xref: /openbmc/linux/drivers/net/phy/micrel.c (revision 801b27e8)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/net/phy/micrel.c
4  *
5  * Driver for Micrel PHYs
6  *
7  * Author: David J. Choi
8  *
9  * Copyright (c) 2010-2013 Micrel, Inc.
10  * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11  *
12  * Support : Micrel Phys:
13  *		Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14  *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15  *			   ksz8021, ksz8031, ksz8051,
16  *			   ksz8081, ksz8091,
17  *			   ksz8061,
18  *		Switch : ksz8873, ksz886x
19  *			 ksz9477, lan8804
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36 
37 /* Operation Mode Strap Override */
38 #define MII_KSZPHY_OMSO				0x16
39 #define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
40 #define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
41 #define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
42 #define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
43 #define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
44 
45 /* general Interrupt control/status reg in vendor specific block. */
46 #define MII_KSZPHY_INTCS			0x1B
47 #define KSZPHY_INTCS_JABBER			BIT(15)
48 #define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
49 #define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
50 #define KSZPHY_INTCS_PARELLEL			BIT(12)
51 #define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
52 #define KSZPHY_INTCS_LINK_DOWN			BIT(10)
53 #define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
54 #define KSZPHY_INTCS_LINK_UP			BIT(8)
55 #define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
56 						KSZPHY_INTCS_LINK_DOWN)
57 #define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
58 #define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
59 #define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
60 						 KSZPHY_INTCS_LINK_UP_STATUS)
61 
62 /* LinkMD Control/Status */
63 #define KSZ8081_LMD				0x1d
64 #define KSZ8081_LMD_ENABLE_TEST			BIT(15)
65 #define KSZ8081_LMD_STAT_NORMAL			0
66 #define KSZ8081_LMD_STAT_OPEN			1
67 #define KSZ8081_LMD_STAT_SHORT			2
68 #define KSZ8081_LMD_STAT_FAIL			3
69 #define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
70 /* Short cable (<10 meter) has been detected by LinkMD */
71 #define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
72 #define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
73 
74 #define KSZ9x31_LMD				0x12
75 #define KSZ9x31_LMD_VCT_EN			BIT(15)
76 #define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
77 #define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
78 #define KSZ9x31_LMD_VCT_SEL_RESULT		0
79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
81 #define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
82 #define KSZ9x31_LMD_VCT_ST_NORMAL		0
83 #define KSZ9x31_LMD_VCT_ST_OPEN			1
84 #define KSZ9x31_LMD_VCT_ST_SHORT		2
85 #define KSZ9x31_LMD_VCT_ST_FAIL			3
86 #define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
89 #define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
93 #define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
94 
95 #define KSZPHY_WIRE_PAIR_MASK			0x3
96 
97 #define LAN8814_CABLE_DIAG			0x12
98 #define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
100 #define LAN8814_PAIR_BIT_SHIFT			12
101 
102 #define LAN8814_WIRE_PAIR_MASK			0xF
103 
104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
105 #define LAN8814_INTC				0x18
106 #define LAN8814_INTS				0x1B
107 
108 #define LAN8814_INT_LINK_DOWN			BIT(2)
109 #define LAN8814_INT_LINK_UP			BIT(0)
110 #define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
111 						 LAN8814_INT_LINK_DOWN)
112 
113 #define LAN8814_INTR_CTRL_REG			0x34
114 #define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
116 
117 /* Represents 1ppm adjustment in 2^32 format with
118  * each nsec contains 4 clock cycles.
119  * The value is calculated as following: (1/1000000)/((2^-32)/4)
120  */
121 #define LAN8814_1PPM_FORMAT			17179
122 
123 #define PTP_RX_MOD				0x024F
124 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
125 #define PTP_RX_TIMESTAMP_EN			0x024D
126 #define PTP_TX_TIMESTAMP_EN			0x028D
127 
128 #define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
129 #define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
130 #define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
131 #define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
132 
133 #define PTP_TX_PARSE_L2_ADDR_EN			0x0284
134 #define PTP_RX_PARSE_L2_ADDR_EN			0x0244
135 
136 #define PTP_TX_PARSE_IP_ADDR_EN			0x0285
137 #define PTP_RX_PARSE_IP_ADDR_EN			0x0245
138 #define LTC_HARD_RESET				0x023F
139 #define LTC_HARD_RESET_				BIT(0)
140 
141 #define TSU_HARD_RESET				0x02C1
142 #define TSU_HARD_RESET_				BIT(0)
143 
144 #define PTP_CMD_CTL				0x0200
145 #define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
146 #define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
147 #define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
148 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
149 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
150 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
151 
152 #define PTP_CLOCK_SET_SEC_MID			0x0206
153 #define PTP_CLOCK_SET_SEC_LO			0x0207
154 #define PTP_CLOCK_SET_NS_HI			0x0208
155 #define PTP_CLOCK_SET_NS_LO			0x0209
156 
157 #define PTP_CLOCK_READ_SEC_MID			0x022A
158 #define PTP_CLOCK_READ_SEC_LO			0x022B
159 #define PTP_CLOCK_READ_NS_HI			0x022C
160 #define PTP_CLOCK_READ_NS_LO			0x022D
161 
162 #define PTP_OPERATING_MODE			0x0241
163 #define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
164 
165 #define PTP_TX_MOD				0x028F
166 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
167 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
168 
169 #define PTP_RX_PARSE_CONFIG			0x0242
170 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
171 #define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
172 #define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
173 
174 #define PTP_TX_PARSE_CONFIG			0x0282
175 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
176 #define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
177 #define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
178 
179 #define PTP_CLOCK_RATE_ADJ_HI			0x020C
180 #define PTP_CLOCK_RATE_ADJ_LO			0x020D
181 #define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
182 
183 #define PTP_LTC_STEP_ADJ_HI			0x0212
184 #define PTP_LTC_STEP_ADJ_LO			0x0213
185 #define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
186 
187 #define LAN8814_INTR_STS_REG			0x0033
188 #define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
189 #define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
190 #define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
191 #define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
192 
193 #define PTP_CAP_INFO				0x022A
194 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
195 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
196 
197 #define PTP_TX_EGRESS_SEC_HI			0x0296
198 #define PTP_TX_EGRESS_SEC_LO			0x0297
199 #define PTP_TX_EGRESS_NS_HI			0x0294
200 #define PTP_TX_EGRESS_NS_LO			0x0295
201 #define PTP_TX_MSG_HEADER2			0x0299
202 
203 #define PTP_RX_INGRESS_SEC_HI			0x0256
204 #define PTP_RX_INGRESS_SEC_LO			0x0257
205 #define PTP_RX_INGRESS_NS_HI			0x0254
206 #define PTP_RX_INGRESS_NS_LO			0x0255
207 #define PTP_RX_MSG_HEADER2			0x0259
208 
209 #define PTP_TSU_INT_EN				0x0200
210 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
211 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
212 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
213 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
214 
215 #define PTP_TSU_INT_STS				0x0201
216 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
217 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
218 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
219 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
220 
221 #define LAN8814_LED_CTRL_1			0x0
222 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
223 
224 /* PHY Control 1 */
225 #define MII_KSZPHY_CTRL_1			0x1e
226 #define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
227 
228 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
229 #define MII_KSZPHY_CTRL_2			0x1f
230 #define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
231 /* bitmap of PHY register to set interrupt mode */
232 #define KSZ8081_CTRL2_HP_MDIX			BIT(15)
233 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
234 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
235 #define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
236 #define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
237 #define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
238 #define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
239 
240 /* Write/read to/from extended registers */
241 #define MII_KSZPHY_EXTREG			0x0b
242 #define KSZPHY_EXTREG_WRITE			0x8000
243 
244 #define MII_KSZPHY_EXTREG_WRITE			0x0c
245 #define MII_KSZPHY_EXTREG_READ			0x0d
246 
247 /* Extended registers */
248 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
249 #define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
250 #define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
251 
252 #define PS_TO_REG				200
253 #define FIFO_SIZE				8
254 
255 /* Delay used to get the second part from the LTC */
256 #define LAN8841_GET_SEC_LTC_DELAY		(500 * NSEC_PER_MSEC)
257 
258 struct kszphy_hw_stat {
259 	const char *string;
260 	u8 reg;
261 	u8 bits;
262 };
263 
264 static struct kszphy_hw_stat kszphy_hw_stats[] = {
265 	{ "phy_receive_errors", 21, 16},
266 	{ "phy_idle_errors", 10, 8 },
267 };
268 
269 struct kszphy_type {
270 	u32 led_mode_reg;
271 	u16 interrupt_level_mask;
272 	u16 cable_diag_reg;
273 	unsigned long pair_mask;
274 	u16 disable_dll_tx_bit;
275 	u16 disable_dll_rx_bit;
276 	u16 disable_dll_mask;
277 	bool has_broadcast_disable;
278 	bool has_nand_tree_disable;
279 	bool has_rmii_ref_clk_sel;
280 };
281 
282 /* Shared structure between the PHYs of the same package. */
283 struct lan8814_shared_priv {
284 	struct phy_device *phydev;
285 	struct ptp_clock *ptp_clock;
286 	struct ptp_clock_info ptp_clock_info;
287 
288 	/* Reference counter to how many ports in the package are enabling the
289 	 * timestamping
290 	 */
291 	u8 ref;
292 
293 	/* Lock for ptp_clock and ref */
294 	struct mutex shared_lock;
295 };
296 
297 struct lan8814_ptp_rx_ts {
298 	struct list_head list;
299 	u32 seconds;
300 	u32 nsec;
301 	u16 seq_id;
302 };
303 
304 struct kszphy_ptp_priv {
305 	struct mii_timestamper mii_ts;
306 	struct phy_device *phydev;
307 
308 	struct sk_buff_head tx_queue;
309 	struct sk_buff_head rx_queue;
310 
311 	struct list_head rx_ts_list;
312 	/* Lock for Rx ts fifo */
313 	spinlock_t rx_ts_lock;
314 
315 	int hwts_tx_type;
316 	enum hwtstamp_rx_filters rx_filter;
317 	int layer;
318 	int version;
319 
320 	struct ptp_clock *ptp_clock;
321 	struct ptp_clock_info ptp_clock_info;
322 	/* Lock for ptp_clock */
323 	struct mutex ptp_lock;
324 	struct ptp_pin_desc *pin_config;
325 
326 	s64 seconds;
327 	/* Lock for accessing seconds */
328 	spinlock_t seconds_lock;
329 };
330 
331 struct kszphy_priv {
332 	struct kszphy_ptp_priv ptp_priv;
333 	const struct kszphy_type *type;
334 	int led_mode;
335 	u16 vct_ctrl1000;
336 	bool rmii_ref_clk_sel;
337 	bool rmii_ref_clk_sel_val;
338 	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
339 };
340 
341 static const struct kszphy_type lan8814_type = {
342 	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
343 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
344 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
345 };
346 
347 static const struct kszphy_type ksz886x_type = {
348 	.cable_diag_reg		= KSZ8081_LMD,
349 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
350 };
351 
352 static const struct kszphy_type ksz8021_type = {
353 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
354 	.has_broadcast_disable	= true,
355 	.has_nand_tree_disable	= true,
356 	.has_rmii_ref_clk_sel	= true,
357 };
358 
359 static const struct kszphy_type ksz8041_type = {
360 	.led_mode_reg		= MII_KSZPHY_CTRL_1,
361 };
362 
363 static const struct kszphy_type ksz8051_type = {
364 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
365 	.has_nand_tree_disable	= true,
366 };
367 
368 static const struct kszphy_type ksz8081_type = {
369 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
370 	.has_broadcast_disable	= true,
371 	.has_nand_tree_disable	= true,
372 	.has_rmii_ref_clk_sel	= true,
373 };
374 
375 static const struct kszphy_type ks8737_type = {
376 	.interrupt_level_mask	= BIT(14),
377 };
378 
379 static const struct kszphy_type ksz9021_type = {
380 	.interrupt_level_mask	= BIT(14),
381 };
382 
383 static const struct kszphy_type ksz9131_type = {
384 	.interrupt_level_mask	= BIT(14),
385 	.disable_dll_tx_bit	= BIT(12),
386 	.disable_dll_rx_bit	= BIT(12),
387 	.disable_dll_mask	= BIT_MASK(12),
388 };
389 
390 static const struct kszphy_type lan8841_type = {
391 	.disable_dll_tx_bit	= BIT(14),
392 	.disable_dll_rx_bit	= BIT(14),
393 	.disable_dll_mask	= BIT_MASK(14),
394 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
395 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
396 };
397 
398 static int kszphy_extended_write(struct phy_device *phydev,
399 				u32 regnum, u16 val)
400 {
401 	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
402 	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
403 }
404 
405 static int kszphy_extended_read(struct phy_device *phydev,
406 				u32 regnum)
407 {
408 	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
409 	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
410 }
411 
412 static int kszphy_ack_interrupt(struct phy_device *phydev)
413 {
414 	/* bit[7..0] int status, which is a read and clear register. */
415 	int rc;
416 
417 	rc = phy_read(phydev, MII_KSZPHY_INTCS);
418 
419 	return (rc < 0) ? rc : 0;
420 }
421 
422 static int kszphy_config_intr(struct phy_device *phydev)
423 {
424 	const struct kszphy_type *type = phydev->drv->driver_data;
425 	int temp, err;
426 	u16 mask;
427 
428 	if (type && type->interrupt_level_mask)
429 		mask = type->interrupt_level_mask;
430 	else
431 		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
432 
433 	/* set the interrupt pin active low */
434 	temp = phy_read(phydev, MII_KSZPHY_CTRL);
435 	if (temp < 0)
436 		return temp;
437 	temp &= ~mask;
438 	phy_write(phydev, MII_KSZPHY_CTRL, temp);
439 
440 	/* enable / disable interrupts */
441 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
442 		err = kszphy_ack_interrupt(phydev);
443 		if (err)
444 			return err;
445 
446 		err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
447 	} else {
448 		err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
449 		if (err)
450 			return err;
451 
452 		err = kszphy_ack_interrupt(phydev);
453 	}
454 
455 	return err;
456 }
457 
458 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
459 {
460 	int irq_status;
461 
462 	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
463 	if (irq_status < 0) {
464 		phy_error(phydev);
465 		return IRQ_NONE;
466 	}
467 
468 	if (!(irq_status & KSZPHY_INTCS_STATUS))
469 		return IRQ_NONE;
470 
471 	phy_trigger_machine(phydev);
472 
473 	return IRQ_HANDLED;
474 }
475 
476 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
477 {
478 	int ctrl;
479 
480 	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
481 	if (ctrl < 0)
482 		return ctrl;
483 
484 	if (val)
485 		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
486 	else
487 		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
488 
489 	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
490 }
491 
492 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
493 {
494 	int rc, temp, shift;
495 
496 	switch (reg) {
497 	case MII_KSZPHY_CTRL_1:
498 		shift = 14;
499 		break;
500 	case MII_KSZPHY_CTRL_2:
501 		shift = 4;
502 		break;
503 	default:
504 		return -EINVAL;
505 	}
506 
507 	temp = phy_read(phydev, reg);
508 	if (temp < 0) {
509 		rc = temp;
510 		goto out;
511 	}
512 
513 	temp &= ~(3 << shift);
514 	temp |= val << shift;
515 	rc = phy_write(phydev, reg, temp);
516 out:
517 	if (rc < 0)
518 		phydev_err(phydev, "failed to set led mode\n");
519 
520 	return rc;
521 }
522 
523 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
524  * unique (non-broadcast) address on a shared bus.
525  */
526 static int kszphy_broadcast_disable(struct phy_device *phydev)
527 {
528 	int ret;
529 
530 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
531 	if (ret < 0)
532 		goto out;
533 
534 	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
535 out:
536 	if (ret)
537 		phydev_err(phydev, "failed to disable broadcast address\n");
538 
539 	return ret;
540 }
541 
542 static int kszphy_nand_tree_disable(struct phy_device *phydev)
543 {
544 	int ret;
545 
546 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
547 	if (ret < 0)
548 		goto out;
549 
550 	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
551 		return 0;
552 
553 	ret = phy_write(phydev, MII_KSZPHY_OMSO,
554 			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
555 out:
556 	if (ret)
557 		phydev_err(phydev, "failed to disable NAND tree mode\n");
558 
559 	return ret;
560 }
561 
562 /* Some config bits need to be set again on resume, handle them here. */
563 static int kszphy_config_reset(struct phy_device *phydev)
564 {
565 	struct kszphy_priv *priv = phydev->priv;
566 	int ret;
567 
568 	if (priv->rmii_ref_clk_sel) {
569 		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
570 		if (ret) {
571 			phydev_err(phydev,
572 				   "failed to set rmii reference clock\n");
573 			return ret;
574 		}
575 	}
576 
577 	if (priv->type && priv->led_mode >= 0)
578 		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
579 
580 	return 0;
581 }
582 
583 static int kszphy_config_init(struct phy_device *phydev)
584 {
585 	struct kszphy_priv *priv = phydev->priv;
586 	const struct kszphy_type *type;
587 
588 	if (!priv)
589 		return 0;
590 
591 	type = priv->type;
592 
593 	if (type && type->has_broadcast_disable)
594 		kszphy_broadcast_disable(phydev);
595 
596 	if (type && type->has_nand_tree_disable)
597 		kszphy_nand_tree_disable(phydev);
598 
599 	return kszphy_config_reset(phydev);
600 }
601 
602 static int ksz8041_fiber_mode(struct phy_device *phydev)
603 {
604 	struct device_node *of_node = phydev->mdio.dev.of_node;
605 
606 	return of_property_read_bool(of_node, "micrel,fiber-mode");
607 }
608 
609 static int ksz8041_config_init(struct phy_device *phydev)
610 {
611 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
612 
613 	/* Limit supported and advertised modes in fiber mode */
614 	if (ksz8041_fiber_mode(phydev)) {
615 		phydev->dev_flags |= MICREL_PHY_FXEN;
616 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
617 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
618 
619 		linkmode_and(phydev->supported, phydev->supported, mask);
620 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
621 				 phydev->supported);
622 		linkmode_and(phydev->advertising, phydev->advertising, mask);
623 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
624 				 phydev->advertising);
625 		phydev->autoneg = AUTONEG_DISABLE;
626 	}
627 
628 	return kszphy_config_init(phydev);
629 }
630 
631 static int ksz8041_config_aneg(struct phy_device *phydev)
632 {
633 	/* Skip auto-negotiation in fiber mode */
634 	if (phydev->dev_flags & MICREL_PHY_FXEN) {
635 		phydev->speed = SPEED_100;
636 		return 0;
637 	}
638 
639 	return genphy_config_aneg(phydev);
640 }
641 
642 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
643 					    const bool ksz_8051)
644 {
645 	int ret;
646 
647 	if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
648 		return 0;
649 
650 	ret = phy_read(phydev, MII_BMSR);
651 	if (ret < 0)
652 		return ret;
653 
654 	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
655 	 * exact PHY ID. However, they can be told apart by the extended
656 	 * capability registers presence. The KSZ8051 PHY has them while
657 	 * the switch does not.
