xref: /openbmc/linux/drivers/net/phy/micrel.c (revision 6e9b7cd6)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/net/phy/micrel.c
4  *
5  * Driver for Micrel PHYs
6  *
7  * Author: David J. Choi
8  *
9  * Copyright (c) 2010-2013 Micrel, Inc.
10  * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11  *
12  * Support : Micrel Phys:
13  *		Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14  *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15  *			   ksz8021, ksz8031, ksz8051,
16  *			   ksz8081, ksz8091,
17  *			   ksz8061,
18  *		Switch : ksz8873, ksz886x
19  *			 ksz9477, lan8804
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36 
37 /* Operation Mode Strap Override */
38 #define MII_KSZPHY_OMSO				0x16
39 #define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
40 #define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
41 #define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
42 #define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
43 #define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
44 
45 /* general Interrupt control/status reg in vendor specific block. */
46 #define MII_KSZPHY_INTCS			0x1B
47 #define KSZPHY_INTCS_JABBER			BIT(15)
48 #define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
49 #define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
50 #define KSZPHY_INTCS_PARELLEL			BIT(12)
51 #define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
52 #define KSZPHY_INTCS_LINK_DOWN			BIT(10)
53 #define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
54 #define KSZPHY_INTCS_LINK_UP			BIT(8)
55 #define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
56 						KSZPHY_INTCS_LINK_DOWN)
57 #define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
58 #define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
59 #define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
60 						 KSZPHY_INTCS_LINK_UP_STATUS)
61 
62 /* LinkMD Control/Status */
63 #define KSZ8081_LMD				0x1d
64 #define KSZ8081_LMD_ENABLE_TEST			BIT(15)
65 #define KSZ8081_LMD_STAT_NORMAL			0
66 #define KSZ8081_LMD_STAT_OPEN			1
67 #define KSZ8081_LMD_STAT_SHORT			2
68 #define KSZ8081_LMD_STAT_FAIL			3
69 #define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
70 /* Short cable (<10 meter) has been detected by LinkMD */
71 #define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
72 #define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
73 
74 #define KSZ9x31_LMD				0x12
75 #define KSZ9x31_LMD_VCT_EN			BIT(15)
76 #define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
77 #define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
78 #define KSZ9x31_LMD_VCT_SEL_RESULT		0
79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
81 #define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
82 #define KSZ9x31_LMD_VCT_ST_NORMAL		0
83 #define KSZ9x31_LMD_VCT_ST_OPEN			1
84 #define KSZ9x31_LMD_VCT_ST_SHORT		2
85 #define KSZ9x31_LMD_VCT_ST_FAIL			3
86 #define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
89 #define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
93 #define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
94 
95 #define KSZPHY_WIRE_PAIR_MASK			0x3
96 
97 #define LAN8814_CABLE_DIAG			0x12
98 #define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
100 #define LAN8814_PAIR_BIT_SHIFT			12
101 
102 #define LAN8814_WIRE_PAIR_MASK			0xF
103 
104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
105 #define LAN8814_INTC				0x18
106 #define LAN8814_INTS				0x1B
107 
108 #define LAN8814_INT_LINK_DOWN			BIT(2)
109 #define LAN8814_INT_LINK_UP			BIT(0)
110 #define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
111 						 LAN8814_INT_LINK_DOWN)
112 
113 #define LAN8814_INTR_CTRL_REG			0x34
114 #define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
116 
117 /* Represents 1ppm adjustment in 2^32 format with
118  * each nsec contains 4 clock cycles.
119  * The value is calculated as following: (1/1000000)/((2^-32)/4)
120  */
121 #define LAN8814_1PPM_FORMAT			17179
122 
123 #define PTP_RX_MOD				0x024F
124 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
125 #define PTP_RX_TIMESTAMP_EN			0x024D
126 #define PTP_TX_TIMESTAMP_EN			0x028D
127 
128 #define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
129 #define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
130 #define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
131 #define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
132 
133 #define PTP_TX_PARSE_L2_ADDR_EN			0x0284
134 #define PTP_RX_PARSE_L2_ADDR_EN			0x0244
135 
136 #define PTP_TX_PARSE_IP_ADDR_EN			0x0285
137 #define PTP_RX_PARSE_IP_ADDR_EN			0x0245
138 #define LTC_HARD_RESET				0x023F
139 #define LTC_HARD_RESET_				BIT(0)
140 
141 #define TSU_HARD_RESET				0x02C1
142 #define TSU_HARD_RESET_				BIT(0)
143 
144 #define PTP_CMD_CTL				0x0200
145 #define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
146 #define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
147 #define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
148 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
149 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
150 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
151 
152 #define PTP_CLOCK_SET_SEC_MID			0x0206
153 #define PTP_CLOCK_SET_SEC_LO			0x0207
154 #define PTP_CLOCK_SET_NS_HI			0x0208
155 #define PTP_CLOCK_SET_NS_LO			0x0209
156 
157 #define PTP_CLOCK_READ_SEC_MID			0x022A
158 #define PTP_CLOCK_READ_SEC_LO			0x022B
159 #define PTP_CLOCK_READ_NS_HI			0x022C
160 #define PTP_CLOCK_READ_NS_LO			0x022D
161 
162 #define PTP_OPERATING_MODE			0x0241
163 #define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
164 
165 #define PTP_TX_MOD				0x028F
166 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
167 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
168 
169 #define PTP_RX_PARSE_CONFIG			0x0242
170 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
171 #define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
172 #define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
173 
174 #define PTP_TX_PARSE_CONFIG			0x0282
175 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
176 #define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
177 #define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
178 
179 #define PTP_CLOCK_RATE_ADJ_HI			0x020C
180 #define PTP_CLOCK_RATE_ADJ_LO			0x020D
181 #define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
182 
183 #define PTP_LTC_STEP_ADJ_HI			0x0212
184 #define PTP_LTC_STEP_ADJ_LO			0x0213
185 #define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
186 
187 #define LAN8814_INTR_STS_REG			0x0033
188 #define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
189 #define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
190 #define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
191 #define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
192 
193 #define PTP_CAP_INFO				0x022A
194 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
195 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
196 
197 #define PTP_TX_EGRESS_SEC_HI			0x0296
198 #define PTP_TX_EGRESS_SEC_LO			0x0297
199 #define PTP_TX_EGRESS_NS_HI			0x0294
200 #define PTP_TX_EGRESS_NS_LO			0x0295
201 #define PTP_TX_MSG_HEADER2			0x0299
202 
203 #define PTP_RX_INGRESS_SEC_HI			0x0256
204 #define PTP_RX_INGRESS_SEC_LO			0x0257
205 #define PTP_RX_INGRESS_NS_HI			0x0254
206 #define PTP_RX_INGRESS_NS_LO			0x0255
207 #define PTP_RX_MSG_HEADER2			0x0259
208 
209 #define PTP_TSU_INT_EN				0x0200
210 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
211 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
212 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
213 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
214 
215 #define PTP_TSU_INT_STS				0x0201
216 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
217 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
218 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
219 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
220 
221 #define LAN8814_LED_CTRL_1			0x0
222 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
223 
224 /* PHY Control 1 */
225 #define MII_KSZPHY_CTRL_1			0x1e
226 #define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
227 
228 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
229 #define MII_KSZPHY_CTRL_2			0x1f
230 #define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
231 /* bitmap of PHY register to set interrupt mode */
232 #define KSZ8081_CTRL2_HP_MDIX			BIT(15)
233 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
234 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
235 #define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
236 #define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
237 #define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
238 #define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
239 
240 /* Write/read to/from extended registers */
241 #define MII_KSZPHY_EXTREG			0x0b
242 #define KSZPHY_EXTREG_WRITE			0x8000
243 
244 #define MII_KSZPHY_EXTREG_WRITE			0x0c
245 #define MII_KSZPHY_EXTREG_READ			0x0d
246 
247 /* Extended registers */
248 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
249 #define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
250 #define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
251 
252 #define PS_TO_REG				200
253 #define FIFO_SIZE				8
254 
255 struct kszphy_hw_stat {
256 	const char *string;
257 	u8 reg;
258 	u8 bits;
259 };
260 
261 static struct kszphy_hw_stat kszphy_hw_stats[] = {
262 	{ "phy_receive_errors", 21, 16},
263 	{ "phy_idle_errors", 10, 8 },
264 };
265 
266 struct kszphy_type {
267 	u32 led_mode_reg;
268 	u16 interrupt_level_mask;
269 	u16 cable_diag_reg;
270 	unsigned long pair_mask;
271 	u16 disable_dll_tx_bit;
272 	u16 disable_dll_rx_bit;
273 	u16 disable_dll_mask;
274 	bool has_broadcast_disable;
275 	bool has_nand_tree_disable;
276 	bool has_rmii_ref_clk_sel;
277 };
278 
279 /* Shared structure between the PHYs of the same package. */
280 struct lan8814_shared_priv {
281 	struct phy_device *phydev;
282 	struct ptp_clock *ptp_clock;
283 	struct ptp_clock_info ptp_clock_info;
284 
285 	/* Reference counter to how many ports in the package are enabling the
286 	 * timestamping
287 	 */
288 	u8 ref;
289 
290 	/* Lock for ptp_clock and ref */
291 	struct mutex shared_lock;
292 };
293 
294 struct lan8814_ptp_rx_ts {
295 	struct list_head list;
296 	u32 seconds;
297 	u32 nsec;
298 	u16 seq_id;
299 };
300 
301 struct kszphy_ptp_priv {
302 	struct mii_timestamper mii_ts;
303 	struct phy_device *phydev;
304 
305 	struct sk_buff_head tx_queue;
306 	struct sk_buff_head rx_queue;
307 
308 	struct list_head rx_ts_list;
309 	/* Lock for Rx ts fifo */
310 	spinlock_t rx_ts_lock;
311 
312 	int hwts_tx_type;
313 	enum hwtstamp_rx_filters rx_filter;
314 	int layer;
315 	int version;
316 
317 	struct ptp_clock *ptp_clock;
318 	struct ptp_clock_info ptp_clock_info;
319 	/* Lock for ptp_clock */
320 	struct mutex ptp_lock;
321 	struct ptp_pin_desc *pin_config;
322 };
323 
324 struct kszphy_priv {
325 	struct kszphy_ptp_priv ptp_priv;
326 	const struct kszphy_type *type;
327 	int led_mode;
328 	u16 vct_ctrl1000;
329 	bool rmii_ref_clk_sel;
330 	bool rmii_ref_clk_sel_val;
331 	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
332 };
333 
334 static const struct kszphy_type lan8814_type = {
335 	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
336 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
337 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
338 };
339 
340 static const struct kszphy_type ksz886x_type = {
341 	.cable_diag_reg		= KSZ8081_LMD,
342 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
343 };
344 
345 static const struct kszphy_type ksz8021_type = {
346 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
347 	.has_broadcast_disable	= true,
348 	.has_nand_tree_disable	= true,
349 	.has_rmii_ref_clk_sel	= true,
350 };
351 
352 static const struct kszphy_type ksz8041_type = {
353 	.led_mode_reg		= MII_KSZPHY_CTRL_1,
354 };
355 
356 static const struct kszphy_type ksz8051_type = {
357 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
358 	.has_nand_tree_disable	= true,
359 };
360 
361 static const struct kszphy_type ksz8081_type = {
362 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
363 	.has_broadcast_disable	= true,
364 	.has_nand_tree_disable	= true,
365 	.has_rmii_ref_clk_sel	= true,
366 };
367 
368 static const struct kszphy_type ks8737_type = {
369 	.interrupt_level_mask	= BIT(14),
370 };
371 
372 static const struct kszphy_type ksz9021_type = {
373 	.interrupt_level_mask	= BIT(14),
374 };
375 
376 static const struct kszphy_type ksz9131_type = {
377 	.interrupt_level_mask	= BIT(14),
378 	.disable_dll_tx_bit	= BIT(12),
379 	.disable_dll_rx_bit	= BIT(12),
380 	.disable_dll_mask	= BIT_MASK(12),
381 };
382 
383 static const struct kszphy_type lan8841_type = {
384 	.disable_dll_tx_bit	= BIT(14),
385 	.disable_dll_rx_bit	= BIT(14),
386 	.disable_dll_mask	= BIT_MASK(14),
387 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
388 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
389 };
390 
391 static int kszphy_extended_write(struct phy_device *phydev,
392 				u32 regnum, u16 val)
393 {
394 	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
395 	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
396 }
397 
398 static int kszphy_extended_read(struct phy_device *phydev,
399 				u32 regnum)
400 {
401 	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
402 	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
403 }
404 
405 static int kszphy_ack_interrupt(struct phy_device *phydev)
406 {
407 	/* bit[7..0] int status, which is a read and clear register. */
408 	int rc;
409 
410 	rc = phy_read(phydev, MII_KSZPHY_INTCS);
411 
412 	return (rc < 0) ? rc : 0;
413 }
414 
415 static int kszphy_config_intr(struct phy_device *phydev)
416 {
417 	const struct kszphy_type *type = phydev->drv->driver_data;
418 	int temp, err;
419 	u16 mask;
420 
421 	if (type && type->interrupt_level_mask)
422 		mask = type->interrupt_level_mask;
423 	else
424 		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
425 
426 	/* set the interrupt pin active low */
427 	temp = phy_read(phydev, MII_KSZPHY_CTRL);
428 	if (temp < 0)
429 		return temp;
430 	temp &= ~mask;
431 	phy_write(phydev, MII_KSZPHY_CTRL, temp);
432 
433 	/* enable / disable interrupts */
434 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
435 		err = kszphy_ack_interrupt(phydev);
436 		if (err)
437 			return err;
438 
439 		err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
440 	} else {
441 		err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
442 		if (err)
443 			return err;
444 
445 		err = kszphy_ack_interrupt(phydev);
446 	}
447 
448 	return err;
449 }
450 
451 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
452 {
453 	int irq_status;
454 
455 	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
456 	if (irq_status < 0) {
457 		phy_error(phydev);
458 		return IRQ_NONE;
459 	}
460 
461 	if (!(irq_status & KSZPHY_INTCS_STATUS))
462 		return IRQ_NONE;
463 
464 	phy_trigger_machine(phydev);
465 
466 	return IRQ_HANDLED;
467 }
468 
469 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
470 {
471 	int ctrl;
472 
473 	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
474 	if (ctrl < 0)
475 		return ctrl;
476 
477 	if (val)
478 		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
479 	else
480 		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
481 
482 	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
483 }
484 
485 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
486 {
487 	int rc, temp, shift;
488 
489 	switch (reg) {
490 	case MII_KSZPHY_CTRL_1:
491 		shift = 14;
492 		break;
493 	case MII_KSZPHY_CTRL_2:
494 		shift = 4;
495 		break;
496 	default:
497 		return -EINVAL;
498 	}
499 
500 	temp = phy_read(phydev, reg);
501 	if (temp < 0) {
502 		rc = temp;
503 		goto out;
504 	}
505 
506 	temp &= ~(3 << shift);
507 	temp |= val << shift;
508 	rc = phy_write(phydev, reg, temp);
509 out:
510 	if (rc < 0)
511 		phydev_err(phydev, "failed to set led mode\n");
512 
513 	return rc;
514 }
515 
516 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
517  * unique (non-broadcast) address on a shared bus.
518  */
519 static int kszphy_broadcast_disable(struct phy_device *phydev)
520 {
521 	int ret;
522 
523 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
524 	if (ret < 0)
525 		goto out;
526 
527 	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
528 out:
529 	if (ret)
530 		phydev_err(phydev, "failed to disable broadcast address\n");
531 
532 	return ret;
533 }
534 
535 static int kszphy_nand_tree_disable(struct phy_device *phydev)
536 {
537 	int ret;
538 
539 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
540 	if (ret < 0)
541 		goto out;
542 
543 	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
544 		return 0;
545 
546 	ret = phy_write(phydev, MII_KSZPHY_OMSO,
547 			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
548 out:
549 	if (ret)
550 		phydev_err(phydev, "failed to disable NAND tree mode\n");
551 
552 	return ret;
553 }
554 
555 /* Some config bits need to be set again on resume, handle them here. */
556 static int kszphy_config_reset(struct phy_device *phydev)
557 {
558 	struct kszphy_priv *priv = phydev->priv;
559 	int ret;
560 
561 	if (priv->rmii_ref_clk_sel) {
562 		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
563 		if (ret) {
564 			phydev_err(phydev,
565 				   "failed to set rmii reference clock\n");
566 			return ret;
567 		}
568 	}
569 
570 	if (priv->type && priv->led_mode >= 0)
571 		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
572 
573 	return 0;
574 }
575 
576 static int kszphy_config_init(struct phy_device *phydev)
577 {
578 	struct kszphy_priv *priv = phydev->priv;
579 	const struct kszphy_type *type;
580 
581 	if (!priv)
582 		return 0;
583 
584 	type = priv->type;
585 
586 	if (type && type->has_broadcast_disable)
587 		kszphy_broadcast_disable(phydev);
588 
589 	if (type && type->has_nand_tree_disable)
590 		kszphy_nand_tree_disable(phydev);
591 
592 	return kszphy_config_reset(phydev);
593 }
594 
595 static int ksz8041_fiber_mode(struct phy_device *phydev)
596 {
597 	struct device_node *of_node = phydev->mdio.dev.of_node;
598 
599 	return of_property_read_bool(of_node, "micrel,fiber-mode");
600 }
601 
602 static int ksz8041_config_init(struct phy_device *phydev)
603 {
604 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
605 
606 	/* Limit supported and advertised modes in fiber mode */
607 	if (ksz8041_fiber_mode(phydev)) {
608 		phydev->dev_flags |= MICREL_PHY_FXEN;
609 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
610 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
611 
612 		linkmode_and(phydev->supported, phydev->supported, mask);
613 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
614 				 phydev->supported);
615 		linkmode_and(phydev->advertising, phydev->advertising, mask);
616 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
617 				 phydev->advertising);
618 		phydev->autoneg = AUTONEG_DISABLE;
619 	}
620 
621 	return kszphy_config_init(phydev);
622 }
623 
624 static int ksz8041_config_aneg(struct phy_device *phydev)
625 {
626 	/* Skip auto-negotiation in fiber mode */
627 	if (phydev->dev_flags & MICREL_PHY_FXEN) {
628 		phydev->speed = SPEED_100;
629 		return 0;
630 	}
631 
632 	return genphy_config_aneg(phydev);
633 }
634 
635 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
636 					    const bool ksz_8051)
637 {
638 	int ret;
639 
640 	if ((phydev->phy_id & MICREL_PHY_ID_MASK) != PHY_ID_KSZ8051)
641 		return 0;
642 
643 	ret = phy_read(phydev, MII_BMSR);
644 	if (ret < 0)
645 		return ret;
646 
647 	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
648 	 * exact PHY ID. However, they can be told apart by the extended
649 	 * capability registers presence. The KSZ8051 PHY has them while
650 	 * the switch does not.
