev) 1470 { 1471 int ret; 1472 1473 ret = genphy_read_abilities(phydev); 1474 if (ret < 0) 1475 return ret; 1476 1477 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1478 * Whenever the device's Asymmetric Pause capability is set to 1, 1479 * link-up may fail after a link-up to link-down transition. 1480 * 1481 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1482 * 1483 * Workaround: 1484 * Do not enable the Asymmetric Pause capability bit. 1485 */ 1486 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1487 1488 /* We force setting the Pause capability as the core will force the 1489 * Asymmetric Pause capability to 1 otherwise. 1490 */ 1491 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1492 1493 return 0; 1494 } 1495 1496 static int ksz9031_read_status(struct phy_device *phydev) 1497 { 1498 int err; 1499 int regval; 1500 1501 err = genphy_read_status(phydev); 1502 if (err) 1503 return err; 1504 1505 /* Make sure the PHY is not broken. Read idle error count, 1506 * and reset the PHY if it is maxed out. 1507 */ 1508 regval = phy_read(phydev, MII_STAT1000); 1509 if ((regval & 0xFF) == 0xFF) { 1510 phy_init_hw(phydev); 1511 phydev->link = 0; 1512 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1513 phydev->drv->config_intr(phydev); 1514 return genphy_config_aneg(phydev); 1515 } 1516 1517 return 0; 1518 } 1519 1520 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1521 { 1522 struct kszphy_priv *priv = phydev->priv; 1523 int ret; 1524 1525 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1526 * Prior to running the cable diagnostics, Auto-negotiation should 1527 * be disabled, full duplex set and the link speed set to 1000Mbps 1528 * via the Basic Control Register. 1529 */ 1530 ret = phy_modify(phydev, MII_BMCR, 1531 BMCR_SPEED1000 | BMCR_FULLDPLX | 1532 BMCR_ANENABLE | BMCR_SPEED100, 1533 BMCR_SPEED1000 | BMCR_FULLDPLX); 1534 if (ret) 1535 return ret; 1536 1537 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1538 * The Master-Slave configuration should be set to Slave by writing 1539 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1540 * Register. 1541 */ 1542 ret = phy_read(phydev, MII_CTRL1000); 1543 if (ret < 0) 1544 return ret; 1545 1546 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1547 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1548 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1549 ret |= CTL1000_ENABLE_MASTER; 1550 1551 return phy_write(phydev, MII_CTRL1000, ret); 1552 } 1553 1554 static int ksz9x31_cable_test_result_trans(u16 status) 1555 { 1556 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1557 case KSZ9x31_LMD_VCT_ST_NORMAL: 1558 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1559 case KSZ9x31_LMD_VCT_ST_OPEN: 1560 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1561 case KSZ9x31_LMD_VCT_ST_SHORT: 1562 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1563 case KSZ9x31_LMD_VCT_ST_FAIL: 1564 fallthrough; 1565 default: 1566 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1567 } 1568 } 1569 1570 static bool ksz9x31_cable_test_failed(u16 status) 1571 { 1572 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1573 1574 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1575 } 1576 1577 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1578 { 1579 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1580 case KSZ9x31_LMD_VCT_ST_OPEN: 1581 fallthrough; 1582 case KSZ9x31_LMD_VCT_ST_SHORT: 1583 return true; 1584 } 1585 return false; 1586 } 1587 1588 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1589 { 1590 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1591 1592 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1593 * 1594 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1595 */ 1596 if (phydev_id_compare(phydev, PHY_ID_KSZ9131)) 1597 dt = clamp(dt - 22, 0, 255); 1598 1599 return (dt * 400) / 10; 1600 } 1601 1602 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1603 { 1604 int val, ret; 1605 1606 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1607 !(val & KSZ9x31_LMD_VCT_EN), 1608 30000, 100000, true); 1609 1610 return ret < 0 ? ret : 0; 1611 } 1612 1613 static int ksz9x31_cable_test_get_pair(int pair) 1614 { 1615 static const int ethtool_pair[] = { 1616 ETHTOOL_A_CABLE_PAIR_A, 1617 ETHTOOL_A_CABLE_PAIR_B, 1618 ETHTOOL_A_CABLE_PAIR_C, 1619 ETHTOOL_A_CABLE_PAIR_D, 1620 }; 1621 1622 return ethtool_pair[pair]; 1623 } 1624 1625 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1626 { 1627 int ret, val; 1628 1629 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1630 * To test each individual cable pair, set the cable pair in the Cable 1631 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1632 * Diagnostic Register, along with setting the Cable Diagnostics Test 1633 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1634 * will self clear when the test is concluded. 1635 */ 1636 ret = phy_write(phydev, KSZ9x31_LMD, 1637 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1638 if (ret) 1639 return ret; 1640 1641 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1642 if (ret) 1643 return ret; 1644 1645 val = phy_read(phydev, KSZ9x31_LMD); 1646 if (val < 0) 1647 return val; 1648 1649 if (ksz9x31_cable_test_failed(val)) 1650 return -EAGAIN; 1651 1652 ret = ethnl_cable_test_result(phydev, 1653 ksz9x31_cable_test_get_pair(pair), 1654 ksz9x31_cable_test_result_trans(val)); 1655 if (ret) 1656 return ret; 1657 1658 if (!ksz9x31_cable_test_fault_length_valid(val)) 1659 return 0; 1660 1661 return ethnl_cable_test_fault_length(phydev, 1662 ksz9x31_cable_test_get_pair(pair), 1663 ksz9x31_cable_test_fault_length(phydev, val)); 1664 } 1665 1666 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1667 bool *finished) 1668 { 1669 struct kszphy_priv *priv = phydev->priv; 1670 unsigned long pair_mask = 0xf; 1671 int retries = 20; 1672 int pair, ret, rv; 1673 1674 *finished = false; 1675 1676 /* Try harder if link partner is active */ 1677 while (pair_mask && retries--) { 1678 for_each_set_bit(pair, &pair_mask, 4) { 1679 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1680 if (ret == -EAGAIN) 1681 continue; 1682 if (ret < 0) 1683 return ret; 1684 clear_bit(pair, &pair_mask); 1685 } 1686 /* If link partner is in autonegotiation mode it will send 2ms 1687 * of FLPs with at least 6ms of silence. 1688 * Add 2ms sleep to have better chances to hit this silence. 1689 */ 1690 if (pair_mask) 1691 usleep_range(2000, 3000); 1692 } 1693 1694 /* Report remaining unfinished pair result as unknown. */ 1695 for_each_set_bit(pair, &pair_mask, 4) { 1696 ret = ethnl_cable_test_result(phydev, 1697 ksz9x31_cable_test_get_pair(pair), 1698 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1699 } 1700 1701 *finished = true; 1702 1703 /* Restore cached bits from before LinkMD got started. */ 1704 rv = phy_modify(phydev, MII_CTRL1000, 1705 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1706 priv->vct_ctrl1000); 1707 if (rv) 1708 return rv; 1709 1710 return ret; 1711 } 1712 1713 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1714 { 1715 return 0; 1716 } 1717 1718 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1719 { 1720 u16 val; 1721 1722 switch (ctrl) { 1723 case ETH_TP_MDI: 1724 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1725 break; 1726 case ETH_TP_MDI_X: 1727 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1728 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1729 * sheet seems to be missing: 1730 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1731 * 0 = Normal operation (transmit on TX+/TX- pins) 1732 */ 1733 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1734 break; 1735 case ETH_TP_MDI_AUTO: 1736 val = 0; 1737 break; 1738 default: 1739 return 0; 1740 } 1741 1742 return phy_modify(phydev, MII_BMCR, 1743 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1744 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1745 KSZ886X_BMCR_HP_MDIX | val); 1746 } 1747 1748 static int ksz886x_config_aneg(struct phy_device *phydev) 1749 { 1750 int ret; 1751 1752 ret = genphy_config_aneg(phydev); 1753 if (ret) 1754 return ret; 1755 1756 /* The MDI-X configuration is automatically changed by the PHY after 1757 * switching from autoneg off to on. So, take MDI-X configuration under 1758 * own control and set it after autoneg configuration was done. 1759 */ 1760 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1761 } 1762 1763 static int ksz886x_mdix_update(struct phy_device *phydev) 1764 { 1765 int ret; 1766 1767 ret = phy_read(phydev, MII_BMCR); 1768 if (ret < 0) 1769 return ret; 1770 1771 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1772 if (ret & KSZ886X_BMCR_FORCE_MDI) 1773 phydev->mdix_ctrl = ETH_TP_MDI_X; 1774 else 1775 phydev->mdix_ctrl = ETH_TP_MDI; 1776 } else { 1777 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1778 } 1779 1780 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1781 if (ret < 0) 1782 return ret; 1783 1784 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1785 if (ret & KSZ886X_CTRL_MDIX_STAT) 1786 phydev->mdix = ETH_TP_MDI_X; 1787 else 1788 phydev->mdix = ETH_TP_MDI; 1789 1790 return 0; 1791 } 1792 1793 static int ksz886x_read_status(struct phy_device *phydev) 1794 { 1795 int ret; 1796 1797 ret = ksz886x_mdix_update(phydev); 1798 if (ret < 0) 1799 return ret; 1800 1801 return genphy_read_status(phydev); 1802 } 1803 1804 struct ksz9477_errata_write { 1805 u8 dev_addr; 1806 u8 reg_addr; 1807 u16 val; 1808 }; 1809 1810 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 1811 /* Register settings are needed to improve PHY receive performance */ 1812 {0x01, 0x6f, 0xdd0b}, 1813 {0x01, 0x8f, 0x6032}, 1814 {0x01, 0x9d, 0x248c}, 1815 {0x01, 0x75, 0x0060}, 1816 {0x01, 0xd3, 0x7777}, 1817 {0x1c, 0x06, 0x3008}, 1818 {0x1c, 0x08, 0x2000}, 1819 1820 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 1821 {0x1c, 0x04, 0x00d0}, 1822 1823 /* Register settings are required to meet data sheet supply current specifications */ 1824 {0x1c, 0x13, 0x6eff}, 1825 {0x1c, 0x14, 0xe6ff}, 1826 {0x1c, 0x15, 0x6eff}, 1827 {0x1c, 0x16, 0xe6ff}, 1828 {0x1c, 0x17, 0x00ff}, 1829 {0x1c, 0x18, 0x43ff}, 1830 {0x1c, 0x19, 0xc3ff}, 1831 {0x1c, 0x1a, 0x6fff}, 1832 {0x1c, 0x1b, 0x07ff}, 1833 {0x1c, 0x1c, 0x0fff}, 1834 {0x1c, 0x1d, 0xe7ff}, 1835 {0x1c, 0x1e, 0xefff}, 1836 {0x1c, 0x20, 0xeeee}, 1837 }; 1838 1839 static int ksz9477_phy_errata(struct phy_device *phydev) 1840 { 1841 int err; 1842 int i; 1843 1844 /* Apply PHY settings to address errata listed in 1845 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 1846 * Silicon Errata and Data Sheet Clarification documents. 1847 * 1848 * Document notes: Before configuring the PHY MMD registers, it is 1849 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 1850 * disabled by writing to register 0xN100-0xN101. After writing the 1851 * MMD registers, and after all errata workarounds that involve PHY 1852 * register settings, write register 0xN100-0xN101 again to enable 1853 * and restart auto-negotiation. 1854 */ 1855 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 1856 if (err) 1857 return err; 1858 1859 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 1860 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 1861 1862 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 1863 if (err) 1864 return err; 1865 } 1866 1867 err = genphy_restart_aneg(phydev); 1868 if (err) 1869 return err; 1870 1871 return err; 1872 } 1873 1874 static int ksz9477_config_init(struct phy_device *phydev) 1875 { 1876 int err; 1877 1878 /* Only KSZ9897 family of switches needs this fix. */ 1879 if ((phydev->phy_id & 0xf) == 1) { 1880 err = ksz9477_phy_errata(phydev); 1881 if (err) 1882 return err; 1883 } 1884 1885 /* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes 1886 * in this switch shall be regarded as broken. 1887 */ 1888 if (phydev->dev_flags & MICREL_NO_EEE) 1889 phydev->eee_broken_modes = -1; 1890 1891 return kszphy_config_init(phydev); 1892 } 1893 1894 static int kszphy_get_sset_count(struct phy_device *phydev) 1895 { 1896 return ARRAY_SIZE(kszphy_hw_stats); 1897 } 1898 1899 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 1900 { 1901 int i; 1902 1903 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) { 1904 strscpy(data + i * ETH_GSTRING_LEN, 1905 kszphy_hw_stats[i].string, ETH_GSTRING_LEN); 1906 } 1907 } 1908 1909 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 1910 { 1911 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 1912 struct kszphy_priv *priv = phydev->priv; 1913 int val; 1914 u64 ret; 1915 1916 val = phy_read(phydev, stat.reg); 1917 if (val < 0) { 1918 ret = U64_MAX; 1919 } else { 1920 val = val & ((1 << stat.bits) - 1); 1921 priv->stats[i] += val; 1922 ret = priv->stats[i]; 1923 } 1924 1925 return ret; 1926 } 1927 1928 static void kszphy_get_stats(struct phy_device *phydev, 1929 struct ethtool_stats *stats, u64 *data) 1930 { 1931 int i; 1932 1933 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 1934 data[i] = kszphy_get_stat(phydev, i); 1935 } 1936 1937 static int kszphy_suspend(struct phy_device *phydev) 1938 { 1939 /* Disable PHY Interrupts */ 1940 if (phy_interrupt_is_valid(phydev)) { 1941 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1942 if (phydev->drv->config_intr) 1943 phydev->drv->config_intr(phydev); 1944 } 1945 1946 return genphy_suspend(phydev); 1947 } 1948 1949 static void kszphy_parse_led_mode(struct phy_device *phydev) 1950 { 1951 const struct kszphy_type *type = phydev->drv->driver_data; 1952 const struct device_node *np = phydev->mdio.dev.of_node; 1953 struct kszphy_priv *priv = phydev->priv; 1954 int ret; 1955 1956 if (type && type->led_mode_reg) { 1957 ret = of_property_read_u32(np, "micrel,led-mode", 1958 &priv->led_mode); 1959 1960 if (ret) 1961 priv->led_mode = -1; 1962 1963 if (priv->led_mode > 3) { 1964 phydev_err(phydev, "invalid led mode: 0x%02x\n", 1965 priv->led_mode); 1966 priv->led_mode = -1; 1967 } 1968 } else { 1969 priv->led_mode = -1; 1970 } 1971 } 1972 1973 static int kszphy_resume(struct phy_device *phydev) 1974 { 1975 int ret; 1976 1977 genphy_resume(phydev); 1978 1979 /* After switching from power-down to normal mode, an internal global 1980 * reset is automatically generated. Wait a minimum of 1 ms before 1981 * read/write access to the PHY registers. 