658 	 */
659 	ret &= BMSR_ERCAP;
660 	if (ksz_8051)
661 		return ret;
662 	else
663 		return !ret;
664 }
665 
666 static int ksz8051_match_phy_device(struct phy_device *phydev)
667 {
668 	return ksz8051_ksz8795_match_phy_device(phydev, true);
669 }
670 
671 static int ksz8081_config_init(struct phy_device *phydev)
672 {
673 	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
674 	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
675 	 * pull-down is missing, the factory test mode should be cleared by
676 	 * manually writing a 0.
677 	 */
678 	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
679 
680 	return kszphy_config_init(phydev);
681 }
682 
683 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
684 {
685 	u16 val;
686 
687 	switch (ctrl) {
688 	case ETH_TP_MDI:
689 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
690 		break;
691 	case ETH_TP_MDI_X:
692 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
693 			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
694 		break;
695 	case ETH_TP_MDI_AUTO:
696 		val = 0;
697 		break;
698 	default:
699 		return 0;
700 	}
701 
702 	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
703 			  KSZ8081_CTRL2_HP_MDIX |
704 			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
705 			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
706 			  KSZ8081_CTRL2_HP_MDIX | val);
707 }
708 
709 static int ksz8081_config_aneg(struct phy_device *phydev)
710 {
711 	int ret;
712 
713 	ret = genphy_config_aneg(phydev);
714 	if (ret)
715 		return ret;
716 
717 	/* The MDI-X configuration is automatically changed by the PHY after
718 	 * switching from autoneg off to on. So, take MDI-X configuration under
719 	 * own control and set it after autoneg configuration was done.
720 	 */
721 	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
722 }
723 
724 static int ksz8081_mdix_update(struct phy_device *phydev)
725 {
726 	int ret;
727 
728 	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
729 	if (ret < 0)
730 		return ret;
731 
732 	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
733 		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
734 			phydev->mdix_ctrl = ETH_TP_MDI_X;
735 		else
736 			phydev->mdix_ctrl = ETH_TP_MDI;
737 	} else {
738 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
739 	}
740 
741 	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
742 	if (ret < 0)
743 		return ret;
744 
745 	if (ret & KSZ8081_CTRL1_MDIX_STAT)
746 		phydev->mdix = ETH_TP_MDI;
747 	else
748 		phydev->mdix = ETH_TP_MDI_X;
749 
750 	return 0;
751 }
752 
753 static int ksz8081_read_status(struct phy_device *phydev)
754 {
755 	int ret;
756 
757 	ret = ksz8081_mdix_update(phydev);
758 	if (ret < 0)
759 		return ret;
760 
761 	return genphy_read_status(phydev);
762 }
763 
764 static int ksz8061_config_init(struct phy_device *phydev)
765 {
766 	int ret;
767 
768 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
769 	if (ret)
770 		return ret;
771 
772 	return kszphy_config_init(phydev);
773 }
774 
775 static int ksz8795_match_phy_device(struct phy_device *phydev)
776 {
777 	return ksz8051_ksz8795_match_phy_device(phydev, false);
778 }
779 
780 static int ksz9021_load_values_from_of(struct phy_device *phydev,
781 				       const struct device_node *of_node,
782 				       u16 reg,
783 				       const char *field1, const char *field2,
784 				       const char *field3, const char *field4)
785 {
786 	int val1 = -1;
787 	int val2 = -2;
788 	int val3 = -3;
789 	int val4 = -4;
790 	int newval;
791 	int matches = 0;
792 
793 	if (!of_property_read_u32(of_node, field1, &val1))
794 		matches++;
795 
796 	if (!of_property_read_u32(of_node, field2, &val2))
797 		matches++;
798 
799 	if (!of_property_read_u32(of_node, field3, &val3))
800 		matches++;
801 
802 	if (!of_property_read_u32(of_node, field4, &val4))
803 		matches++;
804 
805 	if (!matches)
806 		return 0;
807 
808 	if (matches < 4)
809 		newval = kszphy_extended_read(phydev, reg);
810 	else
811 		newval = 0;
812 
813 	if (val1 != -1)
814 		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
815 
816 	if (val2 != -2)
817 		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
818 
819 	if (val3 != -3)
820 		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
821 
822 	if (val4 != -4)
823 		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
824 
825 	return kszphy_extended_write(phydev, reg, newval);
826 }
827 
828 static int ksz9021_config_init(struct phy_device *phydev)
829 {
830 	const struct device_node *of_node;
831 	const struct device *dev_walker;
832 
833 	/* The Micrel driver has a deprecated option to place phy OF
834 	 * properties in the MAC node. Walk up the tree of devices to
835 	 * find a device with an OF node.
836 	 */
837 	dev_walker = &phydev->mdio.dev;
838 	do {
839 		of_node = dev_walker->of_node;
840 		dev_walker = dev_walker->parent;
841 
842 	} while (!of_node && dev_walker);
843 
844 	if (of_node) {
845 		ksz9021_load_values_from_of(phydev, of_node,
846 				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
847 				    "txen-skew-ps", "txc-skew-ps",
848 				    "rxdv-skew-ps", "rxc-skew-ps");
849 		ksz9021_load_values_from_of(phydev, of_node,
850 				    MII_KSZPHY_RX_DATA_PAD_SKEW,
851 				    "rxd0-skew-ps", "rxd1-skew-ps",
852 				    "rxd2-skew-ps", "rxd3-skew-ps");
853 		ksz9021_load_values_from_of(phydev, of_node,
854 				    MII_KSZPHY_TX_DATA_PAD_SKEW,
855 				    "txd0-skew-ps", "txd1-skew-ps",
856 				    "txd2-skew-ps", "txd3-skew-ps");
857 	}
858 	return 0;
859 }
860 
861 #define KSZ9031_PS_TO_REG		60
862 
863 /* Extended registers */
864 /* MMD Address 0x0 */
865 #define MII_KSZ9031RN_FLP_BURST_TX_LO	3
866 #define MII_KSZ9031RN_FLP_BURST_TX_HI	4
867 
868 /* MMD Address 0x2 */
869 #define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
870 #define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
871 #define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
872 
873 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
874 #define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
875 #define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
876 #define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
877 #define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
878 
879 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
880 #define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
881 #define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
882 #define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
883 #define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
884 
885 #define MII_KSZ9031RN_CLK_PAD_SKEW	8
886 #define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
887 #define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
888 
889 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
890  * provide different RGMII options we need to configure delay offset
891  * for each pad relative to build in delay.
892  */
893 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
894  * 1.80ns
895  */
896 #define RX_ID				0x7
897 #define RX_CLK_ID			0x19
898 
899 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
900  * internal 1.2ns delay.
901  */
902 #define RX_ND				0xc
903 #define RX_CLK_ND			0x0
904 
905 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
906 #define TX_ID				0x0
907 #define TX_CLK_ID			0x1f
908 
909 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
910  * dealy
911  */
912 #define TX_ND				0x7
913 #define TX_CLK_ND			0xf
914 
915 /* MMD Address 0x1C */
916 #define MII_KSZ9031RN_EDPD		0x23
917 #define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
918 
919 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
920 				       const struct device_node *of_node,
921 				       u16 reg, size_t field_sz,
922 				       const char *field[], u8 numfields,
923 				       bool *update)
924 {
925 	int val[4] = {-1, -2, -3, -4};
926 	int matches = 0;
927 	u16 mask;
928 	u16 maxval;
929 	u16 newval;
930 	int i;
931 
932 	for (i = 0; i < numfields; i++)
933 		if (!of_property_read_u32(of_node, field[i], val + i))
934 			matches++;
935 
936 	if (!matches)
937 		return 0;
938 
939 	*update |= true;
940 
941 	if (matches < numfields)
942 		newval = phy_read_mmd(phydev, 2, reg);
943 	else
944 		newval = 0;
945 
946 	maxval = (field_sz == 4) ? 0xf : 0x1f;
947 	for (i = 0; i < numfields; i++)
948 		if (val[i] != -(i + 1)) {
949 			mask = 0xffff;
950 			mask ^= maxval << (field_sz * i);
951 			newval = (newval & mask) |
952 				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
953 					<< (field_sz * i));
954 		}
955 
956 	return phy_write_mmd(phydev, 2, reg, newval);
957 }
958 
959 /* Center KSZ9031RNX FLP timing at 16ms. */
960 static int ksz9031_center_flp_timing(struct phy_device *phydev)
961 {
962 	int result;
963 
964 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
965 			       0x0006);
966 	if (result)
967 		return result;
968 
969 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
970 			       0x1A80);
971 	if (result)
972 		return result;
973 
974 	return genphy_restart_aneg(phydev);
975 }
976 
977 /* Enable energy-detect power-down mode */
978 static int ksz9031_enable_edpd(struct phy_device *phydev)
979 {
980 	int reg;
981 
982 	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
983 	if (reg < 0)
984 		return reg;
985 	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
986 			     reg | MII_KSZ9031RN_EDPD_ENABLE);
987 }
988 
989 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
990 {
991 	u16 rx, tx, rx_clk, tx_clk;
992 	int ret;
993 
994 	switch (phydev->interface) {
995 	case PHY_INTERFACE_MODE_RGMII:
996 		tx = TX_ND;
997 		tx_clk = TX_CLK_ND;
998 		rx = RX_ND;
999 		rx_clk = RX_CLK_ND;
1000 		break;
1001 	case PHY_INTERFACE_MODE_RGMII_ID:
1002 		tx = TX_ID;
1003 		tx_clk = TX_CLK_ID;
1004 		rx = RX_ID;
1005 		rx_clk = RX_CLK_ID;
1006 		break;
1007 	case PHY_INTERFACE_MODE_RGMII_RXID:
1008 		tx = TX_ND;
1009 		tx_clk = TX_CLK_ND;
1010 		rx = RX_ID;
1011 		rx_clk = RX_CLK_ID;
1012 		break;
1013 	case PHY_INTERFACE_MODE_RGMII_TXID:
1014 		tx = TX_ID;
1015 		tx_clk = TX_CLK_ID;
1016 		rx = RX_ND;
1017 		rx_clk = RX_CLK_ND;
1018 		break;
1019 	default:
1020 		return 0;
1021 	}
1022 
1023 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1024 			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1025 			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1026 	if (ret < 0)
1027 		return ret;
1028 
1029 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1030 			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1031 			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1032 			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1033 			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1034 	if (ret < 0)
1035 		return ret;
1036 
1037 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1038 			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1039 			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1040 			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1041 			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1042 	if (ret < 0)
1043 		return ret;
1044 
1045 	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1046 			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1047 			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1048 }
1049 
1050 static int ksz9031_config_init(struct phy_device *phydev)
1051 {
1052 	const struct device_node *of_node;
1053 	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1054 	static const char *rx_data_skews[4] = {
1055 		"rxd0-skew-ps", "rxd1-skew-ps",
1056 		"rxd2-skew-ps", "rxd3-skew-ps"
1057 	};
1058 	static const char *tx_data_skews[4] = {
1059 		"txd0-skew-ps", "txd1-skew-ps",
1060 		"txd2-skew-ps", "txd3-skew-ps"
1061 	};
1062 	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1063 	const struct device *dev_walker;
1064 	int result;
1065 
1066 	result = ksz9031_enable_edpd(phydev);
1067 	if (result < 0)
1068 		return result;
1069 
1070 	/* The Micrel driver has a deprecated option to place phy OF
1071 	 * properties in the MAC node. Walk up the tree of devices to
1072 	 * find a device with an OF node.
1073 	 */
1074 	dev_walker = &phydev->mdio.dev;
1075 	do {
1076 		of_node = dev_walker->of_node;
1077 		dev_walker = dev_walker->parent;
1078 	} while (!of_node && dev_walker);
1079 
1080 	if (of_node) {
1081 		bool update = false;
1082 
1083 		if (phy_interface_is_rgmii(phydev)) {
1084 			result = ksz9031_config_rgmii_delay(phydev);
1085 			if (result < 0)
1086 				return result;
1087 		}
1088 
1089 		ksz9031_of_load_skew_values(phydev, of_node,
1090 				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1091 				clk_skews, 2, &update);
1092 
1093 		ksz9031_of_load_skew_values(phydev, of_node,
1094 				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1095 				control_skews, 2, &update);
1096 
1097 		ksz9031_of_load_skew_values(phydev, of_node,
1098 				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1099 				rx_data_skews, 4, &update);
1100 
1101 		ksz9031_of_load_skew_values(phydev, of_node,
1102 				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1103 				tx_data_skews, 4, &update);
1104 
1105 		if (update && !phy_interface_is_rgmii(phydev))
1106 			phydev_warn(phydev,
1107 				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1108 
1109 		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1110 		 * When the device links in the 1000BASE-T slave mode only,
1111 		 * the optional 125MHz reference output clock (CLK125_NDO)
1112 		 * has wide duty cycle variation.
1113 		 *
1114 		 * The optional CLK125_NDO clock does not meet the RGMII
1115 		 * 45/55 percent (min/max) duty cycle requirement and therefore
1116 		 * cannot be used directly by the MAC side for clocking
1117 		 * applications that have setup/hold time requirements on
1118 		 * rising and falling clock edges.
1119 		 *
1120 		 * Workaround:
1121 		 * Force the phy to be the master to receive a stable clock
1122 		 * which meets the duty cycle requirement.
1123 		 */
1124 		if (of_property_read_bool(of_node, "micrel,force-master")) {
1125 			result = phy_read(phydev, MII_CTRL1000);
1126 			if (result < 0)
1127 				goto err_force_master;
1128 
1129 			/* enable master mode, config & prefer master */
1130 			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1131 			result = phy_write(phydev, MII_CTRL1000, result);
1132 			if (result < 0)
1133 				goto err_force_master;
1134 		}
1135 	}
1136 
1137 	return ksz9031_center_flp_timing(phydev);
1138 
1139 err_force_master:
1140 	phydev_err(phydev, "failed to force the phy to master mode\n");
1141 	return result;
1142 }
1143 
1144 #define KSZ9131_SKEW_5BIT_MAX	2400
1145 #define KSZ9131_SKEW_4BIT_MAX	800
1146 #define KSZ9131_OFFSET		700
1147 #define KSZ9131_STEP		100
1148 
1149 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1150 				       struct device_node *of_node,
1151 				       u16 reg, size_t field_sz,
1152 				       char *field[], u8 numfields)
1153 {
1154 	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1155 		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1156 	int skewval, skewmax = 0;
1157 	int matches = 0;
1158 	u16 maxval;
1159 	u16 newval;
1160 	u16 mask;
1161 	int i;
1162 
1163 	/* psec properties in dts should mean x pico seconds */
1164 	if (field_sz == 5)
1165 		skewmax = KSZ9131_SKEW_5BIT_MAX;
1166 	else
1167 		skewmax = KSZ9131_SKEW_4BIT_MAX;
1168 
1169 	for (i = 0; i < numfields; i++)
1170 		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1171 			if (skewval < -KSZ9131_OFFSET)
1172 				skewval = -KSZ9131_OFFSET;
1173 			else if (skewval > skewmax)
1174 				skewval = skewmax;
1175 
1176 			val[i] = skewval + KSZ9131_OFFSET;
1177 			matches++;
1178 		}
1179 
1180 	if (!matches)
1181 		return 0;
1182 
1183 	if (matches < numfields)
1184 		newval = phy_read_mmd(phydev, 2, reg);
1185 	else
1186 		newval = 0;
1187 
1188 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1189 	for (i = 0; i < numfields; i++)
1190 		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1191 			mask = 0xffff;
1192 			mask ^= maxval << (field_sz * i);
1193 			newval = (newval & mask) |
1194 				(((val[i] / KSZ9131_STEP) & maxval)
1195 					<< (field_sz * i));
1196 		}
1197 
1198 	return phy_write_mmd(phydev, 2, reg, newval);
1199 }
1200 
1201 #define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1202 #define KSZ9131RN_RXC_DLL_CTRL		76
1203 #define KSZ9131RN_TXC_DLL_CTRL		77
1204 #define KSZ9131RN_DLL_ENABLE_DELAY	0
1205 
1206 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1207 {
1208 	const struct kszphy_type *type = phydev->drv->driver_data;
1209 	u16 rxcdll_val, txcdll_val;
1210 	int ret;
1211 
1212 	switch (phydev->interface) {
1213 	case PHY_INTERFACE_MODE_RGMII:
1214 		rxcdll_val = type->disable_dll_rx_bit;
1215 		txcdll_val = type->disable_dll_tx_bit;
1216 		break;
1217 	case PHY_INTERFACE_MODE_RGMII_ID:
1218 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1219 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1220 		break;
1221 	case PHY_INTERFACE_MODE_RGMII_RXID:
1222 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1223 		txcdll_val = type->disable_dll_tx_bit;
1224 		break;
1225 	case PHY_INTERFACE_MODE_RGMII_TXID:
1226 		rxcdll_val = type->disable_dll_rx_bit;
1227 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1228 		break;
1229 	default:
1230 		return 0;
1231 	}
1232 
1233 	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1234 			     KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1235 			     rxcdll_val);
1236 	if (ret < 0)
1237 		return ret;
1238 
1239 	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1240 			      KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1241 			      txcdll_val);
1242 }
1243 
1244 /* Silicon Errata DS80000693B
1245  *
1246  * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1247  * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1248  * according to the datasheet (off if there is no link).