651 	 */
652 	ret &= BMSR_ERCAP;
653 	if (ksz_8051)
654 		return ret;
655 	else
656 		return !ret;
657 }
658 
659 static int ksz8051_match_phy_device(struct phy_device *phydev)
660 {
661 	return ksz8051_ksz8795_match_phy_device(phydev, true);
662 }
663 
664 static int ksz8081_config_init(struct phy_device *phydev)
665 {
666 	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
667 	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
668 	 * pull-down is missing, the factory test mode should be cleared by
669 	 * manually writing a 0.
670 	 */
671 	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
672 
673 	return kszphy_config_init(phydev);
674 }
675 
676 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
677 {
678 	u16 val;
679 
680 	switch (ctrl) {
681 	case ETH_TP_MDI:
682 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
683 		break;
684 	case ETH_TP_MDI_X:
685 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
686 			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
687 		break;
688 	case ETH_TP_MDI_AUTO:
689 		val = 0;
690 		break;
691 	default:
692 		return 0;
693 	}
694 
695 	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
696 			  KSZ8081_CTRL2_HP_MDIX |
697 			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
698 			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
699 			  KSZ8081_CTRL2_HP_MDIX | val);
700 }
701 
702 static int ksz8081_config_aneg(struct phy_device *phydev)
703 {
704 	int ret;
705 
706 	ret = genphy_config_aneg(phydev);
707 	if (ret)
708 		return ret;
709 
710 	/* The MDI-X configuration is automatically changed by the PHY after
711 	 * switching from autoneg off to on. So, take MDI-X configuration under
712 	 * own control and set it after autoneg configuration was done.
713 	 */
714 	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
715 }
716 
717 static int ksz8081_mdix_update(struct phy_device *phydev)
718 {
719 	int ret;
720 
721 	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
722 	if (ret < 0)
723 		return ret;
724 
725 	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
726 		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
727 			phydev->mdix_ctrl = ETH_TP_MDI_X;
728 		else
729 			phydev->mdix_ctrl = ETH_TP_MDI;
730 	} else {
731 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
732 	}
733 
734 	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
735 	if (ret < 0)
736 		return ret;
737 
738 	if (ret & KSZ8081_CTRL1_MDIX_STAT)
739 		phydev->mdix = ETH_TP_MDI;
740 	else
741 		phydev->mdix = ETH_TP_MDI_X;
742 
743 	return 0;
744 }
745 
746 static int ksz8081_read_status(struct phy_device *phydev)
747 {
748 	int ret;
749 
750 	ret = ksz8081_mdix_update(phydev);
751 	if (ret < 0)
752 		return ret;
753 
754 	return genphy_read_status(phydev);
755 }
756 
757 static int ksz8061_config_init(struct phy_device *phydev)
758 {
759 	int ret;
760 
761 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
762 	if (ret)
763 		return ret;
764 
765 	return kszphy_config_init(phydev);
766 }
767 
768 static int ksz8795_match_phy_device(struct phy_device *phydev)
769 {
770 	return ksz8051_ksz8795_match_phy_device(phydev, false);
771 }
772 
773 static int ksz9021_load_values_from_of(struct phy_device *phydev,
774 				       const struct device_node *of_node,
775 				       u16 reg,
776 				       const char *field1, const char *field2,
777 				       const char *field3, const char *field4)
778 {
779 	int val1 = -1;
780 	int val2 = -2;
781 	int val3 = -3;
782 	int val4 = -4;
783 	int newval;
784 	int matches = 0;
785 
786 	if (!of_property_read_u32(of_node, field1, &val1))
787 		matches++;
788 
789 	if (!of_property_read_u32(of_node, field2, &val2))
790 		matches++;
791 
792 	if (!of_property_read_u32(of_node, field3, &val3))
793 		matches++;
794 
795 	if (!of_property_read_u32(of_node, field4, &val4))
796 		matches++;
797 
798 	if (!matches)
799 		return 0;
800 
801 	if (matches < 4)
802 		newval = kszphy_extended_read(phydev, reg);
803 	else
804 		newval = 0;
805 
806 	if (val1 != -1)
807 		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
808 
809 	if (val2 != -2)
810 		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
811 
812 	if (val3 != -3)
813 		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
814 
815 	if (val4 != -4)
816 		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
817 
818 	return kszphy_extended_write(phydev, reg, newval);
819 }
820 
821 static int ksz9021_config_init(struct phy_device *phydev)
822 {
823 	const struct device_node *of_node;
824 	const struct device *dev_walker;
825 
826 	/* The Micrel driver has a deprecated option to place phy OF
827 	 * properties in the MAC node. Walk up the tree of devices to
828 	 * find a device with an OF node.
829 	 */
830 	dev_walker = &phydev->mdio.dev;
831 	do {
832 		of_node = dev_walker->of_node;
833 		dev_walker = dev_walker->parent;
834 
835 	} while (!of_node && dev_walker);
836 
837 	if (of_node) {
838 		ksz9021_load_values_from_of(phydev, of_node,
839 				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
840 				    "txen-skew-ps", "txc-skew-ps",
841 				    "rxdv-skew-ps", "rxc-skew-ps");
842 		ksz9021_load_values_from_of(phydev, of_node,
843 				    MII_KSZPHY_RX_DATA_PAD_SKEW,
844 				    "rxd0-skew-ps", "rxd1-skew-ps",
845 				    "rxd2-skew-ps", "rxd3-skew-ps");
846 		ksz9021_load_values_from_of(phydev, of_node,
847 				    MII_KSZPHY_TX_DATA_PAD_SKEW,
848 				    "txd0-skew-ps", "txd1-skew-ps",
849 				    "txd2-skew-ps", "txd3-skew-ps");
850 	}
851 	return 0;
852 }
853 
854 #define KSZ9031_PS_TO_REG		60
855 
856 /* Extended registers */
857 /* MMD Address 0x0 */
858 #define MII_KSZ9031RN_FLP_BURST_TX_LO	3
859 #define MII_KSZ9031RN_FLP_BURST_TX_HI	4
860 
861 /* MMD Address 0x2 */
862 #define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
863 #define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
864 #define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
865 
866 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
867 #define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
868 #define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
869 #define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
870 #define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
871 
872 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
873 #define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
874 #define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
875 #define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
876 #define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
877 
878 #define MII_KSZ9031RN_CLK_PAD_SKEW	8
879 #define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
880 #define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
881 
882 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
883  * provide different RGMII options we need to configure delay offset
884  * for each pad relative to build in delay.
885  */
886 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
887  * 1.80ns
888  */
889 #define RX_ID				0x7
890 #define RX_CLK_ID			0x19
891 
892 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
893  * internal 1.2ns delay.
894  */
895 #define RX_ND				0xc
896 #define RX_CLK_ND			0x0
897 
898 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
899 #define TX_ID				0x0
900 #define TX_CLK_ID			0x1f
901 
902 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
903  * dealy
904  */
905 #define TX_ND				0x7
906 #define TX_CLK_ND			0xf
907 
908 /* MMD Address 0x1C */
909 #define MII_KSZ9031RN_EDPD		0x23
910 #define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
911 
912 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
913 				       const struct device_node *of_node,
914 				       u16 reg, size_t field_sz,
915 				       const char *field[], u8 numfields,
916 				       bool *update)
917 {
918 	int val[4] = {-1, -2, -3, -4};
919 	int matches = 0;
920 	u16 mask;
921 	u16 maxval;
922 	u16 newval;
923 	int i;
924 
925 	for (i = 0; i < numfields; i++)
926 		if (!of_property_read_u32(of_node, field[i], val + i))
927 			matches++;
928 
929 	if (!matches)
930 		return 0;
931 
932 	*update |= true;
933 
934 	if (matches < numfields)
935 		newval = phy_read_mmd(phydev, 2, reg);
936 	else
937 		newval = 0;
938 
939 	maxval = (field_sz == 4) ? 0xf : 0x1f;
940 	for (i = 0; i < numfields; i++)
941 		if (val[i] != -(i + 1)) {
942 			mask = 0xffff;
943 			mask ^= maxval << (field_sz * i);
944 			newval = (newval & mask) |
945 				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
946 					<< (field_sz * i));
947 		}
948 
949 	return phy_write_mmd(phydev, 2, reg, newval);
950 }
951 
952 /* Center KSZ9031RNX FLP timing at 16ms. */
953 static int ksz9031_center_flp_timing(struct phy_device *phydev)
954 {
955 	int result;
956 
957 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
958 			       0x0006);
959 	if (result)
960 		return result;
961 
962 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
963 			       0x1A80);
964 	if (result)
965 		return result;
966 
967 	return genphy_restart_aneg(phydev);
968 }
969 
970 /* Enable energy-detect power-down mode */
971 static int ksz9031_enable_edpd(struct phy_device *phydev)
972 {
973 	int reg;
974 
975 	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
976 	if (reg < 0)
977 		return reg;
978 	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
979 			     reg | MII_KSZ9031RN_EDPD_ENABLE);
980 }
981 
982 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
983 {
984 	u16 rx, tx, rx_clk, tx_clk;
985 	int ret;
986 
987 	switch (phydev->interface) {
988 	case PHY_INTERFACE_MODE_RGMII:
989 		tx = TX_ND;
990 		tx_clk = TX_CLK_ND;
991 		rx = RX_ND;
992 		rx_clk = RX_CLK_ND;
993 		break;
994 	case PHY_INTERFACE_MODE_RGMII_ID:
995 		tx = TX_ID;
996 		tx_clk = TX_CLK_ID;
997 		rx = RX_ID;
998 		rx_clk = RX_CLK_ID;
999 		break;
1000 	case PHY_INTERFACE_MODE_RGMII_RXID:
1001 		tx = TX_ND;
1002 		tx_clk = TX_CLK_ND;
1003 		rx = RX_ID;
1004 		rx_clk = RX_CLK_ID;
1005 		break;
1006 	case PHY_INTERFACE_MODE_RGMII_TXID:
1007 		tx = TX_ID;
1008 		tx_clk = TX_CLK_ID;
1009 		rx = RX_ND;
1010 		rx_clk = RX_CLK_ND;
1011 		break;
1012 	default:
1013 		return 0;
1014 	}
1015 
1016 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1017 			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1018 			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1019 	if (ret < 0)
1020 		return ret;
1021 
1022 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1023 			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1024 			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1025 			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1026 			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1027 	if (ret < 0)
1028 		return ret;
1029 
1030 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1031 			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1032 			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1033 			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1034 			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1035 	if (ret < 0)
1036 		return ret;
1037 
1038 	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1039 			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1040 			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1041 }
1042 
1043 static int ksz9031_config_init(struct phy_device *phydev)
1044 {
1045 	const struct device_node *of_node;
1046 	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1047 	static const char *rx_data_skews[4] = {
1048 		"rxd0-skew-ps", "rxd1-skew-ps",
1049 		"rxd2-skew-ps", "rxd3-skew-ps"
1050 	};
1051 	static const char *tx_data_skews[4] = {
1052 		"txd0-skew-ps", "txd1-skew-ps",
1053 		"txd2-skew-ps", "txd3-skew-ps"
1054 	};
1055 	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1056 	const struct device *dev_walker;
1057 	int result;
1058 
1059 	result = ksz9031_enable_edpd(phydev);
1060 	if (result < 0)
1061 		return result;
1062 
1063 	/* The Micrel driver has a deprecated option to place phy OF
1064 	 * properties in the MAC node. Walk up the tree of devices to
1065 	 * find a device with an OF node.
1066 	 */
1067 	dev_walker = &phydev->mdio.dev;
1068 	do {
1069 		of_node = dev_walker->of_node;
1070 		dev_walker = dev_walker->parent;
1071 	} while (!of_node && dev_walker);
1072 
1073 	if (of_node) {
1074 		bool update = false;
1075 
1076 		if (phy_interface_is_rgmii(phydev)) {
1077 			result = ksz9031_config_rgmii_delay(phydev);
1078 			if (result < 0)
1079 				return result;
1080 		}
1081 
1082 		ksz9031_of_load_skew_values(phydev, of_node,
1083 				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1084 				clk_skews, 2, &update);
1085 
1086 		ksz9031_of_load_skew_values(phydev, of_node,
1087 				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1088 				control_skews, 2, &update);
1089 
1090 		ksz9031_of_load_skew_values(phydev, of_node,
1091 				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1092 				rx_data_skews, 4, &update);
1093 
1094 		ksz9031_of_load_skew_values(phydev, of_node,
1095 				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1096 				tx_data_skews, 4, &update);
1097 
1098 		if (update && !phy_interface_is_rgmii(phydev))
1099 			phydev_warn(phydev,
1100 				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1101 
1102 		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1103 		 * When the device links in the 1000BASE-T slave mode only,
1104 		 * the optional 125MHz reference output clock (CLK125_NDO)
1105 		 * has wide duty cycle variation.
1106 		 *
1107 		 * The optional CLK125_NDO clock does not meet the RGMII
1108 		 * 45/55 percent (min/max) duty cycle requirement and therefore
1109 		 * cannot be used directly by the MAC side for clocking
1110 		 * applications that have setup/hold time requirements on
1111 		 * rising and falling clock edges.
1112 		 *
1113 		 * Workaround:
1114 		 * Force the phy to be the master to receive a stable clock
1115 		 * which meets the duty cycle requirement.
1116 		 */
1117 		if (of_property_read_bool(of_node, "micrel,force-master")) {
1118 			result = phy_read(phydev, MII_CTRL1000);
1119 			if (result < 0)
1120 				goto err_force_master;
1121 
1122 			/* enable master mode, config & prefer master */
1123 			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1124 			result = phy_write(phydev, MII_CTRL1000, result);
1125 			if (result < 0)
1126 				goto err_force_master;
1127 		}
1128 	}
1129 
1130 	return ksz9031_center_flp_timing(phydev);
1131 
1132 err_force_master:
1133 	phydev_err(phydev, "failed to force the phy to master mode\n");
1134 	return result;
1135 }
1136 
1137 #define KSZ9131_SKEW_5BIT_MAX	2400
1138 #define KSZ9131_SKEW_4BIT_MAX	800
1139 #define KSZ9131_OFFSET		700
1140 #define KSZ9131_STEP		100
1141 
1142 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1143 				       struct device_node *of_node,
1144 				       u16 reg, size_t field_sz,
1145 				       char *field[], u8 numfields)
1146 {
1147 	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1148 		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1149 	int skewval, skewmax = 0;
1150 	int matches = 0;
1151 	u16 maxval;
1152 	u16 newval;
1153 	u16 mask;
1154 	int i;
1155 
1156 	/* psec properties in dts should mean x pico seconds */
1157 	if (field_sz == 5)
1158 		skewmax = KSZ9131_SKEW_5BIT_MAX;
1159 	else
1160 		skewmax = KSZ9131_SKEW_4BIT_MAX;
1161 
1162 	for (i = 0; i < numfields; i++)
1163 		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1164 			if (skewval < -KSZ9131_OFFSET)
1165 				skewval = -KSZ9131_OFFSET;
1166 			else if (skewval > skewmax)
1167 				skewval = skewmax;
1168 
1169 			val[i] = skewval + KSZ9131_OFFSET;
1170 			matches++;
1171 		}
1172 
1173 	if (!matches)
1174 		return 0;
1175 
1176 	if (matches < numfields)
1177 		newval = phy_read_mmd(phydev, 2, reg);
1178 	else
1179 		newval = 0;
1180 
1181 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1182 	for (i = 0; i < numfields; i++)
1183 		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1184 			mask = 0xffff;
1185 			mask ^= maxval << (field_sz * i);
1186 			newval = (newval & mask) |
1187 				(((val[i] / KSZ9131_STEP) & maxval)
1188 					<< (field_sz * i));
1189 		}
1190 
1191 	return phy_write_mmd(phydev, 2, reg, newval);
1192 }
1193 
1194 #define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1195 #define KSZ9131RN_RXC_DLL_CTRL		76
1196 #define KSZ9131RN_TXC_DLL_CTRL		77
1197 #define KSZ9131RN_DLL_ENABLE_DELAY	0
1198 
1199 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1200 {
1201 	const struct kszphy_type *type = phydev->drv->driver_data;
1202 	u16 rxcdll_val, txcdll_val;
1203 	int ret;
1204 
1205 	switch (phydev->interface) {
1206 	case PHY_INTERFACE_MODE_RGMII:
1207 		rxcdll_val = type->disable_dll_rx_bit;
1208 		txcdll_val = type->disable_dll_tx_bit;
1209 		break;
1210 	case PHY_INTERFACE_MODE_RGMII_ID:
1211 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1212 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1213 		break;
1214 	case PHY_INTERFACE_MODE_RGMII_RXID:
1215 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1216 		txcdll_val = type->disable_dll_tx_bit;
1217 		break;
1218 	case PHY_INTERFACE_MODE_RGMII_TXID:
1219 		rxcdll_val = type->disable_dll_rx_bit;
1220 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1221 		break;
1222 	default:
1223 		return 0;
1224 	}
1225 
1226 	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1227 			     KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1228 			     rxcdll_val);
1229 	if (ret < 0)
1230 		return ret;
1231 
1232 	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1233 			      KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1234 			      txcdll_val);
1235 }
1236 
1237 /* Silicon Errata DS80000693B
1238  *
1239  * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1240  * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1241  * according to the datasheet (off if there is no link).