1982 */ 1983 usleep_range(1000, 2000); 1984 1985 ret = kszphy_config_reset(phydev); 1986 if (ret) 1987 return ret; 1988 1989 /* Enable PHY Interrupts */ 1990 if (phy_interrupt_is_valid(phydev)) { 1991 phydev->interrupts = PHY_INTERRUPT_ENABLED; 1992 if (phydev->drv->config_intr) 1993 phydev->drv->config_intr(phydev); 1994 } 1995 1996 return 0; 1997 } 1998 1999 static int ksz9477_resume(struct phy_device *phydev) 2000 { 2001 int ret; 2002 2003 /* No need to initialize registers if not powered down. */ 2004 ret = phy_read(phydev, MII_BMCR); 2005 if (ret < 0) 2006 return ret; 2007 if (!(ret & BMCR_PDOWN)) 2008 return 0; 2009 2010 genphy_resume(phydev); 2011 2012 /* After switching from power-down to normal mode, an internal global 2013 * reset is automatically generated. Wait a minimum of 1 ms before 2014 * read/write access to the PHY registers. 2015 */ 2016 usleep_range(1000, 2000); 2017 2018 /* Only KSZ9897 family of switches needs this fix. */ 2019 if ((phydev->phy_id & 0xf) == 1) { 2020 ret = ksz9477_phy_errata(phydev); 2021 if (ret) 2022 return ret; 2023 } 2024 2025 /* Enable PHY Interrupts */ 2026 if (phy_interrupt_is_valid(phydev)) { 2027 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2028 if (phydev->drv->config_intr) 2029 phydev->drv->config_intr(phydev); 2030 } 2031 2032 return 0; 2033 } 2034 2035 static int ksz8061_resume(struct phy_device *phydev) 2036 { 2037 int ret; 2038 2039 /* This function can be called twice when the Ethernet device is on. */ 2040 ret = phy_read(phydev, MII_BMCR); 2041 if (ret < 0) 2042 return ret; 2043 if (!(ret & BMCR_PDOWN)) 2044 return 0; 2045 2046 genphy_resume(phydev); 2047 usleep_range(1000, 2000); 2048 2049 /* Re-program the value after chip is reset. */ 2050 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 2051 if (ret) 2052 return ret; 2053 2054 /* Enable PHY Interrupts */ 2055 if (phy_interrupt_is_valid(phydev)) { 2056 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2057 if (phydev->drv->config_intr) 2058 phydev->drv->config_intr(phydev); 2059 } 2060 2061 return 0; 2062 } 2063 2064 static int kszphy_probe(struct phy_device *phydev) 2065 { 2066 const struct kszphy_type *type = phydev->drv->driver_data; 2067 const struct device_node *np = phydev->mdio.dev.of_node; 2068 struct kszphy_priv *priv; 2069 struct clk *clk; 2070 2071 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 2072 if (!priv) 2073 return -ENOMEM; 2074 2075 phydev->priv = priv; 2076 2077 priv->type = type; 2078 2079 kszphy_parse_led_mode(phydev); 2080 2081 clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref"); 2082 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2083 if (!IS_ERR_OR_NULL(clk)) { 2084 unsigned long rate = clk_get_rate(clk); 2085 bool rmii_ref_clk_sel_25_mhz; 2086 2087 if (type) 2088 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2089 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2090 "micrel,rmii-reference-clock-select-25-mhz"); 2091 2092 if (rate > 24500000 && rate < 25500000) { 2093 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2094 } else if (rate > 49500000 && rate < 50500000) { 2095 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2096 } else { 2097 phydev_err(phydev, "Clock rate out of range: %ld\n", 2098 rate); 2099 return -EINVAL; 2100 } 2101 } 2102 2103 if (ksz8041_fiber_mode(phydev)) 2104 phydev->port = PORT_FIBRE; 2105 2106 /* Support legacy board-file configuration */ 2107 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2108 priv->rmii_ref_clk_sel = true; 2109 priv->rmii_ref_clk_sel_val = true; 2110 } 2111 2112 return 0; 2113 } 2114 2115 static int lan8814_cable_test_start(struct phy_device *phydev) 2116 { 2117 /* If autoneg is enabled, we won't be able to test cross pair 2118 * short. In this case, the PHY will "detect" a link and 2119 * confuse the internal state machine - disable auto neg here. 2120 * Set the speed to 1000mbit and full duplex. 2121 */ 2122 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2123 BMCR_SPEED1000 | BMCR_FULLDPLX); 2124 } 2125 2126 static int ksz886x_cable_test_start(struct phy_device *phydev) 2127 { 2128 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2129 return -EOPNOTSUPP; 2130 2131 /* If autoneg is enabled, we won't be able to test cross pair 2132 * short. In this case, the PHY will "detect" a link and 2133 * confuse the internal state machine - disable auto neg here. 2134 * If autoneg is disabled, we should set the speed to 10mbit. 2135 */ 2136 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2137 } 2138 2139 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2140 { 2141 switch (FIELD_GET(mask, status)) { 2142 case KSZ8081_LMD_STAT_NORMAL: 2143 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2144 case KSZ8081_LMD_STAT_SHORT: 2145 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2146 case KSZ8081_LMD_STAT_OPEN: 2147 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2148 case KSZ8081_LMD_STAT_FAIL: 2149 fallthrough; 2150 default: 2151 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2152 } 2153 } 2154 2155 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2156 { 2157 return FIELD_GET(mask, status) == 2158 KSZ8081_LMD_STAT_FAIL; 2159 } 2160 2161 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2162 { 2163 switch (FIELD_GET(mask, status)) { 2164 case KSZ8081_LMD_STAT_OPEN: 2165 fallthrough; 2166 case KSZ8081_LMD_STAT_SHORT: 2167 return true; 2168 } 2169 return false; 2170 } 2171 2172 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2173 u16 status, u16 data_mask) 2174 { 2175 int dt; 2176 2177 /* According to the data sheet the distance to the fault is 2178 * DELTA_TIME * 0.4 meters for ksz phys. 2179 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2180 */ 2181 dt = FIELD_GET(data_mask, status); 2182 2183 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2184 return ((dt - 22) * 800) / 10; 2185 else 2186 return (dt * 400) / 10; 2187 } 2188 2189 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2190 { 2191 const struct kszphy_type *type = phydev->drv->driver_data; 2192 int val, ret; 2193 2194 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2195 !(val & KSZ8081_LMD_ENABLE_TEST), 2196 30000, 100000, true); 2197 2198 return ret < 0 ? ret : 0; 2199 } 2200 2201 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2202 { 2203 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2204 ETHTOOL_A_CABLE_PAIR_B, 2205 ETHTOOL_A_CABLE_PAIR_C, 2206 ETHTOOL_A_CABLE_PAIR_D, 2207 }; 2208 u32 fault_length; 2209 int ret; 2210 int val; 2211 2212 val = KSZ8081_LMD_ENABLE_TEST; 2213 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2214 2215 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2216 if (ret < 0) 2217 return ret; 2218 2219 ret = ksz886x_cable_test_wait_for_completion(phydev); 2220 if (ret) 2221 return ret; 2222 2223 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2224 if (val < 0) 2225 return val; 2226 2227 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2228 return -EAGAIN; 2229 2230 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2231 ksz886x_cable_test_result_trans(val, 2232 LAN8814_CABLE_DIAG_STAT_MASK 2233 )); 2234 if (ret) 2235 return ret; 2236 2237 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2238 return 0; 2239 2240 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2241 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2242 2243 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2244 } 2245 2246 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2247 { 2248 static const int ethtool_pair[] = { 2249 ETHTOOL_A_CABLE_PAIR_A, 2250 ETHTOOL_A_CABLE_PAIR_B, 2251 }; 2252 int ret, val, mdix; 2253 u32 fault_length; 2254 2255 /* There is no way to choice the pair, like we do one ksz9031. 2256 * We can workaround this limitation by using the MDI-X functionality. 2257 */ 2258 if (pair == 0) 2259 mdix = ETH_TP_MDI; 2260 else 2261 mdix = ETH_TP_MDI_X; 2262 2263 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2264 case PHY_ID_KSZ8081: 2265 ret = ksz8081_config_mdix(phydev, mdix); 2266 break; 2267 case PHY_ID_KSZ886X: 2268 ret = ksz886x_config_mdix(phydev, mdix); 2269 break; 2270 default: 2271 ret = -ENODEV; 2272 } 2273 2274 if (ret) 2275 return ret; 2276 2277 /* Now we are ready to fire. This command will send a 100ns pulse 2278 * to the pair. 2279 */ 2280 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2281 if (ret) 2282 return ret; 2283 2284 ret = ksz886x_cable_test_wait_for_completion(phydev); 2285 if (ret) 2286 return ret; 2287 2288 val = phy_read(phydev, KSZ8081_LMD); 2289 if (val < 0) 2290 return val; 2291 2292 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2293 return -EAGAIN; 2294 2295 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2296 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2297 if (ret) 2298 return ret; 2299 2300 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2301 return 0; 2302 2303 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2304 2305 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2306 } 2307 2308 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2309 bool *finished) 2310 { 2311 const struct kszphy_type *type = phydev->drv->driver_data; 2312 unsigned long pair_mask = type->pair_mask; 2313 int retries = 20; 2314 int ret = 0; 2315 int pair; 2316 2317 *finished = false; 2318 2319 /* Try harder if link partner is active */ 2320 while (pair_mask && retries--) { 2321 for_each_set_bit(pair, &pair_mask, 4) { 2322 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2323 ret = lan8814_cable_test_one_pair(phydev, pair); 2324 else 2325 ret = ksz886x_cable_test_one_pair(phydev, pair); 2326 if (ret == -EAGAIN) 2327 continue; 2328 if (ret < 0) 2329 return ret; 2330 clear_bit(pair, &pair_mask); 2331 } 2332 /* If link partner is in autonegotiation mode it will send 2ms 2333 * of FLPs with at least 6ms of silence. 2334 * Add 2ms sleep to have better chances to hit this silence. 2335 */ 2336 if (pair_mask) 2337 msleep(2); 2338 } 2339 2340 *finished = true; 2341 2342 return ret; 2343 } 2344 2345 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2346 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2347 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2348 2349 #define LAN8814_QSGMII_SOFT_RESET 0x43 2350 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2351 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2352 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2353 #define LAN8814_ALIGN_SWAP 0x4a 2354 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2355 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2356 2357 #define LAN8804_ALIGN_SWAP 0x4a 2358 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2359 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2360 #define LAN8814_CLOCK_MANAGEMENT 0xd 2361 #define LAN8814_LINK_QUALITY 0x8e 2362 2363 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2364 { 2365 int data; 2366 2367 phy_lock_mdio_bus(phydev); 2368 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2369 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2370 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2371 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2372 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2373 phy_unlock_mdio_bus(phydev); 2374 2375 return data; 2376 } 2377 2378 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2379 u16 val) 2380 { 2381 phy_lock_mdio_bus(phydev); 2382 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2383 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2384 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2385 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2386 2387 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2388 if (val != 0) 2389 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2390 val); 2391 phy_unlock_mdio_bus(phydev); 2392 return val; 2393 } 2394 2395 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2396 { 2397 u16 val = 0; 2398 2399 if (enable) 2400 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2401 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2402 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2403 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2404 2405 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val); 2406 } 2407 2408 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2409 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2410 { 2411 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI); 2412 *seconds = (*seconds << 16) | 2413 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO); 2414 2415 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI); 2416 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2417 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO); 2418 2419 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2); 2420 } 2421 2422 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2423 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2424 { 2425 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI); 2426 *seconds = *seconds << 16 | 2427 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO); 2428 2429 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI); 2430 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2431 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO); 2432 2433 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2); 2434 } 2435 2436 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info) 2437 { 2438 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2439 struct phy_device *phydev = ptp_priv->phydev; 2440 struct lan8814_shared_priv *shared = phydev->shared->priv; 2441 2442 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2443 SOF_TIMESTAMPING_RX_HARDWARE | 2444 SOF_TIMESTAMPING_RAW_HARDWARE; 2445 2446 info->phc_index = ptp_clock_index(shared->ptp_clock); 2447 2448 info->tx_types = 2449 (1 << HWTSTAMP_TX_OFF) | 2450 (1 << HWTSTAMP_TX_ON) | 2451 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 2452 2453 