1249  */
1250 static int ksz9131_led_errata(struct phy_device *phydev)
1251 {
1252 	int reg;
1253 
1254 	reg = phy_read_mmd(phydev, 2, 0);
1255 	if (reg < 0)
1256 		return reg;
1257 
1258 	if (!(reg & BIT(4)))
1259 		return 0;
1260 
1261 	return phy_set_bits(phydev, 0x1e, BIT(9));
1262 }
1263 
1264 static int ksz9131_config_init(struct phy_device *phydev)
1265 {
1266 	struct device_node *of_node;
1267 	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1268 	char *rx_data_skews[4] = {
1269 		"rxd0-skew-psec", "rxd1-skew-psec",
1270 		"rxd2-skew-psec", "rxd3-skew-psec"
1271 	};
1272 	char *tx_data_skews[4] = {
1273 		"txd0-skew-psec", "txd1-skew-psec",
1274 		"txd2-skew-psec", "txd3-skew-psec"
1275 	};
1276 	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1277 	const struct device *dev_walker;
1278 	int ret;
1279 
1280 	dev_walker = &phydev->mdio.dev;
1281 	do {
1282 		of_node = dev_walker->of_node;
1283 		dev_walker = dev_walker->parent;
1284 	} while (!of_node && dev_walker);
1285 
1286 	if (!of_node)
1287 		return 0;
1288 
1289 	if (phy_interface_is_rgmii(phydev)) {
1290 		ret = ksz9131_config_rgmii_delay(phydev);
1291 		if (ret < 0)
1292 			return ret;
1293 	}
1294 
1295 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1296 					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1297 					  clk_skews, 2);
1298 	if (ret < 0)
1299 		return ret;
1300 
1301 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1302 					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1303 					  control_skews, 2);
1304 	if (ret < 0)
1305 		return ret;
1306 
1307 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1308 					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1309 					  rx_data_skews, 4);
1310 	if (ret < 0)
1311 		return ret;
1312 
1313 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1314 					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1315 					  tx_data_skews, 4);
1316 	if (ret < 0)
1317 		return ret;
1318 
1319 	ret = ksz9131_led_errata(phydev);
1320 	if (ret < 0)
1321 		return ret;
1322 
1323 	return 0;
1324 }
1325 
1326 #define MII_KSZ9131_AUTO_MDIX		0x1C
1327 #define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1328 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1329 
1330 static int ksz9131_mdix_update(struct phy_device *phydev)
1331 {
1332 	int ret;
1333 
1334 	ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX);
1335 	if (ret < 0)
1336 		return ret;
1337 
1338 	if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) {
1339 		if (ret & MII_KSZ9131_AUTO_MDI_SET)
1340 			phydev->mdix_ctrl = ETH_TP_MDI;
1341 		else
1342 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1343 	} else {
1344 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1345 	}
1346 
1347 	if (ret & MII_KSZ9131_AUTO_MDI_SET)
1348 		phydev->mdix = ETH_TP_MDI;
1349 	else
1350 		phydev->mdix = ETH_TP_MDI_X;
1351 
1352 	return 0;
1353 }
1354 
1355 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1356 {
1357 	u16 val;
1358 
1359 	switch (ctrl) {
1360 	case ETH_TP_MDI:
1361 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1362 		      MII_KSZ9131_AUTO_MDI_SET;
1363 		break;
1364 	case ETH_TP_MDI_X:
1365 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1366 		break;
1367 	case ETH_TP_MDI_AUTO:
1368 		val = 0;
1369 		break;
1370 	default:
1371 		return 0;
1372 	}
1373 
1374 	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1375 			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1376 			  MII_KSZ9131_AUTO_MDI_SET, val);
1377 }
1378 
1379 static int ksz9131_read_status(struct phy_device *phydev)
1380 {
1381 	int ret;
1382 
1383 	ret = ksz9131_mdix_update(phydev);
1384 	if (ret < 0)
1385 		return ret;
1386 
1387 	return genphy_read_status(phydev);
1388 }
1389 
1390 static int ksz9131_config_aneg(struct phy_device *phydev)
1391 {
1392 	int ret;
1393 
1394 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1395 	if (ret)
1396 		return ret;
1397 
1398 	return genphy_config_aneg(phydev);
1399 }
1400 
1401 static int ksz9477_get_features(struct phy_device *phydev)
1402 {
1403 	int ret;
1404 
1405 	ret = genphy_read_abilities(phydev);
1406 	if (ret)
1407 		return ret;
1408 
1409 	/* The "EEE control and capability 1" (Register 3.20) seems to be
1410 	 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1411 	 * on the 7.60 will affect 3.20. So, we need to construct our own list
1412 	 * of caps.
1413 	 * KSZ8563R should have 100BaseTX/Full only.
1414 	 */
1415 	linkmode_and(phydev->supported_eee, phydev->supported,
1416 		     PHY_EEE_CAP1_FEATURES);
1417 
1418 	return 0;
1419 }
1420 
1421 #define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1422 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1423 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1424 static int ksz8873mll_read_status(struct phy_device *phydev)
1425 {
1426 	int regval;
1427 
1428 	/* dummy read */
1429 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1430 
1431 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1432 
1433 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1434 		phydev->duplex = DUPLEX_HALF;
1435 	else
1436 		phydev->duplex = DUPLEX_FULL;
1437 
1438 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1439 		phydev->speed = SPEED_10;
1440 	else
1441 		phydev->speed = SPEED_100;
1442 
1443 	phydev->link = 1;
1444 	phydev->pause = phydev->asym_pause = 0;
1445 
1446 	return 0;
1447 }
1448 
1449 static int ksz9031_get_features(struct phy_device *phydev)
1450 {
1451 	int ret;
1452 
1453 	ret = genphy_read_abilities(phydev);
1454 	if (ret < 0)
1455 		return ret;
1456 
1457 	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1458 	 * Whenever the device's Asymmetric Pause capability is set to 1,
1459 	 * link-up may fail after a link-up to link-down transition.
1460 	 *
1461 	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1462 	 *
1463 	 * Workaround:
1464 	 * Do not enable the Asymmetric Pause capability bit.
1465 	 */
1466 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1467 
1468 	/* We force setting the Pause capability as the core will force the
1469 	 * Asymmetric Pause capability to 1 otherwise.
1470 	 */
1471 	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1472 
1473 	return 0;
1474 }
1475 
1476 static int ksz9031_read_status(struct phy_device *phydev)
1477 {
1478 	int err;
1479 	int regval;
1480 
1481 	err = genphy_read_status(phydev);
1482 	if (err)
1483 		return err;
1484 
1485 	/* Make sure the PHY is not broken. Read idle error count,
1486 	 * and reset the PHY if it is maxed out.
1487 	 */
1488 	regval = phy_read(phydev, MII_STAT1000);
1489 	if ((regval & 0xFF) == 0xFF) {
1490 		phy_init_hw(phydev);
1491 		phydev->link = 0;
1492 		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1493 			phydev->drv->config_intr(phydev);
1494 		return genphy_config_aneg(phydev);
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1501 {
1502 	struct kszphy_priv *priv = phydev->priv;
1503 	int ret;
1504 
1505 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1506 	 * Prior to running the cable diagnostics, Auto-negotiation should
1507 	 * be disabled, full duplex set and the link speed set to 1000Mbps
1508 	 * via the Basic Control Register.
1509 	 */
1510 	ret = phy_modify(phydev, MII_BMCR,
1511 			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1512 			 BMCR_ANENABLE | BMCR_SPEED100,
1513 			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1514 	if (ret)
1515 		return ret;
1516 
1517 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1518 	 * The Master-Slave configuration should be set to Slave by writing
1519 	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1520 	 * Register.
1521 	 */
1522 	ret = phy_read(phydev, MII_CTRL1000);
1523 	if (ret < 0)
1524 		return ret;
1525 
1526 	/* Cache these bits, they need to be restored once LinkMD finishes. */
1527 	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1528 	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1529 	ret |= CTL1000_ENABLE_MASTER;
1530 
1531 	return phy_write(phydev, MII_CTRL1000, ret);
1532 }
1533 
1534 static int ksz9x31_cable_test_result_trans(u16 status)
1535 {
1536 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1537 	case KSZ9x31_LMD_VCT_ST_NORMAL:
1538 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1539 	case KSZ9x31_LMD_VCT_ST_OPEN:
1540 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1541 	case KSZ9x31_LMD_VCT_ST_SHORT:
1542 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1543 	case KSZ9x31_LMD_VCT_ST_FAIL:
1544 		fallthrough;
1545 	default:
1546 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1547 	}
1548 }
1549 
1550 static bool ksz9x31_cable_test_failed(u16 status)
1551 {
1552 	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1553 
1554 	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1555 }
1556 
1557 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1558 {
1559 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1560 	case KSZ9x31_LMD_VCT_ST_OPEN:
1561 		fallthrough;
1562 	case KSZ9x31_LMD_VCT_ST_SHORT:
1563 		return true;
1564 	}
1565 	return false;
1566 }
1567 
1568 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1569 {
1570 	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1571 
1572 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1573 	 *
1574 	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1575 	 */
1576 	if (phydev_id_compare(phydev, PHY_ID_KSZ9131))
1577 		dt = clamp(dt - 22, 0, 255);
1578 
1579 	return (dt * 400) / 10;
1580 }
1581 
1582 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1583 {
1584 	int val, ret;
1585 
1586 	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1587 				    !(val & KSZ9x31_LMD_VCT_EN),
1588 				    30000, 100000, true);
1589 
1590 	return ret < 0 ? ret : 0;
1591 }
1592 
1593 static int ksz9x31_cable_test_get_pair(int pair)
1594 {
1595 	static const int ethtool_pair[] = {
1596 		ETHTOOL_A_CABLE_PAIR_A,
1597 		ETHTOOL_A_CABLE_PAIR_B,
1598 		ETHTOOL_A_CABLE_PAIR_C,
1599 		ETHTOOL_A_CABLE_PAIR_D,
1600 	};
1601 
1602 	return ethtool_pair[pair];
1603 }
1604 
1605 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1606 {
1607 	int ret, val;
1608 
1609 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1610 	 * To test each individual cable pair, set the cable pair in the Cable
1611 	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1612 	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1613 	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1614 	 * will self clear when the test is concluded.
1615 	 */
1616 	ret = phy_write(phydev, KSZ9x31_LMD,
1617 			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1618 	if (ret)
1619 		return ret;
1620 
1621 	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1622 	if (ret)
1623 		return ret;
1624 
1625 	val = phy_read(phydev, KSZ9x31_LMD);
1626 	if (val < 0)
1627 		return val;
1628 
1629 	if (ksz9x31_cable_test_failed(val))
1630 		return -EAGAIN;
1631 
1632 	ret = ethnl_cable_test_result(phydev,
1633 				      ksz9x31_cable_test_get_pair(pair),
1634 				      ksz9x31_cable_test_result_trans(val));
1635 	if (ret)
1636 		return ret;
1637 
1638 	if (!ksz9x31_cable_test_fault_length_valid(val))
1639 		return 0;
1640 
1641 	return ethnl_cable_test_fault_length(phydev,
1642 					     ksz9x31_cable_test_get_pair(pair),
1643 					     ksz9x31_cable_test_fault_length(phydev, val));
1644 }
1645 
1646 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1647 					 bool *finished)
1648 {
1649 	struct kszphy_priv *priv = phydev->priv;
1650 	unsigned long pair_mask = 0xf;
1651 	int retries = 20;
1652 	int pair, ret, rv;
1653 
1654 	*finished = false;
1655 
1656 	/* Try harder if link partner is active */
1657 	while (pair_mask && retries--) {
1658 		for_each_set_bit(pair, &pair_mask, 4) {
1659 			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1660 			if (ret == -EAGAIN)
1661 				continue;
1662 			if (ret < 0)
1663 				return ret;
1664 			clear_bit(pair, &pair_mask);
1665 		}
1666 		/* If link partner is in autonegotiation mode it will send 2ms
1667 		 * of FLPs with at least 6ms of silence.
1668 		 * Add 2ms sleep to have better chances to hit this silence.
1669 		 */
1670 		if (pair_mask)
1671 			usleep_range(2000, 3000);
1672 	}
1673 
1674 	/* Report remaining unfinished pair result as unknown. */
1675 	for_each_set_bit(pair, &pair_mask, 4) {
1676 		ret = ethnl_cable_test_result(phydev,
1677 					      ksz9x31_cable_test_get_pair(pair),
1678 					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1679 	}
1680 
1681 	*finished = true;
1682 
1683 	/* Restore cached bits from before LinkMD got started. */
1684 	rv = phy_modify(phydev, MII_CTRL1000,
1685 			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1686 			priv->vct_ctrl1000);
1687 	if (rv)
1688 		return rv;
1689 
1690 	return ret;
1691 }
1692 
1693 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1694 {
1695 	return 0;
1696 }
1697 
1698 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1699 {
1700 	u16 val;
1701 
1702 	switch (ctrl) {
1703 	case ETH_TP_MDI:
1704 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1705 		break;
1706 	case ETH_TP_MDI_X:
1707 		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1708 		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1709 		 * sheet seems to be missing:
1710 		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1711 		 * 0 = Normal operation (transmit on TX+/TX- pins)
1712 		 */
1713 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1714 		break;
1715 	case ETH_TP_MDI_AUTO:
1716 		val = 0;
1717 		break;
1718 	default:
1719 		return 0;
1720 	}
1721 
1722 	return phy_modify(phydev, MII_BMCR,
1723 			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1724 			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1725 			  KSZ886X_BMCR_HP_MDIX | val);
1726 }
1727 
1728 static int ksz886x_config_aneg(struct phy_device *phydev)
1729 {
1730 	int ret;
1731 
1732 	ret = genphy_config_aneg(phydev);
1733 	if (ret)
1734 		return ret;
1735 
1736 	/* The MDI-X configuration is automatically changed by the PHY after
1737 	 * switching from autoneg off to on. So, take MDI-X configuration under
1738 	 * own control and set it after autoneg configuration was done.
1739 	 */
1740 	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1741 }
1742 
1743 static int ksz886x_mdix_update(struct phy_device *phydev)
1744 {
1745 	int ret;
1746 
1747 	ret = phy_read(phydev, MII_BMCR);
1748 	if (ret < 0)
1749 		return ret;
1750 
1751 	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1752 		if (ret & KSZ886X_BMCR_FORCE_MDI)
1753 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1754 		else
1755 			phydev->mdix_ctrl = ETH_TP_MDI;
1756 	} else {
1757 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1758 	}
1759 
1760 	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1761 	if (ret < 0)
1762 		return ret;
1763 
1764 	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1765 	if (ret & KSZ886X_CTRL_MDIX_STAT)
1766 		phydev->mdix = ETH_TP_MDI_X;
1767 	else
1768 		phydev->mdix = ETH_TP_MDI;
1769 
1770 	return 0;
1771 }
1772 
1773 static int ksz886x_read_status(struct phy_device *phydev)
1774 {
1775 	int ret;
1776 
1777 	ret = ksz886x_mdix_update(phydev);
1778 	if (ret < 0)
1779 		return ret;
1780 
1781 	return genphy_read_status(phydev);
1782 }
1783 
1784 struct ksz9477_errata_write {
1785 	u8 dev_addr;
1786 	u8 reg_addr;
1787 	u16 val;
1788 };
1789 
1790 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
1791 	 /* Register settings are needed to improve PHY receive performance */
1792 	{0x01, 0x6f, 0xdd0b},
1793 	{0x01, 0x8f, 0x6032},
1794 	{0x01, 0x9d, 0x248c},
1795 	{0x01, 0x75, 0x0060},
1796 	{0x01, 0xd3, 0x7777},
1797 	{0x1c, 0x06, 0x3008},
1798 	{0x1c, 0x08, 0x2000},
1799 
1800 	/* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
1801 	{0x1c, 0x04, 0x00d0},
1802 
1803 	/* Energy Efficient Ethernet (EEE) feature select must be manually disabled */
1804 	{0x07, 0x3c, 0x0000},
1805 
1806 	/* Register settings are required to meet data sheet supply current specifications */
1807 	{0x1c, 0x13, 0x6eff},
1808 	{0x1c, 0x14, 0xe6ff},
1809 	{0x1c, 0x15, 0x6eff},
1810 	{0x1c, 0x16, 0xe6ff},
1811 	{0x1c, 0x17, 0x00ff},
1812 	{0x1c, 0x18, 0x43ff},
1813 	{0x1c, 0x19, 0xc3ff},
1814 	{0x1c, 0x1a, 0x6fff},
1815 	{0x1c, 0x1b, 0x07ff},
1816 	{0x1c, 0x1c, 0x0fff},
1817 	{0x1c, 0x1d, 0xe7ff},
1818 	{0x1c, 0x1e, 0xefff},
1819 	{0x1c, 0x20, 0xeeee},
1820 };
1821 
1822 static int ksz9477_config_init(struct phy_device *phydev)
1823 {
1824 	int err;
1825 	int i;
1826 
1827 	/* Apply PHY settings to address errata listed in
1828 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1829 	 * Silicon Errata and Data Sheet Clarification documents.
1830 	 *
1831 	 * Document notes: Before configuring the PHY MMD registers, it is
1832 	 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
1833 	 * disabled by writing to register 0xN100-0xN101. After writing the
1834 	 * MMD registers, and after all errata workarounds that involve PHY
1835 	 * register settings, write register 0xN100-0xN101 again to enable
1836 	 * and restart auto-negotiation.