1242  */
1243 static int ksz9131_led_errata(struct phy_device *phydev)
1244 {
1245 	int reg;
1246 
1247 	reg = phy_read_mmd(phydev, 2, 0);
1248 	if (reg < 0)
1249 		return reg;
1250 
1251 	if (!(reg & BIT(4)))
1252 		return 0;
1253 
1254 	return phy_set_bits(phydev, 0x1e, BIT(9));
1255 }
1256 
1257 static int ksz9131_config_init(struct phy_device *phydev)
1258 {
1259 	struct device_node *of_node;
1260 	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1261 	char *rx_data_skews[4] = {
1262 		"rxd0-skew-psec", "rxd1-skew-psec",
1263 		"rxd2-skew-psec", "rxd3-skew-psec"
1264 	};
1265 	char *tx_data_skews[4] = {
1266 		"txd0-skew-psec", "txd1-skew-psec",
1267 		"txd2-skew-psec", "txd3-skew-psec"
1268 	};
1269 	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1270 	const struct device *dev_walker;
1271 	int ret;
1272 
1273 	dev_walker = &phydev->mdio.dev;
1274 	do {
1275 		of_node = dev_walker->of_node;
1276 		dev_walker = dev_walker->parent;
1277 	} while (!of_node && dev_walker);
1278 
1279 	if (!of_node)
1280 		return 0;
1281 
1282 	if (phy_interface_is_rgmii(phydev)) {
1283 		ret = ksz9131_config_rgmii_delay(phydev);
1284 		if (ret < 0)
1285 			return ret;
1286 	}
1287 
1288 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1289 					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1290 					  clk_skews, 2);
1291 	if (ret < 0)
1292 		return ret;
1293 
1294 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1295 					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1296 					  control_skews, 2);
1297 	if (ret < 0)
1298 		return ret;
1299 
1300 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1301 					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1302 					  rx_data_skews, 4);
1303 	if (ret < 0)
1304 		return ret;
1305 
1306 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1307 					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1308 					  tx_data_skews, 4);
1309 	if (ret < 0)
1310 		return ret;
1311 
1312 	ret = ksz9131_led_errata(phydev);
1313 	if (ret < 0)
1314 		return ret;
1315 
1316 	return 0;
1317 }
1318 
1319 #define MII_KSZ9131_AUTO_MDIX		0x1C
1320 #define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1321 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1322 
1323 static int ksz9131_mdix_update(struct phy_device *phydev)
1324 {
1325 	int ret;
1326 
1327 	ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX);
1328 	if (ret < 0)
1329 		return ret;
1330 
1331 	if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) {
1332 		if (ret & MII_KSZ9131_AUTO_MDI_SET)
1333 			phydev->mdix_ctrl = ETH_TP_MDI;
1334 		else
1335 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1336 	} else {
1337 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1338 	}
1339 
1340 	if (ret & MII_KSZ9131_AUTO_MDI_SET)
1341 		phydev->mdix = ETH_TP_MDI;
1342 	else
1343 		phydev->mdix = ETH_TP_MDI_X;
1344 
1345 	return 0;
1346 }
1347 
1348 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1349 {
1350 	u16 val;
1351 
1352 	switch (ctrl) {
1353 	case ETH_TP_MDI:
1354 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1355 		      MII_KSZ9131_AUTO_MDI_SET;
1356 		break;
1357 	case ETH_TP_MDI_X:
1358 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1359 		break;
1360 	case ETH_TP_MDI_AUTO:
1361 		val = 0;
1362 		break;
1363 	default:
1364 		return 0;
1365 	}
1366 
1367 	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1368 			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1369 			  MII_KSZ9131_AUTO_MDI_SET, val);
1370 }
1371 
1372 static int ksz9131_read_status(struct phy_device *phydev)
1373 {
1374 	int ret;
1375 
1376 	ret = ksz9131_mdix_update(phydev);
1377 	if (ret < 0)
1378 		return ret;
1379 
1380 	return genphy_read_status(phydev);
1381 }
1382 
1383 static int ksz9131_config_aneg(struct phy_device *phydev)
1384 {
1385 	int ret;
1386 
1387 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1388 	if (ret)
1389 		return ret;
1390 
1391 	return genphy_config_aneg(phydev);
1392 }
1393 
1394 static int ksz9477_get_features(struct phy_device *phydev)
1395 {
1396 	int ret;
1397 
1398 	ret = genphy_read_abilities(phydev);
1399 	if (ret)
1400 		return ret;
1401 
1402 	/* The "EEE control and capability 1" (Register 3.20) seems to be
1403 	 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1404 	 * on the 7.60 will affect 3.20. So, we need to construct our own list
1405 	 * of caps.
1406 	 * KSZ8563R should have 100BaseTX/Full only.
1407 	 */
1408 	linkmode_and(phydev->supported_eee, phydev->supported,
1409 		     PHY_EEE_CAP1_FEATURES);
1410 
1411 	return 0;
1412 }
1413 
1414 #define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1415 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1416 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1417 static int ksz8873mll_read_status(struct phy_device *phydev)
1418 {
1419 	int regval;
1420 
1421 	/* dummy read */
1422 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1423 
1424 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1425 
1426 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1427 		phydev->duplex = DUPLEX_HALF;
1428 	else
1429 		phydev->duplex = DUPLEX_FULL;
1430 
1431 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1432 		phydev->speed = SPEED_10;
1433 	else
1434 		phydev->speed = SPEED_100;
1435 
1436 	phydev->link = 1;
1437 	phydev->pause = phydev->asym_pause = 0;
1438 
1439 	return 0;
1440 }
1441 
1442 static int ksz9031_get_features(struct phy_device *phydev)
1443 {
1444 	int ret;
1445 
1446 	ret = genphy_read_abilities(phydev);
1447 	if (ret < 0)
1448 		return ret;
1449 
1450 	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1451 	 * Whenever the device's Asymmetric Pause capability is set to 1,
1452 	 * link-up may fail after a link-up to link-down transition.
1453 	 *
1454 	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1455 	 *
1456 	 * Workaround:
1457 	 * Do not enable the Asymmetric Pause capability bit.
1458 	 */
1459 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1460 
1461 	/* We force setting the Pause capability as the core will force the
1462 	 * Asymmetric Pause capability to 1 otherwise.
1463 	 */
1464 	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1465 
1466 	return 0;
1467 }
1468 
1469 static int ksz9031_read_status(struct phy_device *phydev)
1470 {
1471 	int err;
1472 	int regval;
1473 
1474 	err = genphy_read_status(phydev);
1475 	if (err)
1476 		return err;
1477 
1478 	/* Make sure the PHY is not broken. Read idle error count,
1479 	 * and reset the PHY if it is maxed out.
1480 	 */
1481 	regval = phy_read(phydev, MII_STAT1000);
1482 	if ((regval & 0xFF) == 0xFF) {
1483 		phy_init_hw(phydev);
1484 		phydev->link = 0;
1485 		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1486 			phydev->drv->config_intr(phydev);
1487 		return genphy_config_aneg(phydev);
1488 	}
1489 
1490 	return 0;
1491 }
1492 
1493 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1494 {
1495 	struct kszphy_priv *priv = phydev->priv;
1496 	int ret;
1497 
1498 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1499 	 * Prior to running the cable diagnostics, Auto-negotiation should
1500 	 * be disabled, full duplex set and the link speed set to 1000Mbps
1501 	 * via the Basic Control Register.
1502 	 */
1503 	ret = phy_modify(phydev, MII_BMCR,
1504 			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1505 			 BMCR_ANENABLE | BMCR_SPEED100,
1506 			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1507 	if (ret)
1508 		return ret;
1509 
1510 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1511 	 * The Master-Slave configuration should be set to Slave by writing
1512 	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1513 	 * Register.
1514 	 */
1515 	ret = phy_read(phydev, MII_CTRL1000);
1516 	if (ret < 0)
1517 		return ret;
1518 
1519 	/* Cache these bits, they need to be restored once LinkMD finishes. */
1520 	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1521 	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1522 	ret |= CTL1000_ENABLE_MASTER;
1523 
1524 	return phy_write(phydev, MII_CTRL1000, ret);
1525 }
1526 
1527 static int ksz9x31_cable_test_result_trans(u16 status)
1528 {
1529 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1530 	case KSZ9x31_LMD_VCT_ST_NORMAL:
1531 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1532 	case KSZ9x31_LMD_VCT_ST_OPEN:
1533 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1534 	case KSZ9x31_LMD_VCT_ST_SHORT:
1535 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1536 	case KSZ9x31_LMD_VCT_ST_FAIL:
1537 		fallthrough;
1538 	default:
1539 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1540 	}
1541 }
1542 
1543 static bool ksz9x31_cable_test_failed(u16 status)
1544 {
1545 	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1546 
1547 	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1548 }
1549 
1550 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1551 {
1552 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1553 	case KSZ9x31_LMD_VCT_ST_OPEN:
1554 		fallthrough;
1555 	case KSZ9x31_LMD_VCT_ST_SHORT:
1556 		return true;
1557 	}
1558 	return false;
1559 }
1560 
1561 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1562 {
1563 	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1564 
1565 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1566 	 *
1567 	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1568 	 */
1569 	if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_KSZ9131)
1570 		dt = clamp(dt - 22, 0, 255);
1571 
1572 	return (dt * 400) / 10;
1573 }
1574 
1575 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1576 {
1577 	int val, ret;
1578 
1579 	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1580 				    !(val & KSZ9x31_LMD_VCT_EN),
1581 				    30000, 100000, true);
1582 
1583 	return ret < 0 ? ret : 0;
1584 }
1585 
1586 static int ksz9x31_cable_test_get_pair(int pair)
1587 {
1588 	static const int ethtool_pair[] = {
1589 		ETHTOOL_A_CABLE_PAIR_A,
1590 		ETHTOOL_A_CABLE_PAIR_B,
1591 		ETHTOOL_A_CABLE_PAIR_C,
1592 		ETHTOOL_A_CABLE_PAIR_D,
1593 	};
1594 
1595 	return ethtool_pair[pair];
1596 }
1597 
1598 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1599 {
1600 	int ret, val;
1601 
1602 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1603 	 * To test each individual cable pair, set the cable pair in the Cable
1604 	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1605 	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1606 	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1607 	 * will self clear when the test is concluded.
1608 	 */
1609 	ret = phy_write(phydev, KSZ9x31_LMD,
1610 			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1611 	if (ret)
1612 		return ret;
1613 
1614 	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1615 	if (ret)
1616 		return ret;
1617 
1618 	val = phy_read(phydev, KSZ9x31_LMD);
1619 	if (val < 0)
1620 		return val;
1621 
1622 	if (ksz9x31_cable_test_failed(val))
1623 		return -EAGAIN;
1624 
1625 	ret = ethnl_cable_test_result(phydev,
1626 				      ksz9x31_cable_test_get_pair(pair),
1627 				      ksz9x31_cable_test_result_trans(val));
1628 	if (ret)
1629 		return ret;
1630 
1631 	if (!ksz9x31_cable_test_fault_length_valid(val))
1632 		return 0;
1633 
1634 	return ethnl_cable_test_fault_length(phydev,
1635 					     ksz9x31_cable_test_get_pair(pair),
1636 					     ksz9x31_cable_test_fault_length(phydev, val));
1637 }
1638 
1639 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1640 					 bool *finished)
1641 {
1642 	struct kszphy_priv *priv = phydev->priv;
1643 	unsigned long pair_mask = 0xf;
1644 	int retries = 20;
1645 	int pair, ret, rv;
1646 
1647 	*finished = false;
1648 
1649 	/* Try harder if link partner is active */
1650 	while (pair_mask && retries--) {
1651 		for_each_set_bit(pair, &pair_mask, 4) {
1652 			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1653 			if (ret == -EAGAIN)
1654 				continue;
1655 			if (ret < 0)
1656 				return ret;
1657 			clear_bit(pair, &pair_mask);
1658 		}
1659 		/* If link partner is in autonegotiation mode it will send 2ms
1660 		 * of FLPs with at least 6ms of silence.
1661 		 * Add 2ms sleep to have better chances to hit this silence.
1662 		 */
1663 		if (pair_mask)
1664 			usleep_range(2000, 3000);
1665 	}
1666 
1667 	/* Report remaining unfinished pair result as unknown. */
1668 	for_each_set_bit(pair, &pair_mask, 4) {
1669 		ret = ethnl_cable_test_result(phydev,
1670 					      ksz9x31_cable_test_get_pair(pair),
1671 					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1672 	}
1673 
1674 	*finished = true;
1675 
1676 	/* Restore cached bits from before LinkMD got started. */
1677 	rv = phy_modify(phydev, MII_CTRL1000,
1678 			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1679 			priv->vct_ctrl1000);
1680 	if (rv)
1681 		return rv;
1682 
1683 	return ret;
1684 }
1685 
1686 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1687 {
1688 	return 0;
1689 }
1690 
1691 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1692 {
1693 	u16 val;
1694 
1695 	switch (ctrl) {
1696 	case ETH_TP_MDI:
1697 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1698 		break;
1699 	case ETH_TP_MDI_X:
1700 		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1701 		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1702 		 * sheet seems to be missing:
1703 		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1704 		 * 0 = Normal operation (transmit on TX+/TX- pins)
1705 		 */
1706 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1707 		break;
1708 	case ETH_TP_MDI_AUTO:
1709 		val = 0;
1710 		break;
1711 	default:
1712 		return 0;
1713 	}
1714 
1715 	return phy_modify(phydev, MII_BMCR,
1716 			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1717 			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1718 			  KSZ886X_BMCR_HP_MDIX | val);
1719 }
1720 
1721 static int ksz886x_config_aneg(struct phy_device *phydev)
1722 {
1723 	int ret;
1724 
1725 	ret = genphy_config_aneg(phydev);
1726 	if (ret)
1727 		return ret;
1728 
1729 	/* The MDI-X configuration is automatically changed by the PHY after
1730 	 * switching from autoneg off to on. So, take MDI-X configuration under
1731 	 * own control and set it after autoneg configuration was done.