info->rx_filters = 2454 (1 << HWTSTAMP_FILTER_NONE) | 2455 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2456 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 2457 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 2458 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2459 2460 return 0; 2461 } 2462 2463 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 2464 { 2465 int i; 2466 2467 for (i = 0; i < FIFO_SIZE; ++i) 2468 lanphy_read_page_reg(phydev, 5, 2469 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 2470 2471 /* Read to clear overflow status bit */ 2472 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2473 } 2474 2475 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr) 2476 { 2477 struct kszphy_ptp_priv *ptp_priv = 2478 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2479 struct phy_device *phydev = ptp_priv->phydev; 2480 struct lan8814_shared_priv *shared = phydev->shared->priv; 2481 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2482 struct hwtstamp_config config; 2483 int txcfg = 0, rxcfg = 0; 2484 int pkt_ts_enable; 2485 int tx_mod; 2486 2487 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2488 return -EFAULT; 2489 2490 ptp_priv->hwts_tx_type = config.tx_type; 2491 ptp_priv->rx_filter = config.rx_filter; 2492 2493 switch (config.rx_filter) { 2494 case HWTSTAMP_FILTER_NONE: 2495 ptp_priv->layer = 0; 2496 ptp_priv->version = 0; 2497 break; 2498 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2499 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2500 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2501 ptp_priv->layer = PTP_CLASS_L4; 2502 ptp_priv->version = PTP_CLASS_V2; 2503 break; 2504 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2505 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2506 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2507 ptp_priv->layer = PTP_CLASS_L2; 2508 ptp_priv->version = PTP_CLASS_V2; 2509 break; 2510 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2511 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2512 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2513 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 2514 ptp_priv->version = PTP_CLASS_V2; 2515 break; 2516 default: 2517 return -ERANGE; 2518 } 2519 2520 if (ptp_priv->layer & PTP_CLASS_L2) { 2521 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 2522 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 2523 } else if (ptp_priv->layer & PTP_CLASS_L4) { 2524 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 2525 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 2526 } 2527 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg); 2528 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg); 2529 2530 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 2531 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 2532 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 2533 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 2534 2535 tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD); 2536 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) { 2537 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2538 tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2539 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) { 2540 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2541 tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2542 } 2543 2544 if (config.rx_filter != HWTSTAMP_FILTER_NONE) 2545 lan8814_config_ts_intr(ptp_priv->phydev, true); 2546 else 2547 lan8814_config_ts_intr(ptp_priv->phydev, false); 2548 2549 mutex_lock(&shared->shared_lock); 2550 if (config.rx_filter != HWTSTAMP_FILTER_NONE) 2551 shared->ref++; 2552 else 2553 shared->ref--; 2554 2555 if (shared->ref) 2556 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2557 PTP_CMD_CTL_PTP_ENABLE_); 2558 else 2559 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2560 PTP_CMD_CTL_PTP_DISABLE_); 2561 mutex_unlock(&shared->shared_lock); 2562 2563 /* In case of multiple starts and stops, these needs to be cleared */ 2564 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2565 list_del(&rx_ts->list); 2566 kfree(rx_ts); 2567 } 2568 skb_queue_purge(&ptp_priv->rx_queue); 2569 skb_queue_purge(&ptp_priv->tx_queue); 2570 2571 lan8814_flush_fifo(ptp_priv->phydev, false); 2572 lan8814_flush_fifo(ptp_priv->phydev, true); 2573 2574 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; 2575 } 2576 2577 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 2578 struct sk_buff *skb, int type) 2579 { 2580 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2581 2582 switch (ptp_priv->hwts_tx_type) { 2583 case HWTSTAMP_TX_ONESTEP_SYNC: 2584 if (ptp_msg_is_sync(skb, type)) { 2585 kfree_skb(skb); 2586 return; 2587 } 2588 fallthrough; 2589 case HWTSTAMP_TX_ON: 2590 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2591 skb_queue_tail(&ptp_priv->tx_queue, skb); 2592 break; 2593 case HWTSTAMP_TX_OFF: 2594 default: 2595 kfree_skb(skb); 2596 break; 2597 } 2598 } 2599 2600 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 2601 { 2602 struct ptp_header *ptp_header; 2603 u32 type; 2604 2605 skb_push(skb, ETH_HLEN); 2606 type = ptp_classify_raw(skb); 2607 ptp_header = ptp_parse_header(skb, type); 2608 skb_pull_inline(skb, ETH_HLEN); 2609 2610 if (!ptp_header) 2611 return false; 2612 2613 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2614 return true; 2615 } 2616 2617 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 2618 struct sk_buff *skb) 2619 { 2620 struct skb_shared_hwtstamps *shhwtstamps; 2621 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2622 unsigned long flags; 2623 bool ret = false; 2624 u16 skb_sig; 2625 2626 if (!lan8814_get_sig_rx(skb, &skb_sig)) 2627 return ret; 2628 2629 /* Iterate over all RX timestamps and match it with the received skbs */ 2630 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2631 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2632 /* Check if we found the signature we were looking for. */ 2633 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2634 continue; 2635 2636 shhwtstamps = skb_hwtstamps(skb); 2637 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2638 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 2639 rx_ts->nsec); 2640 list_del(&rx_ts->list); 2641 kfree(rx_ts); 2642 2643 ret = true; 2644 break; 2645 } 2646 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2647 2648 if (ret) 2649 netif_rx(skb); 2650 return ret; 2651 } 2652 2653 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 2654 { 2655 struct kszphy_ptp_priv *ptp_priv = 2656 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2657 2658 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 2659 type == PTP_CLASS_NONE) 2660 return false; 2661 2662 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 2663 return false; 2664 2665 /* If we failed to match then add it to the queue for when the timestamp 2666 * will come 2667 */ 2668 if (!lan8814_match_rx_skb(ptp_priv, skb)) 2669 skb_queue_tail(&ptp_priv->rx_queue, skb); 2670 2671 return true; 2672 } 2673 2674 static void lan8814_ptp_clock_set(struct phy_device *phydev, 2675 u32 seconds, u32 nano_seconds) 2676 { 2677 u32 sec_low, sec_high, nsec_low, nsec_high; 2678 2679 sec_low = seconds & 0xffff; 2680 sec_high = (seconds >> 16) & 0xffff; 2681 nsec_low = nano_seconds & 0xffff; 2682 nsec_high = (nano_seconds >> 16) & 0x3fff; 2683 2684 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low); 2685 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high); 2686 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low); 2687 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high); 2688 2689 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_); 2690 } 2691 2692 static void lan8814_ptp_clock_get(struct phy_device *phydev, 2693 u32 *seconds, u32 *nano_seconds) 2694 { 2695 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_); 2696 2697 *seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID); 2698 *seconds = (*seconds << 16) | 2699 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO); 2700 2701 *nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI); 2702 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2703 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO); 2704 } 2705 2706 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 2707 struct timespec64 *ts) 2708 { 2709 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2710 ptp_clock_info); 2711 struct phy_device *phydev = shared->phydev; 2712 u32 nano_seconds; 2713 u32 seconds; 2714 2715 mutex_lock(&shared->shared_lock); 2716 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 2717 mutex_unlock(&shared->shared_lock); 2718 ts->tv_sec = seconds; 2719 ts->tv_nsec = nano_seconds; 2720 2721 return 0; 2722 } 2723 2724 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 2725 const struct timespec64 *ts) 2726 { 2727 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2728 ptp_clock_info); 2729 struct phy_device *phydev = shared->phydev; 2730 2731 mutex_lock(&shared->shared_lock); 2732 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 2733 mutex_unlock(&shared->shared_lock); 2734 2735 return 0; 2736 } 2737 2738 static void lan8814_ptp_clock_step(struct phy_device *phydev, 2739 s64 time_step_ns) 2740 { 2741 u32 nano_seconds_step; 2742 u64 abs_time_step_ns; 2743 u32 unsigned_seconds; 2744 u32 nano_seconds; 2745 u32 remainder; 2746 s32 seconds; 2747 2748 if (time_step_ns > 15000000000LL) { 2749 /* convert to clock set */ 2750 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2751 unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL, 2752 &remainder); 2753 nano_seconds += remainder; 2754 if (nano_seconds >= 1000000000) { 2755 unsigned_seconds++; 2756 nano_seconds -= 1000000000; 2757 } 2758 lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds); 2759 return; 2760 } else if (time_step_ns < -15000000000LL) { 2761 /* convert to clock set */ 2762 time_step_ns = -time_step_ns; 2763 2764 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2765 unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 2766 &remainder); 2767 nano_seconds_step = remainder; 2768 if (nano_seconds < nano_seconds_step) { 2769 unsigned_seconds--; 2770 nano_seconds += 1000000000; 2771 } 2772 nano_seconds -= nano_seconds_step; 2773 lan8814_ptp_clock_set(phydev, unsigned_seconds, 2774 nano_seconds); 2775 return; 2776 } 2777 2778 /* do clock step */ 2779 if (time_step_ns >= 0) { 2780 abs_time_step_ns = (u64)time_step_ns; 2781 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 2782 &remainder); 2783 nano_seconds = remainder; 2784 } else { 2785 abs_time_step_ns = (u64)(-time_step_ns); 2786 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 2787 &remainder)); 2788 nano_seconds = remainder; 2789 if (nano_seconds > 0) { 2790 /* subtracting nano seconds is not allowed 2791 * convert to subtracting from seconds, 2792 * and adding to nanoseconds 2793 */ 2794 seconds--; 2795 nano_seconds = (1000000000 - nano_seconds); 2796 } 2797 } 2798 2799 if (nano_seconds > 0) { 2800 /* add 8 ns to cover the likely normal increment */ 2801 nano_seconds += 8; 2802 } 2803 2804 if (nano_seconds >= 1000000000) { 2805 /* carry into seconds */ 2806 seconds++; 2807 nano_seconds -= 1000000000; 2808 } 2809 2810 while (seconds) { 2811 if (seconds > 0) { 2812 u32 adjustment_value = (u32)seconds; 2813 u16 adjustment_value_lo, adjustment_value_hi; 2814 2815 if (adjustment_value > 0xF) 2816 adjustment_value = 0xF; 2817 2818 adjustment_value_lo = adjustment_value & 0xffff; 2819 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2820 2821 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2822 adjustment_value_lo); 2823 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2824 PTP_LTC_STEP_ADJ_DIR_ | 2825 adjustment_value_hi); 2826 seconds -= ((s32)adjustment_value); 2827 } else { 2828 u32 adjustment_value = (u32)(-seconds); 2829 u16 adjustment_value_lo, adjustment_value_hi; 2830 2831 if (adjustment_value > 0xF) 2832 adjustment_value = 0xF; 2833 2834 adjustment_value_lo = adjustment_value & 0xffff; 2835 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2836 2837 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2838 adjustment_value_lo); 2839 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2840 adjustment_value_hi); 2841 seconds += ((s32)adjustment_value); 2842 } 2843 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2844 PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 2845 } 2846 if (nano_seconds) { 2847 u16 nano_seconds_lo; 2848 u16 nano_seconds_hi; 2849 2850 nano_seconds_lo = nano_seconds & 0xffff; 2851 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 2852 2853 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2854 nano_seconds_lo); 2855 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2856 PTP_LTC_STEP_ADJ_DIR_ | 2857 nano_seconds_hi); 2858 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2859 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 2860 } 2861 } 2862 2863 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 2864 { 2865 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2866 ptp_clock_info); 2867 struct phy_device *phydev = shared->phydev; 2868 2869 mutex_lock(&shared->shared_lock); 2870 lan8814_ptp_clock_step(phydev, delta); 2871 mutex_unlock(&shared->shared_lock); 2872 2873 return 0; 2874 } 2875 2876 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 2877 { 2878 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2879 ptp_clock_info); 2880 struct phy_device *phydev = shared->phydev; 2881 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 2882 bool positive = true; 2883 u32 kszphy_rate_adj; 2884 2885 if (scaled_ppm < 0) { 2886 scaled_ppm = -scaled_ppm; 2887 positive = false; 2888 } 2889 2890 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 2891 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 2892 2893 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 2894 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 2895 2896 if (positive) 2897 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 2898 2899 mutex_lock(&shared->shared_lock); 2900 