1837 	 */
1838 	err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
1839 	if (err)
1840 		return err;
1841 
1842 	for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
1843 		const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
1844 
1845 		err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
1846 		if (err)
1847 			return err;
1848 	}
1849 
1850 	err = genphy_restart_aneg(phydev);
1851 	if (err)
1852 		return err;
1853 
1854 	return kszphy_config_init(phydev);
1855 }
1856 
1857 static int kszphy_get_sset_count(struct phy_device *phydev)
1858 {
1859 	return ARRAY_SIZE(kszphy_hw_stats);
1860 }
1861 
1862 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
1863 {
1864 	int i;
1865 
1866 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
1867 		strscpy(data + i * ETH_GSTRING_LEN,
1868 			kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
1869 	}
1870 }
1871 
1872 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
1873 {
1874 	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
1875 	struct kszphy_priv *priv = phydev->priv;
1876 	int val;
1877 	u64 ret;
1878 
1879 	val = phy_read(phydev, stat.reg);
1880 	if (val < 0) {
1881 		ret = U64_MAX;
1882 	} else {
1883 		val = val & ((1 << stat.bits) - 1);
1884 		priv->stats[i] += val;
1885 		ret = priv->stats[i];
1886 	}
1887 
1888 	return ret;
1889 }
1890 
1891 static void kszphy_get_stats(struct phy_device *phydev,
1892 			     struct ethtool_stats *stats, u64 *data)
1893 {
1894 	int i;
1895 
1896 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
1897 		data[i] = kszphy_get_stat(phydev, i);
1898 }
1899 
1900 static int kszphy_suspend(struct phy_device *phydev)
1901 {
1902 	/* Disable PHY Interrupts */
1903 	if (phy_interrupt_is_valid(phydev)) {
1904 		phydev->interrupts = PHY_INTERRUPT_DISABLED;
1905 		if (phydev->drv->config_intr)
1906 			phydev->drv->config_intr(phydev);
1907 	}
1908 
1909 	return genphy_suspend(phydev);
1910 }
1911 
1912 static void kszphy_parse_led_mode(struct phy_device *phydev)
1913 {
1914 	const struct kszphy_type *type = phydev->drv->driver_data;
1915 	const struct device_node *np = phydev->mdio.dev.of_node;
1916 	struct kszphy_priv *priv = phydev->priv;
1917 	int ret;
1918 
1919 	if (type && type->led_mode_reg) {
1920 		ret = of_property_read_u32(np, "micrel,led-mode",
1921 					   &priv->led_mode);
1922 
1923 		if (ret)
1924 			priv->led_mode = -1;
1925 
1926 		if (priv->led_mode > 3) {
1927 			phydev_err(phydev, "invalid led mode: 0x%02x\n",
1928 				   priv->led_mode);
1929 			priv->led_mode = -1;
1930 		}
1931 	} else {
1932 		priv->led_mode = -1;
1933 	}
1934 }
1935 
1936 static int kszphy_resume(struct phy_device *phydev)
1937 {
1938 	int ret;
1939 
1940 	genphy_resume(phydev);
1941 
1942 	/* After switching from power-down to normal mode, an internal global
1943 	 * reset is automatically generated. Wait a minimum of 1 ms before
1944 	 * read/write access to the PHY registers.
1945 	 */
1946 	usleep_range(1000, 2000);
1947 
1948 	ret = kszphy_config_reset(phydev);
1949 	if (ret)
1950 		return ret;
1951 
1952 	/* Enable PHY Interrupts */
1953 	if (phy_interrupt_is_valid(phydev)) {
1954 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
1955 		if (phydev->drv->config_intr)
1956 			phydev->drv->config_intr(phydev);
1957 	}
1958 
1959 	return 0;
1960 }
1961 
1962 static int kszphy_probe(struct phy_device *phydev)
1963 {
1964 	const struct kszphy_type *type = phydev->drv->driver_data;
1965 	const struct device_node *np = phydev->mdio.dev.of_node;
1966 	struct kszphy_priv *priv;
1967 	struct clk *clk;
1968 
1969 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
1970 	if (!priv)
1971 		return -ENOMEM;
1972 
1973 	phydev->priv = priv;
1974 
1975 	priv->type = type;
1976 
1977 	kszphy_parse_led_mode(phydev);
1978 
1979 	clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref");
1980 	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
1981 	if (!IS_ERR_OR_NULL(clk)) {
1982 		unsigned long rate = clk_get_rate(clk);
1983 		bool rmii_ref_clk_sel_25_mhz;
1984 
1985 		if (type)
1986 			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
1987 		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
1988 				"micrel,rmii-reference-clock-select-25-mhz");
1989 
1990 		if (rate > 24500000 && rate < 25500000) {
1991 			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
1992 		} else if (rate > 49500000 && rate < 50500000) {
1993 			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
1994 		} else {
1995 			phydev_err(phydev, "Clock rate out of range: %ld\n",
1996 				   rate);
1997 			return -EINVAL;
1998 		}
1999 	}
2000 
2001 	if (ksz8041_fiber_mode(phydev))
2002 		phydev->port = PORT_FIBRE;
2003 
2004 	/* Support legacy board-file configuration */
2005 	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2006 		priv->rmii_ref_clk_sel = true;
2007 		priv->rmii_ref_clk_sel_val = true;
2008 	}
2009 
2010 	return 0;
2011 }
2012 
2013 static int lan8814_cable_test_start(struct phy_device *phydev)
2014 {
2015 	/* If autoneg is enabled, we won't be able to test cross pair
2016 	 * short. In this case, the PHY will "detect" a link and
2017 	 * confuse the internal state machine - disable auto neg here.
2018 	 * Set the speed to 1000mbit and full duplex.
2019 	 */
2020 	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2021 			  BMCR_SPEED1000 | BMCR_FULLDPLX);
2022 }
2023 
2024 static int ksz886x_cable_test_start(struct phy_device *phydev)
2025 {
2026 	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2027 		return -EOPNOTSUPP;
2028 
2029 	/* If autoneg is enabled, we won't be able to test cross pair
2030 	 * short. In this case, the PHY will "detect" a link and
2031 	 * confuse the internal state machine - disable auto neg here.
2032 	 * If autoneg is disabled, we should set the speed to 10mbit.
2033 	 */
2034 	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2035 }
2036 
2037 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2038 {
2039 	switch (FIELD_GET(mask, status)) {
2040 	case KSZ8081_LMD_STAT_NORMAL:
2041 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2042 	case KSZ8081_LMD_STAT_SHORT:
2043 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2044 	case KSZ8081_LMD_STAT_OPEN:
2045 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2046 	case KSZ8081_LMD_STAT_FAIL:
2047 		fallthrough;
2048 	default:
2049 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2050 	}
2051 }
2052 
2053 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2054 {
2055 	return FIELD_GET(mask, status) ==
2056 		KSZ8081_LMD_STAT_FAIL;
2057 }
2058 
2059 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2060 {
2061 	switch (FIELD_GET(mask, status)) {
2062 	case KSZ8081_LMD_STAT_OPEN:
2063 		fallthrough;
2064 	case KSZ8081_LMD_STAT_SHORT:
2065 		return true;
2066 	}
2067 	return false;
2068 }
2069 
2070 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2071 							   u16 status, u16 data_mask)
2072 {
2073 	int dt;
2074 
2075 	/* According to the data sheet the distance to the fault is
2076 	 * DELTA_TIME * 0.4 meters for ksz phys.
2077 	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2078 	 */
2079 	dt = FIELD_GET(data_mask, status);
2080 
2081 	if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2082 		return ((dt - 22) * 800) / 10;
2083 	else
2084 		return (dt * 400) / 10;
2085 }
2086 
2087 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2088 {
2089 	const struct kszphy_type *type = phydev->drv->driver_data;
2090 	int val, ret;
2091 
2092 	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2093 				    !(val & KSZ8081_LMD_ENABLE_TEST),
2094 				    30000, 100000, true);
2095 
2096 	return ret < 0 ? ret : 0;
2097 }
2098 
2099 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2100 {
2101 	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2102 					    ETHTOOL_A_CABLE_PAIR_B,
2103 					    ETHTOOL_A_CABLE_PAIR_C,
2104 					    ETHTOOL_A_CABLE_PAIR_D,
2105 					  };
2106 	u32 fault_length;
2107 	int ret;
2108 	int val;
2109 
2110 	val = KSZ8081_LMD_ENABLE_TEST;
2111 	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2112 
2113 	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2114 	if (ret < 0)
2115 		return ret;
2116 
2117 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2118 	if (ret)
2119 		return ret;
2120 
2121 	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2122 	if (val < 0)
2123 		return val;
2124 
2125 	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2126 		return -EAGAIN;
2127 
2128 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2129 				      ksz886x_cable_test_result_trans(val,
2130 								      LAN8814_CABLE_DIAG_STAT_MASK
2131 								      ));
2132 	if (ret)
2133 		return ret;
2134 
2135 	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2136 		return 0;
2137 
2138 	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2139 						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2140 
2141 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2142 }
2143 
2144 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2145 {
2146 	static const int ethtool_pair[] = {
2147 		ETHTOOL_A_CABLE_PAIR_A,
2148 		ETHTOOL_A_CABLE_PAIR_B,
2149 	};
2150 	int ret, val, mdix;
2151 	u32 fault_length;
2152 
2153 	/* There is no way to choice the pair, like we do one ksz9031.
2154 	 * We can workaround this limitation by using the MDI-X functionality.
2155 	 */
2156 	if (pair == 0)
2157 		mdix = ETH_TP_MDI;
2158 	else
2159 		mdix = ETH_TP_MDI_X;
2160 
2161 	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2162 	case PHY_ID_KSZ8081:
2163 		ret = ksz8081_config_mdix(phydev, mdix);
2164 		break;
2165 	case PHY_ID_KSZ886X:
2166 		ret = ksz886x_config_mdix(phydev, mdix);
2167 		break;
2168 	default:
2169 		ret = -ENODEV;
2170 	}
2171 
2172 	if (ret)
2173 		return ret;
2174 
2175 	/* Now we are ready to fire. This command will send a 100ns pulse
2176 	 * to the pair.
2177 	 */
2178 	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2179 	if (ret)
2180 		return ret;
2181 
2182 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2183 	if (ret)
2184 		return ret;
2185 
2186 	val = phy_read(phydev, KSZ8081_LMD);
2187 	if (val < 0)
2188 		return val;
2189 
2190 	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2191 		return -EAGAIN;
2192 
2193 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2194 				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2195 	if (ret)
2196 		return ret;
2197 
2198 	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2199 		return 0;
2200 
2201 	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2202 
2203 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2204 }
2205 
2206 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2207 					 bool *finished)
2208 {
2209 	const struct kszphy_type *type = phydev->drv->driver_data;
2210 	unsigned long pair_mask = type->pair_mask;
2211 	int retries = 20;
2212 	int ret = 0;
2213 	int pair;
2214 
2215 	*finished = false;
2216 
2217 	/* Try harder if link partner is active */
2218 	while (pair_mask && retries--) {
2219 		for_each_set_bit(pair, &pair_mask, 4) {
2220 			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2221 				ret = lan8814_cable_test_one_pair(phydev, pair);
2222 			else
2223 				ret = ksz886x_cable_test_one_pair(phydev, pair);
2224 			if (ret == -EAGAIN)
2225 				continue;
2226 			if (ret < 0)
2227 				return ret;
2228 			clear_bit(pair, &pair_mask);
2229 		}
2230 		/* If link partner is in autonegotiation mode it will send 2ms
2231 		 * of FLPs with at least 6ms of silence.
2232 		 * Add 2ms sleep to have better chances to hit this silence.
2233 		 */
2234 		if (pair_mask)
2235 			msleep(2);
2236 	}
2237 
2238 	*finished = true;
2239 
2240 	return ret;
2241 }
2242 
2243 #define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2244 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2245 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2246 
2247 #define LAN8814_QSGMII_SOFT_RESET			0x43
2248 #define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2249 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2250 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2251 #define LAN8814_ALIGN_SWAP				0x4a
2252 #define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2253 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2254 
2255 #define LAN8804_ALIGN_SWAP				0x4a
2256 #define LAN8804_ALIGN_TX_A_B_SWAP			0x1
2257 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2258 #define LAN8814_CLOCK_MANAGEMENT			0xd
2259 #define LAN8814_LINK_QUALITY				0x8e
2260 
2261 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2262 {
2263 	int data;
2264 
2265 	phy_lock_mdio_bus(phydev);
2266 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2267 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2268 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2269 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2270 	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2271 	phy_unlock_mdio_bus(phydev);
2272 
2273 	return data;
2274 }
2275 
2276 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2277 				 u16 val)
2278 {
2279 	phy_lock_mdio_bus(phydev);
2280 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2281 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2282 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2283 		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2284 
2285 	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2286 	if (val != 0)
2287 		phydev_err(phydev, "Error: phy_write has returned error %d\n",
2288 			   val);
2289 	phy_unlock_mdio_bus(phydev);
2290 	return val;
2291 }
2292 
2293 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2294 {
2295 	u16 val = 0;
2296 
2297 	if (enable)
2298 		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2299 		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2300 		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2301 		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2302 
2303 	return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2304 }
2305 
2306 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2307 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2308 {
2309 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2310 	*seconds = (*seconds << 16) |
2311 		   lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2312 
2313 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2314 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2315 			lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2316 
2317 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2318 }
2319 
2320 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2321 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2322 {
2323 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2324 	*seconds = *seconds << 16 |
2325 		   lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2326 
2327 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2328 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2329 			lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2330 
2331 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2332 }
2333 
2334 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
2335 {
2336 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2337 	struct phy_device *phydev = ptp_priv->phydev;
2338 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2339 
2340 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2341 				SOF_TIMESTAMPING_RX_HARDWARE |
2342 				SOF_TIMESTAMPING_RAW_HARDWARE;
2343 
2344 	info->phc_index = ptp_clock_index(shared->ptp_clock);
2345 
2346 	info->tx_types =
2347 		(1 << HWTSTAMP_TX_OFF) |
2348 		(1 << HWTSTAMP_TX_ON) |
2349 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
2350 
2351 	info->rx_filters =
2352 		(1 << HWTSTAMP_FILTER_NONE) |
2353 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2354 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2355 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2356 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2357 
2358 	return 0;
2359 }
2360 
2361 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2362 {
2363 	int i;
2364 
2365 	for (i = 0; i < FIFO_SIZE; ++i)
2366 		lanphy_read_page_reg(phydev, 5,
2367 				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2368 
2369 	/* Read to clear overflow status bit */
2370 	lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2371 }
2372 
2373 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
2374 {
2375 	struct kszphy_ptp_priv *ptp_priv =
2376 			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2377 	struct phy_device *phydev = ptp_priv->phydev;
2378 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2379 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2380 	struct hwtstamp_config config;
2381 	int txcfg = 0, rxcfg = 0;
2382 	int pkt_ts_enable;
2383 
2384 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2385 		return -EFAULT;
2386 
2387 	ptp_priv->hwts_tx_type = config.tx_type;
2388 	ptp_priv->rx_filter = config.rx_filter;
2389 
2390 	switch (config.rx_filter) {
2391 	case HWTSTAMP_FILTER_NONE:
2392 		ptp_priv->layer = 0;
2393 		ptp_priv->version = 0;
2394 		break;
2395 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2396 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2397 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2398 		ptp_priv->layer = PTP_CLASS_L4;
2399 		ptp_priv->version = PTP_CLASS_V2;
2400 		break;
2401 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2402 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2403 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2404 		ptp_priv->layer = PTP_CLASS_L2;
2405 		ptp_priv->version = PTP_CLASS_V2;
2406 		break;
2407 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2408 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2409 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2410 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2411 		ptp_priv->version = PTP_CLASS_V2;
2412 		break;
2413 	default:
2414 		return -ERANGE;
2415 	}
2416 
2417 	if (ptp_priv->layer & PTP_CLASS_L2) {
2418 		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2419 		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2420 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
2421 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2422 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2423 	}
2424 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2425 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2426 
2427 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2428 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2429 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2430 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2431 
2432 	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC)
2433 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2434 				      PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2435 
2436 	if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2437 		lan8814_config_ts_intr(ptp_priv->phydev, true);
2438 	else
2439 		lan8814_config_ts_intr(ptp_priv->phydev, false);
2440 
2441 	mutex_lock(&shared->shared_lock);
2442 	if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2443 		shared->ref++;
2444 	else
2445 		shared->ref--;
2446 
2447 	if (shared->ref)
2448 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2449 				      PTP_CMD_CTL_PTP_ENABLE_);
2450 	else
2451 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2452 				      PTP_CMD_CTL_PTP_DISABLE_);
2453 	mutex_unlock(&shared->shared_lock);
2454 
2455 	/* In case of multiple starts and stops, these needs to be cleared */
2456 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2457 		list_del(&rx_ts->list);
2458 		kfree(rx_ts);
2459 	}
2460 	skb_queue_purge(&ptp_priv->rx_queue);
2461 	skb_queue_purge(&ptp_priv->tx_queue);
2462 
2463 	lan8814_flush_fifo(ptp_priv->phydev, false);
2464 	lan8814_flush_fifo(ptp_priv->phydev, true);
2465 
2466 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
2467 }
2468 
2469 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2470 			     struct sk_buff *skb, int type)
2471 {
2472 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2473 
2474 	switch (ptp_priv->hwts_tx_type) {
2475 	case HWTSTAMP_TX_ONESTEP_SYNC:
2476 		if (ptp_msg_is_sync(skb, type)) {
2477 			kfree_skb(skb);
2478 			return;
2479 		}
2480 		fallthrough;
2481 	case HWTSTAMP_TX_ON:
2482 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2483 		skb_queue_tail(&ptp_priv->tx_queue, skb);
2484 		break;
2485 	case HWTSTAMP_TX_OFF:
2486 	default:
2487 		kfree_skb(skb);
2488 		break;
2489 	}
2490 }
2491 
2492 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2493 {
2494 	struct ptp_header *ptp_header;
2495 	u32 type;
2496 
2497 	skb_push(skb, ETH_HLEN);
2498 	type = ptp_classify_raw(skb);
2499 	ptp_header = ptp_parse_header(skb, type);
2500 	skb_pull_inline(skb, ETH_HLEN);
2501 
2502 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2503 }
2504 
2505 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
2506 				 struct sk_buff *skb)
2507 {
2508 	struct skb_shared_hwtstamps *shhwtstamps;
2509 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2510 	unsigned long flags;
2511 	bool ret = false;
2512 	u16 skb_sig;
2513 
2514 	lan8814_get_sig_rx(skb, &skb_sig);
2515 
2516 	/* Iterate over all RX timestamps and match it with the received skbs */
2517 	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2518 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2519 		/* Check if we found the signature we were looking for. */
2520 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2521 			continue;
2522 
2523 		shhwtstamps = skb_hwtstamps(skb);
2524 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2525 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2526 						  rx_ts->nsec);
2527 		list_del(&rx_ts->list);
2528 		kfree(rx_ts);
2529 
2530 		ret = true;
2531 		break;
2532 	}
2533 	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2534 
2535 	if (ret)
2536 		netif_rx(skb);
2537 	return ret;
2538 }
2539 