1732 	 */
1733 	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1734 }
1735 
1736 static int ksz886x_mdix_update(struct phy_device *phydev)
1737 {
1738 	int ret;
1739 
1740 	ret = phy_read(phydev, MII_BMCR);
1741 	if (ret < 0)
1742 		return ret;
1743 
1744 	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1745 		if (ret & KSZ886X_BMCR_FORCE_MDI)
1746 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1747 		else
1748 			phydev->mdix_ctrl = ETH_TP_MDI;
1749 	} else {
1750 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1751 	}
1752 
1753 	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1754 	if (ret < 0)
1755 		return ret;
1756 
1757 	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1758 	if (ret & KSZ886X_CTRL_MDIX_STAT)
1759 		phydev->mdix = ETH_TP_MDI_X;
1760 	else
1761 		phydev->mdix = ETH_TP_MDI;
1762 
1763 	return 0;
1764 }
1765 
1766 static int ksz886x_read_status(struct phy_device *phydev)
1767 {
1768 	int ret;
1769 
1770 	ret = ksz886x_mdix_update(phydev);
1771 	if (ret < 0)
1772 		return ret;
1773 
1774 	return genphy_read_status(phydev);
1775 }
1776 
1777 static int kszphy_get_sset_count(struct phy_device *phydev)
1778 {
1779 	return ARRAY_SIZE(kszphy_hw_stats);
1780 }
1781 
1782 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
1783 {
1784 	int i;
1785 
1786 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
1787 		strscpy(data + i * ETH_GSTRING_LEN,
1788 			kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
1789 	}
1790 }
1791 
1792 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
1793 {
1794 	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
1795 	struct kszphy_priv *priv = phydev->priv;
1796 	int val;
1797 	u64 ret;
1798 
1799 	val = phy_read(phydev, stat.reg);
1800 	if (val < 0) {
1801 		ret = U64_MAX;
1802 	} else {
1803 		val = val & ((1 << stat.bits) - 1);
1804 		priv->stats[i] += val;
1805 		ret = priv->stats[i];
1806 	}
1807 
1808 	return ret;
1809 }
1810 
1811 static void kszphy_get_stats(struct phy_device *phydev,
1812 			     struct ethtool_stats *stats, u64 *data)
1813 {
1814 	int i;
1815 
1816 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
1817 		data[i] = kszphy_get_stat(phydev, i);
1818 }
1819 
1820 static int kszphy_suspend(struct phy_device *phydev)
1821 {
1822 	/* Disable PHY Interrupts */
1823 	if (phy_interrupt_is_valid(phydev)) {
1824 		phydev->interrupts = PHY_INTERRUPT_DISABLED;
1825 		if (phydev->drv->config_intr)
1826 			phydev->drv->config_intr(phydev);
1827 	}
1828 
1829 	return genphy_suspend(phydev);
1830 }
1831 
1832 static void kszphy_parse_led_mode(struct phy_device *phydev)
1833 {
1834 	const struct kszphy_type *type = phydev->drv->driver_data;
1835 	const struct device_node *np = phydev->mdio.dev.of_node;
1836 	struct kszphy_priv *priv = phydev->priv;
1837 	int ret;
1838 
1839 	if (type && type->led_mode_reg) {
1840 		ret = of_property_read_u32(np, "micrel,led-mode",
1841 					   &priv->led_mode);
1842 
1843 		if (ret)
1844 			priv->led_mode = -1;
1845 
1846 		if (priv->led_mode > 3) {
1847 			phydev_err(phydev, "invalid led mode: 0x%02x\n",
1848 				   priv->led_mode);
1849 			priv->led_mode = -1;
1850 		}
1851 	} else {
1852 		priv->led_mode = -1;
1853 	}
1854 }
1855 
1856 static int kszphy_resume(struct phy_device *phydev)
1857 {
1858 	int ret;
1859 
1860 	genphy_resume(phydev);
1861 
1862 	/* After switching from power-down to normal mode, an internal global
1863 	 * reset is automatically generated. Wait a minimum of 1 ms before
1864 	 * read/write access to the PHY registers.
1865 	 */
1866 	usleep_range(1000, 2000);
1867 
1868 	ret = kszphy_config_reset(phydev);
1869 	if (ret)
1870 		return ret;
1871 
1872 	/* Enable PHY Interrupts */
1873 	if (phy_interrupt_is_valid(phydev)) {
1874 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
1875 		if (phydev->drv->config_intr)
1876 			phydev->drv->config_intr(phydev);
1877 	}
1878 
1879 	return 0;
1880 }
1881 
1882 static int kszphy_probe(struct phy_device *phydev)
1883 {
1884 	const struct kszphy_type *type = phydev->drv->driver_data;
1885 	const struct device_node *np = phydev->mdio.dev.of_node;
1886 	struct kszphy_priv *priv;
1887 	struct clk *clk;
1888 
1889 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
1890 	if (!priv)
1891 		return -ENOMEM;
1892 
1893 	phydev->priv = priv;
1894 
1895 	priv->type = type;
1896 
1897 	kszphy_parse_led_mode(phydev);
1898 
1899 	clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref");
1900 	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
1901 	if (!IS_ERR_OR_NULL(clk)) {
1902 		unsigned long rate = clk_get_rate(clk);
1903 		bool rmii_ref_clk_sel_25_mhz;
1904 
1905 		if (type)
1906 			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
1907 		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
1908 				"micrel,rmii-reference-clock-select-25-mhz");
1909 
1910 		if (rate > 24500000 && rate < 25500000) {
1911 			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
1912 		} else if (rate > 49500000 && rate < 50500000) {
1913 			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
1914 		} else {
1915 			phydev_err(phydev, "Clock rate out of range: %ld\n",
1916 				   rate);
1917 			return -EINVAL;
1918 		}
1919 	}
1920 
1921 	if (ksz8041_fiber_mode(phydev))
1922 		phydev->port = PORT_FIBRE;
1923 
1924 	/* Support legacy board-file configuration */
1925 	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
1926 		priv->rmii_ref_clk_sel = true;
1927 		priv->rmii_ref_clk_sel_val = true;
1928 	}
1929 
1930 	return 0;
1931 }
1932 
1933 static int lan8814_cable_test_start(struct phy_device *phydev)
1934 {
1935 	/* If autoneg is enabled, we won't be able to test cross pair
1936 	 * short. In this case, the PHY will "detect" a link and
1937 	 * confuse the internal state machine - disable auto neg here.
1938 	 * Set the speed to 1000mbit and full duplex.
1939 	 */
1940 	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
1941 			  BMCR_SPEED1000 | BMCR_FULLDPLX);
1942 }
1943 
1944 static int ksz886x_cable_test_start(struct phy_device *phydev)
1945 {
1946 	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
1947 		return -EOPNOTSUPP;
1948 
1949 	/* If autoneg is enabled, we won't be able to test cross pair
1950 	 * short. In this case, the PHY will "detect" a link and
1951 	 * confuse the internal state machine - disable auto neg here.
1952 	 * If autoneg is disabled, we should set the speed to 10mbit.
1953 	 */
1954 	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
1955 }
1956 
1957 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
1958 {
1959 	switch (FIELD_GET(mask, status)) {
1960 	case KSZ8081_LMD_STAT_NORMAL:
1961 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1962 	case KSZ8081_LMD_STAT_SHORT:
1963 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1964 	case KSZ8081_LMD_STAT_OPEN:
1965 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1966 	case KSZ8081_LMD_STAT_FAIL:
1967 		fallthrough;
1968 	default:
1969 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1970 	}
1971 }
1972 
1973 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
1974 {
1975 	return FIELD_GET(mask, status) ==
1976 		KSZ8081_LMD_STAT_FAIL;
1977 }
1978 
1979 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
1980 {
1981 	switch (FIELD_GET(mask, status)) {
1982 	case KSZ8081_LMD_STAT_OPEN:
1983 		fallthrough;
1984 	case KSZ8081_LMD_STAT_SHORT:
1985 		return true;
1986 	}
1987 	return false;
1988 }
1989 
1990 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
1991 							   u16 status, u16 data_mask)
1992 {
1993 	int dt;
1994 
1995 	/* According to the data sheet the distance to the fault is
1996 	 * DELTA_TIME * 0.4 meters for ksz phys.
1997 	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
1998 	 */
1999 	dt = FIELD_GET(data_mask, status);
2000 
2001 	if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_LAN8814)
2002 		return ((dt - 22) * 800) / 10;
2003 	else
2004 		return (dt * 400) / 10;
2005 }
2006 
2007 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2008 {
2009 	const struct kszphy_type *type = phydev->drv->driver_data;
2010 	int val, ret;
2011 
2012 	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2013 				    !(val & KSZ8081_LMD_ENABLE_TEST),
2014 				    30000, 100000, true);
2015 
2016 	return ret < 0 ? ret : 0;
2017 }
2018 
2019 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2020 {
2021 	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2022 					    ETHTOOL_A_CABLE_PAIR_B,
2023 					    ETHTOOL_A_CABLE_PAIR_C,
2024 					    ETHTOOL_A_CABLE_PAIR_D,
2025 					  };
2026 	u32 fault_length;
2027 	int ret;
2028 	int val;
2029 
2030 	val = KSZ8081_LMD_ENABLE_TEST;
2031 	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2032 
2033 	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2034 	if (ret < 0)
2035 		return ret;
2036 
2037 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2038 	if (ret)
2039 		return ret;
2040 
2041 	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2042 	if (val < 0)
2043 		return val;
2044 
2045 	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2046 		return -EAGAIN;
2047 
2048 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2049 				      ksz886x_cable_test_result_trans(val,
2050 								      LAN8814_CABLE_DIAG_STAT_MASK
2051 								      ));
2052 	if (ret)
2053 		return ret;
2054 
2055 	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2056 		return 0;
2057 
2058 	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2059 						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2060 
2061 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2062 }
2063 
2064 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2065 {
2066 	static const int ethtool_pair[] = {
2067 		ETHTOOL_A_CABLE_PAIR_A,
2068 		ETHTOOL_A_CABLE_PAIR_B,
2069 	};
2070 	int ret, val, mdix;
2071 	u32 fault_length;
2072 
2073 	/* There is no way to choice the pair, like we do one ksz9031.
2074 	 * We can workaround this limitation by using the MDI-X functionality.
2075 	 */
2076 	if (pair == 0)
2077 		mdix = ETH_TP_MDI;
2078 	else
2079 		mdix = ETH_TP_MDI_X;
2080 
2081 	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2082 	case PHY_ID_KSZ8081:
2083 		ret = ksz8081_config_mdix(phydev, mdix);
2084 		break;
2085 	case PHY_ID_KSZ886X:
2086 		ret = ksz886x_config_mdix(phydev, mdix);
2087 		break;
2088 	default:
2089 		ret = -ENODEV;
2090 	}
2091 
2092 	if (ret)
2093 		return ret;
2094 
2095 	/* Now we are ready to fire. This command will send a 100ns pulse
2096 	 * to the pair.
2097 	 */
2098 	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2099 	if (ret)
2100 		return ret;
2101 
2102 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2103 	if (ret)
2104 		return ret;
2105 
2106 	val = phy_read(phydev, KSZ8081_LMD);
2107 	if (val < 0)
2108 		return val;
2109 
2110 	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2111 		return -EAGAIN;
2112 
2113 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2114 				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2115 	if (ret)
2116 		return ret;
2117 
2118 	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2119 		return 0;
2120 
2121 	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2122 
2123 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2124 }
2125 
2126 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2127 					 bool *finished)
2128 {
2129 	const struct kszphy_type *type = phydev->drv->driver_data;
2130 	unsigned long pair_mask = type->pair_mask;
2131 	int retries = 20;
2132 	int ret = 0;
2133 	int pair;
2134 
2135 	*finished = false;
2136 
2137 	/* Try harder if link partner is active */
2138 	while (pair_mask && retries--) {
2139 		for_each_set_bit(pair, &pair_mask, 4) {
2140 			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2141 				ret = lan8814_cable_test_one_pair(phydev, pair);
2142 			else
2143 				ret = ksz886x_cable_test_one_pair(phydev, pair);
2144 			if (ret == -EAGAIN)
2145 				continue;
2146 			if (ret < 0)
2147 				return ret;
2148 			clear_bit(pair, &pair_mask);
2149 		}
2150 		/* If link partner is in autonegotiation mode it will send 2ms
2151 		 * of FLPs with at least 6ms of silence.
2152 		 * Add 2ms sleep to have better chances to hit this silence.
2153 		 */
2154 		if (pair_mask)
2155 			msleep(2);
2156 	}
2157 
2158 	*finished = true;
2159 
2160 	return ret;
2161 }
2162 
2163 #define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2164 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2165 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2166 
2167 #define LAN8814_QSGMII_SOFT_RESET			0x43
2168 #define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2169 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2170 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2171 #define LAN8814_ALIGN_SWAP				0x4a
2172 #define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2173 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2174 
2175 #define LAN8804_ALIGN_SWAP				0x4a
2176 #define LAN8804_ALIGN_TX_A_B_SWAP			0x1
2177 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2178 #define LAN8814_CLOCK_MANAGEMENT			0xd
2179 #define LAN8814_LINK_QUALITY				0x8e
2180 
2181 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2182 {
2183 	int data;
2184 
2185 	phy_lock_mdio_bus(phydev);
2186 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2187 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2188 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2189 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2190 	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2191 	phy_unlock_mdio_bus(phydev);
2192 
2193 	return data;
2194 }
2195 
2196 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2197 				 u16 val)
2198 {
2199 	phy_lock_mdio_bus(phydev);
2200 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2201 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2202 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2203 		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2204 
2205 	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2206 	if (val != 0)
2207 		phydev_err(phydev, "Error: phy_write has returned error %d\n",
2208 			   val);
2209 	phy_unlock_mdio_bus(phydev);
2210 	return val;
2211 }
2212 
2213 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2214 {
2215 	u16 val = 0;
2216 
2217 	if (enable)
2218 		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2219 		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2220 		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2221 		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2222 
2223 	return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2224 }
2225 
2226 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2227 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2228 {
2229 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2230 	*seconds = (*seconds << 16) |
2231 		   lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2232 
2233 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2234 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2235 			lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2236 
2237 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2238 }
2239 
2240 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2241 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2242 {
2243 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2244 	*seconds = *seconds << 16 |
2245 		   lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2246 
2247 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2248 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2249 			lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2250 
2251 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2252 }
2253 
2254 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
2255 {
2256 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2257 	struct phy_device *phydev = ptp_priv->phydev;
2258 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2259 
2260 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2261 				SOF_TIMESTAMPING_RX_HARDWARE |
2262 				SOF_TIMESTAMPING_RAW_HARDWARE;
2263 
2264 	info->phc_index = ptp_clock_index(shared->ptp_clock);
2265 
2266 	info->tx_types =
2267 		(1 << HWTSTAMP_TX_OFF) |
2268 		(1 << HWTSTAMP_TX_ON) |
2269 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
2270 
2271 	info->rx_filters =
2272 		(1 << HWTSTAMP_FILTER_NONE) |
2273 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2274 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2275 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2276 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2277 
2278 	return 0;
2279 }
2280 
2281 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2282 {
2283 	int i;
2284 
2285 	for (i = 0; i < FIFO_SIZE; ++i)
2286 		lanphy_read_page_reg(phydev, 5,
2287 				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2288 
2289 	/* Read to clear overflow status bit */
2290 	lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2291 }
2292 
2293 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
2294 {
2295 	struct kszphy_ptp_priv *ptp_priv =
2296 			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2297 	struct phy_device *phydev = ptp_priv->phydev;
2298 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2299 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2300 	struct hwtstamp_config config;
2301 	int txcfg = 0, rxcfg = 0;
2302 	int pkt_ts_enable;
2303 
2304 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2305 		return -EFAULT;
2306 
2307 	ptp_priv->hwts_tx_type = config.tx_type;
2308 	ptp_priv->rx_filter = config.rx_filter;
2309 
2310 	switch (config.rx_filter) {
2311 	case HWTSTAMP_FILTER_NONE:
2312 		ptp_priv->layer = 0;
2313 		ptp_priv->version = 0;
2314 		break;
2315 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2316 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2317 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2318 		ptp_priv->layer = PTP_CLASS_L4;
2319 		ptp_priv->version = PTP_CLASS_V2;
2320 		break;
2321 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2322 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2323 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2324 		ptp_priv->layer = PTP_CLASS_L2;
2325 		ptp_priv->version = PTP_CLASS_V2;
2326 		break;
2327 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2328 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2329 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2330 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2331 		ptp_priv->version = PTP_CLASS_V2;
2332 		break;