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi); 2901 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo); 2902 mutex_unlock(&shared->shared_lock); 2903 2904 return 0; 2905 } 2906 2907 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 2908 { 2909 struct ptp_header *ptp_header; 2910 u32 type; 2911 2912 type = ptp_classify_raw(skb); 2913 ptp_header = ptp_parse_header(skb, type); 2914 2915 if (!ptp_header) 2916 return false; 2917 2918 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2919 return true; 2920 } 2921 2922 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 2923 u32 seconds, u32 nsec, u16 seq_id) 2924 { 2925 struct skb_shared_hwtstamps shhwtstamps; 2926 struct sk_buff *skb, *skb_tmp; 2927 unsigned long flags; 2928 bool ret = false; 2929 u16 skb_sig; 2930 2931 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 2932 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 2933 if (!lan8814_get_sig_tx(skb, &skb_sig)) 2934 continue; 2935 2936 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 2937 continue; 2938 2939 __skb_unlink(skb, &ptp_priv->tx_queue); 2940 ret = true; 2941 break; 2942 } 2943 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 2944 2945 if (ret) { 2946 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2947 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 2948 skb_complete_tx_timestamp(skb, &shhwtstamps); 2949 } 2950 } 2951 2952 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 2953 { 2954 struct phy_device *phydev = ptp_priv->phydev; 2955 u32 seconds, nsec; 2956 u16 seq_id; 2957 2958 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 2959 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 2960 } 2961 2962 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 2963 { 2964 struct phy_device *phydev = ptp_priv->phydev; 2965 u32 reg; 2966 2967 do { 2968 lan8814_dequeue_tx_skb(ptp_priv); 2969 2970 /* If other timestamps are available in the FIFO, 2971 * process them. 2972 */ 2973 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2974 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 2975 } 2976 2977 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 2978 struct lan8814_ptp_rx_ts *rx_ts) 2979 { 2980 struct skb_shared_hwtstamps *shhwtstamps; 2981 struct sk_buff *skb, *skb_tmp; 2982 unsigned long flags; 2983 bool ret = false; 2984 u16 skb_sig; 2985 2986 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 2987 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 2988 if (!lan8814_get_sig_rx(skb, &skb_sig)) 2989 continue; 2990 2991 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2992 continue; 2993 2994 __skb_unlink(skb, &ptp_priv->rx_queue); 2995 2996 ret = true; 2997 break; 2998 } 2999 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 3000 3001 if (ret) { 3002 shhwtstamps = skb_hwtstamps(skb); 3003 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3004 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 3005 netif_rx(skb); 3006 } 3007 3008 return ret; 3009 } 3010 3011 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 3012 struct lan8814_ptp_rx_ts *rx_ts) 3013 { 3014 unsigned long flags; 3015 3016 /* If we failed to match the skb add it to the queue for when 3017 * the frame will come 3018 */ 3019 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 3020 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3021 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 3022 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3023 } else { 3024 kfree(rx_ts); 3025 } 3026 } 3027 3028 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 3029 { 3030 struct phy_device *phydev = ptp_priv->phydev; 3031 struct lan8814_ptp_rx_ts *rx_ts; 3032 u32 reg; 3033 3034 do { 3035 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 3036 if (!rx_ts) 3037 return; 3038 3039 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 3040 &rx_ts->seq_id); 3041 lan8814_match_rx_ts(ptp_priv, rx_ts); 3042 3043 /* If other timestamps are available in the FIFO, 3044 * process them. 3045 */ 3046 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 3047 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 3048 } 3049 3050 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 3051 { 3052 struct kszphy_priv *priv = phydev->priv; 3053 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3054 3055 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 3056 lan8814_get_tx_ts(ptp_priv); 3057 3058 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 3059 lan8814_get_rx_ts(ptp_priv); 3060 3061 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 3062 lan8814_flush_fifo(phydev, true); 3063 skb_queue_purge(&ptp_priv->tx_queue); 3064 } 3065 3066 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 3067 lan8814_flush_fifo(phydev, false); 3068 skb_queue_purge(&ptp_priv->rx_queue); 3069 } 3070 } 3071 3072 static int lan8804_config_init(struct phy_device *phydev) 3073 { 3074 int val; 3075 3076 /* MDI-X setting for swap A,B transmit */ 3077 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP); 3078 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK; 3079 val |= LAN8804_ALIGN_TX_A_B_SWAP; 3080 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val); 3081 3082 /* Make sure that the PHY will not stop generating the clock when the 3083 * link partner goes down 3084 */ 3085 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e); 3086 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY); 3087 3088 return 0; 3089 } 3090 3091 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 3092 { 3093 int status; 3094 3095 status = phy_read(phydev, LAN8814_INTS); 3096 if (status < 0) { 3097 phy_error(phydev); 3098 return IRQ_NONE; 3099 } 3100 3101 if (status > 0) 3102 phy_trigger_machine(phydev); 3103 3104 return IRQ_HANDLED; 3105 } 3106 3107 #define LAN8804_OUTPUT_CONTROL 25 3108 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 3109 #define LAN8804_CONTROL 31 3110 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 3111 3112 static int lan8804_config_intr(struct phy_device *phydev) 3113 { 3114 int err; 3115 3116 /* This is an internal PHY of lan966x and is not possible to change the 3117 * polarity on the GIC found in lan966x, therefore change the polarity 3118 * of the interrupt in the PHY from being active low instead of active 3119 * high. 3120 */ 3121 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 3122 3123 /* By default interrupt buffer is open-drain in which case the interrupt 3124 * can be active only low. Therefore change the interrupt buffer to be 3125 * push-pull to be able to change interrupt polarity 3126 */ 3127 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 3128 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 3129 3130 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3131 err = phy_read(phydev, LAN8814_INTS); 3132 if (err < 0) 3133 return err; 3134 3135 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3136 if (err) 3137 return err; 3138 } else { 3139 err = phy_write(phydev, LAN8814_INTC, 0); 3140 if (err) 3141 return err; 3142 3143 err = phy_read(phydev, LAN8814_INTS); 3144 if (err < 0) 3145 return err; 3146 } 3147 3148 return 0; 3149 } 3150 3151 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 3152 { 3153 int ret = IRQ_NONE; 3154 int irq_status; 3155 3156 irq_status = phy_read(phydev, LAN8814_INTS); 3157 if (irq_status < 0) { 3158 phy_error(phydev); 3159 return IRQ_NONE; 3160 } 3161 3162 if (irq_status & LAN8814_INT_LINK) { 3163 phy_trigger_machine(phydev); 3164 ret = IRQ_HANDLED; 3165 } 3166 3167 while (true) { 3168 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 3169 if (!irq_status) 3170 break; 3171 3172 lan8814_handle_ptp_interrupt(phydev, irq_status); 3173 ret = IRQ_HANDLED; 3174 } 3175 3176 return ret; 3177 } 3178 3179 static int lan8814_ack_interrupt(struct phy_device *phydev) 3180 { 3181 /* bit[12..0] int status, which is a read and clear register. */ 3182 int rc; 3183 3184 rc = phy_read(phydev, LAN8814_INTS); 3185 3186 return (rc < 0) ? rc : 0; 3187 } 3188 3189 static int lan8814_config_intr(struct phy_device *phydev) 3190 { 3191 int err; 3192 3193 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG, 3194 LAN8814_INTR_CTRL_REG_POLARITY | 3195 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 3196 3197 /* enable / disable interrupts */ 3198 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3199 err = lan8814_ack_interrupt(phydev); 3200 if (err) 3201 return err; 3202 3203 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3204 } else { 3205 err = phy_write(phydev, LAN8814_INTC, 0); 3206 if (err) 3207 return err; 3208 3209 err = lan8814_ack_interrupt(phydev); 3210 } 3211 3212 return err; 3213 } 3214 3215 static void lan8814_ptp_init(struct phy_device *phydev) 3216 { 3217 struct kszphy_priv *priv = phydev->priv; 3218 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3219 u32 temp; 3220 3221 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 3222 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 3223 return; 3224 3225 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_); 3226 3227 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD); 3228 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3229 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp); 3230 3231 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD); 3232 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3233 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp); 3234 3235 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0); 3236 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0); 3237 3238 /* Removing default registers configs related to L2 and IP */ 3239 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0); 3240 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0); 3241 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0); 3242 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0); 3243 3244 /* Disable checking for minorVersionPTP field */ 3245 lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION, 3246 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 3247 lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION, 3248 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 3249 3250 skb_queue_head_init(&ptp_priv->tx_queue); 3251 skb_queue_head_init(&ptp_priv->rx_queue); 3252 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 3253 spin_lock_init(&ptp_priv->rx_ts_lock); 3254 3255 ptp_priv->phydev = phydev; 3256 3257 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 3258 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 3259 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 3260 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 3261 3262 phydev->mii_ts = &ptp_priv->mii_ts; 3263 } 3264 3265 static int lan8814_ptp_probe_once(struct phy_device *phydev) 3266 { 3267 struct lan8814_shared_priv *shared = phydev->shared->priv; 3268 3269 /* Initialise shared lock for clock*/ 3270 mutex_init(&shared->shared_lock); 3271 3272 shared->ptp_clock_info.owner = THIS_MODULE; 3273 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 3274 shared->ptp_clock_info.max_adj = 31249999; 3275 shared->ptp_clock_info.n_alarm = 0; 3276 shared->ptp_clock_info.n_ext_ts = 0; 3277 shared->ptp_clock_info.n_pins = 0; 3278 shared->ptp_clock_info.pps = 0; 3279 shared->ptp_clock_info.pin_config = NULL; 3280 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 3281 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 3282 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 3283 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 3284 shared->ptp_clock_info.getcrosststamp = NULL; 3285 3286 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 3287 &phydev->mdio.dev); 3288 if (IS_ERR(shared->ptp_clock)) { 3289 phydev_err(phydev, "ptp_clock_register failed %lu\n", 3290 PTR_ERR(shared->ptp_clock)); 3291 return -EINVAL; 3292 } 3293 3294 /* Check if PHC support is missing at the configuration level */ 3295 if (!shared->ptp_clock) 3296 return 0; 3297 3298 phydev_dbg(phydev, "successfully registered ptp clock\n"); 3299 3300 shared->phydev = phydev; 3301 3302 /* The EP.4 is shared between all the PHYs in the package and also it 3303 * can be accessed by any of the PHYs 3304 */ 3305 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_); 3306 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE, 3307 PTP_OPERATING_MODE_STANDALONE_); 3308 3309 return 0; 3310 } 3311 3312 static void lan8814_setup_led(struct phy_device *phydev, int val) 3313 { 3314 int temp; 3315 3316 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1); 3317 3318 if (val) 3319 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3320 else 3321 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3322 3323 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp); 3324 } 3325 3326 static int lan8814_config_init(struct phy_device *phydev) 3327 { 3328 struct kszphy_priv *lan8814 = phydev->priv; 3329 int val; 3330 3331 /* Reset the PHY */ 3332 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET); 3333 val |= LAN8814_QSGMII_SOFT_RESET_BIT; 3334 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val); 3335 3336 /* Disable ANEG with QSGMII PCS Host side */ 3337 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG); 3338 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA; 3339 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val); 3340 3341 /* MDI-X setting for swap A,B transmit */ 3342 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP); 3343 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK; 3344 val |= LAN8814_ALIGN_TX_A_B_SWAP; 3345 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val); 3346 3347 if (lan8814->led_mode >= 0) 3348 lan8814_setup_led(phydev, lan8814->led_mode); 3349 3350 return 0; 3351 } 3352 3353 /* It is expected that there will not be any 'lan8814_take_coma_mode' 3354 * function called in suspend. Because the GPIO line can be shared, so if one of 3355 * the phys goes back in coma mode, then all the other PHYs will go, which is 3356 * wrong. 