2540 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2541 {
2542 	struct kszphy_ptp_priv *ptp_priv =
2543 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2544 
2545 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2546 	    type == PTP_CLASS_NONE)
2547 		return false;
2548 
2549 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2550 		return false;
2551 
2552 	/* If we failed to match then add it to the queue for when the timestamp
2553 	 * will come
2554 	 */
2555 	if (!lan8814_match_rx_skb(ptp_priv, skb))
2556 		skb_queue_tail(&ptp_priv->rx_queue, skb);
2557 
2558 	return true;
2559 }
2560 
2561 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2562 				  u32 seconds, u32 nano_seconds)
2563 {
2564 	u32 sec_low, sec_high, nsec_low, nsec_high;
2565 
2566 	sec_low = seconds & 0xffff;
2567 	sec_high = (seconds >> 16) & 0xffff;
2568 	nsec_low = nano_seconds & 0xffff;
2569 	nsec_high = (nano_seconds >> 16) & 0x3fff;
2570 
2571 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low);
2572 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high);
2573 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low);
2574 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high);
2575 
2576 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2577 }
2578 
2579 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2580 				  u32 *seconds, u32 *nano_seconds)
2581 {
2582 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2583 
2584 	*seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2585 	*seconds = (*seconds << 16) |
2586 		   lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2587 
2588 	*nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2589 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2590 			lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2591 }
2592 
2593 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2594 				   struct timespec64 *ts)
2595 {
2596 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2597 							  ptp_clock_info);
2598 	struct phy_device *phydev = shared->phydev;
2599 	u32 nano_seconds;
2600 	u32 seconds;
2601 
2602 	mutex_lock(&shared->shared_lock);
2603 	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2604 	mutex_unlock(&shared->shared_lock);
2605 	ts->tv_sec = seconds;
2606 	ts->tv_nsec = nano_seconds;
2607 
2608 	return 0;
2609 }
2610 
2611 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2612 				   const struct timespec64 *ts)
2613 {
2614 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2615 							  ptp_clock_info);
2616 	struct phy_device *phydev = shared->phydev;
2617 
2618 	mutex_lock(&shared->shared_lock);
2619 	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2620 	mutex_unlock(&shared->shared_lock);
2621 
2622 	return 0;
2623 }
2624 
2625 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2626 				   s64 time_step_ns)
2627 {
2628 	u32 nano_seconds_step;
2629 	u64 abs_time_step_ns;
2630 	u32 unsigned_seconds;
2631 	u32 nano_seconds;
2632 	u32 remainder;
2633 	s32 seconds;
2634 
2635 	if (time_step_ns >  15000000000LL) {
2636 		/* convert to clock set */
2637 		lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2638 		unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2639 						&remainder);
2640 		nano_seconds += remainder;
2641 		if (nano_seconds >= 1000000000) {
2642 			unsigned_seconds++;
2643 			nano_seconds -= 1000000000;
2644 		}
2645 		lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds);
2646 		return;
2647 	} else if (time_step_ns < -15000000000LL) {
2648 		/* convert to clock set */
2649 		time_step_ns = -time_step_ns;
2650 
2651 		lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2652 		unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2653 						&remainder);
2654 		nano_seconds_step = remainder;
2655 		if (nano_seconds < nano_seconds_step) {
2656 			unsigned_seconds--;
2657 			nano_seconds += 1000000000;
2658 		}
2659 		nano_seconds -= nano_seconds_step;
2660 		lan8814_ptp_clock_set(phydev, unsigned_seconds,
2661 				      nano_seconds);
2662 		return;
2663 	}
2664 
2665 	/* do clock step */
2666 	if (time_step_ns >= 0) {
2667 		abs_time_step_ns = (u64)time_step_ns;
2668 		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2669 					   &remainder);
2670 		nano_seconds = remainder;
2671 	} else {
2672 		abs_time_step_ns = (u64)(-time_step_ns);
2673 		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2674 			    &remainder));
2675 		nano_seconds = remainder;
2676 		if (nano_seconds > 0) {
2677 			/* subtracting nano seconds is not allowed
2678 			 * convert to subtracting from seconds,
2679 			 * and adding to nanoseconds
2680 			 */
2681 			seconds--;
2682 			nano_seconds = (1000000000 - nano_seconds);
2683 		}
2684 	}
2685 
2686 	if (nano_seconds > 0) {
2687 		/* add 8 ns to cover the likely normal increment */
2688 		nano_seconds += 8;
2689 	}
2690 
2691 	if (nano_seconds >= 1000000000) {
2692 		/* carry into seconds */
2693 		seconds++;
2694 		nano_seconds -= 1000000000;
2695 	}
2696 
2697 	while (seconds) {
2698 		if (seconds > 0) {
2699 			u32 adjustment_value = (u32)seconds;
2700 			u16 adjustment_value_lo, adjustment_value_hi;
2701 
2702 			if (adjustment_value > 0xF)
2703 				adjustment_value = 0xF;
2704 
2705 			adjustment_value_lo = adjustment_value & 0xffff;
2706 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2707 
2708 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2709 					      adjustment_value_lo);
2710 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2711 					      PTP_LTC_STEP_ADJ_DIR_ |
2712 					      adjustment_value_hi);
2713 			seconds -= ((s32)adjustment_value);
2714 		} else {
2715 			u32 adjustment_value = (u32)(-seconds);
2716 			u16 adjustment_value_lo, adjustment_value_hi;
2717 
2718 			if (adjustment_value > 0xF)
2719 				adjustment_value = 0xF;
2720 
2721 			adjustment_value_lo = adjustment_value & 0xffff;
2722 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2723 
2724 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2725 					      adjustment_value_lo);
2726 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2727 					      adjustment_value_hi);
2728 			seconds += ((s32)adjustment_value);
2729 		}
2730 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2731 				      PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2732 	}
2733 	if (nano_seconds) {
2734 		u16 nano_seconds_lo;
2735 		u16 nano_seconds_hi;
2736 
2737 		nano_seconds_lo = nano_seconds & 0xffff;
2738 		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2739 
2740 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2741 				      nano_seconds_lo);
2742 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2743 				      PTP_LTC_STEP_ADJ_DIR_ |
2744 				      nano_seconds_hi);
2745 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2746 				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2747 	}
2748 }
2749 
2750 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2751 {
2752 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2753 							  ptp_clock_info);
2754 	struct phy_device *phydev = shared->phydev;
2755 
2756 	mutex_lock(&shared->shared_lock);
2757 	lan8814_ptp_clock_step(phydev, delta);
2758 	mutex_unlock(&shared->shared_lock);
2759 
2760 	return 0;
2761 }
2762 
2763 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
2764 {
2765 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2766 							  ptp_clock_info);
2767 	struct phy_device *phydev = shared->phydev;
2768 	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
2769 	bool positive = true;
2770 	u32 kszphy_rate_adj;
2771 
2772 	if (scaled_ppm < 0) {
2773 		scaled_ppm = -scaled_ppm;
2774 		positive = false;
2775 	}
2776 
2777 	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
2778 	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
2779 
2780 	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
2781 	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
2782 
2783 	if (positive)
2784 		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
2785 
2786 	mutex_lock(&shared->shared_lock);
2787 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
2788 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
2789 	mutex_unlock(&shared->shared_lock);
2790 
2791 	return 0;
2792 }
2793 
2794 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
2795 {
2796 	struct ptp_header *ptp_header;
2797 	u32 type;
2798 
2799 	type = ptp_classify_raw(skb);
2800 	ptp_header = ptp_parse_header(skb, type);
2801 
2802 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2803 }
2804 
2805 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
2806 				 u32 seconds, u32 nsec, u16 seq_id)
2807 {
2808 	struct skb_shared_hwtstamps shhwtstamps;
2809 	struct sk_buff *skb, *skb_tmp;
2810 	unsigned long flags;
2811 	bool ret = false;
2812 	u16 skb_sig;
2813 
2814 	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
2815 	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
2816 		lan8814_get_sig_tx(skb, &skb_sig);
2817 
2818 		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
2819 			continue;
2820 
2821 		__skb_unlink(skb, &ptp_priv->tx_queue);
2822 		ret = true;
2823 		break;
2824 	}
2825 	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
2826 
2827 	if (ret) {
2828 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2829 		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
2830 		skb_complete_tx_timestamp(skb, &shhwtstamps);
2831 	}
2832 }
2833 
2834 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
2835 {
2836 	struct phy_device *phydev = ptp_priv->phydev;
2837 	u32 seconds, nsec;
2838 	u16 seq_id;
2839 
2840 	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
2841 	lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
2842 }
2843 
2844 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
2845 {
2846 	struct phy_device *phydev = ptp_priv->phydev;
2847 	u32 reg;
2848 
2849 	do {
2850 		lan8814_dequeue_tx_skb(ptp_priv);
2851 
2852 		/* If other timestamps are available in the FIFO,
2853 		 * process them.
2854 		 */
2855 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2856 	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
2857 }
2858 
2859 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
2860 			      struct lan8814_ptp_rx_ts *rx_ts)
2861 {
2862 	struct skb_shared_hwtstamps *shhwtstamps;
2863 	struct sk_buff *skb, *skb_tmp;
2864 	unsigned long flags;
2865 	bool ret = false;
2866 	u16 skb_sig;
2867 
2868 	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
2869 	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
2870 		lan8814_get_sig_rx(skb, &skb_sig);
2871 
2872 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2873 			continue;
2874 
2875 		__skb_unlink(skb, &ptp_priv->rx_queue);
2876 
2877 		ret = true;
2878 		break;
2879 	}
2880 	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
2881 
2882 	if (ret) {
2883 		shhwtstamps = skb_hwtstamps(skb);
2884 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2885 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
2886 		netif_rx(skb);
2887 	}
2888 
2889 	return ret;
2890 }
2891 
2892 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
2893 				struct lan8814_ptp_rx_ts *rx_ts)
2894 {
2895 	unsigned long flags;
2896 
2897 	/* If we failed to match the skb add it to the queue for when
2898 	 * the frame will come
2899 	 */
2900 	if (!lan8814_match_skb(ptp_priv, rx_ts)) {
2901 		spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2902 		list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
2903 		spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2904 	} else {
2905 		kfree(rx_ts);
2906 	}
2907 }
2908 
2909 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
2910 {
2911 	struct phy_device *phydev = ptp_priv->phydev;
2912 	struct lan8814_ptp_rx_ts *rx_ts;
2913 	u32 reg;
2914 
2915 	do {
2916 		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
2917 		if (!rx_ts)
2918 			return;
2919 
2920 		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
2921 				      &rx_ts->seq_id);
2922 		lan8814_match_rx_ts(ptp_priv, rx_ts);
2923 
2924 		/* If other timestamps are available in the FIFO,
2925 		 * process them.
2926 		 */
2927 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2928 	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
2929 }
2930 
2931 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
2932 {
2933 	struct kszphy_priv *priv = phydev->priv;
2934 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2935 
2936 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
2937 		lan8814_get_tx_ts(ptp_priv);
2938 
2939 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
2940 		lan8814_get_rx_ts(ptp_priv);
2941 
2942 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
2943 		lan8814_flush_fifo(phydev, true);
2944 		skb_queue_purge(&ptp_priv->tx_queue);
2945 	}
2946 
2947 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
2948 		lan8814_flush_fifo(phydev, false);
2949 		skb_queue_purge(&ptp_priv->rx_queue);
2950 	}
2951 }
2952 
2953 static int lan8804_config_init(struct phy_device *phydev)
2954 {
2955 	int val;
2956 
2957 	/* MDI-X setting for swap A,B transmit */
2958 	val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
2959 	val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
2960 	val |= LAN8804_ALIGN_TX_A_B_SWAP;
2961 	lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
2962 
2963 	/* Make sure that the PHY will not stop generating the clock when the
2964 	 * link partner goes down
2965 	 */
2966 	lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
2967 	lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
2968 
2969 	return 0;
2970 }
2971 
2972 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
2973 {
2974 	int status;
2975 
2976 	status = phy_read(phydev, LAN8814_INTS);
2977 	if (status < 0) {
2978 		phy_error(phydev);
2979 		return IRQ_NONE;
2980 	}
2981 
2982 	if (status > 0)
2983 		phy_trigger_machine(phydev);
2984 
2985 	return IRQ_HANDLED;
2986 }
2987 
2988 #define LAN8804_OUTPUT_CONTROL			25
2989 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
2990 #define LAN8804_CONTROL				31
2991 #define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
2992 
2993 static int lan8804_config_intr(struct phy_device *phydev)
2994 {
2995 	int err;
2996 
2997 	/* This is an internal PHY of lan966x and is not possible to change the
2998 	 * polarity on the GIC found in lan966x, therefore change the polarity
2999 	 * of the interrupt in the PHY from being active low instead of active
3000 	 * high.
3001 	 */
3002 	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
3003 
3004 	/* By default interrupt buffer is open-drain in which case the interrupt
3005 	 * can be active only low. Therefore change the interrupt buffer to be
3006 	 * push-pull to be able to change interrupt polarity
3007 	 */
3008 	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
3009 		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
3010 
3011 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3012 		err = phy_read(phydev, LAN8814_INTS);
3013 		if (err < 0)
3014 			return err;
3015 
3016 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3017 		if (err)
3018 			return err;
3019 	} else {
3020 		err = phy_write(phydev, LAN8814_INTC, 0);
3021 		if (err)
3022 			return err;
3023 
3024 		err = phy_read(phydev, LAN8814_INTS);
3025 		if (err < 0)
3026 			return err;
3027 	}
3028 
3029 	return 0;
3030 }
3031 
3032 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
3033 {
3034 	int ret = IRQ_NONE;
3035 	int irq_status;
3036 
3037 	irq_status = phy_read(phydev, LAN8814_INTS);
3038 	if (irq_status < 0) {
3039 		phy_error(phydev);
3040 		return IRQ_NONE;
3041 	}
3042 
3043 	if (irq_status & LAN8814_INT_LINK) {
3044 		phy_trigger_machine(phydev);
3045 		ret = IRQ_HANDLED;
3046 	}
3047 
3048 	while (true) {
3049 		irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
3050 		if (!irq_status)
3051 			break;
3052 
3053 		lan8814_handle_ptp_interrupt(phydev, irq_status);
3054 		ret = IRQ_HANDLED;
3055 	}
3056 
3057 	return ret;
3058 }
3059 
3060 static int lan8814_ack_interrupt(struct phy_device *phydev)
3061 {
3062 	/* bit[12..0] int status, which is a read and clear register. */
3063 	int rc;
3064 
3065 	rc = phy_read(phydev, LAN8814_INTS);
3066 
3067 	return (rc < 0) ? rc : 0;
3068 }
3069 
3070 static int lan8814_config_intr(struct phy_device *phydev)
3071 {
3072 	int err;
3073 
3074 	lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
3075 			      LAN8814_INTR_CTRL_REG_POLARITY |
3076 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
3077 
3078 	/* enable / disable interrupts */
3079 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3080 		err = lan8814_ack_interrupt(phydev);
3081 		if (err)
3082 			return err;
3083 
3084 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3085 	} else {
3086 		err = phy_write(phydev, LAN8814_INTC, 0);
3087 		if (err)
3088 			return err;
3089 
3090 		err = lan8814_ack_interrupt(phydev);
3091 	}
3092 
3093 	return err;
3094 }
3095 
3096 static void lan8814_ptp_init(struct phy_device *phydev)
3097 {
3098 	struct kszphy_priv *priv = phydev->priv;
3099 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3100 	u32 temp;
3101 
3102 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3103 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3104 		return;
3105 
3106 	lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
3107 
3108 	temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
3109 	temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3110 	lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
3111 
3112 	temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
3113 	temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3114 	lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
3115 
3116 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3117 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3118 
3119 	/* Removing default registers configs related to L2 and IP */
3120 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3121 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3122 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3123 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3124 
3125 	skb_queue_head_init(&ptp_priv->tx_queue);
3126 	skb_queue_head_init(&ptp_priv->rx_queue);
3127 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3128 	spin_lock_init(&ptp_priv->rx_ts_lock);
3129 
3130 	ptp_priv->phydev = phydev;
3131 
3132 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3133 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3134 	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3135 	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
3136 
3137 	phydev->mii_ts = &ptp_priv->mii_ts;
3138 }
3139 
3140 static int lan8814_ptp_probe_once(struct phy_device *phydev)
3141 {
3142 	struct lan8814_shared_priv *shared = phydev->shared->priv;
3143 
3144 	/* Initialise shared lock for clock*/
3145 	mutex_init(&shared->shared_lock);
3146 
3147 	shared->ptp_clock_info.owner = THIS_MODULE;
3148 	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3149 	shared->ptp_clock_info.max_adj = 31249999;
3150 	shared->ptp_clock_info.n_alarm = 0;
3151 	shared->ptp_clock_info.n_ext_ts = 0;
3152 	shared->ptp_clock_info.n_pins = 0;
3153 	shared->ptp_clock_info.pps = 0;
3154 	shared->ptp_clock_info.pin_config = NULL;
3155 	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3156 	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3157 	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3158 	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3159 	shared->ptp_clock_info.getcrosststamp = NULL;
3160 
3161 	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3162 					       &phydev->mdio.dev);
3163 	if (IS_ERR(shared->ptp_clock)) {
3164 		phydev_err(phydev, "ptp_clock_register failed %lu\n",
3165 			   PTR_ERR(shared->ptp_clock));
3166 		return -EINVAL;
3167 	}
3168 
3169 	/* Check if PHC support is missing at the configuration level */
3170 	if (!shared->ptp_clock)
3171 		return 0;
3172 
3173 	phydev_dbg(phydev, "successfully registered ptp clock\n");
3174 
3175 	shared->phydev = phydev;
3176 
3177 	/* The EP.4 is shared between all the PHYs in the package and also it
3178 	 * can be accessed by any of the PHYs
3179 	 */
3180 	lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3181 	lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3182 			      PTP_OPERATING_MODE_STANDALONE_);
3183 
3184 	return 0;
3185 }
3186 
3187 static void lan8814_setup_led(struct phy_device *phydev, int val)
3188 {
3189 	int temp;
3190 
3191 	temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3192 
3193 	if (val)
3194 		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3195 	else
3196 		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3197 
3198 	lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3199 }
3200 
3201 static int lan8814_config_init(struct phy_device *phydev)
3202 {
3203 	struct kszphy_priv *lan8814 = phydev->priv;
3204 	int val;
3205 
3206 	/* Reset the PHY */
3207 	val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3208 	val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3209 	lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3210 
3211 	/* Disable ANEG with QSGMII PCS Host side */
3212 	val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3213 	val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3214 	lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3215 
3216 	/* MDI-X setting for swap A,B transmit */
3217 	val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3218 	val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3219 	val |= LAN8814_ALIGN_TX_A_B_SWAP;
3220 	lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3221 
3222 	if (lan8814->led_mode >= 0)
3223 		lan8814_setup_led(phydev, lan8814->led_mode);
3224 
3225 	return 0;
3226 }
3227 
3228 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3229  * function called in suspend. Because the GPIO line can be shared, so if one of
3230  * the phys goes back in coma mode, then all the other PHYs will go, which is
3231  * wrong.