2333 	default:
2334 		return -ERANGE;
2335 	}
2336 
2337 	if (ptp_priv->layer & PTP_CLASS_L2) {
2338 		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2339 		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2340 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
2341 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2342 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2343 	}
2344 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2345 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2346 
2347 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2348 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2349 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2350 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2351 
2352 	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC)
2353 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2354 				      PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2355 
2356 	if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2357 		lan8814_config_ts_intr(ptp_priv->phydev, true);
2358 	else
2359 		lan8814_config_ts_intr(ptp_priv->phydev, false);
2360 
2361 	mutex_lock(&shared->shared_lock);
2362 	if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2363 		shared->ref++;
2364 	else
2365 		shared->ref--;
2366 
2367 	if (shared->ref)
2368 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2369 				      PTP_CMD_CTL_PTP_ENABLE_);
2370 	else
2371 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2372 				      PTP_CMD_CTL_PTP_DISABLE_);
2373 	mutex_unlock(&shared->shared_lock);
2374 
2375 	/* In case of multiple starts and stops, these needs to be cleared */
2376 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2377 		list_del(&rx_ts->list);
2378 		kfree(rx_ts);
2379 	}
2380 	skb_queue_purge(&ptp_priv->rx_queue);
2381 	skb_queue_purge(&ptp_priv->tx_queue);
2382 
2383 	lan8814_flush_fifo(ptp_priv->phydev, false);
2384 	lan8814_flush_fifo(ptp_priv->phydev, true);
2385 
2386 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
2387 }
2388 
2389 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2390 			     struct sk_buff *skb, int type)
2391 {
2392 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2393 
2394 	switch (ptp_priv->hwts_tx_type) {
2395 	case HWTSTAMP_TX_ONESTEP_SYNC:
2396 		if (ptp_msg_is_sync(skb, type)) {
2397 			kfree_skb(skb);
2398 			return;
2399 		}
2400 		fallthrough;
2401 	case HWTSTAMP_TX_ON:
2402 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2403 		skb_queue_tail(&ptp_priv->tx_queue, skb);
2404 		break;
2405 	case HWTSTAMP_TX_OFF:
2406 	default:
2407 		kfree_skb(skb);
2408 		break;
2409 	}
2410 }
2411 
2412 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2413 {
2414 	struct ptp_header *ptp_header;
2415 	u32 type;
2416 
2417 	skb_push(skb, ETH_HLEN);
2418 	type = ptp_classify_raw(skb);
2419 	ptp_header = ptp_parse_header(skb, type);
2420 	skb_pull_inline(skb, ETH_HLEN);
2421 
2422 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2423 }
2424 
2425 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
2426 				 struct sk_buff *skb)
2427 {
2428 	struct skb_shared_hwtstamps *shhwtstamps;
2429 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2430 	unsigned long flags;
2431 	bool ret = false;
2432 	u16 skb_sig;
2433 
2434 	lan8814_get_sig_rx(skb, &skb_sig);
2435 
2436 	/* Iterate over all RX timestamps and match it with the received skbs */
2437 	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2438 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2439 		/* Check if we found the signature we were looking for. */
2440 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2441 			continue;
2442 
2443 		shhwtstamps = skb_hwtstamps(skb);
2444 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2445 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2446 						  rx_ts->nsec);
2447 		list_del(&rx_ts->list);
2448 		kfree(rx_ts);
2449 
2450 		ret = true;
2451 		break;
2452 	}
2453 	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2454 
2455 	if (ret)
2456 		netif_rx(skb);
2457 	return ret;
2458 }
2459 
2460 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2461 {
2462 	struct kszphy_ptp_priv *ptp_priv =
2463 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2464 
2465 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2466 	    type == PTP_CLASS_NONE)
2467 		return false;
2468 
2469 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2470 		return false;
2471 
2472 	/* If we failed to match then add it to the queue for when the timestamp
2473 	 * will come
2474 	 */
2475 	if (!lan8814_match_rx_skb(ptp_priv, skb))
2476 		skb_queue_tail(&ptp_priv->rx_queue, skb);
2477 
2478 	return true;
2479 }
2480 
2481 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2482 				  u32 seconds, u32 nano_seconds)
2483 {
2484 	u32 sec_low, sec_high, nsec_low, nsec_high;
2485 
2486 	sec_low = seconds & 0xffff;
2487 	sec_high = (seconds >> 16) & 0xffff;
2488 	nsec_low = nano_seconds & 0xffff;
2489 	nsec_high = (nano_seconds >> 16) & 0x3fff;
2490 
2491 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low);
2492 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high);
2493 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low);
2494 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high);
2495 
2496 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2497 }
2498 
2499 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2500 				  u32 *seconds, u32 *nano_seconds)
2501 {
2502 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2503 
2504 	*seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2505 	*seconds = (*seconds << 16) |
2506 		   lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2507 
2508 	*nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2509 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2510 			lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2511 }
2512 
2513 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2514 				   struct timespec64 *ts)
2515 {
2516 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2517 							  ptp_clock_info);
2518 	struct phy_device *phydev = shared->phydev;
2519 	u32 nano_seconds;
2520 	u32 seconds;
2521 
2522 	mutex_lock(&shared->shared_lock);
2523 	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2524 	mutex_unlock(&shared->shared_lock);
2525 	ts->tv_sec = seconds;
2526 	ts->tv_nsec = nano_seconds;
2527 
2528 	return 0;
2529 }
2530 
2531 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2532 				   const struct timespec64 *ts)
2533 {
2534 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2535 							  ptp_clock_info);
2536 	struct phy_device *phydev = shared->phydev;
2537 
2538 	mutex_lock(&shared->shared_lock);
2539 	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2540 	mutex_unlock(&shared->shared_lock);
2541 
2542 	return 0;
2543 }
2544 
2545 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2546 				   s64 time_step_ns)
2547 {
2548 	u32 nano_seconds_step;
2549 	u64 abs_time_step_ns;
2550 	u32 unsigned_seconds;
2551 	u32 nano_seconds;
2552 	u32 remainder;
2553 	s32 seconds;
2554 
2555 	if (time_step_ns >  15000000000LL) {
2556 		/* convert to clock set */
2557 		lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2558 		unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2559 						&remainder);
2560 		nano_seconds += remainder;
2561 		if (nano_seconds >= 1000000000) {
2562 			unsigned_seconds++;
2563 			nano_seconds -= 1000000000;
2564 		}
2565 		lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds);
2566 		return;
2567 	} else if (time_step_ns < -15000000000LL) {
2568 		/* convert to clock set */
2569 		time_step_ns = -time_step_ns;
2570 
2571 		lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2572 		unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2573 						&remainder);
2574 		nano_seconds_step = remainder;
2575 		if (nano_seconds < nano_seconds_step) {
2576 			unsigned_seconds--;
2577 			nano_seconds += 1000000000;
2578 		}
2579 		nano_seconds -= nano_seconds_step;
2580 		lan8814_ptp_clock_set(phydev, unsigned_seconds,
2581 				      nano_seconds);
2582 		return;
2583 	}
2584 
2585 	/* do clock step */
2586 	if (time_step_ns >= 0) {
2587 		abs_time_step_ns = (u64)time_step_ns;
2588 		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2589 					   &remainder);
2590 		nano_seconds = remainder;
2591 	} else {
2592 		abs_time_step_ns = (u64)(-time_step_ns);
2593 		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2594 			    &remainder));
2595 		nano_seconds = remainder;
2596 		if (nano_seconds > 0) {
2597 			/* subtracting nano seconds is not allowed
2598 			 * convert to subtracting from seconds,
2599 			 * and adding to nanoseconds
2600 			 */
2601 			seconds--;
2602 			nano_seconds = (1000000000 - nano_seconds);
2603 		}
2604 	}
2605 
2606 	if (nano_seconds > 0) {
2607 		/* add 8 ns to cover the likely normal increment */
2608 		nano_seconds += 8;
2609 	}
2610 
2611 	if (nano_seconds >= 1000000000) {
2612 		/* carry into seconds */
2613 		seconds++;
2614 		nano_seconds -= 1000000000;
2615 	}
2616 
2617 	while (seconds) {
2618 		if (seconds > 0) {
2619 			u32 adjustment_value = (u32)seconds;
2620 			u16 adjustment_value_lo, adjustment_value_hi;
2621 
2622 			if (adjustment_value > 0xF)
2623 				adjustment_value = 0xF;
2624 
2625 			adjustment_value_lo = adjustment_value & 0xffff;
2626 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2627 
2628 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2629 					      adjustment_value_lo);
2630 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2631 					      PTP_LTC_STEP_ADJ_DIR_ |
2632 					      adjustment_value_hi);
2633 			seconds -= ((s32)adjustment_value);
2634 		} else {
2635 			u32 adjustment_value = (u32)(-seconds);
2636 			u16 adjustment_value_lo, adjustment_value_hi;
2637 
2638 			if (adjustment_value > 0xF)
2639 				adjustment_value = 0xF;
2640 
2641 			adjustment_value_lo = adjustment_value & 0xffff;
2642 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2643 
2644 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2645 					      adjustment_value_lo);
2646 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2647 					      adjustment_value_hi);
2648 			seconds += ((s32)adjustment_value);
2649 		}
2650 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2651 				      PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2652 	}
2653 	if (nano_seconds) {
2654 		u16 nano_seconds_lo;
2655 		u16 nano_seconds_hi;
2656 
2657 		nano_seconds_lo = nano_seconds & 0xffff;
2658 		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2659 
2660 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2661 				      nano_seconds_lo);
2662 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2663 				      PTP_LTC_STEP_ADJ_DIR_ |
2664 				      nano_seconds_hi);
2665 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2666 				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2667 	}
2668 }
2669 
2670 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2671 {
2672 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2673 							  ptp_clock_info);
2674 	struct phy_device *phydev = shared->phydev;
2675 
2676 	mutex_lock(&shared->shared_lock);
2677 	lan8814_ptp_clock_step(phydev, delta);
2678 	mutex_unlock(&shared->shared_lock);
2679 
2680 	return 0;
2681 }
2682 
2683 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
2684 {
2685 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2686 							  ptp_clock_info);
2687 	struct phy_device *phydev = shared->phydev;
2688 	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
2689 	bool positive = true;
2690 	u32 kszphy_rate_adj;
2691 
2692 	if (scaled_ppm < 0) {
2693 		scaled_ppm = -scaled_ppm;
2694 		positive = false;
2695 	}
2696 
2697 	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
2698 	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
2699 
2700 	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
2701 	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
2702 
2703 	if (positive)
2704 		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
2705 
2706 	mutex_lock(&shared->shared_lock);
2707 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
2708 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
2709 	mutex_unlock(&shared->shared_lock);
2710 
2711 	return 0;
2712 }
2713 
2714 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
2715 {
2716 	struct ptp_header *ptp_header;
2717 	u32 type;
2718 
2719 	type = ptp_classify_raw(skb);
2720 	ptp_header = ptp_parse_header(skb, type);
2721 
2722 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2723 }
2724 
2725 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
2726 				 u32 seconds, u32 nsec, u16 seq_id)
2727 {
2728 	struct skb_shared_hwtstamps shhwtstamps;
2729 	struct sk_buff *skb, *skb_tmp;
2730 	unsigned long flags;
2731 	bool ret = false;
2732 	u16 skb_sig;
2733 
2734 	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
2735 	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
2736 		lan8814_get_sig_tx(skb, &skb_sig);
2737 
2738 		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
2739 			continue;
2740 
2741 		__skb_unlink(skb, &ptp_priv->tx_queue);
2742 		ret = true;
2743 		break;
2744 	}
2745 	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
2746 
2747 	if (ret) {
2748 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2749 		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
2750 		skb_complete_tx_timestamp(skb, &shhwtstamps);
2751 	}
2752 }
2753 
2754 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
2755 {
2756 	struct phy_device *phydev = ptp_priv->phydev;
2757 	u32 seconds, nsec;
2758 	u16 seq_id;
2759 
2760 	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
2761 	lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
2762 }
2763 
2764 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
2765 {
2766 	struct phy_device *phydev = ptp_priv->phydev;
2767 	u32 reg;
2768 
2769 	do {
2770 		lan8814_dequeue_tx_skb(ptp_priv);
2771 
2772 		/* If other timestamps are available in the FIFO,
2773 		 * process them.
2774 		 */
2775 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2776 	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
2777 }
2778 
2779 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
2780 			      struct lan8814_ptp_rx_ts *rx_ts)
2781 {
2782 	struct skb_shared_hwtstamps *shhwtstamps;
2783 	struct sk_buff *skb, *skb_tmp;
2784 	unsigned long flags;
2785 	bool ret = false;
2786 	u16 skb_sig;
2787 
2788 	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
2789 	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
2790 		lan8814_get_sig_rx(skb, &skb_sig);
2791 
2792 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2793 			continue;
2794 
2795 		__skb_unlink(skb, &ptp_priv->rx_queue);
2796 
2797 		ret = true;
2798 		break;
2799 	}
2800 	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
2801 
2802 	if (ret) {
2803 		shhwtstamps = skb_hwtstamps(skb);
2804 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2805 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
2806 		netif_rx(skb);
2807 	}
2808 
2809 	return ret;
2810 }
2811 
2812 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
2813 				struct lan8814_ptp_rx_ts *rx_ts)
2814 {
2815 	unsigned long flags;
2816 
2817 	/* If we failed to match the skb add it to the queue for when
2818 	 * the frame will come
2819 	 */
2820 	if (!lan8814_match_skb(ptp_priv, rx_ts)) {
2821 		spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2822 		list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
2823 		spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2824 	} else {
2825 		kfree(rx_ts);
2826 	}
2827 }
2828 
2829 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
2830 {
2831 	struct phy_device *phydev = ptp_priv->phydev;
2832 	struct lan8814_ptp_rx_ts *rx_ts;
2833 	u32 reg;
2834 
2835 	do {
2836 		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
2837 		if (!rx_ts)
2838 			return;
2839 
2840 		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
2841 				      &rx_ts->seq_id);
2842 		lan8814_match_rx_ts(ptp_priv, rx_ts);
2843 
2844 		/* If other timestamps are available in the FIFO,
2845 		 * process them.
2846 		 */
2847 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2848 	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
2849 }
2850 
2851 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
2852 {
2853 	struct kszphy_priv *priv = phydev->priv;
2854 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2855 
2856 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
2857 		lan8814_get_tx_ts(ptp_priv);
2858 
2859 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
2860 		lan8814_get_rx_ts(ptp_priv);
2861 
2862 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
2863 		lan8814_flush_fifo(phydev, true);
2864 		skb_queue_purge(&ptp_priv->tx_queue);
2865 	}
2866 
2867 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
2868 		lan8814_flush_fifo(phydev, false);
2869 		skb_queue_purge(&ptp_priv->rx_queue);
2870 	}
2871 }
2872 
2873 static int lan8804_config_init(struct phy_device *phydev)
2874 {
2875 	int val;
2876 
2877 	/* MDI-X setting for swap A,B transmit */
2878 	val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
2879 	val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
2880 	val |= LAN8804_ALIGN_TX_A_B_SWAP;
2881 	lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
2882 
2883 	/* Make sure that the PHY will not stop generating the clock when the
2884 	 * link partner goes down
2885 	 */
2886 	lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
2887 	lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
2888 
2889 	return 0;
2890 }
2891 
2892 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
2893 {
2894 	int status;
2895 
2896 	status = phy_read(phydev, LAN8814_INTS);
2897 	if (status < 0) {
2898 		phy_error(phydev);
2899 		return IRQ_NONE;
2900 	}
2901 
2902 	if (status > 0)
2903 		phy_trigger_machine(phydev);
2904 
2905 	return IRQ_HANDLED;
2906 }
2907 
2908 #define LAN8804_OUTPUT_CONTROL			25
2909 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
2910 #define LAN8804_CONTROL				31
2911 #define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
2912 
2913 static int lan8804_config_intr(struct phy_device *phydev)
2914 {
2915 	int err;
2916 
2917 	/* This is an internal PHY of lan966x and is not possible to change the
2918 	 * polarity on the GIC found in lan966x, therefore change the polarity
2919 	 * of the interrupt in the PHY from being active low instead of active
2920 	 * high.