3357 */ 3358 static int lan8814_release_coma_mode(struct phy_device *phydev) 3359 { 3360 struct gpio_desc *gpiod; 3361 3362 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 3363 GPIOD_OUT_HIGH_OPEN_DRAIN | 3364 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 3365 if (IS_ERR(gpiod)) 3366 return PTR_ERR(gpiod); 3367 3368 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 3369 gpiod_set_value_cansleep(gpiod, 0); 3370 3371 return 0; 3372 } 3373 3374 static int lan8814_probe(struct phy_device *phydev) 3375 { 3376 const struct kszphy_type *type = phydev->drv->driver_data; 3377 struct kszphy_priv *priv; 3378 u16 addr; 3379 int err; 3380 3381 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 3382 if (!priv) 3383 return -ENOMEM; 3384 3385 phydev->priv = priv; 3386 3387 priv->type = type; 3388 3389 kszphy_parse_led_mode(phydev); 3390 3391 /* Strap-in value for PHY address, below register read gives starting 3392 * phy address value 3393 */ 3394 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F; 3395 devm_phy_package_join(&phydev->mdio.dev, phydev, 3396 addr, sizeof(struct lan8814_shared_priv)); 3397 3398 if (phy_package_init_once(phydev)) { 3399 err = lan8814_release_coma_mode(phydev); 3400 if (err) 3401 return err; 3402 3403 err = lan8814_ptp_probe_once(phydev); 3404 if (err) 3405 return err; 3406 } 3407 3408 lan8814_ptp_init(phydev); 3409 3410 return 0; 3411 } 3412 3413 #define LAN8841_MMD_TIMER_REG 0 3414 #define LAN8841_MMD0_REGISTER_17 17 3415 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 3416 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 3417 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 3418 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 3419 #define LAN8841_MMD_ANALOG_REG 28 3420 #define LAN8841_ANALOG_CONTROL_1 1 3421 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 3422 #define LAN8841_ANALOG_CONTROL_10 13 3423 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 3424 #define LAN8841_ANALOG_CONTROL_11 14 3425 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 3426 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 3427 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 3428 #define LAN8841_BTRX_POWER_DOWN 70 3429 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 3430 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 3431 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 3432 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 3433 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 3434 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 3435 #define LAN8841_ADC_CHANNEL_MASK 198 3436 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 3437 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 3438 #define LAN8841_PTP_RX_VERSION 374 3439 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 3440 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 3441 #define LAN8841_PTP_TX_VERSION 438 3442 #define LAN8841_PTP_CMD_CTL 256 3443 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 3444 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 3445 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 3446 #define LAN8841_PTP_RX_PARSE_CONFIG 368 3447 #define LAN8841_PTP_TX_PARSE_CONFIG 432 3448 #define LAN8841_PTP_RX_MODE 381 3449 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 3450 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 3451 3452 static int lan8841_config_init(struct phy_device *phydev) 3453 { 3454 int ret; 3455 3456 ret = ksz9131_config_init(phydev); 3457 if (ret) 3458 return ret; 3459 3460 /* Initialize the HW by resetting everything */ 3461 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3462 LAN8841_PTP_CMD_CTL, 3463 LAN8841_PTP_CMD_CTL_PTP_RESET, 3464 LAN8841_PTP_CMD_CTL_PTP_RESET); 3465 3466 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3467 LAN8841_PTP_CMD_CTL, 3468 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 3469 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 3470 3471 /* Don't process any frames */ 3472 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3473 LAN8841_PTP_RX_PARSE_CONFIG, 0); 3474 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3475 LAN8841_PTP_TX_PARSE_CONFIG, 0); 3476 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3477 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 3478 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3479 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 3480 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3481 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 3482 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3483 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 3484 3485 /* Disable checking for minorVersionPTP field */ 3486 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3487 LAN8841_PTP_RX_VERSION, 0xff00); 3488 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3489 LAN8841_PTP_TX_VERSION, 0xff00); 3490 3491 /* 100BT Clause 40 improvenent errata */ 3492 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3493 LAN8841_ANALOG_CONTROL_1, 3494 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 3495 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3496 LAN8841_ANALOG_CONTROL_10, 3497 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 3498 3499 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 3500 * Magnetics 3501 */ 3502 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3503 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 3504 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 3505 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3506 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 3507 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 3508 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3509 LAN8841_BTRX_POWER_DOWN, 3510 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 3511 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 3512 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 3513 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 3514 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 3515 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 3516 } 3517 3518 /* LDO Adjustment errata */ 3519 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3520 LAN8841_ANALOG_CONTROL_11, 3521 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 3522 3523 /* 100BT RGMII latency tuning errata */ 3524 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 3525 LAN8841_ADC_CHANNEL_MASK, 0x0); 3526 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 3527 LAN8841_MMD0_REGISTER_17, 3528 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 3529 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 3530 3531 return 0; 3532 } 3533 3534 #define LAN8841_OUTPUT_CTRL 25 3535 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 3536 #define LAN8841_INT_PTP BIT(9) 3537 3538 static int lan8841_config_intr(struct phy_device *phydev) 3539 { 3540 int err; 3541 3542 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 3543 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 3544 3545 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3546 err = phy_read(phydev, LAN8814_INTS); 3547 if (err < 0) 3548 return err; 3549 3550 /* Enable / disable interrupts. It is OK to enable PTP interrupt 3551 * even if it PTP is not enabled. Because the underneath blocks 3552 * will not enable the PTP so we will never get the PTP 3553 * interrupt. 3554 */ 3555 err = phy_write(phydev, LAN8814_INTC, 3556 LAN8814_INT_LINK | LAN8841_INT_PTP); 3557 } else { 3558 err = phy_write(phydev, LAN8814_INTC, 0); 3559 if (err) 3560 return err; 3561 3562 err = phy_read(phydev, LAN8814_INTS); 3563 if (err < 0) 3564 return err; 3565 3566 /* Getting a positive value doesn't mean that is an error, it 3567 * just indicates what was the status. Therefore make sure to 3568 * clear the value and say that there is no error. 3569 */ 3570 err = 0; 3571 } 3572 3573 return err; 3574 } 3575 3576 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 3577 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 3578 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 3579 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 3580 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 3581 #define LAN8841_PTP_TX_MSG_HEADER2 455 3582 3583 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 3584 u32 *sec, u32 *nsec, u16 *seq) 3585 { 3586 struct phy_device *phydev = ptp_priv->phydev; 3587 3588 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 3589 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 3590 return false; 3591 3592 *nsec = ((*nsec & 0x3fff) << 16); 3593 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 3594 3595 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 3596 *sec = *sec << 16; 3597 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 3598 3599 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 3600 3601 return true; 3602 } 3603 3604 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 3605 { 3606 u32 sec, nsec; 3607 u16 seq; 3608 3609 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 3610 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 3611 } 3612 3613 #define LAN8841_PTP_INT_STS 259 3614 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 3615 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 3616 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 3617 3618 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 3619 { 3620 struct phy_device *phydev = ptp_priv->phydev; 3621 int i; 3622 3623 for (i = 0; i < FIFO_SIZE; ++i) 3624 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 3625 3626 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 3627 } 3628 3629 #define LAN8841_PTP_GPIO_CAP_STS 506 3630 #define LAN8841_PTP_GPIO_SEL 327 3631 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 3632 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 3633 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 3634 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 3635 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 3636 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 3637 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 3638 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 3639 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 3640 3641 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 3642 { 3643 struct phy_device *phydev = ptp_priv->phydev; 3644 struct ptp_clock_event ptp_event = {0}; 3645 int pin, ret, tmp; 3646 s32 sec, nsec; 3647 3648 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 3649 if (pin == -1) 3650 return; 3651 3652 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 3653 if (tmp < 0) 3654 return; 3655 3656 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 3657 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 3658 if (ret) 3659 return; 3660 3661 mutex_lock(&ptp_priv->ptp_lock); 3662 if (tmp & BIT(pin)) { 3663 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 3664 sec <<= 16; 3665 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 3666 3667 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 3668 nsec <<= 16; 3669 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 3670 } else { 3671 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 3672 sec <<= 16; 3673 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 3674 3675 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 3676 nsec <<= 16; 3677 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 3678 } 3679 mutex_unlock(&ptp_priv->ptp_lock); 3680 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 3681 if (ret) 3682 return; 3683 3684 ptp_event.index = 0; 3685 ptp_event.timestamp = ktime_set(sec, nsec); 3686 ptp_event.type = PTP_CLOCK_EXTTS; 3687 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 3688 } 3689 3690 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 3691 { 3692 struct kszphy_priv *priv = phydev->priv; 3693 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3694 u16 status; 3695 3696 do { 3697 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 3698 3699 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 3700 lan8841_ptp_process_tx_ts(ptp_priv); 3701 3702 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 3703 lan8841_gpio_process_cap(ptp_priv); 3704 3705 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 3706 lan8841_ptp_flush_fifo(ptp_priv); 3707 skb_queue_purge(&ptp_priv->tx_queue); 3708 } 3709 3710 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 3711 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 3712 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 3713 } 3714 3715 #define LAN8841_INTS_PTP BIT(9) 3716 3717 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 3718 { 3719 irqreturn_t ret = IRQ_NONE; 3720 int irq_status; 3721 3722 irq_status = phy_read(phydev, LAN8814_INTS); 3723 if (irq_status < 0) { 3724 phy_error(phydev); 3725 return IRQ_NONE; 3726 } 3727 3728 if (irq_status & LAN8814_INT_LINK) { 3729 phy_trigger_machine(phydev); 3730 ret = IRQ_HANDLED; 3731 } 3732 3733 if (irq_status & LAN8841_INTS_PTP) { 3734 lan8841_handle_ptp_interrupt(phydev); 3735 ret = IRQ_HANDLED; 3736 } 3737 3738 return ret; 3739 } 3740 3741 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 3742 struct ethtool_ts_info *info) 3743 { 3744 struct kszphy_ptp_priv *ptp_priv; 3745 3746 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3747 3748 info->phc_index = ptp_priv->ptp_clock ? 