3232  */
3233 static int lan8814_release_coma_mode(struct phy_device *phydev)
3234 {
3235 	struct gpio_desc *gpiod;
3236 
3237 	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3238 					GPIOD_OUT_HIGH_OPEN_DRAIN |
3239 					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
3240 	if (IS_ERR(gpiod))
3241 		return PTR_ERR(gpiod);
3242 
3243 	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
3244 	gpiod_set_value_cansleep(gpiod, 0);
3245 
3246 	return 0;
3247 }
3248 
3249 static int lan8814_probe(struct phy_device *phydev)
3250 {
3251 	const struct kszphy_type *type = phydev->drv->driver_data;
3252 	struct kszphy_priv *priv;
3253 	u16 addr;
3254 	int err;
3255 
3256 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
3257 	if (!priv)
3258 		return -ENOMEM;
3259 
3260 	phydev->priv = priv;
3261 
3262 	priv->type = type;
3263 
3264 	kszphy_parse_led_mode(phydev);
3265 
3266 	/* Strap-in value for PHY address, below register read gives starting
3267 	 * phy address value
3268 	 */
3269 	addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
3270 	devm_phy_package_join(&phydev->mdio.dev, phydev,
3271 			      addr, sizeof(struct lan8814_shared_priv));
3272 
3273 	if (phy_package_init_once(phydev)) {
3274 		err = lan8814_release_coma_mode(phydev);
3275 		if (err)
3276 			return err;
3277 
3278 		err = lan8814_ptp_probe_once(phydev);
3279 		if (err)
3280 			return err;
3281 	}
3282 
3283 	lan8814_ptp_init(phydev);
3284 
3285 	return 0;
3286 }
3287 
3288 #define LAN8841_MMD_TIMER_REG			0
3289 #define LAN8841_MMD0_REGISTER_17		17
3290 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x)	((x) & 0x3)
3291 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS	BIT(3)
3292 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG	2
3293 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK	BIT(14)
3294 #define LAN8841_MMD_ANALOG_REG			28
3295 #define LAN8841_ANALOG_CONTROL_1		1
3296 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x)	(((x) & 0x3) << 5)
3297 #define LAN8841_ANALOG_CONTROL_10		13
3298 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x)	((x) & 0x3)
3299 #define LAN8841_ANALOG_CONTROL_11		14
3300 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x)	(((x) & 0x7) << 12)
3301 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT	69
3302 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
3303 #define LAN8841_BTRX_POWER_DOWN			70
3304 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A	BIT(0)
3305 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A	BIT(1)
3306 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B	BIT(2)
3307 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B	BIT(3)
3308 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C	BIT(5)
3309 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D	BIT(7)
3310 #define LAN8841_ADC_CHANNEL_MASK		198
3311 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN		370
3312 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN		371
3313 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN		434
3314 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN		435
3315 #define LAN8841_PTP_CMD_CTL			256
3316 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE		BIT(2)
3317 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE		BIT(1)
3318 #define LAN8841_PTP_CMD_CTL_PTP_RESET		BIT(0)
3319 #define LAN8841_PTP_RX_PARSE_CONFIG		368
3320 #define LAN8841_PTP_TX_PARSE_CONFIG		432
3321 #define LAN8841_PTP_RX_MODE			381
3322 #define LAN8841_PTP_INSERT_TS_EN		BIT(0)
3323 #define LAN8841_PTP_INSERT_TS_32BIT		BIT(1)
3324 
3325 static int lan8841_config_init(struct phy_device *phydev)
3326 {
3327 	int ret;
3328 
3329 	ret = ksz9131_config_init(phydev);
3330 	if (ret)
3331 		return ret;
3332 
3333 	/* Initialize the HW by resetting everything */
3334 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3335 		       LAN8841_PTP_CMD_CTL,
3336 		       LAN8841_PTP_CMD_CTL_PTP_RESET,
3337 		       LAN8841_PTP_CMD_CTL_PTP_RESET);
3338 
3339 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3340 		       LAN8841_PTP_CMD_CTL,
3341 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE,
3342 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE);
3343 
3344 	/* Don't process any frames */
3345 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3346 		      LAN8841_PTP_RX_PARSE_CONFIG, 0);
3347 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3348 		      LAN8841_PTP_TX_PARSE_CONFIG, 0);
3349 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3350 		      LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
3351 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3352 		      LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
3353 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3354 		      LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
3355 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3356 		      LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
3357 
3358 	/* 100BT Clause 40 improvenent errata */
3359 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3360 		      LAN8841_ANALOG_CONTROL_1,
3361 		      LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
3362 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3363 		      LAN8841_ANALOG_CONTROL_10,
3364 		      LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
3365 
3366 	/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
3367 	 * Magnetics
3368 	 */
3369 	ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3370 			   LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
3371 	if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
3372 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3373 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
3374 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
3375 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3376 			      LAN8841_BTRX_POWER_DOWN,
3377 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
3378 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
3379 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
3380 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
3381 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
3382 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
3383 	}
3384 
3385 	/* LDO Adjustment errata */
3386 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3387 		      LAN8841_ANALOG_CONTROL_11,
3388 		      LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
3389 
3390 	/* 100BT RGMII latency tuning errata */
3391 	phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
3392 		      LAN8841_ADC_CHANNEL_MASK, 0x0);
3393 	phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
3394 		      LAN8841_MMD0_REGISTER_17,
3395 		      LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
3396 		      LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
3397 
3398 	return 0;
3399 }
3400 
3401 #define LAN8841_OUTPUT_CTRL			25
3402 #define LAN8841_OUTPUT_CTRL_INT_BUFFER		BIT(14)
3403 #define LAN8841_INT_PTP				BIT(9)
3404 
3405 static int lan8841_config_intr(struct phy_device *phydev)
3406 {
3407 	int err;
3408 
3409 	phy_modify(phydev, LAN8841_OUTPUT_CTRL,
3410 		   LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
3411 
3412 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3413 		err = phy_read(phydev, LAN8814_INTS);
3414 		if (err)
3415 			return err;
3416 
3417 		/* Enable / disable interrupts. It is OK to enable PTP interrupt
3418 		 * even if it PTP is not enabled. Because the underneath blocks
3419 		 * will not enable the PTP so we will never get the PTP
3420 		 * interrupt.
3421 		 */
3422 		err = phy_write(phydev, LAN8814_INTC,
3423 				LAN8814_INT_LINK | LAN8841_INT_PTP);
3424 	} else {
3425 		err = phy_write(phydev, LAN8814_INTC, 0);
3426 		if (err)
3427 			return err;
3428 
3429 		err = phy_read(phydev, LAN8814_INTS);
3430 	}
3431 
3432 	return err;
3433 }
3434 
3435 #define LAN8841_PTP_TX_EGRESS_SEC_LO			453
3436 #define LAN8841_PTP_TX_EGRESS_SEC_HI			452
3437 #define LAN8841_PTP_TX_EGRESS_NS_LO			451
3438 #define LAN8841_PTP_TX_EGRESS_NS_HI			450
3439 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID		BIT(15)
3440 #define LAN8841_PTP_TX_MSG_HEADER2			455
3441 
3442 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
3443 				  u32 *sec, u32 *nsec, u16 *seq)
3444 {
3445 	struct phy_device *phydev = ptp_priv->phydev;
3446 
3447 	*nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
3448 	if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
3449 		return false;
3450 
3451 	*nsec = ((*nsec & 0x3fff) << 16);
3452 	*nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
3453 
3454 	*sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
3455 	*sec = *sec << 16;
3456 	*sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
3457 
3458 	*seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3459 
3460 	return true;
3461 }
3462 
3463 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3464 {
3465 	u32 sec, nsec;
3466 	u16 seq;
3467 
3468 	while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
3469 		lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
3470 }
3471 
3472 #define LAN8841_PTP_INT_STS			259
3473 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT	BIT(13)
3474 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT	BIT(12)
3475 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT	BIT(2)
3476 
3477 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
3478 {
3479 	struct phy_device *phydev = ptp_priv->phydev;
3480 	int i;
3481 
3482 	for (i = 0; i < FIFO_SIZE; ++i)
3483 		phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3484 
3485 	phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3486 }
3487 
3488 #define LAN8841_PTP_GPIO_CAP_STS			506
3489 #define LAN8841_PTP_GPIO_SEL				327
3490 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio)		((gpio) << 8)
3491 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP		498
3492 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP		499
3493 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP		500
3494 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP		501
3495 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP		502
3496 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP		503
3497 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP		504
3498 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP		505
3499 
3500 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
3501 {
3502 	struct phy_device *phydev = ptp_priv->phydev;
3503 	struct ptp_clock_event ptp_event = {0};
3504 	int pin, ret, tmp;
3505 	s32 sec, nsec;
3506 
3507 	pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
3508 	if (pin == -1)
3509 		return;
3510 
3511 	tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
3512 	if (tmp < 0)
3513 		return;
3514 
3515 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
3516 			    LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
3517 	if (ret)
3518 		return;
3519 
3520 	mutex_lock(&ptp_priv->ptp_lock);
3521 	if (tmp & BIT(pin)) {
3522 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
3523 		sec <<= 16;
3524 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
3525 
3526 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
3527 		nsec <<= 16;
3528 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
3529 	} else {
3530 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
3531 		sec <<= 16;
3532 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
3533 
3534 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
3535 		nsec <<= 16;
3536 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
3537 	}
3538 	mutex_unlock(&ptp_priv->ptp_lock);
3539 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
3540 	if (ret)
3541 		return;
3542 
3543 	ptp_event.index = 0;
3544 	ptp_event.timestamp = ktime_set(sec, nsec);
3545 	ptp_event.type = PTP_CLOCK_EXTTS;
3546 	ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
3547 }
3548 
3549 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
3550 {
3551 	struct kszphy_priv *priv = phydev->priv;
3552 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3553 	u16 status;
3554 
3555 	do {
3556 		status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3557 
3558 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
3559 			lan8841_ptp_process_tx_ts(ptp_priv);
3560 
3561 		if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
3562 			lan8841_gpio_process_cap(ptp_priv);
3563 
3564 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
3565 			lan8841_ptp_flush_fifo(ptp_priv);
3566 			skb_queue_purge(&ptp_priv->tx_queue);
3567 		}
3568 
3569 	} while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
3570 			   LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
3571 			   LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
3572 }
3573 
3574 #define LAN8841_INTS_PTP		BIT(9)
3575 
3576 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
3577 {
3578 	irqreturn_t ret = IRQ_NONE;
3579 	int irq_status;
3580 
3581 	irq_status = phy_read(phydev, LAN8814_INTS);
3582 	if (irq_status < 0) {
3583 		phy_error(phydev);
3584 		return IRQ_NONE;
3585 	}
3586 
3587 	if (irq_status & LAN8814_INT_LINK) {
3588 		phy_trigger_machine(phydev);
3589 		ret = IRQ_HANDLED;
3590 	}
3591 
3592 	if (irq_status & LAN8841_INTS_PTP) {
3593 		lan8841_handle_ptp_interrupt(phydev);
3594 		ret = IRQ_HANDLED;
3595 	}
3596 
3597 	return ret;
3598 }
3599 
3600 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
3601 			   struct ethtool_ts_info *info)
3602 {
3603 	struct kszphy_ptp_priv *ptp_priv;
3604 
3605 	ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3606 
3607 	info->phc_index = ptp_priv->ptp_clock ?
3608 				ptp_clock_index(ptp_priv->ptp_clock) : -1;
3609 	if (info->phc_index == -1) {
3610 		info->so_timestamping |= SOF_TIMESTAMPING_TX_SOFTWARE |
3611 					 SOF_TIMESTAMPING_RX_SOFTWARE |
3612 					 SOF_TIMESTAMPING_SOFTWARE;
3613 		return 0;
3614 	}
3615 
3616 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
3617 				SOF_TIMESTAMPING_RX_HARDWARE |
3618 				SOF_TIMESTAMPING_RAW_HARDWARE;
3619 
3620 	info->tx_types = (1 << HWTSTAMP_TX_OFF) |
3621 			 (1 << HWTSTAMP_TX_ON) |
3622 			 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
3623 
3624 	info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
3625 			   (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
3626 			   (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
3627 			   (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
3628 
3629 	return 0;
3630 }
3631 
3632 #define LAN8841_PTP_INT_EN			260
3633 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN	BIT(13)
3634 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN		BIT(12)
3635 
3636 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
3637 					  bool enable)
3638 {
3639 	struct phy_device *phydev = ptp_priv->phydev;
3640 
3641 	if (enable) {
3642 		/* Enable interrupts on the TX side */
3643 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3644 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3645 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
3646 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3647 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
3648 
3649 		/* Enable the modification of the frame on RX side,
3650 		 * this will add the ns and 2 bits of sec in the reserved field
3651 		 * of the PTP header
3652 		 */
3653 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3654 			       LAN8841_PTP_RX_MODE,
3655 			       LAN8841_PTP_INSERT_TS_EN |
3656 			       LAN8841_PTP_INSERT_TS_32BIT,
3657 			       LAN8841_PTP_INSERT_TS_EN |
3658 			       LAN8841_PTP_INSERT_TS_32BIT);
3659 
3660 		ptp_schedule_worker(ptp_priv->ptp_clock, 0);
3661 	} else {
3662 		/* Disable interrupts on the TX side */
3663 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3664 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3665 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
3666 
3667 		/* Disable modification of the RX frames */
3668 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3669 			       LAN8841_PTP_RX_MODE,
3670 			       LAN8841_PTP_INSERT_TS_EN |
3671 			       LAN8841_PTP_INSERT_TS_32BIT, 0);
3672 
3673 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
3674 	}
3675 }
3676 
3677 #define LAN8841_PTP_RX_TIMESTAMP_EN		379
3678 #define LAN8841_PTP_TX_TIMESTAMP_EN		443
3679 #define LAN8841_PTP_TX_MOD			445
3680 
3681 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
3682 {
3683 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3684 	struct phy_device *phydev = ptp_priv->phydev;
3685 	struct hwtstamp_config config;
3686 	int txcfg = 0, rxcfg = 0;
3687 	int pkt_ts_enable;
3688 
3689 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
3690 		return -EFAULT;
3691 
3692 	ptp_priv->hwts_tx_type = config.tx_type;
3693 	ptp_priv->rx_filter = config.rx_filter;
3694 
3695 	switch (config.rx_filter) {
3696 	case HWTSTAMP_FILTER_NONE:
3697 		ptp_priv->layer = 0;
3698 		ptp_priv->version = 0;
3699 		break;
3700 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3701 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3702 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3703 		ptp_priv->layer = PTP_CLASS_L4;
3704 		ptp_priv->version = PTP_CLASS_V2;
3705 		break;
3706 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3707 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3708 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3709 		ptp_priv->layer = PTP_CLASS_L2;
3710 		ptp_priv->version = PTP_CLASS_V2;
3711 		break;
3712 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3713 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3714 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3715 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
3716 		ptp_priv->version = PTP_CLASS_V2;
3717 		break;
3718 	default:
3719 		return -ERANGE;
3720 	}
3721 
3722 	/* Setup parsing of the frames and enable the timestamping for ptp
3723 	 * frames
3724 	 */
3725 	if (ptp_priv->layer & PTP_CLASS_L2) {
3726 		rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
3727 		txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
3728 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
3729 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
3730 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
3731 	}
3732 
3733 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
3734 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
3735 
3736 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
3737 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
3738 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
3739 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
3740 
3741 	/* Enable / disable of the TX timestamp in the SYNC frames */
3742 	phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
3743 		       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3744 		       ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
3745 				PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
3746 
3747 	/* Now enable/disable the timestamping */
3748 	lan8841_ptp_enable_processing(ptp_priv,
3749 				      config.rx_filter != HWTSTAMP_FILTER_NONE);
3750 
3751 	skb_queue_purge(&ptp_priv->tx_queue);
3752 
3753 	lan8841_ptp_flush_fifo(ptp_priv);
3754 
3755 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
3756 }
3757 
3758 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
3759 			     struct sk_buff *skb, int type)
3760 {
3761 	struct kszphy_ptp_priv *ptp_priv =
3762 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3763 	struct ptp_header *header = ptp_parse_header(skb, type);
3764 	struct skb_shared_hwtstamps *shhwtstamps;