2921 	 */
2922 	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
2923 
2924 	/* By default interrupt buffer is open-drain in which case the interrupt
2925 	 * can be active only low. Therefore change the interrupt buffer to be
2926 	 * push-pull to be able to change interrupt polarity
2927 	 */
2928 	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
2929 		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
2930 
2931 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
2932 		err = phy_read(phydev, LAN8814_INTS);
2933 		if (err < 0)
2934 			return err;
2935 
2936 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
2937 		if (err)
2938 			return err;
2939 	} else {
2940 		err = phy_write(phydev, LAN8814_INTC, 0);
2941 		if (err)
2942 			return err;
2943 
2944 		err = phy_read(phydev, LAN8814_INTS);
2945 		if (err < 0)
2946 			return err;
2947 	}
2948 
2949 	return 0;
2950 }
2951 
2952 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
2953 {
2954 	int ret = IRQ_NONE;
2955 	int irq_status;
2956 
2957 	irq_status = phy_read(phydev, LAN8814_INTS);
2958 	if (irq_status < 0) {
2959 		phy_error(phydev);
2960 		return IRQ_NONE;
2961 	}
2962 
2963 	if (irq_status & LAN8814_INT_LINK) {
2964 		phy_trigger_machine(phydev);
2965 		ret = IRQ_HANDLED;
2966 	}
2967 
2968 	while (true) {
2969 		irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2970 		if (!irq_status)
2971 			break;
2972 
2973 		lan8814_handle_ptp_interrupt(phydev, irq_status);
2974 		ret = IRQ_HANDLED;
2975 	}
2976 
2977 	return ret;
2978 }
2979 
2980 static int lan8814_ack_interrupt(struct phy_device *phydev)
2981 {
2982 	/* bit[12..0] int status, which is a read and clear register. */
2983 	int rc;
2984 
2985 	rc = phy_read(phydev, LAN8814_INTS);
2986 
2987 	return (rc < 0) ? rc : 0;
2988 }
2989 
2990 static int lan8814_config_intr(struct phy_device *phydev)
2991 {
2992 	int err;
2993 
2994 	lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
2995 			      LAN8814_INTR_CTRL_REG_POLARITY |
2996 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
2997 
2998 	/* enable / disable interrupts */
2999 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3000 		err = lan8814_ack_interrupt(phydev);
3001 		if (err)
3002 			return err;
3003 
3004 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3005 	} else {
3006 		err = phy_write(phydev, LAN8814_INTC, 0);
3007 		if (err)
3008 			return err;
3009 
3010 		err = lan8814_ack_interrupt(phydev);
3011 	}
3012 
3013 	return err;
3014 }
3015 
3016 static void lan8814_ptp_init(struct phy_device *phydev)
3017 {
3018 	struct kszphy_priv *priv = phydev->priv;
3019 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3020 	u32 temp;
3021 
3022 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3023 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3024 		return;
3025 
3026 	lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
3027 
3028 	temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
3029 	temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3030 	lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
3031 
3032 	temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
3033 	temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3034 	lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
3035 
3036 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3037 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3038 
3039 	/* Removing default registers configs related to L2 and IP */
3040 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3041 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3042 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3043 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3044 
3045 	skb_queue_head_init(&ptp_priv->tx_queue);
3046 	skb_queue_head_init(&ptp_priv->rx_queue);
3047 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3048 	spin_lock_init(&ptp_priv->rx_ts_lock);
3049 
3050 	ptp_priv->phydev = phydev;
3051 
3052 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3053 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3054 	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3055 	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
3056 
3057 	phydev->mii_ts = &ptp_priv->mii_ts;
3058 }
3059 
3060 static int lan8814_ptp_probe_once(struct phy_device *phydev)
3061 {
3062 	struct lan8814_shared_priv *shared = phydev->shared->priv;
3063 
3064 	/* Initialise shared lock for clock*/
3065 	mutex_init(&shared->shared_lock);
3066 
3067 	shared->ptp_clock_info.owner = THIS_MODULE;
3068 	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3069 	shared->ptp_clock_info.max_adj = 31249999;
3070 	shared->ptp_clock_info.n_alarm = 0;
3071 	shared->ptp_clock_info.n_ext_ts = 0;
3072 	shared->ptp_clock_info.n_pins = 0;
3073 	shared->ptp_clock_info.pps = 0;
3074 	shared->ptp_clock_info.pin_config = NULL;
3075 	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3076 	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3077 	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3078 	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3079 	shared->ptp_clock_info.getcrosststamp = NULL;
3080 
3081 	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3082 					       &phydev->mdio.dev);
3083 	if (IS_ERR(shared->ptp_clock)) {
3084 		phydev_err(phydev, "ptp_clock_register failed %lu\n",
3085 			   PTR_ERR(shared->ptp_clock));
3086 		return -EINVAL;
3087 	}
3088 
3089 	/* Check if PHC support is missing at the configuration level */
3090 	if (!shared->ptp_clock)
3091 		return 0;
3092 
3093 	phydev_dbg(phydev, "successfully registered ptp clock\n");
3094 
3095 	shared->phydev = phydev;
3096 
3097 	/* The EP.4 is shared between all the PHYs in the package and also it
3098 	 * can be accessed by any of the PHYs
3099 	 */
3100 	lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3101 	lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3102 			      PTP_OPERATING_MODE_STANDALONE_);
3103 
3104 	return 0;
3105 }
3106 
3107 static void lan8814_setup_led(struct phy_device *phydev, int val)
3108 {
3109 	int temp;
3110 
3111 	temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3112 
3113 	if (val)
3114 		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3115 	else
3116 		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3117 
3118 	lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3119 }
3120 
3121 static int lan8814_config_init(struct phy_device *phydev)
3122 {
3123 	struct kszphy_priv *lan8814 = phydev->priv;
3124 	int val;
3125 
3126 	/* Reset the PHY */
3127 	val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3128 	val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3129 	lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3130 
3131 	/* Disable ANEG with QSGMII PCS Host side */
3132 	val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3133 	val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3134 	lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3135 
3136 	/* MDI-X setting for swap A,B transmit */
3137 	val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3138 	val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3139 	val |= LAN8814_ALIGN_TX_A_B_SWAP;
3140 	lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3141 
3142 	if (lan8814->led_mode >= 0)
3143 		lan8814_setup_led(phydev, lan8814->led_mode);
3144 
3145 	return 0;
3146 }
3147 
3148 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3149  * function called in suspend. Because the GPIO line can be shared, so if one of
3150  * the phys goes back in coma mode, then all the other PHYs will go, which is
3151  * wrong.
3152  */
3153 static int lan8814_release_coma_mode(struct phy_device *phydev)
3154 {
3155 	struct gpio_desc *gpiod;
3156 
3157 	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3158 					GPIOD_OUT_HIGH_OPEN_DRAIN |
3159 					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
3160 	if (IS_ERR(gpiod))
3161 		return PTR_ERR(gpiod);
3162 
3163 	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
3164 	gpiod_set_value_cansleep(gpiod, 0);
3165 
3166 	return 0;
3167 }
3168 
3169 static int lan8814_probe(struct phy_device *phydev)
3170 {
3171 	const struct kszphy_type *type = phydev->drv->driver_data;
3172 	struct kszphy_priv *priv;
3173 	u16 addr;
3174 	int err;
3175 
3176 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
3177 	if (!priv)
3178 		return -ENOMEM;
3179 
3180 	phydev->priv = priv;
3181 
3182 	priv->type = type;
3183 
3184 	kszphy_parse_led_mode(phydev);
3185 
3186 	/* Strap-in value for PHY address, below register read gives starting
3187 	 * phy address value
3188 	 */
3189 	addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
3190 	devm_phy_package_join(&phydev->mdio.dev, phydev,
3191 			      addr, sizeof(struct lan8814_shared_priv));
3192 
3193 	if (phy_package_init_once(phydev)) {
3194 		err = lan8814_release_coma_mode(phydev);
3195 		if (err)
3196 			return err;
3197 
3198 		err = lan8814_ptp_probe_once(phydev);
3199 		if (err)
3200 			return err;
3201 	}
3202 
3203 	lan8814_ptp_init(phydev);
3204 
3205 	return 0;
3206 }
3207 
3208 #define LAN8841_MMD_TIMER_REG			0
3209 #define LAN8841_MMD0_REGISTER_17		17
3210 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x)	((x) & 0x3)
3211 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS	BIT(3)
3212 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG	2
3213 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK	BIT(14)
3214 #define LAN8841_MMD_ANALOG_REG			28
3215 #define LAN8841_ANALOG_CONTROL_1		1
3216 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x)	(((x) & 0x3) << 5)
3217 #define LAN8841_ANALOG_CONTROL_10		13
3218 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x)	((x) & 0x3)
3219 #define LAN8841_ANALOG_CONTROL_11		14
3220 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x)	(((x) & 0x7) << 12)
3221 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT	69
3222 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
3223 #define LAN8841_BTRX_POWER_DOWN			70
3224 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A	BIT(0)
3225 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A	BIT(1)
3226 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B	BIT(2)
3227 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B	BIT(3)
3228 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C	BIT(5)
3229 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D	BIT(7)
3230 #define LAN8841_ADC_CHANNEL_MASK		198
3231 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN		370
3232 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN		371
3233 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN		434
3234 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN		435
3235 #define LAN8841_PTP_CMD_CTL			256
3236 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE		BIT(2)
3237 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE		BIT(1)
3238 #define LAN8841_PTP_CMD_CTL_PTP_RESET		BIT(0)
3239 #define LAN8841_PTP_RX_PARSE_CONFIG		368
3240 #define LAN8841_PTP_TX_PARSE_CONFIG		432
3241 
3242 static int lan8841_config_init(struct phy_device *phydev)
3243 {
3244 	int ret;
3245 
3246 	ret = ksz9131_config_init(phydev);
3247 	if (ret)
3248 		return ret;
3249 
3250 	/* Initialize the HW by resetting everything */
3251 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3252 		       LAN8841_PTP_CMD_CTL,
3253 		       LAN8841_PTP_CMD_CTL_PTP_RESET,
3254 		       LAN8841_PTP_CMD_CTL_PTP_RESET);
3255 
3256 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3257 		       LAN8841_PTP_CMD_CTL,
3258 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE,
3259 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE);
3260 
3261 	/* Don't process any frames */
3262 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3263 		      LAN8841_PTP_RX_PARSE_CONFIG, 0);
3264 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3265 		      LAN8841_PTP_TX_PARSE_CONFIG, 0);
3266 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3267 		      LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
3268 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3269 		      LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
3270 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3271 		      LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
3272 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3273 		      LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
3274 
3275 	/* 100BT Clause 40 improvenent errata */
3276 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3277 		      LAN8841_ANALOG_CONTROL_1,
3278 		      LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
3279 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3280 		      LAN8841_ANALOG_CONTROL_10,
3281 		      LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
3282 
3283 	/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
3284 	 * Magnetics
3285 	 */
3286 	ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3287 			   LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
3288 	if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
3289 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3290 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
3291 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
3292 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3293 			      LAN8841_BTRX_POWER_DOWN,
3294 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
3295 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
3296 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
3297 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
3298 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
3299 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
3300 	}
3301 
3302 	/* LDO Adjustment errata */
3303 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3304 		      LAN8841_ANALOG_CONTROL_11,
3305 		      LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
3306 
3307 	/* 100BT RGMII latency tuning errata */
3308 	phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
3309 		      LAN8841_ADC_CHANNEL_MASK, 0x0);
3310 	phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
3311 		      LAN8841_MMD0_REGISTER_17,
3312 		      LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
3313 		      LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
3314 
3315 	return 0;
3316 }
3317 
3318 #define LAN8841_OUTPUT_CTRL			25
3319 #define LAN8841_OUTPUT_CTRL_INT_BUFFER		BIT(14)
3320 #define LAN8841_INT_PTP				BIT(9)
3321 
3322 static int lan8841_config_intr(struct phy_device *phydev)
3323 {
3324 	int err;
3325 
3326 	phy_modify(phydev, LAN8841_OUTPUT_CTRL,
3327 		   LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
3328 
3329 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3330 		err = phy_read(phydev, LAN8814_INTS);
3331 		if (err)
3332 			return err;
3333 
3334 		/* Enable / disable interrupts. It is OK to enable PTP interrupt
3335 		 * even if it PTP is not enabled. Because the underneath blocks
3336 		 * will not enable the PTP so we will never get the PTP
3337 		 * interrupt.
3338 		 */
3339 		err = phy_write(phydev, LAN8814_INTC,
3340 				LAN8814_INT_LINK | LAN8841_INT_PTP);
3341 	} else {
3342 		err = phy_write(phydev, LAN8814_INTC, 0);
3343 		if (err)
3344 			return err;
3345 
3346 		err = phy_read(phydev, LAN8814_INTS);
3347 	}
3348 
3349 	return err;
3350 }
3351 
3352 #define LAN8841_PTP_TX_EGRESS_SEC_LO			453
3353 #define LAN8841_PTP_TX_EGRESS_SEC_HI			452
3354 #define LAN8841_PTP_TX_EGRESS_NS_LO			451
3355 #define LAN8841_PTP_TX_EGRESS_NS_HI			450
3356 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID		BIT(15)
3357 #define LAN8841_PTP_TX_MSG_HEADER2			455
3358 
3359 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
3360 				  u32 *sec, u32 *nsec, u16 *seq)
3361 {
3362 	struct phy_device *phydev = ptp_priv->phydev;
3363 
3364 	*nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
3365 	if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
3366 		return false;
3367 
3368 	*nsec = ((*nsec & 0x3fff) << 16);
3369 	*nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
3370 
3371 	*sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
3372 	*sec = *sec << 16;
3373 	*sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
3374 
3375 	*seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3376 
3377 	return true;
3378 }
3379 
3380 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3381 {
3382 	u32 sec, nsec;
3383 	u16 seq;
3384 
3385 	while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
3386 		lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
3387 }
3388 
3389 #define LAN8841_PTP_RX_INGRESS_SEC_LO			389
3390 #define LAN8841_PTP_RX_INGRESS_SEC_HI			388
3391 #define LAN8841_PTP_RX_INGRESS_NS_LO			387
3392 #define LAN8841_PTP_RX_INGRESS_NS_HI			386
3393 #define LAN8841_PTP_RX_INGRESS_NSEC_HI_VALID		BIT(15)
3394 #define LAN8841_PTP_RX_MSG_HEADER2			391
3395 
3396 static struct lan8814_ptp_rx_ts *lan8841_ptp_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
3397 {
3398 	struct phy_device *phydev = ptp_priv->phydev;
3399 	struct lan8814_ptp_rx_ts *rx_ts;
3400 	u32 sec, nsec;
3401 	u16 seq;
3402 
3403 	nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_RX_INGRESS_NS_HI);
3404 	if (!(nsec & LAN8841_PTP_RX_INGRESS_NSEC_HI_VALID))
3405 		return NULL;
3406 
3407 	nsec = ((nsec & 0x3fff) << 16);
3408 	nsec = nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_RX_INGRESS_NS_LO);
3409 
3410 	sec = phy_read_mmd(phydev, 2, LAN8841_PTP_RX_INGRESS_SEC_HI);
3411 	sec = sec << 16;
3412 	sec = sec | phy_read_mmd(phydev, 2, LAN8841_PTP_RX_INGRESS_SEC_LO);
3413 
3414 	seq = phy_read_mmd(phydev, 2, LAN8841_PTP_RX_MSG_HEADER2);
3415 
3416 	rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
3417 	if (!rx_ts)
3418 		return NULL;
3419 
3420 	rx_ts->seconds = sec;
3421 	rx_ts->nsec = nsec;
3422 	rx_ts->seq_id = seq;
3423 
3424 	return rx_ts;
3425 }
3426 
3427 static void lan8841_ptp_process_rx_ts(struct kszphy_ptp_priv *ptp_priv)
3428 {
3429 	struct lan8814_ptp_rx_ts *rx_ts;
3430 
3431 	while ((rx_ts = lan8841_ptp_get_rx_ts(ptp_priv)) != NULL)
3432 		lan8814_match_rx_ts(ptp_priv, rx_ts);
3433 }
3434 
3435 #define LAN8841_PTP_INT_STS			259
3436 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT	BIT(13)
3437 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT	BIT(12)
3438 #define LAN8841_PTP_INT_STS_PTP_RX_TS_OVRFL_INT	BIT(9)
3439 #define LAN8841_PTP_INT_STS_PTP_RX_TS_INT	BIT(8)
3440 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT	BIT(2)
3441 
3442 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv, bool egress)
3443 {
3444 	struct phy_device *phydev = ptp_priv->phydev;
3445 	int i;
3446 
3447 	for (i = 0; i < FIFO_SIZE; ++i)
3448 		phy_read_mmd(phydev, 2,
3449 			     egress ? LAN8841_PTP_TX_MSG_HEADER2 :
3450 				      LAN8841_PTP_RX_MSG_HEADER2);
3451 
3452 	phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3453 }
3454 
3455 #define LAN8841_PTP_GPIO_CAP_STS			506
3456 #define LAN8841_PTP_GPIO_SEL				327
3457 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio)		((gpio) << 8)
3458 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP		498
3459 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP		499
3460 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP		500
3461 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP		501
3462 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP		502
3463 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP		503
3464 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP		504
3465 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP		505
3466 
3467 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
3468 {
3469 	struct phy_device *phydev = ptp_priv->phydev;
3470 	struct ptp_clock_event ptp_event = {0};
3471 	int pin, ret, tmp;
3472 	s32 sec, nsec;
3473 
3474 	pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
3475 	if (pin == -1)
3476 		return;
3477 
3478 	tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
3479 	if (tmp < 0)
3480 		return;
3481 
3482 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
3483 			    LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
3484 	if (ret)
3485 		return;
3486 
3487 	mutex_lock(&ptp_priv->ptp_lock);
3488 	if (tmp & BIT(pin)) {
3489 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
3490 		sec <<= 16;
3491 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
3492 
3493 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
3494 		nsec <<= 16;
3495 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
3496 	} else {
3497 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
3498 		sec <<= 16;
3499 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
3500 
3501 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
3502 		nsec <<= 16;
3503 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
3504 	}
3505 	mutex_unlock(&ptp_priv->ptp_lock);
3506 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
3507 	if (ret)
3508 		return;
3509 
3510 	ptp_event.index = 0;
3511 	ptp_event.timestamp = ktime_set(sec, nsec);
3512 	ptp_event.type = PTP_CLOCK_EXTTS;
3513 	ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
3514 }
3515 
3516 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
3517 {
3518 	struct kszphy_priv *priv = phydev->priv;
3519 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3520 	u16 status;
3521 
3522 	do {
3523 		status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3524 
3525 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
3526 			lan8841_ptp_process_tx_ts(ptp_priv);
3527 
3528 		if (status & LAN8841_PTP_INT_STS_PTP_RX_TS_INT)
3529 			lan8841_ptp_process_rx_ts(ptp_priv);
3530 
3531 		if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
3532 			lan8841_gpio_process_cap(ptp_priv);
3533 
3534 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
3535 			lan8841_ptp_flush_fifo(ptp_priv, true);
3536 			skb_queue_purge(&ptp_priv->tx_queue);
3537 		}
3538 
3539 		if (status & LAN8841_PTP_INT_STS_PTP_RX_TS_OVRFL_INT) {
3540 			lan8841_ptp_flush_fifo(ptp_priv, false);
3541 			skb_queue_purge(&ptp_priv->rx_queue);
3542 		}
3543 
3544 	} while (status);
3545 }
3546 
3547 #define LAN8841_INTS_PTP		BIT(9)
3548 
3549 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
3550 {
3551 	irqreturn_t ret = IRQ_NONE;
3552 	int irq_status;
3553 
3554 	irq_status = phy_read(phydev, LAN8814_INTS);
3555 	if (irq_status < 0) {
3556 		phy_error(phydev);
3557 		return IRQ_NONE;
3558 	}
3559 
3560 	if (irq_status & LAN8814_INT_LINK) {
3561 		phy_trigger_machine(phydev);
3562 		ret = IRQ_HANDLED;
3563 	}
3564 
3565 	if (irq_status & LAN8841_INTS_PTP) {
3566 		lan8841_handle_ptp_interrupt(phydev);
3567 		ret = IRQ_HANDLED;
3568 	}
3569 
3570 	return ret;
3571 }
3572 
3573 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
3574 			   struct ethtool_ts_info *info)
3575 {
3576 	struct kszphy_ptp_priv *ptp_priv;
3577 
3578 	ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3579 
3580 	info->phc_index = ptp_priv->ptp_clock ?