3749 ptp_clock_index(ptp_priv->ptp_clock) : -1; 3750 if (info->phc_index == -1) 3751 return 0; 3752 3753 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 3754 SOF_TIMESTAMPING_RX_HARDWARE | 3755 SOF_TIMESTAMPING_RAW_HARDWARE; 3756 3757 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 3758 (1 << HWTSTAMP_TX_ON) | 3759 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 3760 3761 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 3762 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 3763 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 3764 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 3765 3766 return 0; 3767 } 3768 3769 #define LAN8841_PTP_INT_EN 260 3770 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 3771 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 3772 3773 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 3774 bool enable) 3775 { 3776 struct phy_device *phydev = ptp_priv->phydev; 3777 3778 if (enable) { 3779 /* Enable interrupts on the TX side */ 3780 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 3781 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3782 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 3783 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3784 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 3785 3786 /* Enable the modification of the frame on RX side, 3787 * this will add the ns and 2 bits of sec in the reserved field 3788 * of the PTP header 3789 */ 3790 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3791 LAN8841_PTP_RX_MODE, 3792 LAN8841_PTP_INSERT_TS_EN | 3793 LAN8841_PTP_INSERT_TS_32BIT, 3794 LAN8841_PTP_INSERT_TS_EN | 3795 LAN8841_PTP_INSERT_TS_32BIT); 3796 3797 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 3798 } else { 3799 /* Disable interrupts on the TX side */ 3800 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 3801 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3802 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 3803 3804 /* Disable modification of the RX frames */ 3805 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3806 LAN8841_PTP_RX_MODE, 3807 LAN8841_PTP_INSERT_TS_EN | 3808 LAN8841_PTP_INSERT_TS_32BIT, 0); 3809 3810 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 3811 } 3812 } 3813 3814 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 3815 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 3816 #define LAN8841_PTP_TX_MOD 445 3817 3818 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr) 3819 { 3820 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3821 struct phy_device *phydev = ptp_priv->phydev; 3822 struct hwtstamp_config config; 3823 int txcfg = 0, rxcfg = 0; 3824 int pkt_ts_enable; 3825 3826 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 3827 return -EFAULT; 3828 3829 ptp_priv->hwts_tx_type = config.tx_type; 3830 ptp_priv->rx_filter = config.rx_filter; 3831 3832 switch (config.rx_filter) { 3833 case HWTSTAMP_FILTER_NONE: 3834 ptp_priv->layer = 0; 3835 ptp_priv->version = 0; 3836 break; 3837 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3838 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3839 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3840 ptp_priv->layer = PTP_CLASS_L4; 3841 ptp_priv->version = PTP_CLASS_V2; 3842 break; 3843 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3844 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3845 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3846 ptp_priv->layer = PTP_CLASS_L2; 3847 ptp_priv->version = PTP_CLASS_V2; 3848 break; 3849 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3850 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3851 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3852 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 3853 ptp_priv->version = PTP_CLASS_V2; 3854 break; 3855 default: 3856 return -ERANGE; 3857 } 3858 3859 /* Setup parsing of the frames and enable the timestamping for ptp 3860 * frames 3861 */ 3862 if (ptp_priv->layer & PTP_CLASS_L2) { 3863 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 3864 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 3865 } else if (ptp_priv->layer & PTP_CLASS_L4) { 3866 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 3867 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 3868 } 3869 3870 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 3871 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 3872 3873 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 3874 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 3875 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 3876 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 3877 3878 /* Enable / disable of the TX timestamp in the SYNC frames */ 3879 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 3880 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3881 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 3882 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 3883 3884 /* Now enable/disable the timestamping */ 3885 lan8841_ptp_enable_processing(ptp_priv, 3886 config.rx_filter != HWTSTAMP_FILTER_NONE); 3887 3888 skb_queue_purge(&ptp_priv->tx_queue); 3889 3890 lan8841_ptp_flush_fifo(ptp_priv); 3891 3892 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; 3893 } 3894 3895 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 3896 struct sk_buff *skb, int type) 3897 { 3898 struct kszphy_ptp_priv *ptp_priv = 3899 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3900 struct ptp_header *header = ptp_parse_header(skb, type); 3901 struct skb_shared_hwtstamps *shhwtstamps; 3902 struct timespec64 ts; 3903 unsigned long flags; 3904 u32 ts_header; 3905 3906 if (!header) 3907 return false; 3908 3909 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 3910 type == PTP_CLASS_NONE) 3911 return false; 3912 3913 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 3914 return false; 3915 3916 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 3917 ts.tv_sec = ptp_priv->seconds; 3918 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 3919 ts_header = __be32_to_cpu(header->reserved2); 3920 3921 shhwtstamps = skb_hwtstamps(skb); 3922 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3923 3924 /* Check for any wrap arounds for the second part */ 3925 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 3926 ts.tv_sec -= GENMASK(1, 0) + 1; 3927 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 3928 ts.tv_sec += 1; 3929 3930 shhwtstamps->hwtstamp = 3931 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 3932 ts_header & GENMASK(29, 0)); 3933 header->reserved2 = 0; 3934 3935 netif_rx(skb); 3936 3937 return true; 3938 } 3939 3940 #define LAN8841_EVENT_A 0 3941 #define LAN8841_EVENT_B 1 3942 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 3943 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 3944 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 3945 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 3946 3947 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 3948 s64 sec, u32 nsec) 3949 { 3950 struct phy_device *phydev = ptp_priv->phydev; 3951 int ret; 3952 3953 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 3954 upper_16_bits(sec)); 3955 if (ret) 3956 return ret; 3957 3958 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 3959 lower_16_bits(sec)); 3960 if (ret) 3961 return ret; 3962 3963 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 3964 upper_16_bits(nsec)); 3965 if (ret) 3966 return ret; 3967 3968 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 3969 lower_16_bits(nsec)); 3970 } 3971 3972 #define LAN8841_BUFFER_TIME 2 3973 3974 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 3975 const struct timespec64 *ts) 3976 { 3977 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 3978 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 3979 } 3980 3981 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 3982 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 3983 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 3984 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 3985 3986 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 3987 s64 sec, u32 nsec) 3988 { 3989 struct phy_device *phydev = ptp_priv->phydev; 3990 int ret; 3991 3992 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 3993 upper_16_bits(sec)); 3994 if (ret) 3995 return ret; 3996 3997 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 3998 lower_16_bits(sec)); 3999 if (ret) 4000 return ret; 4001 4002 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 4003 upper_16_bits(nsec)); 4004 if (ret) 4005 return ret; 4006 4007 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 4008 lower_16_bits(nsec)); 4009 } 4010 4011 #define LAN8841_PTP_LTC_SET_SEC_HI 262 4012 #define LAN8841_PTP_LTC_SET_SEC_MID 263 4013 #define LAN8841_PTP_LTC_SET_SEC_LO 264 4014 #define LAN8841_PTP_LTC_SET_NS_HI 265 4015 #define LAN8841_PTP_LTC_SET_NS_LO 266 4016 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 4017 4018 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 4019 const struct timespec64 *ts) 4020 { 4021 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4022 ptp_clock_info); 4023 struct phy_device *phydev = ptp_priv->phydev; 4024 unsigned long flags; 4025 int ret; 4026 4027 /* Set the value to be stored */ 4028 mutex_lock(&ptp_priv->ptp_lock); 4029 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 4030 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 4031 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 4032 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 4033 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 4034 4035 /* Set the command to load the LTC */ 4036 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4037 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 4038 ret = lan8841_ptp_update_target(ptp_priv, ts); 4039 mutex_unlock(&ptp_priv->ptp_lock); 4040 4041 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4042 ptp_priv->seconds = ts->tv_sec; 4043 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4044 4045 return ret; 4046 } 4047 4048 #define LAN8841_PTP_LTC_RD_SEC_HI 358 4049 #define LAN8841_PTP_LTC_RD_SEC_MID 359 4050 #define LAN8841_PTP_LTC_RD_SEC_LO 360 4051 #define LAN8841_PTP_LTC_RD_NS_HI 361 4052 #define LAN8841_PTP_LTC_RD_NS_LO 362 4053 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 4054 4055 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 4056 struct timespec64 *ts) 4057 { 4058 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4059 ptp_clock_info); 4060 struct phy_device *phydev = ptp_priv->phydev; 4061 time64_t s; 4062 s64 ns; 4063 4064 mutex_lock(&ptp_priv->ptp_lock); 4065 /* Issue the command to read the LTC */ 4066 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4067 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 4068 4069 /* Read the LTC */ 4070 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 4071 s <<= 16; 4072 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 4073 s <<= 16; 4074 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 4075 4076 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 4077 ns <<= 16; 4078 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 4079 mutex_unlock(&ptp_priv->ptp_lock); 4080 4081 set_normalized_timespec64(ts, s, ns); 4082 return 0; 4083 } 4084 4085 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 4086 struct timespec64 *ts) 4087 { 4088 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4089 ptp_clock_info); 4090 struct phy_device *phydev = ptp_priv->phydev; 4091 time64_t s; 4092 4093 mutex_lock(&ptp_priv->ptp_lock); 4094 /* Issue the command to read the LTC */ 4095 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4096 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 4097 4098 /* Read the LTC */ 4099 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 4100 s <<= 16; 4101 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 4102 s <<= 16; 4103 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 4104 mutex_unlock(&ptp_priv->ptp_lock); 4105 4106 set_normalized_timespec64(ts, s, 0); 4107 } 4108 4109 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 4110 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 4111 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 4112 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 4113 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 4114 4115 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 4116 { 4117 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4118 ptp_clock_info); 4119 struct phy_device *phydev = ptp_priv->phydev; 4120 struct timespec64 ts; 4121 bool add = true; 4122 u32 nsec; 4123 s32 sec; 4124 int ret; 4125 4126 /* The HW allows up to 15 sec to adjust the time, but here we limit to 4127 * 10 sec the adjustment. The reason is, in case the adjustment is 14 4128 * sec and 999999999 nsec, then we add 8ns to compansate the actual 4129 * increment so the value can be bigger than 15 sec. Therefore limit the 4130 * possible adjustments so we will not have these corner cases 4131 */ 4132 if (delta > 10000000000LL || delta < -10000000000LL) { 4133 /* The timeadjustment is too big, so fall back using set time */ 4134 u64 now; 4135 4136 ptp->gettime64(ptp, &ts); 4137 4138 now = ktime_to_ns(timespec64_to_ktime(ts)); 4139 ts = ns_to_timespec64(now + delta); 4140 4141 ptp->settime64(ptp, &ts); 4142 return 0; 4143 } 4144 4145 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 4146 if (delta < 0 && nsec != 0) { 4147 /* It is not allowed to adjust low the nsec part, therefore 4148 * subtract more from second part and add to nanosecond such 4149 * that would roll over, so the second part will increase 4150 */ 4151 sec--; 4152 nsec = NSEC_PER_SEC - nsec; 4153 } 4154 4155 /* Calculate the adjustments and the direction */ 4156 if (delta < 0) 4157 add = false; 4158 4159 if (nsec > 0) 4160 /* add 8 ns to cover the likely normal increment */ 4161 nsec += 8; 4162 4163 if (nsec >= NSEC_PER_SEC) { 4164 /* carry into seconds */ 4165 sec++; 4166 nsec -= NSEC_PER_SEC; 4167 } 4168 4169 mutex_lock(&ptp_priv->ptp_lock); 4170 if (sec) { 4171 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 4172 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4173 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 4174 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4175 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 4176 } 4177 4178 if (nsec) { 4179 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 4180 nsec & 0xffff); 4181 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4182 (nsec >> 16) & 0x3fff); 4183 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4184 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 4185 } 4186 mutex_unlock(&ptp_priv->ptp_lock); 4187 4188 /* Update the target clock */ 4189 ptp->gettime64(ptp, &ts); 4190 mutex_lock(&ptp_priv->ptp_lock); 4191 ret = lan8841_ptp_update_target(ptp_priv, &ts); 4192 mutex_unlock(&ptp_priv->ptp_lock); 4193 4194 return ret; 4195 } 4196 4197 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 4198 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 4199 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 4200 4201 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 4202 { 4203 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4204 ptp_clock_info); 4205 struct phy_device *phydev = ptp_priv->phydev; 4206 bool faster = true; 4207 u32 rate; 4208 4209 if (!scaled_ppm) 4210 return 0; 4211 4212 if (scaled_ppm < 0) { 4213 scaled_ppm = -scaled_ppm; 4214 faster = false; 4215 } 4216 4217 rate = LAN8814_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 4218 rate += (LAN8814_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 4219 4220 mutex_lock(&ptp_priv->ptp_lock); 4221 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 4222 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 4223 : upper_16_bits(rate) & 0x3fff); 4224 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 4225 mutex_unlock(&ptp_priv->ptp_lock); 4226 4227 return 0; 4228 } 4229 4230 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 4231 enum ptp_pin_function func, unsigned int chan) 4232 { 4233 switch (func) { 4234 case PTP_PF_NONE: 4235 case PTP_PF_PEROUT: 4236 case PTP_PF_EXTTS: 4237 break; 4238 default: 4239 return -1; 4240 } 4241 4242 return 0; 4243 } 4244 4245 #define LAN8841_PTP_GPIO_NUM 10 4246 #define LAN8841_GPIO_EN 128 4247 #define LAN8841_GPIO_DIR 129 4248 #define LAN8841_GPIO_BUF 130 4249 4250 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 4251 { 4252 struct phy_device *phydev = ptp_priv->phydev; 4253 int ret; 4254 4255 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4256 if (ret) 4257 return ret; 4258 4259 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4260 if (ret) 4261 return ret; 4262 4263 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4264 } 4265 4266 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 4267 { 4268 struct phy_device *phydev = ptp_priv->phydev; 4269 int ret; 4270 4271 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4272 if (ret) 4273 return ret; 4274 4275 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4276 if (ret) 4277 return ret; 4278 4279 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4280 } 4281 4282 #define LAN8841_GPIO_DATA_SEL1 131 4283 #define LAN8841_GPIO_DATA_SEL2 132 4284 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 4285 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 4286 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 4287 #define LAN8841_PTP_GENERAL_CONFIG 257 4288 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 4289 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 4290 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 4291 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 4292 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 4293 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 4294 4295 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 4296 u8 event) 4297 { 4298 struct phy_device *phydev = ptp_priv->phydev; 4299 u16 tmp; 4300 int ret; 4301 4302 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 4303 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 4304 * depending on the pin, it requires to read a different register 4305 */ 4306 if (pin < 5) { 4307 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 4308 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 4309 } else { 4310 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 4311 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 4312 } 4313 if (ret) 4314 return ret; 4315 4316 /* Disable the event */ 4317 if (event == LAN8841_EVENT_A) 4318 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4319 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 4320 else 4321 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4322 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 4323 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 4324 } 4325 4326 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 4327 u8 event, int pulse_width) 4328 { 4329 struct phy_device *phydev = ptp_priv->phydev; 4330 u16 tmp; 4331 int ret; 4332 4333 /* Enable the event */ 4334 if (event == LAN8841_EVENT_A) 4335 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 4336 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4337 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 4338 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4339 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 4340 else 4341 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 4342 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4343 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 4344 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4345 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 4346 if (ret) 4347 return ret; 4348 4349 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 4350 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 4351 * depending on the pin, it requires to read a different register 4352 */ 4353 if (event == LAN8841_EVENT_A) 4354 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 4355 else 4356 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 4357 4358 if (pin < 5) 4359 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 4360 tmp << (3 * pin)); 4361 else 4362 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 4363 tmp << (3 * (pin - 5))); 4364 4365 return ret; 4366 } 4367 4368 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 4369 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 4370 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 4371 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 4372 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 4373 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 4374 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 4375 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 4376 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 4377 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 4378 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 4379 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 4380 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 4381 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 4382 4383 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 4384 struct ptp_clock_request *rq, int on) 4385 { 4386 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4387 ptp_clock_info); 4388 struct phy_device *phydev = ptp_priv->phydev; 4389 struct timespec64 ts_on, ts_period; 4390 s64 on_nsec, period_nsec; 4391 int pulse_width; 4392 int pin; 4393 int ret; 4394 4395 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE) 4396 return -EOPNOTSUPP; 4397 4398 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 4399 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 4400 return -EINVAL; 4401 4402 if (!on) { 4403 ret = lan8841_ptp_perout_off(ptp_priv, pin); 4404 if (ret) 4405 return ret; 4406 4407 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 4408 } 4409 4410 ts_on.tv_sec = rq->perout.on.sec; 4411 ts_on.tv_nsec = rq->perout.on.nsec; 4412 on_nsec = timespec64_to_ns(&ts_on); 4413 4414 ts_period.tv_sec = rq->perout.period.sec; 4415 ts_period.tv_nsec = rq->perout.period.nsec; 4416 period_nsec = timespec64_to_ns(&ts_period); 4417 4418 if (period_nsec < 200) { 4419 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 4420 phydev_name(phydev)); 4421 return -EOPNOTSUPP; 4422 } 4423 4424 if (on_nsec >= period_nsec) { 4425 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 4426 phydev_name(phydev)); 4427 return -EINVAL; 4428 } 4429 4430 switch (on_nsec) { 4431 case 200000000: 4432 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 4433 break; 4434 case 100000000: 4435 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 4436 break; 4437 case 50000000: 4438 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 4439 break; 4440 case 10000000: 4441 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 4442 break; 4443 case 5000000: 4444 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 4445 break; 4446 case 1000000: 4447 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 4448 break; 4449 case 500000: 4450 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 4451 break; 4452 case 100000: 4453 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 4454 break; 4455 case 50000: 4456 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 4457 break; 4458 case 10000: 4459 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 4460 break; 4461 case 5000: 4462 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 4463 break; 4464 case 1000: 4465 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 4466 break; 4467 case 500: 4468 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 4469 break; 4470 case 100: 4471 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 4472 break; 4473 default: 4474 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 4475 phydev_name(phydev)); 4476 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 4477 break; 4478 } 4479 4480 mutex_lock(&ptp_priv->ptp_lock); 4481 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 4482 rq->perout.start.nsec); 4483 mutex_unlock(&ptp_priv->ptp_lock); 4484 if (ret) 4485 return ret; 4486 4487 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 4488 rq->perout.period.nsec); 4489 if (ret) 4490 return ret; 4491 4492 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 4493 pulse_width); 4494 if (ret) 4495 return ret; 4496 4497 ret = lan8841_ptp_perout_on(ptp_priv, pin); 4498 if (ret) 4499 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 4500 4501 return ret; 4502 } 4503 4504 #define LAN8841_PTP_GPIO_CAP_EN 496 4505 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 4506 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 4507 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 4508 4509 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 4510 u32 flags) 4511 { 4512 struct phy_device *phydev = ptp_priv->phydev; 4513 u16 tmp = 0; 4514 int ret; 4515 4516 /* Set GPIO to be intput */ 4517 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4518 if (ret) 4519 return ret; 4520 4521 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4522 if (ret) 4523 return ret; 4524 4525 /* Enable capture on the edges of the pin */ 4526 if (flags & PTP_RISING_EDGE) 4527 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 4528 if (flags & PTP_FALLING_EDGE) 4529 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 4530 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 4531 if (ret) 4532 return ret; 4533 4534 /* Enable interrupt */ 4535 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4536 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 4537 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 4538 } 4539 4540 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 4541 { 4542 struct phy_device *phydev = ptp_priv->phydev; 4543 int ret; 4544 4545 /* Set GPIO to be output */ 4546 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4547 if (ret) 4548 return ret; 4549 4550 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4551 if (ret) 4552 return ret; 4553 4554 /* Disable capture on both of the edges */ 4555 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 4556 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 4557 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 4558 0); 4559 if (ret) 4560 return ret; 4561 4562 /* Disable interrupt */ 4563 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4564 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 4565 0); 4566 } 4567 4568 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 4569 struct ptp_clock_request *rq, int on) 4570 { 4571 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4572 ptp_clock_info); 4573 int pin; 4574 int ret; 4575 4576 /* Reject requests with unsupported flags */ 4577 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 4578 PTP_EXTTS_EDGES | 4579 PTP_STRICT_FLAGS)) 4580 return -EOPNOTSUPP; 4581 4582 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 4583 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 4584 return -EINVAL; 4585 4586 mutex_lock(&ptp_priv->ptp_lock); 4587 if (on) 4588 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 4589 else 4590 ret = lan8841_ptp_extts_off(ptp_priv, pin); 4591 mutex_unlock(&ptp_priv->ptp_lock); 4592 4593 return ret; 4594 } 4595 4596 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 4597 struct ptp_clock_request *rq, int on) 4598 { 4599 switch (rq->type) { 4600 case PTP_CLK_REQ_EXTTS: 4601 return lan8841_ptp_extts(ptp, rq, on); 4602 case PTP_CLK_REQ_PEROUT: 4603 return lan8841_ptp_perout(ptp, rq, on); 4604 default: 4605 return -EOPNOTSUPP; 4606 } 4607 4608 return 0; 4609 } 4610 4611 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 4612 { 4613 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4614 ptp_clock_info); 4615 struct timespec64 ts; 4616 unsigned long flags; 4617 4618 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 4619 4620 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4621 ptp_priv->seconds = ts.tv_sec; 4622 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4623 4624 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 4625 } 4626 4627 static struct ptp_clock_info lan8841_ptp_clock_info = { 4628 .owner = THIS_MODULE, 4629 .name = "lan8841 ptp", 4630 .max_adj = 31249999, 4631 .gettime64 = lan8841_ptp_gettime64, 4632 .settime64 = lan8841_ptp_settime64, 4633 .adjtime = lan8841_ptp_adjtime, 4634 .adjfine = lan8841_ptp_adjfine, 4635 .verify = lan8841_ptp_verify, 4636 .enable = lan8841_ptp_enable, 4637 .do_aux_work = lan8841_ptp_do_aux_work, 4638 .n_per_out = LAN8841_PTP_GPIO_NUM, 4639 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 4640 .n_pins = LAN8841_PTP_GPIO_NUM, 4641 }; 4642 4643 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 4644 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 4645 4646 static int lan8841_probe(struct phy_device *phydev) 4647 { 4648 struct kszphy_ptp_priv *ptp_priv; 4649 struct kszphy_priv *priv; 4650 int err; 4651 4652 err = kszphy_probe(phydev); 4653 if (err) 4654 return err; 4655 4656 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4657 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 4658 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 4659 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 4660 4661 /* Register the clock */ 4662 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 4663 return 0; 4664 4665 priv = phydev->priv; 4666 ptp_priv = &priv->ptp_priv; 4667 4668 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 4669 LAN8841_PTP_GPIO_NUM, 4670 sizeof(*ptp_priv->pin_config), 4671 GFP_KERNEL); 4672 if (!ptp_priv->pin_config) 4673 return -ENOMEM; 4674 4675 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 4676 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 4677 4678 snprintf(p->name, sizeof(p->name), "pin%d", i); 4679 p->index = i; 4680 p->func = PTP_PF_NONE; 4681 } 4682 4683 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 4684 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 4685 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 4686 &phydev->mdio.dev); 4687 if (IS_ERR(ptp_priv->ptp_clock)) { 4688 phydev_err(phydev, "ptp_clock_register failed: %lu\n", 4689 PTR_ERR(ptp_priv->ptp_clock)); 4690 return -EINVAL; 4691 } 4692 4693 if (!ptp_priv->ptp_clock) 4694 return 0; 4695 4696 /* Initialize the SW */ 4697 skb_queue_head_init(&ptp_priv->tx_queue); 4698 ptp_priv->phydev = phydev; 4699 mutex_init(&ptp_priv->ptp_lock); 4700 spin_lock_init(&ptp_priv->seconds_lock); 4701 4702 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 4703 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 4704 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; 4705 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 4706 4707 phydev->mii_ts = &ptp_priv->mii_ts; 4708 4709 return 0; 4710 } 4711 4712 static int lan8841_suspend(struct phy_device *phydev) 4713 { 4714 struct kszphy_priv *priv = phydev->priv; 4715 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4716 4717 if (ptp_priv->ptp_clock) 4718 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 4719 4720 return genphy_suspend(phydev); 4721 } 4722 4723 static struct phy_driver ksphy_driver[] = { 4724 { 4725 .phy_id = PHY_ID_KS8737, 4726 .phy_id_mask = MICREL_PHY_ID_MASK, 4727 .name = "Micrel KS8737", 4728 /* PHY_BASIC_FEATURES */ 4729 .driver_data = &ks8737_type, 4730 .probe = kszphy_probe, 4731 .config_init = kszphy_config_init, 4732 .config_intr = kszphy_config_intr, 4733 .handle_interrupt = kszphy_handle_interrupt, 4734 .suspend = kszphy_suspend, 4735 .resume = kszphy_resume, 4736 }, { 4737 .phy_id = PHY_ID_KSZ8021, 4738 .phy_id_mask = 0x00ffffff, 4739 .name = "Micrel KSZ8021 or KSZ8031", 4740 /* PHY_BASIC_FEATURES */ 4741 .driver_data = &ksz8021_type, 4742 .probe = kszphy_probe, 4743 .config_init = kszphy_config_init, 4744 .config_intr = kszphy_config_intr, 4745 .handle_interrupt = kszphy_handle_interrupt, 4746 .get_sset_count = kszphy_get_sset_count, 4747 .get_strings = kszphy_get_strings, 4748 .get_stats = kszphy_get_stats, 4749 .suspend = kszphy_suspend, 4750 .resume = kszphy_resume, 4751 }, { 4752 .phy_id = PHY_ID_KSZ8031, 4753 .phy_id_mask = 0x00ffffff, 4754 .name = "Micrel KSZ8031", 4755 /* PHY_BASIC_FEATURES */ 4756 .driver_data = &ksz8021_type, 4757 .probe = kszphy_probe, 4758 .config_init = kszphy_config_init, 4759 .config_intr = kszphy_config_intr, 4760 .handle_interrupt = kszphy_handle_interrupt, 4761 .get_sset_count = kszphy_get_sset_count, 4762 .get_strings = kszphy_get_strings, 4763 .get_stats = kszphy_get_stats, 4764 .suspend = kszphy_suspend, 4765 .resume = kszphy_resume, 4766 }, { 4767 .phy_id = PHY_ID_KSZ8041, 4768 .phy_id_mask = MICREL_PHY_ID_MASK, 4769 .name = "Micrel KSZ8041", 4770 /* PHY_BASIC_FEATURES */ 4771 .driver_data = &ksz8041_type, 4772 .probe = kszphy_probe, 4773 .config_init = ksz8041_config_init, 4774 .config_aneg = ksz8041_config_aneg, 4775 .config_intr = kszphy_config_intr, 4776 .handle_interrupt = kszphy_handle_interrupt, 4777 .get_sset_count = kszphy_get_sset_count, 4778 .get_strings = kszphy_get_strings, 4779 .get_stats = kszphy_get_stats, 4780 /* No suspend/resume callbacks because of errata DS80000700A, 4781 * receiver error following software power down. 4782 */ 4783 }, { 4784 .phy_id = PHY_ID_KSZ8041RNLI, 4785 .phy_id_mask = MICREL_PHY_ID_MASK, 4786 .name = "Micrel KSZ8041RNLI", 4787 /* PHY_BASIC_FEATURES */ 4788 .driver_data = &ksz8041_type, 4789 .probe = kszphy_probe, 4790 .config_init = kszphy_config_init, 4791 .config_intr = kszphy_config_intr, 4792 .handle_interrupt = kszphy_handle_interrupt, 4793 .get_sset_count = kszphy_get_sset_count, 4794 .get_strings = kszphy_get_strings, 4795 .get_stats = kszphy_get_stats, 4796 .suspend = kszphy_suspend, 4797 .resume = kszphy_resume, 4798 }, { 4799 .name = "Micrel KSZ8051", 4800 /* PHY_BASIC_FEATURES */ 4801 .driver_data = &ksz8051_type, 4802 .probe = kszphy_probe, 4803 .config_init = kszphy_config_init, 4804 .config_intr = kszphy_config_intr, 4805 .handle_interrupt = kszphy_handle_interrupt, 4806 .get_sset_count = kszphy_get_sset_count, 4807 .get_strings = kszphy_get_strings, 4808 .get_stats = kszphy_get_stats, 4809 .match_phy_device = ksz8051_match_phy_device, 4810 .suspend = kszphy_suspend, 4811 .resume = kszphy_resume, 4812 }, { 4813 .phy_id = PHY_ID_KSZ8001, 4814 .name = "Micrel KSZ8001 or KS8721", 4815 .phy_id_mask = 0x00fffffc, 4816 /* PHY_BASIC_FEATURES */ 4817 .driver_data = &ksz8041_type, 4818 .probe = kszphy_probe, 4819 .config_init = kszphy_config_init, 4820 .config_intr = kszphy_config_intr, 4821 .handle_interrupt = kszphy_handle_interrupt, 4822 .get_sset_count = kszphy_get_sset_count, 4823 .get_strings = kszphy_get_strings, 4824 .get_stats = kszphy_get_stats, 4825 .suspend = kszphy_suspend, 4826 .resume = kszphy_resume, 4827 }, { 4828 .phy_id = PHY_ID_KSZ8081, 4829 .name = "Micrel KSZ8081 or KSZ8091", 4830 .phy_id_mask = MICREL_PHY_ID_MASK, 4831 .flags = PHY_POLL_CABLE_TEST, 4832 /* PHY_BASIC_FEATURES */ 4833 .driver_data = &ksz8081_type, 4834 .probe = kszphy_probe, 4835 .config_init = ksz8081_config_init, 4836 .soft_reset = genphy_soft_reset, 4837 .config_aneg = ksz8081_config_aneg, 4838 .read_status = ksz8081_read_status, 4839 .config_intr = kszphy_config_intr, 4840 .handle_interrupt = kszphy_handle_interrupt, 4841 .get_sset_count = kszphy_get_sset_count, 4842 .get_strings = kszphy_get_strings, 4843 .get_stats = kszphy_get_stats, 4844 .suspend = kszphy_suspend, 4845 .resume = kszphy_resume, 4846 .cable_test_start = ksz886x_cable_test_start, 4847 .cable_test_get_status = ksz886x_cable_test_get_status, 4848 }, { 4849 .phy_id = PHY_ID_KSZ8061, 4850 .name = "Micrel KSZ8061", 4851 .phy_id_mask = MICREL_PHY_ID_MASK, 4852 /* PHY_BASIC_FEATURES */ 4853 .probe = kszphy_probe, 4854 .config_init = ksz8061_config_init, 4855 .soft_reset = genphy_soft_reset, 4856 .config_intr = kszphy_config_intr, 4857 .handle_interrupt = kszphy_handle_interrupt, 4858 .suspend = kszphy_suspend, 4859 .resume = ksz8061_resume, 4860 }, { 4861 .phy_id = PHY_ID_KSZ9021, 4862 .phy_id_mask = 0x000ffffe, 4863 .name = "Micrel KSZ9021 Gigabit PHY", 4864 /* PHY_GBIT_FEATURES */ 4865 .driver_data = &ksz9021_type, 4866 .probe = kszphy_probe, 4867 .get_features = ksz9031_get_features, 4868 .config_init = ksz9021_config_init, 4869 .config_intr = kszphy_config_intr, 4870 .handle_interrupt = kszphy_handle_interrupt, 4871 .get_sset_count = kszphy_get_sset_count, 4872 .get_strings = kszphy_get_strings, 4873 .get_stats = kszphy_get_stats, 4874 .suspend = kszphy_suspend, 4875 .resume = kszphy_resume, 4876 .read_mmd = genphy_read_mmd_unsupported, 4877 .write_mmd = genphy_write_mmd_unsupported, 4878 }, { 4879 .phy_id = PHY_ID_KSZ9031, 4880 .phy_id_mask = MICREL_PHY_ID_MASK, 4881 .name = "Micrel KSZ9031 Gigabit PHY", 4882 .flags = PHY_POLL_CABLE_TEST, 4883 .driver_data = &ksz9021_type, 4884 .probe = kszphy_probe, 4885 .get_features = ksz9031_get_features, 4886 .config_init = ksz9031_config_init, 4887 .soft_reset = genphy_soft_reset, 4888 .read_status = ksz9031_read_status, 4889 .config_intr = kszphy_config_intr, 4890 .handle_interrupt = kszphy_handle_interrupt, 4891 .get_sset_count = kszphy_get_sset_count, 4892 .get_strings = kszphy_get_strings, 4893 .get_stats = kszphy_get_stats, 4894 .suspend = kszphy_suspend, 4895 .resume = kszphy_resume, 4896 .cable_test_start = ksz9x31_cable_test_start, 4897 .cable_test_get_status = ksz9x31_cable_test_get_status, 4898 }, { 4899 .phy_id = PHY_ID_LAN8814, 4900 .phy_id_mask = MICREL_PHY_ID_MASK, 4901 .name = "Microchip INDY Gigabit Quad PHY", 4902 .flags = PHY_POLL_CABLE_TEST, 4903 .config_init = lan8814_config_init, 4904 .driver_data = &lan8814_type, 4905 .probe = lan8814_probe, 4906 .soft_reset = genphy_soft_reset, 4907 .read_status = ksz9031_read_status, 4908 .get_sset_count = kszphy_get_sset_count, 4909 .get_strings = kszphy_get_strings, 4910 .get_stats = kszphy_get_stats, 4911 .suspend = genphy_suspend, 4912 .resume = kszphy_resume, 4913 .config_intr = lan8814_config_intr, 4914 .handle_interrupt = lan8814_handle_interrupt, 4915 .cable_test_start = lan8814_cable_test_start, 4916 .cable_test_get_status = ksz886x_cable_test_get_status, 4917 }, { 4918 .phy_id = PHY_ID_LAN8804, 4919 .phy_id_mask = MICREL_PHY_ID_MASK, 4920 .name = "Microchip LAN966X Gigabit PHY", 4921 .config_init = lan8804_config_init, 4922 .driver_data = &ksz9021_type, 4923 .probe = kszphy_probe, 4924 .soft_reset = genphy_soft_reset, 4925 .read_status = ksz9031_read_status, 4926 .get_sset_count = kszphy_get_sset_count, 4927 .get_strings = kszphy_get_strings, 4928 .get_stats = kszphy_get_stats, 4929 .suspend = genphy_suspend, 4930 .resume = kszphy_resume, 4931 .config_intr = lan8804_config_intr, 4932 .handle_interrupt = lan8804_handle_interrupt, 4933 }, { 4934 .phy_id = PHY_ID_LAN8841, 4935 .phy_id_mask = MICREL_PHY_ID_MASK, 4936 .name = "Microchip LAN8841 Gigabit PHY", 4937 .flags = PHY_POLL_CABLE_TEST, 4938 .driver_data = &lan8841_type, 4939 .config_init = lan8841_config_init, 4940 .probe = lan8841_probe, 4941 .soft_reset = genphy_soft_reset, 4942 .config_intr = lan8841_config_intr, 4943 .handle_interrupt = lan8841_handle_interrupt, 4944 .get_sset_count = kszphy_get_sset_count, 4945 .get_strings = kszphy_get_strings, 4946 .get_stats = kszphy_get_stats, 4947 .suspend = lan8841_suspend, 4948 .resume = genphy_resume, 4949 .cable_test_start = lan8814_cable_test_start, 4950 .cable_test_get_status = ksz886x_cable_test_get_status, 4951 }, { 4952 .phy_id = PHY_ID_KSZ9131, 4953 .phy_id_mask = MICREL_PHY_ID_MASK, 4954 .name = "Microchip KSZ9131 Gigabit PHY", 4955 /* PHY_GBIT_FEATURES */ 4956 .flags = PHY_POLL_CABLE_TEST, 4957 .driver_data = &ksz9131_type, 4958 .probe = kszphy_probe, 4959 .soft_reset = genphy_soft_reset, 4960 .config_init = ksz9131_config_init, 4961 .config_intr = kszphy_config_intr, 4962 .config_aneg = ksz9131_config_aneg, 4963 .read_status = ksz9131_read_status, 4964 .handle_interrupt = kszphy_handle_interrupt, 4965 .get_sset_count = kszphy_get_sset_count, 4966 .get_strings = kszphy_get_strings, 4967 .get_stats = kszphy_get_stats, 4968 .suspend = kszphy_suspend, 4969 .resume = kszphy_resume, 4970 .cable_test_start = ksz9x31_cable_test_start, 4971 .cable_test_get_status = ksz9x31_cable_test_get_status, 4972 .get_features = ksz9477_get_features, 4973 }, { 4974 .phy_id = PHY_ID_KSZ8873MLL, 4975 .phy_id_mask = MICREL_PHY_ID_MASK, 4976 .name = "Micrel KSZ8873MLL Switch", 4977 /* PHY_BASIC_FEATURES */ 4978 .config_init = kszphy_config_init, 4979 .config_aneg = ksz8873mll_config_aneg, 4980 .read_status = ksz8873mll_read_status, 4981 .suspend = genphy_suspend, 4982 .resume = genphy_resume, 4983 }, { 4984 .phy_id = PHY_ID_KSZ886X, 4985 .phy_id_mask = MICREL_PHY_ID_MASK, 4986 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 4987 .driver_data = &ksz886x_type, 4988 /* PHY_BASIC_FEATURES */ 4989 .flags = PHY_POLL_CABLE_TEST, 4990 .config_init = kszphy_config_init, 4991 .config_aneg = ksz886x_config_aneg, 4992 .read_status = ksz886x_read_status, 4993 .suspend = genphy_suspend, 4994 .resume = genphy_resume, 4995 .cable_test_start = ksz886x_cable_test_start, 4996 .cable_test_get_status = ksz886x_cable_test_get_status, 4997 }, { 4998 .name = "Micrel KSZ87XX Switch", 4999 /* PHY_BASIC_FEATURES */ 5000 .config_init = kszphy_config_init, 5001 .match_phy_device = ksz8795_match_phy_device, 5002 .suspend = genphy_suspend, 5003 .resume = genphy_resume, 5004 }, { 5005 .phy_id = PHY_ID_KSZ9477, 5006 .phy_id_mask = MICREL_PHY_ID_MASK, 5007 .name = "Microchip KSZ9477", 5008 /* PHY_GBIT_FEATURES */ 5009 .config_init = ksz9477_config_init, 5010 .config_intr = kszphy_config_intr, 5011 .handle_interrupt = kszphy_handle_interrupt, 5012 .suspend = genphy_suspend, 5013 .resume = ksz9477_resume, 5014 .get_features = ksz9477_get_features, 5015 } }; 5016 5017 module_phy_driver(ksphy_driver); 5018 5019 MODULE_DESCRIPTION("Micrel PHY driver"); 5020 MODULE_AUTHOR("David J. Choi"); 5021 MODULE_LICENSE("GPL"); 5022 5023 static struct mdio_device_id __maybe_unused micrel_tbl[] = { 5024 { PHY_ID_KSZ9021, 0x000ffffe }, 5025 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK }, 5026 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK }, 5027 { PHY_ID_KSZ8001, 0x00fffffc }, 5028 { PHY_ID_KS8737, MICREL_PHY_ID_MASK }, 5029 { PHY_ID_KSZ8021, 0x00ffffff }, 5030 { PHY_ID_KSZ8031, 0x00ffffff }, 5031 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK }, 5032 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK }, 5033 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK }, 5034 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK }, 5035 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK }, 5036 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK }, 5037 { PHY_ID_KSZ9477, MICREL_PHY_ID_MASK }, 5038 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK }, 5039 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK }, 5040 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK }, 5041 { } 5042 }; 5043 5044 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 5045