3765 	struct timespec64 ts;
3766 	unsigned long flags;
3767 	u32 ts_header;
3768 
3769 	if (!header)
3770 		return false;
3771 
3772 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
3773 	    type == PTP_CLASS_NONE)
3774 		return false;
3775 
3776 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
3777 		return false;
3778 
3779 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
3780 	ts.tv_sec = ptp_priv->seconds;
3781 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
3782 	ts_header = __be32_to_cpu(header->reserved2);
3783 
3784 	shhwtstamps = skb_hwtstamps(skb);
3785 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3786 
3787 	/* Check for any wrap arounds for the second part */
3788 	if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
3789 		ts.tv_sec -= GENMASK(1, 0) + 1;
3790 	else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
3791 		ts.tv_sec += 1;
3792 
3793 	shhwtstamps->hwtstamp =
3794 		ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
3795 			  ts_header & GENMASK(29, 0));
3796 	header->reserved2 = 0;
3797 
3798 	netif_rx(skb);
3799 
3800 	return true;
3801 }
3802 
3803 #define LAN8841_EVENT_A		0
3804 #define LAN8841_EVENT_B		1
3805 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 278 : 288)
3806 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 279 : 289)
3807 #define LAN8841_PTP_LTC_TARGET_NS_HI(event)	((event) == LAN8841_EVENT_A ? 280 : 290)
3808 #define LAN8841_PTP_LTC_TARGET_NS_LO(event)	((event) == LAN8841_EVENT_A ? 281 : 291)
3809 
3810 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
3811 				  s64 sec, u32 nsec)
3812 {
3813 	struct phy_device *phydev = ptp_priv->phydev;
3814 	int ret;
3815 
3816 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
3817 			    upper_16_bits(sec));
3818 	if (ret)
3819 		return ret;
3820 
3821 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
3822 			    lower_16_bits(sec));
3823 	if (ret)
3824 		return ret;
3825 
3826 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
3827 			    upper_16_bits(nsec));
3828 	if (ret)
3829 		return ret;
3830 
3831 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
3832 			    lower_16_bits(nsec));
3833 }
3834 
3835 #define LAN8841_BUFFER_TIME	2
3836 
3837 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
3838 				     const struct timespec64 *ts)
3839 {
3840 	return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
3841 				      ts->tv_sec + LAN8841_BUFFER_TIME, 0);
3842 }
3843 
3844 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 282 : 292)
3845 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 283 : 293)
3846 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event)	((event) == LAN8841_EVENT_A ? 284 : 294)
3847 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event)	((event) == LAN8841_EVENT_A ? 285 : 295)
3848 
3849 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
3850 				  s64 sec, u32 nsec)
3851 {
3852 	struct phy_device *phydev = ptp_priv->phydev;
3853 	int ret;
3854 
3855 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
3856 			    upper_16_bits(sec));
3857 	if (ret)
3858 		return ret;
3859 
3860 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
3861 			    lower_16_bits(sec));
3862 	if (ret)
3863 		return ret;
3864 
3865 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
3866 			    upper_16_bits(nsec));
3867 	if (ret)
3868 		return ret;
3869 
3870 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
3871 			     lower_16_bits(nsec));
3872 }
3873 
3874 #define LAN8841_PTP_LTC_SET_SEC_HI	262
3875 #define LAN8841_PTP_LTC_SET_SEC_MID	263
3876 #define LAN8841_PTP_LTC_SET_SEC_LO	264
3877 #define LAN8841_PTP_LTC_SET_NS_HI	265
3878 #define LAN8841_PTP_LTC_SET_NS_LO	266
3879 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD	BIT(4)
3880 
3881 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
3882 				 const struct timespec64 *ts)
3883 {
3884 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3885 							ptp_clock_info);
3886 	struct phy_device *phydev = ptp_priv->phydev;
3887 	unsigned long flags;
3888 	int ret;
3889 
3890 	/* Set the value to be stored */
3891 	mutex_lock(&ptp_priv->ptp_lock);
3892 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
3893 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
3894 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
3895 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
3896 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
3897 
3898 	/* Set the command to load the LTC */
3899 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3900 		      LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
3901 	ret = lan8841_ptp_update_target(ptp_priv, ts);
3902 	mutex_unlock(&ptp_priv->ptp_lock);
3903 
3904 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
3905 	ptp_priv->seconds = ts->tv_sec;
3906 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
3907 
3908 	return ret;
3909 }
3910 
3911 #define LAN8841_PTP_LTC_RD_SEC_HI	358
3912 #define LAN8841_PTP_LTC_RD_SEC_MID	359
3913 #define LAN8841_PTP_LTC_RD_SEC_LO	360
3914 #define LAN8841_PTP_LTC_RD_NS_HI	361
3915 #define LAN8841_PTP_LTC_RD_NS_LO	362
3916 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ	BIT(3)
3917 
3918 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
3919 				 struct timespec64 *ts)
3920 {
3921 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3922 							ptp_clock_info);
3923 	struct phy_device *phydev = ptp_priv->phydev;
3924 	time64_t s;
3925 	s64 ns;
3926 
3927 	mutex_lock(&ptp_priv->ptp_lock);
3928 	/* Issue the command to read the LTC */
3929 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3930 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
3931 
3932 	/* Read the LTC */
3933 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
3934 	s <<= 16;
3935 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
3936 	s <<= 16;
3937 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
3938 
3939 	ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
3940 	ns <<= 16;
3941 	ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
3942 	mutex_unlock(&ptp_priv->ptp_lock);
3943 
3944 	set_normalized_timespec64(ts, s, ns);
3945 	return 0;
3946 }
3947 
3948 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
3949 				   struct timespec64 *ts)
3950 {
3951 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3952 							ptp_clock_info);
3953 	struct phy_device *phydev = ptp_priv->phydev;
3954 	time64_t s;
3955 
3956 	mutex_lock(&ptp_priv->ptp_lock);
3957 	/* Issue the command to read the LTC */
3958 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3959 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
3960 
3961 	/* Read the LTC */
3962 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
3963 	s <<= 16;
3964 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
3965 	s <<= 16;
3966 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
3967 	mutex_unlock(&ptp_priv->ptp_lock);
3968 
3969 	set_normalized_timespec64(ts, s, 0);
3970 }
3971 
3972 #define LAN8841_PTP_LTC_STEP_ADJ_LO			276
3973 #define LAN8841_PTP_LTC_STEP_ADJ_HI			275
3974 #define LAN8841_PTP_LTC_STEP_ADJ_DIR			BIT(15)
3975 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS	BIT(5)
3976 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS	BIT(6)
3977 
3978 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
3979 {
3980 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3981 							ptp_clock_info);
3982 	struct phy_device *phydev = ptp_priv->phydev;
3983 	struct timespec64 ts;
3984 	bool add = true;
3985 	u32 nsec;
3986 	s32 sec;
3987 	int ret;
3988 
3989 	/* The HW allows up to 15 sec to adjust the time, but here we limit to
3990 	 * 10 sec the adjustment. The reason is, in case the adjustment is 14
3991 	 * sec and 999999999 nsec, then we add 8ns to compansate the actual
3992 	 * increment so the value can be bigger than 15 sec. Therefore limit the
3993 	 * possible adjustments so we will not have these corner cases
3994 	 */
3995 	if (delta > 10000000000LL || delta < -10000000000LL) {
3996 		/* The timeadjustment is too big, so fall back using set time */
3997 		u64 now;
3998 
3999 		ptp->gettime64(ptp, &ts);
4000 
4001 		now = ktime_to_ns(timespec64_to_ktime(ts));
4002 		ts = ns_to_timespec64(now + delta);
4003 
4004 		ptp->settime64(ptp, &ts);
4005 		return 0;
4006 	}
4007 
4008 	sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
4009 	if (delta < 0 && nsec != 0) {
4010 		/* It is not allowed to adjust low the nsec part, therefore
4011 		 * subtract more from second part and add to nanosecond such
4012 		 * that would roll over, so the second part will increase
4013 		 */
4014 		sec--;
4015 		nsec = NSEC_PER_SEC - nsec;
4016 	}
4017 
4018 	/* Calculate the adjustments and the direction */
4019 	if (delta < 0)
4020 		add = false;
4021 
4022 	if (nsec > 0)
4023 		/* add 8 ns to cover the likely normal increment */
4024 		nsec += 8;
4025 
4026 	if (nsec >= NSEC_PER_SEC) {
4027 		/* carry into seconds */
4028 		sec++;
4029 		nsec -= NSEC_PER_SEC;
4030 	}
4031 
4032 	mutex_lock(&ptp_priv->ptp_lock);
4033 	if (sec) {
4034 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
4035 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4036 			      add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
4037 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4038 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
4039 	}
4040 
4041 	if (nsec) {
4042 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
4043 			      nsec & 0xffff);
4044 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4045 			      (nsec >> 16) & 0x3fff);
4046 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4047 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
4048 	}
4049 	mutex_unlock(&ptp_priv->ptp_lock);
4050 
4051 	/* Update the target clock */
4052 	ptp->gettime64(ptp, &ts);
4053 	mutex_lock(&ptp_priv->ptp_lock);
4054 	ret = lan8841_ptp_update_target(ptp_priv, &ts);
4055 	mutex_unlock(&ptp_priv->ptp_lock);
4056 
4057 	return ret;
4058 }
4059 
4060 #define LAN8841_PTP_LTC_RATE_ADJ_HI		269
4061 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR		BIT(15)
4062 #define LAN8841_PTP_LTC_RATE_ADJ_LO		270
4063 
4064 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
4065 {
4066 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4067 							ptp_clock_info);
4068 	struct phy_device *phydev = ptp_priv->phydev;
4069 	bool faster = true;
4070 	u32 rate;
4071 
4072 	if (!scaled_ppm)
4073 		return 0;
4074 
4075 	if (scaled_ppm < 0) {
4076 		scaled_ppm = -scaled_ppm;
4077 		faster = false;
4078 	}
4079 
4080 	rate = LAN8814_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
4081 	rate += (LAN8814_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
4082 
4083 	mutex_lock(&ptp_priv->ptp_lock);
4084 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
4085 		      faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
4086 			     : upper_16_bits(rate) & 0x3fff);
4087 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
4088 	mutex_unlock(&ptp_priv->ptp_lock);
4089 
4090 	return 0;
4091 }
4092 
4093 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
4094 			      enum ptp_pin_function func, unsigned int chan)
4095 {
4096 	switch (func) {
4097 	case PTP_PF_NONE:
4098 	case PTP_PF_PEROUT:
4099 	case PTP_PF_EXTTS:
4100 		break;
4101 	default:
4102 		return -1;
4103 	}
4104 
4105 	return 0;
4106 }
4107 
4108 #define LAN8841_PTP_GPIO_NUM	10
4109 #define LAN8841_GPIO_EN		128
4110 #define LAN8841_GPIO_DIR	129
4111 #define LAN8841_GPIO_BUF	130
4112 
4113 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4114 {
4115 	struct phy_device *phydev = ptp_priv->phydev;
4116 	int ret;
4117 
4118 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4119 	if (ret)
4120 		return ret;
4121 
4122 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4123 	if (ret)
4124 		return ret;
4125 
4126 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4127 }
4128 
4129 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
4130 {
4131 	struct phy_device *phydev = ptp_priv->phydev;
4132 	int ret;
4133 
4134 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4135 	if (ret)
4136 		return ret;
4137 
4138 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4139 	if (ret)
4140 		return ret;
4141 
4142 	return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4143 }
4144 
4145 #define LAN8841_GPIO_DATA_SEL1				131
4146 #define LAN8841_GPIO_DATA_SEL2				132
4147 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK	GENMASK(2, 0)
4148 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A	1
4149 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B	2
4150 #define LAN8841_PTP_GENERAL_CONFIG			257
4151 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A	BIT(1)
4152 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B	BIT(3)
4153 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK	GENMASK(7, 4)
4154 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK	GENMASK(11, 8)
4155 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A		4
4156 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B		7
4157 
4158 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4159 				    u8 event)
4160 {
4161 	struct phy_device *phydev = ptp_priv->phydev;
4162 	u16 tmp;
4163 	int ret;
4164 
4165 	/* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
4166 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4167 	 * depending on the pin, it requires to read a different register
4168 	 */
4169 	if (pin < 5) {
4170 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
4171 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
4172 	} else {
4173 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
4174 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
4175 	}
4176 	if (ret)
4177 		return ret;
4178 
4179 	/* Disable the event */
4180 	if (event == LAN8841_EVENT_A)
4181 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4182 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
4183 	else
4184 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4185 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
4186 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
4187 }
4188 
4189 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4190 				    u8 event, int pulse_width)
4191 {
4192 	struct phy_device *phydev = ptp_priv->phydev;
4193 	u16 tmp;
4194 	int ret;
4195 
4196 	/* Enable the event */
4197 	if (event == LAN8841_EVENT_A)
4198 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4199 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4200 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
4201 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4202 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
4203 	else
4204 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4205 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4206 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
4207 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4208 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
4209 	if (ret)
4210 		return ret;
4211 
4212 	/* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
4213 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4214 	 * depending on the pin, it requires to read a different register
4215 	 */
4216 	if (event == LAN8841_EVENT_A)
4217 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
4218 	else
4219 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
4220 
4221 	if (pin < 5)
4222 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
4223 				       tmp << (3 * pin));
4224 	else
4225 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
4226 				       tmp << (3 * (pin - 5)));
4227 
4228 	return ret;
4229 }
4230 
4231 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
4232 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
4233 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
4234 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
4235 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
4236 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
4237 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
4238 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
4239 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
4240 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
4241 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
4242 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
4243 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
4244 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
4245 
4246 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
4247 			      struct ptp_clock_request *rq, int on)
4248 {
4249 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4250 							ptp_clock_info);
4251 	struct phy_device *phydev = ptp_priv->phydev;
4252 	struct timespec64 ts_on, ts_period;
4253 	s64 on_nsec, period_nsec;
4254 	int pulse_width;
4255 	int pin;
4256 	int ret;
4257 
4258 	if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
4259 		return -EOPNOTSUPP;
4260 
4261 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
4262 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4263 		return -EINVAL;
4264 
4265 	if (!on) {
4266 		ret = lan8841_ptp_perout_off(ptp_priv, pin);
4267 		if (ret)
4268 			return ret;
4269 
4270 		return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
4271 	}
4272 
4273 	ts_on.tv_sec = rq->perout.on.sec;
4274 	ts_on.tv_nsec = rq->perout.on.nsec;
4275 	on_nsec = timespec64_to_ns(&ts_on);
4276 
4277 	ts_period.tv_sec = rq->perout.period.sec;
4278 	ts_period.tv_nsec = rq->perout.period.nsec;
4279 	period_nsec = timespec64_to_ns(&ts_period);
4280 
4281 	if (period_nsec < 200) {
4282 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
4283 				    phydev_name(phydev));
4284 		return -EOPNOTSUPP;
4285 	}
4286 
4287 	if (on_nsec >= period_nsec) {
4288 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
4289 				    phydev_name(phydev));
4290 		return -EINVAL;
4291 	}
4292 
4293 	switch (on_nsec) {
4294 	case 200000000:
4295 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
4296 		break;
4297 	case 100000000:
4298 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
4299 		break;
4300 	case 50000000:
4301 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
4302 		break;
4303 	case 10000000:
4304 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
4305 		break;
4306 	case 5000000:
4307 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
4308 		break;
4309 	case 1000000:
4310 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
4311 		break;
4312 	case 500000:
4313 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
4314 		break;
4315 	case 100000:
4316 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
4317 		break;
4318 	case 50000:
4319 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
4320 		break;
4321 	case 10000:
4322 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
4323 		break;
4324 	case 5000:
4325 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
4326 		break;
4327 	case 1000:
4328 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
4329 		break;
4330 	case 500:
4331 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
4332 		break;
4333 	case 100:
4334 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4335 		break;
4336 	default:
4337 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
4338 				    phydev_name(phydev));
4339 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4340 		break;
4341 	}
4342 
4343 	mutex_lock(&ptp_priv->ptp_lock);
4344 	ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
4345 				     rq->perout.start.nsec);
4346 	mutex_unlock(&ptp_priv->ptp_lock);
4347 	if (ret)