3581 				ptp_clock_index(ptp_priv->ptp_clock) : -1;
3582 	if (info->phc_index == -1) {
3583 		info->so_timestamping |= SOF_TIMESTAMPING_TX_SOFTWARE |
3584 					 SOF_TIMESTAMPING_RX_SOFTWARE |
3585 					 SOF_TIMESTAMPING_SOFTWARE;
3586 		return 0;
3587 	}
3588 
3589 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
3590 				SOF_TIMESTAMPING_RX_HARDWARE |
3591 				SOF_TIMESTAMPING_RAW_HARDWARE;
3592 
3593 	info->tx_types = (1 << HWTSTAMP_TX_OFF) |
3594 			 (1 << HWTSTAMP_TX_ON) |
3595 			 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
3596 
3597 	info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
3598 			   (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
3599 			   (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
3600 			   (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
3601 
3602 	return 0;
3603 }
3604 
3605 #define LAN8841_PTP_INT_EN			260
3606 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN	BIT(13)
3607 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN		BIT(12)
3608 #define LAN8841_PTP_INT_EN_PTP_RX_TS_OVRFL_EN	BIT(9)
3609 #define LAN8841_PTP_INT_EN_PTP_RX_TS_EN		BIT(8)
3610 
3611 static void lan8841_ptp_enable_int(struct kszphy_ptp_priv *ptp_priv,
3612 				   bool enable)
3613 {
3614 	struct phy_device *phydev = ptp_priv->phydev;
3615 
3616 	if (enable)
3617 		/* Enable interrupts */
3618 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3619 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3620 			       LAN8841_PTP_INT_EN_PTP_RX_TS_OVRFL_EN |
3621 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN |
3622 			       LAN8841_PTP_INT_EN_PTP_RX_TS_EN,
3623 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3624 			       LAN8841_PTP_INT_EN_PTP_RX_TS_OVRFL_EN |
3625 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN |
3626 			       LAN8841_PTP_INT_EN_PTP_RX_TS_EN);
3627 	else
3628 		/* Disable interrupts */
3629 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3630 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3631 			       LAN8841_PTP_INT_EN_PTP_RX_TS_OVRFL_EN |
3632 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN |
3633 			       LAN8841_PTP_INT_EN_PTP_RX_TS_EN, 0);
3634 }
3635 
3636 #define LAN8841_PTP_RX_TIMESTAMP_EN		379
3637 #define LAN8841_PTP_TX_TIMESTAMP_EN		443
3638 #define LAN8841_PTP_TX_MOD			445
3639 
3640 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
3641 {
3642 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3643 	struct phy_device *phydev = ptp_priv->phydev;
3644 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
3645 	struct hwtstamp_config config;
3646 	int txcfg = 0, rxcfg = 0;
3647 	int pkt_ts_enable;
3648 
3649 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
3650 		return -EFAULT;
3651 
3652 	ptp_priv->hwts_tx_type = config.tx_type;
3653 	ptp_priv->rx_filter = config.rx_filter;
3654 
3655 	switch (config.rx_filter) {
3656 	case HWTSTAMP_FILTER_NONE:
3657 		ptp_priv->layer = 0;
3658 		ptp_priv->version = 0;
3659 		break;
3660 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3661 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3662 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3663 		ptp_priv->layer = PTP_CLASS_L4;
3664 		ptp_priv->version = PTP_CLASS_V2;
3665 		break;
3666 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3667 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3668 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3669 		ptp_priv->layer = PTP_CLASS_L2;
3670 		ptp_priv->version = PTP_CLASS_V2;
3671 		break;
3672 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3673 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3674 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3675 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
3676 		ptp_priv->version = PTP_CLASS_V2;
3677 		break;
3678 	default:
3679 		return -ERANGE;
3680 	}
3681 
3682 	/* Setup parsing of the frames and enable the timestamping for ptp
3683 	 * frames
3684 	 */
3685 	if (ptp_priv->layer & PTP_CLASS_L2) {
3686 		rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
3687 		txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
3688 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
3689 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
3690 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
3691 	}
3692 
3693 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
3694 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
3695 
3696 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
3697 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
3698 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
3699 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
3700 
3701 	/* Enable / disable of the TX timestamp in the SYNC frames */
3702 	phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
3703 		       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3704 		       ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
3705 				PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
3706 
3707 	/* Now enable/disable the timestamping */
3708 	lan8841_ptp_enable_int(ptp_priv,
3709 			       config.rx_filter != HWTSTAMP_FILTER_NONE);
3710 
3711 	/* In case of multiple starts and stops, these needs to be cleared */
3712 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
3713 		list_del(&rx_ts->list);
3714 		kfree(rx_ts);
3715 	}
3716 
3717 	skb_queue_purge(&ptp_priv->rx_queue);
3718 	skb_queue_purge(&ptp_priv->tx_queue);
3719 
3720 	lan8841_ptp_flush_fifo(ptp_priv, false);
3721 	lan8841_ptp_flush_fifo(ptp_priv, true);
3722 
3723 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
3724 }
3725 
3726 #define LAN8841_EVENT_A		0
3727 #define LAN8841_EVENT_B		1
3728 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 278 : 288)
3729 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 279 : 289)
3730 #define LAN8841_PTP_LTC_TARGET_NS_HI(event)	((event) == LAN8841_EVENT_A ? 280 : 290)
3731 #define LAN8841_PTP_LTC_TARGET_NS_LO(event)	((event) == LAN8841_EVENT_A ? 281 : 291)
3732 
3733 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
3734 				  s64 sec, u32 nsec)
3735 {
3736 	struct phy_device *phydev = ptp_priv->phydev;
3737 	int ret;
3738 
3739 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
3740 			    upper_16_bits(sec));
3741 	if (ret)
3742 		return ret;
3743 
3744 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
3745 			    lower_16_bits(sec));
3746 	if (ret)
3747 		return ret;
3748 
3749 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
3750 			    upper_16_bits(nsec));
3751 	if (ret)
3752 		return ret;
3753 
3754 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
3755 			    lower_16_bits(nsec));
3756 }
3757 
3758 #define LAN8841_BUFFER_TIME	2
3759 
3760 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
3761 				     const struct timespec64 *ts)
3762 {
3763 	return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
3764 				      ts->tv_sec + LAN8841_BUFFER_TIME, 0);
3765 }
3766 
3767 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 282 : 292)
3768 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 283 : 293)
3769 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event)	((event) == LAN8841_EVENT_A ? 284 : 294)
3770 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event)	((event) == LAN8841_EVENT_A ? 285 : 295)
3771 
3772 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
3773 				  s64 sec, u32 nsec)
3774 {
3775 	struct phy_device *phydev = ptp_priv->phydev;
3776 	int ret;
3777 
3778 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
3779 			    upper_16_bits(sec));
3780 	if (ret)
3781 		return ret;
3782 
3783 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
3784 			    lower_16_bits(sec));
3785 	if (ret)
3786 		return ret;
3787 
3788 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
3789 			    upper_16_bits(nsec));
3790 	if (ret)
3791 		return ret;
3792 
3793 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
3794 			     lower_16_bits(nsec));
3795 }
3796 
3797 #define LAN8841_PTP_LTC_SET_SEC_HI	262
3798 #define LAN8841_PTP_LTC_SET_SEC_MID	263
3799 #define LAN8841_PTP_LTC_SET_SEC_LO	264
3800 #define LAN8841_PTP_LTC_SET_NS_HI	265
3801 #define LAN8841_PTP_LTC_SET_NS_LO	266
3802 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD	BIT(4)
3803 
3804 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
3805 				 const struct timespec64 *ts)
3806 {
3807 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3808 							ptp_clock_info);
3809 	struct phy_device *phydev = ptp_priv->phydev;
3810 	int ret;
3811 
3812 	/* Set the value to be stored */
3813 	mutex_lock(&ptp_priv->ptp_lock);
3814 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
3815 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
3816 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
3817 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
3818 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
3819 
3820 	/* Set the command to load the LTC */
3821 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3822 		      LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
3823 	ret = lan8841_ptp_update_target(ptp_priv, ts);
3824 	mutex_unlock(&ptp_priv->ptp_lock);
3825 
3826 	return ret;
3827 }
3828 
3829 #define LAN8841_PTP_LTC_RD_SEC_HI	358
3830 #define LAN8841_PTP_LTC_RD_SEC_MID	359
3831 #define LAN8841_PTP_LTC_RD_SEC_LO	360
3832 #define LAN8841_PTP_LTC_RD_NS_HI	361
3833 #define LAN8841_PTP_LTC_RD_NS_LO	362
3834 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ	BIT(3)
3835 
3836 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
3837 				 struct timespec64 *ts)
3838 {
3839 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3840 							ptp_clock_info);
3841 	struct phy_device *phydev = ptp_priv->phydev;
3842 	time64_t s;
3843 	s64 ns;
3844 
3845 	mutex_lock(&ptp_priv->ptp_lock);
3846 	/* Issue the command to read the LTC */
3847 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3848 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
3849 
3850 	/* Read the LTC */
3851 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
3852 	s <<= 16;
3853 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
3854 	s <<= 16;
3855 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
3856 
3857 	ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
3858 	ns <<= 16;
3859 	ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
3860 	mutex_unlock(&ptp_priv->ptp_lock);
3861 
3862 	set_normalized_timespec64(ts, s, ns);
3863 	return 0;
3864 }
3865 
3866 #define LAN8841_PTP_LTC_STEP_ADJ_LO			276
3867 #define LAN8841_PTP_LTC_STEP_ADJ_HI			275
3868 #define LAN8841_PTP_LTC_STEP_ADJ_DIR			BIT(15)
3869 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS	BIT(5)
3870 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS	BIT(6)
3871 
3872 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
3873 {
3874 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3875 							ptp_clock_info);
3876 	struct phy_device *phydev = ptp_priv->phydev;
3877 	struct timespec64 ts;
3878 	bool add = true;
3879 	u32 nsec;
3880 	s32 sec;
3881 	int ret;
3882 
3883 	/* The HW allows up to 15 sec to adjust the time, but here we limit to
3884 	 * 10 sec the adjustment. The reason is, in case the adjustment is 14
3885 	 * sec and 999999999 nsec, then we add 8ns to compansate the actual
3886 	 * increment so the value can be bigger than 15 sec. Therefore limit the
3887 	 * possible adjustments so we will not have these corner cases
3888 	 */
3889 	if (delta > 10000000000LL || delta < -10000000000LL) {
3890 		/* The timeadjustment is too big, so fall back using set time */
3891 		u64 now;
3892 
3893 		ptp->gettime64(ptp, &ts);
3894 
3895 		now = ktime_to_ns(timespec64_to_ktime(ts));
3896 		ts = ns_to_timespec64(now + delta);
3897 
3898 		ptp->settime64(ptp, &ts);
3899 		return 0;
3900 	}
3901 
3902 	sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
3903 	if (delta < 0 && nsec != 0) {
3904 		/* It is not allowed to adjust low the nsec part, therefore
3905 		 * subtract more from second part and add to nanosecond such
3906 		 * that would roll over, so the second part will increase
3907 		 */
3908 		sec--;
3909 		nsec = NSEC_PER_SEC - nsec;
3910 	}
3911 
3912 	/* Calculate the adjustments and the direction */
3913 	if (delta < 0)
3914 		add = false;
3915 
3916 	if (nsec > 0)
3917 		/* add 8 ns to cover the likely normal increment */
3918 		nsec += 8;
3919 
3920 	if (nsec >= NSEC_PER_SEC) {
3921 		/* carry into seconds */
3922 		sec++;
3923 		nsec -= NSEC_PER_SEC;
3924 	}
3925 
3926 	mutex_lock(&ptp_priv->ptp_lock);
3927 	if (sec) {
3928 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
3929 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
3930 			      add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
3931 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3932 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
3933 	}
3934 
3935 	if (nsec) {
3936 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
3937 			      nsec & 0xffff);
3938 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
3939 			      (nsec >> 16) & 0x3fff);
3940 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3941 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
3942 	}
3943 	mutex_unlock(&ptp_priv->ptp_lock);
3944 
3945 	/* Update the target clock */
3946 	ptp->gettime64(ptp, &ts);
3947 	mutex_lock(&ptp_priv->ptp_lock);
3948 	ret = lan8841_ptp_update_target(ptp_priv, &ts);
3949 	mutex_unlock(&ptp_priv->ptp_lock);
3950 
3951 	return ret;
3952 }
3953 
3954 #define LAN8841_PTP_LTC_RATE_ADJ_HI		269
3955 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR		BIT(15)
3956 #define LAN8841_PTP_LTC_RATE_ADJ_LO		270
3957 
3958 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
3959 {
3960 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3961 							ptp_clock_info);
3962 	struct phy_device *phydev = ptp_priv->phydev;
3963 	bool faster = true;
3964 	u32 rate;
3965 
3966 	if (!scaled_ppm)
3967 		return 0;
3968 
3969 	if (scaled_ppm < 0) {
3970 		scaled_ppm = -scaled_ppm;
3971 		faster = false;
3972 	}
3973 
3974 	rate = LAN8814_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
3975 	rate += (LAN8814_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
3976 
3977 	mutex_lock(&ptp_priv->ptp_lock);
3978 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
3979 		      faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
3980 			     : upper_16_bits(rate) & 0x3fff);
3981 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
3982 	mutex_unlock(&ptp_priv->ptp_lock);
3983 
3984 	return 0;
3985 }
3986 
3987 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
3988 			      enum ptp_pin_function func, unsigned int chan)
3989 {
3990 	switch (func) {
3991 	case PTP_PF_NONE:
3992 	case PTP_PF_PEROUT:
3993 	case PTP_PF_EXTTS:
3994 		break;
3995 	default:
3996 		return -1;
3997 	}
3998 
3999 	return 0;
4000 }
4001 
4002 #define LAN8841_PTP_GPIO_NUM	10
4003 #define LAN8841_GPIO_EN		128
4004 #define LAN8841_GPIO_DIR	129
4005 #define LAN8841_GPIO_BUF	130
4006 
4007 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4008 {
4009 	struct phy_device *phydev = ptp_priv->phydev;
4010 	int ret;
4011 
4012 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4013 	if (ret)
4014 		return ret;
4015 
4016 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4017 	if (ret)
4018 		return ret;
4019 
4020 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4021 }
4022 
4023 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
4024 {
4025 	struct phy_device *phydev = ptp_priv->phydev;
4026 	int ret;
4027 
4028 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4029 	if (ret)
4030 		return ret;
4031 
4032 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4033 	if (ret)
4034 		return ret;
4035 
4036 	return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4037 }
4038 
4039 #define LAN8841_GPIO_DATA_SEL1				131
4040 #define LAN8841_GPIO_DATA_SEL2				132
4041 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK	GENMASK(2, 0)
4042 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A	1
4043 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B	2
4044 #define LAN8841_PTP_GENERAL_CONFIG			257
4045 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A	BIT(1)
4046 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B	BIT(3)
4047 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK	GENMASK(7, 4)
4048 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK	GENMASK(11, 8)
4049 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A		4
4050 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B		7
4051 
4052 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4053 				    u8 event)
4054 {
4055 	struct phy_device *phydev = ptp_priv->phydev;
4056 	u16 tmp;
4057 	int ret;
4058 
4059 	/* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
4060 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4061 	 * depending on the pin, it requires to read a different register
4062 	 */
4063 	if (pin < 5) {
4064 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
4065 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
4066 	} else {
4067 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
4068 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
4069 	}
4070 	if (ret)
4071 		return ret;
4072 
4073 	/* Disable the event */
4074 	if (event == LAN8841_EVENT_A)
4075 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4076 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
4077 	else
4078 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4079 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
4080 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
4081 }
4082 
4083 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4084 				    u8 event, int pulse_width)
4085 {
4086 	struct phy_device *phydev = ptp_priv->phydev;
4087 	u16 tmp;
4088 	int ret;
4089 
4090 	/* Enable the event */
4091 	if (event == LAN8841_EVENT_A)
4092 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4093 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4094 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