4348 		return ret;
4349 
4350 	ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
4351 				     rq->perout.period.nsec);
4352 	if (ret)
4353 		return ret;
4354 
4355 	ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
4356 				       pulse_width);
4357 	if (ret)
4358 		return ret;
4359 
4360 	ret = lan8841_ptp_perout_on(ptp_priv, pin);
4361 	if (ret)
4362 		lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
4363 
4364 	return ret;
4365 }
4366 
4367 #define LAN8841_PTP_GPIO_CAP_EN			496
4368 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	(BIT(gpio))
4369 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
4370 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN	BIT(2)
4371 
4372 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
4373 				u32 flags)
4374 {
4375 	struct phy_device *phydev = ptp_priv->phydev;
4376 	u16 tmp = 0;
4377 	int ret;
4378 
4379 	/* Set GPIO to be intput */
4380 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4381 	if (ret)
4382 		return ret;
4383 
4384 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4385 	if (ret)
4386 		return ret;
4387 
4388 	/* Enable capture on the edges of the pin */
4389 	if (flags & PTP_RISING_EDGE)
4390 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
4391 	if (flags & PTP_FALLING_EDGE)
4392 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
4393 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
4394 	if (ret)
4395 		return ret;
4396 
4397 	/* Enable interrupt */
4398 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4399 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4400 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
4401 }
4402 
4403 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4404 {
4405 	struct phy_device *phydev = ptp_priv->phydev;
4406 	int ret;
4407 
4408 	/* Set GPIO to be output */
4409 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4410 	if (ret)
4411 		return ret;
4412 
4413 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4414 	if (ret)
4415 		return ret;
4416 
4417 	/* Disable capture on both of the edges */
4418 	ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
4419 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
4420 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
4421 			     0);
4422 	if (ret)
4423 		return ret;
4424 
4425 	/* Disable interrupt */
4426 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4427 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4428 			      0);
4429 }
4430 
4431 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
4432 			     struct ptp_clock_request *rq, int on)
4433 {
4434 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4435 							ptp_clock_info);
4436 	int pin;
4437 	int ret;
4438 
4439 	/* Reject requests with unsupported flags */
4440 	if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
4441 				PTP_EXTTS_EDGES |
4442 				PTP_STRICT_FLAGS))
4443 		return -EOPNOTSUPP;
4444 
4445 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
4446 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4447 		return -EINVAL;
4448 
4449 	mutex_lock(&ptp_priv->ptp_lock);
4450 	if (on)
4451 		ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
4452 	else
4453 		ret = lan8841_ptp_extts_off(ptp_priv, pin);
4454 	mutex_unlock(&ptp_priv->ptp_lock);
4455 
4456 	return ret;
4457 }
4458 
4459 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
4460 			      struct ptp_clock_request *rq, int on)
4461 {
4462 	switch (rq->type) {
4463 	case PTP_CLK_REQ_EXTTS:
4464 		return lan8841_ptp_extts(ptp, rq, on);
4465 	case PTP_CLK_REQ_PEROUT:
4466 		return lan8841_ptp_perout(ptp, rq, on);
4467 	default:
4468 		return -EOPNOTSUPP;
4469 	}
4470 
4471 	return 0;
4472 }
4473 
4474 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
4475 {
4476 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4477 							ptp_clock_info);
4478 	struct timespec64 ts;
4479 	unsigned long flags;
4480 
4481 	lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
4482 
4483 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4484 	ptp_priv->seconds = ts.tv_sec;
4485 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4486 
4487 	return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
4488 }
4489 
4490 static struct ptp_clock_info lan8841_ptp_clock_info = {
4491 	.owner		= THIS_MODULE,
4492 	.name		= "lan8841 ptp",
4493 	.max_adj	= 31249999,
4494 	.gettime64	= lan8841_ptp_gettime64,
4495 	.settime64	= lan8841_ptp_settime64,
4496 	.adjtime	= lan8841_ptp_adjtime,
4497 	.adjfine	= lan8841_ptp_adjfine,
4498 	.verify         = lan8841_ptp_verify,
4499 	.enable         = lan8841_ptp_enable,
4500 	.do_aux_work	= lan8841_ptp_do_aux_work,
4501 	.n_per_out      = LAN8841_PTP_GPIO_NUM,
4502 	.n_ext_ts       = LAN8841_PTP_GPIO_NUM,
4503 	.n_pins         = LAN8841_PTP_GPIO_NUM,
4504 };
4505 
4506 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
4507 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
4508 
4509 static int lan8841_probe(struct phy_device *phydev)
4510 {
4511 	struct kszphy_ptp_priv *ptp_priv;
4512 	struct kszphy_priv *priv;
4513 	int err;
4514 
4515 	err = kszphy_probe(phydev);
4516 	if (err)
4517 		return err;
4518 
4519 	if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4520 			 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
4521 	    LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
4522 		phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
4523 
4524 	/* Register the clock */
4525 	if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
4526 		return 0;
4527 
4528 	priv = phydev->priv;
4529 	ptp_priv = &priv->ptp_priv;
4530 
4531 	ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
4532 					    LAN8841_PTP_GPIO_NUM,
4533 					    sizeof(*ptp_priv->pin_config),
4534 					    GFP_KERNEL);
4535 	if (!ptp_priv->pin_config)
4536 		return -ENOMEM;
4537 
4538 	for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
4539 		struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
4540 
4541 		snprintf(p->name, sizeof(p->name), "pin%d", i);
4542 		p->index = i;
4543 		p->func = PTP_PF_NONE;
4544 	}
4545 
4546 	ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
4547 	ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
4548 	ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
4549 						 &phydev->mdio.dev);
4550 	if (IS_ERR(ptp_priv->ptp_clock)) {
4551 		phydev_err(phydev, "ptp_clock_register failed: %lu\n",
4552 			   PTR_ERR(ptp_priv->ptp_clock));
4553 		return -EINVAL;
4554 	}
4555 
4556 	if (!ptp_priv->ptp_clock)
4557 		return 0;
4558 
4559 	/* Initialize the SW */
4560 	skb_queue_head_init(&ptp_priv->tx_queue);
4561 	ptp_priv->phydev = phydev;
4562 	mutex_init(&ptp_priv->ptp_lock);
4563 	spin_lock_init(&ptp_priv->seconds_lock);
4564 
4565 	ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
4566 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
4567 	ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
4568 	ptp_priv->mii_ts.ts_info = lan8841_ts_info;
4569 
4570 	phydev->mii_ts = &ptp_priv->mii_ts;
4571 
4572 	return 0;
4573 }
4574 
4575 static int lan8841_suspend(struct phy_device *phydev)
4576 {
4577 	struct kszphy_priv *priv = phydev->priv;
4578 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4579 
4580 	ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4581 
4582 	return genphy_suspend(phydev);
4583 }
4584 
4585 static struct phy_driver ksphy_driver[] = {
4586 {
4587 	.phy_id		= PHY_ID_KS8737,
4588 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4589 	.name		= "Micrel KS8737",
4590 	/* PHY_BASIC_FEATURES */
4591 	.driver_data	= &ks8737_type,
4592 	.probe		= kszphy_probe,
4593 	.config_init	= kszphy_config_init,
4594 	.config_intr	= kszphy_config_intr,
4595 	.handle_interrupt = kszphy_handle_interrupt,
4596 	.suspend	= kszphy_suspend,
4597 	.resume		= kszphy_resume,
4598 }, {
4599 	.phy_id		= PHY_ID_KSZ8021,
4600 	.phy_id_mask	= 0x00ffffff,
4601 	.name		= "Micrel KSZ8021 or KSZ8031",
4602 	/* PHY_BASIC_FEATURES */
4603 	.driver_data	= &ksz8021_type,
4604 	.probe		= kszphy_probe,
4605 	.config_init	= kszphy_config_init,
4606 	.config_intr	= kszphy_config_intr,
4607 	.handle_interrupt = kszphy_handle_interrupt,
4608 	.get_sset_count = kszphy_get_sset_count,
4609 	.get_strings	= kszphy_get_strings,
4610 	.get_stats	= kszphy_get_stats,
4611 	.suspend	= kszphy_suspend,
4612 	.resume		= kszphy_resume,
4613 }, {
4614 	.phy_id		= PHY_ID_KSZ8031,
4615 	.phy_id_mask	= 0x00ffffff,
4616 	.name		= "Micrel KSZ8031",
4617 	/* PHY_BASIC_FEATURES */
4618 	.driver_data	= &ksz8021_type,
4619 	.probe		= kszphy_probe,
4620 	.config_init	= kszphy_config_init,
4621 	.config_intr	= kszphy_config_intr,
4622 	.handle_interrupt = kszphy_handle_interrupt,
4623 	.get_sset_count = kszphy_get_sset_count,
4624 	.get_strings	= kszphy_get_strings,
4625 	.get_stats	= kszphy_get_stats,
4626 	.suspend	= kszphy_suspend,
4627 	.resume		= kszphy_resume,
4628 }, {
4629 	.phy_id		= PHY_ID_KSZ8041,
4630 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4631 	.name		= "Micrel KSZ8041",
4632 	/* PHY_BASIC_FEATURES */
4633 	.driver_data	= &ksz8041_type,
4634 	.probe		= kszphy_probe,
4635 	.config_init	= ksz8041_config_init,
4636 	.config_aneg	= ksz8041_config_aneg,
4637 	.config_intr	= kszphy_config_intr,
4638 	.handle_interrupt = kszphy_handle_interrupt,
4639 	.get_sset_count = kszphy_get_sset_count,
4640 	.get_strings	= kszphy_get_strings,
4641 	.get_stats	= kszphy_get_stats,
4642 	/* No suspend/resume callbacks because of errata DS80000700A,
4643 	 * receiver error following software power down.
4644 	 */
4645 }, {
4646 	.phy_id		= PHY_ID_KSZ8041RNLI,
4647 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4648 	.name		= "Micrel KSZ8041RNLI",
4649 	/* PHY_BASIC_FEATURES */
4650 	.driver_data	= &ksz8041_type,
4651 	.probe		= kszphy_probe,
4652 	.config_init	= kszphy_config_init,
4653 	.config_intr	= kszphy_config_intr,
4654 	.handle_interrupt = kszphy_handle_interrupt,
4655 	.get_sset_count = kszphy_get_sset_count,
4656 	.get_strings	= kszphy_get_strings,
4657 	.get_stats	= kszphy_get_stats,
4658 	.suspend	= kszphy_suspend,
4659 	.resume		= kszphy_resume,
4660 }, {
4661 	.name		= "Micrel KSZ8051",
4662 	/* PHY_BASIC_FEATURES */
4663 	.driver_data	= &ksz8051_type,
4664 	.probe		= kszphy_probe,
4665 	.config_init	= kszphy_config_init,
4666 	.config_intr	= kszphy_config_intr,
4667 	.handle_interrupt = kszphy_handle_interrupt,
4668 	.get_sset_count = kszphy_get_sset_count,
4669 	.get_strings	= kszphy_get_strings,
4670 	.get_stats	= kszphy_get_stats,
4671 	.match_phy_device = ksz8051_match_phy_device,
4672 	.suspend	= kszphy_suspend,
4673 	.resume		= kszphy_resume,
4674 }, {
4675 	.phy_id		= PHY_ID_KSZ8001,
4676 	.name		= "Micrel KSZ8001 or KS8721",
4677 	.phy_id_mask	= 0x00fffffc,
4678 	/* PHY_BASIC_FEATURES */
4679 	.driver_data	= &ksz8041_type,
4680 	.probe		= kszphy_probe,
4681 	.config_init	= kszphy_config_init,
4682 	.config_intr	= kszphy_config_intr,
4683 	.handle_interrupt = kszphy_handle_interrupt,
4684 	.get_sset_count = kszphy_get_sset_count,
4685 	.get_strings	= kszphy_get_strings,
4686 	.get_stats	= kszphy_get_stats,
4687 	.suspend	= kszphy_suspend,
4688 	.resume		= kszphy_resume,
4689 }, {
4690 	.phy_id		= PHY_ID_KSZ8081,
4691 	.name		= "Micrel KSZ8081 or KSZ8091",
4692 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4693 	.flags		= PHY_POLL_CABLE_TEST,
4694 	/* PHY_BASIC_FEATURES */
4695 	.driver_data	= &ksz8081_type,
4696 	.probe		= kszphy_probe,
4697 	.config_init	= ksz8081_config_init,
4698 	.soft_reset	= genphy_soft_reset,
4699 	.config_aneg	= ksz8081_config_aneg,
4700 	.read_status	= ksz8081_read_status,
4701 	.config_intr	= kszphy_config_intr,
4702 	.handle_interrupt = kszphy_handle_interrupt,
4703 	.get_sset_count = kszphy_get_sset_count,
4704 	.get_strings	= kszphy_get_strings,
4705 	.get_stats	= kszphy_get_stats,
4706 	.suspend	= kszphy_suspend,
4707 	.resume		= kszphy_resume,
4708 	.cable_test_start	= ksz886x_cable_test_start,
4709 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4710 }, {
4711 	.phy_id		= PHY_ID_KSZ8061,
4712 	.name		= "Micrel KSZ8061",
4713 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4714 	/* PHY_BASIC_FEATURES */
4715 	.probe		= kszphy_probe,
4716 	.config_init	= ksz8061_config_init,
4717 	.config_intr	= kszphy_config_intr,
4718 	.handle_interrupt = kszphy_handle_interrupt,
4719 	.suspend	= kszphy_suspend,
4720 	.resume		= kszphy_resume,
4721 }, {
4722 	.phy_id		= PHY_ID_KSZ9021,
4723 	.phy_id_mask	= 0x000ffffe,
4724 	.name		= "Micrel KSZ9021 Gigabit PHY",
4725 	/* PHY_GBIT_FEATURES */
4726 	.driver_data	= &ksz9021_type,
4727 	.probe		= kszphy_probe,
4728 	.get_features	= ksz9031_get_features,
4729 	.config_init	= ksz9021_config_init,
4730 	.config_intr	= kszphy_config_intr,
4731 	.handle_interrupt = kszphy_handle_interrupt,
4732 	.get_sset_count = kszphy_get_sset_count,
4733 	.get_strings	= kszphy_get_strings,
4734 	.get_stats	= kszphy_get_stats,
4735 	.suspend	= kszphy_suspend,
4736 	.resume		= kszphy_resume,
4737 	.read_mmd	= genphy_read_mmd_unsupported,
4738 	.write_mmd	= genphy_write_mmd_unsupported,
4739 }, {
4740 	.phy_id		= PHY_ID_KSZ9031,
4741 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4742 	.name		= "Micrel KSZ9031 Gigabit PHY",
4743 	.flags		= PHY_POLL_CABLE_TEST,
4744 	.driver_data	= &ksz9021_type,
4745 	.probe		= kszphy_probe,
4746 	.get_features	= ksz9031_get_features,
4747 	.config_init	= ksz9031_config_init,
4748 	.soft_reset	= genphy_soft_reset,
4749 	.read_status	= ksz9031_read_status,
4750 	.config_intr	= kszphy_config_intr,
4751 	.handle_interrupt = kszphy_handle_interrupt,
4752 	.get_sset_count = kszphy_get_sset_count,
4753 	.get_strings	= kszphy_get_strings,
4754 	.get_stats	= kszphy_get_stats,
4755 	.suspend	= kszphy_suspend,
4756 	.resume		= kszphy_resume,
4757 	.cable_test_start	= ksz9x31_cable_test_start,
4758 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
4759 }, {
4760 	.phy_id		= PHY_ID_LAN8814,
4761 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4762 	.name		= "Microchip INDY Gigabit Quad PHY",
4763 	.flags          = PHY_POLL_CABLE_TEST,
4764 	.config_init	= lan8814_config_init,
4765 	.driver_data	= &lan8814_type,
4766 	.probe		= lan8814_probe,
4767 	.soft_reset	= genphy_soft_reset,
4768 	.read_status	= ksz9031_read_status,
4769 	.get_sset_count	= kszphy_get_sset_count,
4770 	.get_strings	= kszphy_get_strings,
4771 	.get_stats	= kszphy_get_stats,
4772 	.suspend	= genphy_suspend,
4773 	.resume		= kszphy_resume,
4774 	.config_intr	= lan8814_config_intr,
4775 	.handle_interrupt = lan8814_handle_interrupt,
4776 	.cable_test_start	= lan8814_cable_test_start,
4777 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4778 }, {
4779 	.phy_id		= PHY_ID_LAN8804,
4780 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4781 	.name		= "Microchip LAN966X Gigabit PHY",
4782 	.config_init	= lan8804_config_init,
4783 	.driver_data	= &ksz9021_type,
4784 	.probe		= kszphy_probe,
4785 	.soft_reset	= genphy_soft_reset,
4786 	.read_status	= ksz9031_read_status,
4787 	.get_sset_count	= kszphy_get_sset_count,
4788 	.get_strings	= kszphy_get_strings,
4789 	.get_stats	= kszphy_get_stats,
4790 	.suspend	= genphy_suspend,
4791 	.resume		= kszphy_resume,
4792 	.config_intr	= lan8804_config_intr,
4793 	.handle_interrupt = lan8804_handle_interrupt,
4794 }, {
4795 	.phy_id		= PHY_ID_LAN8841,
4796 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4797 	.name		= "Microchip LAN8841 Gigabit PHY",
4798 	.flags		= PHY_POLL_CABLE_TEST,
4799 	.driver_data	= &lan8841_type,
4800 	.config_init	= lan8841_config_init,
4801 	.probe		= lan8841_probe,
4802 	.soft_reset	= genphy_soft_reset,
4803 	.config_intr	= lan8841_config_intr,
4804 	.handle_interrupt = lan8841_handle_interrupt,
4805 	.get_sset_count = kszphy_get_sset_count,
4806 	.get_strings	= kszphy_get_strings,
4807 	.get_stats	= kszphy_get_stats,
4808 	.suspend	= lan8841_suspend,
4809 	.resume		= genphy_resume,
4810 	.cable_test_start	= lan8814_cable_test_start,
4811 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4812 }, {
4813 	.phy_id		= PHY_ID_KSZ9131,
4814 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4815 	.name		= "Microchip KSZ9131 Gigabit PHY",
4816 	/* PHY_GBIT_FEATURES */
4817 	.flags		= PHY_POLL_CABLE_TEST,
4818 	.driver_data	= &ksz9131_type,
4819 	.probe		= kszphy_probe,
4820 	.config_init	= ksz9131_config_init,
4821 	.config_intr	= kszphy_config_intr,
4822 	.config_aneg	= ksz9131_config_aneg,
4823 	.read_status	= ksz9131_read_status,
4824 	.handle_interrupt = kszphy_handle_interrupt,
4825 	.get_sset_count = kszphy_get_sset_count,
4826 	.get_strings	= kszphy_get_strings,
4827 	.get_stats	= kszphy_get_stats,
4828 	.suspend	= kszphy_suspend,
4829 	.resume		= kszphy_resume,
4830 	.cable_test_start	= ksz9x31_cable_test_start,
4831 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
4832 	.get_features	= ksz9477_get_features,
4833 }, {
4834 	.phy_id		= PHY_ID_KSZ8873MLL,
4835 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4836 	.name		= "Micrel KSZ8873MLL Switch",
4837 	/* PHY_BASIC_FEATURES */
4838 	.config_init	= kszphy_config_init,
4839 	.config_aneg	= ksz8873mll_config_aneg,
4840 	.read_status	= ksz8873mll_read_status,
4841 	.suspend	= genphy_suspend,
4842 	.resume		= genphy_resume,
4843 }, {
4844 	.phy_id		= PHY_ID_KSZ886X,
4845 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4846 	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
4847 	.driver_data	= &ksz886x_type,
4848 	/* PHY_BASIC_FEATURES */
4849 	.flags		= PHY_POLL_CABLE_TEST,
4850 	.config_init	= kszphy_config_init,
4851 	.config_aneg	= ksz886x_config_aneg,
4852 	.read_status	= ksz886x_read_status,
4853 	.suspend	= genphy_suspend,
4854 	.resume		= genphy_resume,
4855 	.cable_test_start	= ksz886x_cable_test_start,
4856 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4857 }, {
4858 	.name		= "Micrel KSZ87XX Switch",
4859 	/* PHY_BASIC_FEATURES */
4860 	.config_init	= kszphy_config_init,
4861 	.match_phy_device = ksz8795_match_phy_device,
4862 	.suspend	= genphy_suspend,
4863 	.resume		= genphy_resume,
4864 }, {
4865 	.phy_id		= PHY_ID_KSZ9477,
4866 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4867 	.name		= "Microchip KSZ9477",
4868 	/* PHY_GBIT_FEATURES */
4869 	.config_init	= ksz9477_config_init,
4870 	.config_intr	= kszphy_config_intr,
4871 	.handle_interrupt = kszphy_handle_interrupt,
4872 	.suspend	= genphy_suspend,
4873 	.resume		= genphy_resume,
4874 	.get_features	= ksz9477_get_features,
4875 } };
4876 
4877 module_phy_driver(ksphy_driver);
4878 
4879 MODULE_DESCRIPTION("Micrel PHY driver");
4880 MODULE_AUTHOR("David J. Choi");
4881 MODULE_LICENSE("GPL");
4882 
4883 static struct mdio_device_id __maybe_unused micrel_tbl[] = {
4884 	{ PHY_ID_KSZ9021, 0x000ffffe },
4885 	{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
4886 	{ PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
4887 	{ PHY_ID_KSZ8001, 0x00fffffc },
4888 	{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
4889 	{ PHY_ID_KSZ8021, 0x00ffffff },
4890 	{ PHY_ID_KSZ8031, 0x00ffffff },
4891 	{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
4892 	{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
4893 	{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
4894 	{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
4895 	{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
4896 	{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
4897 	{ PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
4898 	{ PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
4899 	{ PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
4900 	{ }
4901 };
4902 
4903 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
4904