4095 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4096 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
4097 	else
4098 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4099 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4100 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
4101 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4102 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
4103 	if (ret)
4104 		return ret;
4105 
4106 	/* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
4107 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4108 	 * depending on the pin, it requires to read a different register
4109 	 */
4110 	if (event == LAN8841_EVENT_A)
4111 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
4112 	else
4113 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
4114 
4115 	if (pin < 5)
4116 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
4117 				       tmp << (3 * pin));
4118 	else
4119 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
4120 				       tmp << (3 * (pin - 5)));
4121 
4122 	return ret;
4123 }
4124 
4125 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
4126 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
4127 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
4128 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
4129 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
4130 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
4131 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
4132 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
4133 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
4134 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
4135 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
4136 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
4137 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
4138 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
4139 
4140 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
4141 			      struct ptp_clock_request *rq, int on)
4142 {
4143 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4144 							ptp_clock_info);
4145 	struct phy_device *phydev = ptp_priv->phydev;
4146 	struct timespec64 ts_on, ts_period;
4147 	s64 on_nsec, period_nsec;
4148 	int pulse_width;
4149 	int pin;
4150 	int ret;
4151 
4152 	if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
4153 		return -EOPNOTSUPP;
4154 
4155 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
4156 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4157 		return -EINVAL;
4158 
4159 	if (!on) {
4160 		ret = lan8841_ptp_perout_off(ptp_priv, pin);
4161 		if (ret)
4162 			return ret;
4163 
4164 		return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
4165 	}
4166 
4167 	ts_on.tv_sec = rq->perout.on.sec;
4168 	ts_on.tv_nsec = rq->perout.on.nsec;
4169 	on_nsec = timespec64_to_ns(&ts_on);
4170 
4171 	ts_period.tv_sec = rq->perout.period.sec;
4172 	ts_period.tv_nsec = rq->perout.period.nsec;
4173 	period_nsec = timespec64_to_ns(&ts_period);
4174 
4175 	if (period_nsec < 200) {
4176 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
4177 				    phydev_name(phydev));
4178 		return -EOPNOTSUPP;
4179 	}
4180 
4181 	if (on_nsec >= period_nsec) {
4182 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
4183 				    phydev_name(phydev));
4184 		return -EINVAL;
4185 	}
4186 
4187 	switch (on_nsec) {
4188 	case 200000000:
4189 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
4190 		break;
4191 	case 100000000:
4192 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
4193 		break;
4194 	case 50000000:
4195 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
4196 		break;
4197 	case 10000000:
4198 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
4199 		break;
4200 	case 5000000:
4201 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
4202 		break;
4203 	case 1000000:
4204 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
4205 		break;
4206 	case 500000:
4207 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
4208 		break;
4209 	case 100000:
4210 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
4211 		break;
4212 	case 50000:
4213 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
4214 		break;
4215 	case 10000:
4216 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
4217 		break;
4218 	case 5000:
4219 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
4220 		break;
4221 	case 1000:
4222 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
4223 		break;
4224 	case 500:
4225 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
4226 		break;
4227 	case 100:
4228 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4229 		break;
4230 	default:
4231 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
4232 				    phydev_name(phydev));
4233 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4234 		break;
4235 	}
4236 
4237 	mutex_lock(&ptp_priv->ptp_lock);
4238 	ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
4239 				     rq->perout.start.nsec);
4240 	mutex_unlock(&ptp_priv->ptp_lock);
4241 	if (ret)
4242 		return ret;
4243 
4244 	ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
4245 				     rq->perout.period.nsec);
4246 	if (ret)
4247 		return ret;
4248 
4249 	ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
4250 				       pulse_width);
4251 	if (ret)
4252 		return ret;
4253 
4254 	ret = lan8841_ptp_perout_on(ptp_priv, pin);
4255 	if (ret)
4256 		lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
4257 
4258 	return ret;
4259 }
4260 
4261 #define LAN8841_PTP_GPIO_CAP_EN			496
4262 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	(BIT(gpio))
4263 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
4264 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN	BIT(2)
4265 
4266 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
4267 				u32 flags)
4268 {
4269 	struct phy_device *phydev = ptp_priv->phydev;
4270 	u16 tmp = 0;
4271 	int ret;
4272 
4273 	/* Set GPIO to be intput */
4274 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4275 	if (ret)
4276 		return ret;
4277 
4278 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4279 	if (ret)
4280 		return ret;
4281 
4282 	/* Enable capture on the edges of the pin */
4283 	if (flags & PTP_RISING_EDGE)
4284 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
4285 	if (flags & PTP_FALLING_EDGE)
4286 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
4287 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
4288 	if (ret)
4289 		return ret;
4290 
4291 	/* Enable interrupt */
4292 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4293 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4294 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
4295 }
4296 
4297 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4298 {
4299 	struct phy_device *phydev = ptp_priv->phydev;
4300 	int ret;
4301 
4302 	/* Set GPIO to be output */
4303 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4304 	if (ret)
4305 		return ret;
4306 
4307 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4308 	if (ret)
4309 		return ret;
4310 
4311 	/* Disable capture on both of the edges */
4312 	ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
4313 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
4314 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
4315 			     0);
4316 	if (ret)
4317 		return ret;
4318 
4319 	/* Disable interrupt */
4320 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4321 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4322 			      0);
4323 }
4324 
4325 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
4326 			     struct ptp_clock_request *rq, int on)
4327 {
4328 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4329 							ptp_clock_info);
4330 	int pin;
4331 	int ret;
4332 
4333 	/* Reject requests with unsupported flags */
4334 	if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
4335 				PTP_EXTTS_EDGES |
4336 				PTP_STRICT_FLAGS))
4337 		return -EOPNOTSUPP;
4338 
4339 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
4340 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4341 		return -EINVAL;
4342 
4343 	mutex_lock(&ptp_priv->ptp_lock);
4344 	if (on)
4345 		ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
4346 	else
4347 		ret = lan8841_ptp_extts_off(ptp_priv, pin);
4348 	mutex_unlock(&ptp_priv->ptp_lock);
4349 
4350 	return ret;
4351 }
4352 
4353 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
4354 			      struct ptp_clock_request *rq, int on)
4355 {
4356 	switch (rq->type) {
4357 	case PTP_CLK_REQ_EXTTS:
4358 		return lan8841_ptp_extts(ptp, rq, on);
4359 	case PTP_CLK_REQ_PEROUT:
4360 		return lan8841_ptp_perout(ptp, rq, on);
4361 	default:
4362 		return -EOPNOTSUPP;
4363 	}
4364 
4365 	return 0;
4366 }
4367 
4368 static struct ptp_clock_info lan8841_ptp_clock_info = {
4369 	.owner		= THIS_MODULE,
4370 	.name		= "lan8841 ptp",
4371 	.max_adj	= 31249999,
4372 	.gettime64	= lan8841_ptp_gettime64,
4373 	.settime64	= lan8841_ptp_settime64,
4374 	.adjtime	= lan8841_ptp_adjtime,
4375 	.adjfine	= lan8841_ptp_adjfine,
4376 	.verify         = lan8841_ptp_verify,
4377 	.enable         = lan8841_ptp_enable,
4378 	.n_per_out      = LAN8841_PTP_GPIO_NUM,
4379 	.n_ext_ts       = LAN8841_PTP_GPIO_NUM,
4380 	.n_pins         = LAN8841_PTP_GPIO_NUM,
4381 };
4382 
4383 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
4384 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
4385 
4386 static int lan8841_probe(struct phy_device *phydev)
4387 {
4388 	struct kszphy_ptp_priv *ptp_priv;
4389 	struct kszphy_priv *priv;
4390 	int err;
4391 
4392 	err = kszphy_probe(phydev);
4393 	if (err)
4394 		return err;
4395 
4396 	if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4397 			 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
4398 	    LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
4399 		phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
4400 
4401 	/* Register the clock */
4402 	if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
4403 		return 0;
4404 
4405 	priv = phydev->priv;
4406 	ptp_priv = &priv->ptp_priv;
4407 
4408 	ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
4409 					    LAN8841_PTP_GPIO_NUM,
4410 					    sizeof(*ptp_priv->pin_config),
4411 					    GFP_KERNEL);
4412 	if (!ptp_priv->pin_config)
4413 		return -ENOMEM;
4414 
4415 	for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
4416 		struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
4417 
4418 		snprintf(p->name, sizeof(p->name), "pin%d", i);
4419 		p->index = i;
4420 		p->func = PTP_PF_NONE;
4421 	}
4422 
4423 	ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
4424 	ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
4425 	ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
4426 						 &phydev->mdio.dev);
4427 	if (IS_ERR(ptp_priv->ptp_clock)) {
4428 		phydev_err(phydev, "ptp_clock_register failed: %lu\n",
4429 			   PTR_ERR(ptp_priv->ptp_clock));
4430 		return -EINVAL;
4431 	}
4432 
4433 	if (!ptp_priv->ptp_clock)
4434 		return 0;
4435 
4436 	/* Initialize the SW */
4437 	skb_queue_head_init(&ptp_priv->tx_queue);
4438 	skb_queue_head_init(&ptp_priv->rx_queue);
4439 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
4440 	spin_lock_init(&ptp_priv->rx_ts_lock);
4441 	ptp_priv->phydev = phydev;
4442 	mutex_init(&ptp_priv->ptp_lock);
4443 
4444 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
4445 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
4446 	ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
4447 	ptp_priv->mii_ts.ts_info = lan8841_ts_info;
4448 
4449 	phydev->mii_ts = &ptp_priv->mii_ts;
4450 
4451 	return 0;
4452 }
4453 
4454 static struct phy_driver ksphy_driver[] = {
4455 {
4456 	.phy_id		= PHY_ID_KS8737,
4457 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4458 	.name		= "Micrel KS8737",
4459 	/* PHY_BASIC_FEATURES */
4460 	.driver_data	= &ks8737_type,
4461 	.probe		= kszphy_probe,
4462 	.config_init	= kszphy_config_init,
4463 	.config_intr	= kszphy_config_intr,
4464 	.handle_interrupt = kszphy_handle_interrupt,
4465 	.suspend	= kszphy_suspend,
4466 	.resume		= kszphy_resume,
4467 }, {
4468 	.phy_id		= PHY_ID_KSZ8021,
4469 	.phy_id_mask	= 0x00ffffff,
4470 	.name		= "Micrel KSZ8021 or KSZ8031",
4471 	/* PHY_BASIC_FEATURES */
4472 	.driver_data	= &ksz8021_type,
4473 	.probe		= kszphy_probe,
4474 	.config_init	= kszphy_config_init,
4475 	.config_intr	= kszphy_config_intr,
4476 	.handle_interrupt = kszphy_handle_interrupt,
4477 	.get_sset_count = kszphy_get_sset_count,
4478 	.get_strings	= kszphy_get_strings,
4479 	.get_stats	= kszphy_get_stats,
4480 	.suspend	= kszphy_suspend,
4481 	.resume		= kszphy_resume,
4482 }, {
4483 	.phy_id		= PHY_ID_KSZ8031,
4484 	.phy_id_mask	= 0x00ffffff,
4485 	.name		= "Micrel KSZ8031",
4486 	/* PHY_BASIC_FEATURES */
4487 	.driver_data	= &ksz8021_type,
4488 	.probe		= kszphy_probe,
4489 	.config_init	= kszphy_config_init,
4490 	.config_intr	= kszphy_config_intr,
4491 	.handle_interrupt = kszphy_handle_interrupt,
4492 	.get_sset_count = kszphy_get_sset_count,
4493 	.get_strings	= kszphy_get_strings,
4494 	.get_stats	= kszphy_get_stats,
4495 	.suspend	= kszphy_suspend,
4496 	.resume		= kszphy_resume,
4497 }, {
4498 	.phy_id		= PHY_ID_KSZ8041,
4499 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4500 	.name		= "Micrel KSZ8041",
4501 	/* PHY_BASIC_FEATURES */
4502 	.driver_data	= &ksz8041_type,
4503 	.probe		= kszphy_probe,
4504 	.config_init	= ksz8041_config_init,
4505 	.config_aneg	= ksz8041_config_aneg,
4506 	.config_intr	= kszphy_config_intr,
4507 	.handle_interrupt = kszphy_handle_interrupt,
4508 	.get_sset_count = kszphy_get_sset_count,
4509 	.get_strings	= kszphy_get_strings,
4510 	.get_stats	= kszphy_get_stats,
4511 	/* No suspend/resume callbacks because of errata DS80000700A,
4512 	 * receiver error following software power down.
4513 	 */
4514 }, {
4515 	.phy_id		= PHY_ID_KSZ8041RNLI,
4516 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4517 	.name		= "Micrel KSZ8041RNLI",
4518 	/* PHY_BASIC_FEATURES */
4519 	.driver_data	= &ksz8041_type,
4520 	.probe		= kszphy_probe,
4521 	.config_init	= kszphy_config_init,
4522 	.config_intr	= kszphy_config_intr,
4523 	.handle_interrupt = kszphy_handle_interrupt,
4524 	.get_sset_count = kszphy_get_sset_count,
4525 	.get_strings	= kszphy_get_strings,
4526 	.get_stats	= kszphy_get_stats,
4527 	.suspend	= kszphy_suspend,
4528 	.resume		= kszphy_resume,
4529 }, {
4530 	.name		= "Micrel KSZ8051",
4531 	/* PHY_BASIC_FEATURES */
4532 	.driver_data	= &ksz8051_type,
4533 	.probe		= kszphy_probe,
4534 	.config_init	= kszphy_config_init,
4535 	.config_intr	= kszphy_config_intr,
4536 	.handle_interrupt = kszphy_handle_interrupt,
4537 	.get_sset_count = kszphy_get_sset_count,
4538 	.get_strings	= kszphy_get_strings,
4539 	.get_stats	= kszphy_get_stats,
4540 	.match_phy_device = ksz8051_match_phy_device,
4541 	.suspend	= kszphy_suspend,
4542 	.resume		= kszphy_resume,
4543 }, {
4544 	.phy_id		= PHY_ID_KSZ8001,
4545 	.name		= "Micrel KSZ8001 or KS8721",
4546 	.phy_id_mask	= 0x00fffffc,
4547 	/* PHY_BASIC_FEATURES */
4548 	.driver_data	= &ksz8041_type,
4549 	.probe		= kszphy_probe,
4550 	.config_init	= kszphy_config_init,
4551 	.config_intr	= kszphy_config_intr,
4552 	.handle_interrupt = kszphy_handle_interrupt,
4553 	.get_sset_count = kszphy_get_sset_count,
4554 	.get_strings	= kszphy_get_strings,
4555 	.get_stats	= kszphy_get_stats,
4556 	.suspend	= kszphy_suspend,
4557 	.resume		= kszphy_resume,
4558 }, {
4559 	.phy_id		= PHY_ID_KSZ8081,
4560 	.name		= "Micrel KSZ8081 or KSZ8091",
4561 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4562 	.flags		= PHY_POLL_CABLE_TEST,
4563 	/* PHY_BASIC_FEATURES */
4564 	.driver_data	= &ksz8081_type,
4565 	.probe		= kszphy_probe,
4566 	.config_init	= ksz8081_config_init,
4567 	.soft_reset	= genphy_soft_reset,
4568 	.config_aneg	= ksz8081_config_aneg,
4569 	.read_status	= ksz8081_read_status,
4570 	.config_intr	= kszphy_config_intr,
4571 	.handle_interrupt = kszphy_handle_interrupt,
4572 	.get_sset_count = kszphy_get_sset_count,
4573 	.get_strings	= kszphy_get_strings,
4574 	.get_stats	= kszphy_get_stats,
4575 	.suspend	= kszphy_suspend,
4576 	.resume		= kszphy_resume,
4577 	.cable_test_start	= ksz886x_cable_test_start,
4578 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4579 }, {
4580 	.phy_id		= PHY_ID_KSZ8061,
4581 	.name		= "Micrel KSZ8061",
4582 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4583 	/* PHY_BASIC_FEATURES */
4584 	.probe		= kszphy_probe,
4585 	.config_init	= ksz8061_config_init,
4586 	.config_intr	= kszphy_config_intr,
4587 	.handle_interrupt = kszphy_handle_interrupt,
4588 	.suspend	= kszphy_suspend,
4589 	.resume		= kszphy_resume,
4590 }, {
4591 	.phy_id		= PHY_ID_KSZ9021,
4592 	.phy_id_mask	= 0x000ffffe,
4593 	.name		= "Micrel KSZ9021 Gigabit PHY",
4594 	/* PHY_GBIT_FEATURES */
4595 	.driver_data	= &ksz9021_type,
4596 	.probe		= kszphy_probe,
4597 	.get_features	= ksz9031_get_features,
4598 	.config_init	= ksz9021_config_init,
4599 	.config_intr	= kszphy_config_intr,
4600 	.handle_interrupt = kszphy_handle_interrupt,
4601 	.get_sset_count = kszphy_get_sset_count,
4602 	.get_strings	= kszphy_get_strings,
4603 	.get_stats	= kszphy_get_stats,
4604 	.suspend	= kszphy_suspend,
4605 	.resume		= kszphy_resume,
4606 	.read_mmd	= genphy_read_mmd_unsupported,
4607 	.write_mmd	= genphy_write_mmd_unsupported,
4608 }, {
4609 	.phy_id		= PHY_ID_KSZ9031,
4610 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4611 	.name		= "Micrel KSZ9031 Gigabit PHY",
4612 	.flags		= PHY_POLL_CABLE_TEST,
4613 	.driver_data	= &ksz9021_type,
4614 	.probe		= kszphy_probe,
4615 	.get_features	= ksz9031_get_features,
4616 	.config_init	= ksz9031_config_init,
4617 	.soft_reset	= genphy_soft_reset,
4618 	.read_status	= ksz9031_read_status,
4619 	.config_intr	= kszphy_config_intr,
4620 	.handle_interrupt = kszphy_handle_interrupt,
4621 	.get_sset_count = kszphy_get_sset_count,
4622 	.get_strings	= kszphy_get_strings,
4623 	.get_stats	= kszphy_get_stats,
4624 	.suspend	= kszphy_suspend,
4625 	.resume		= kszphy_resume,
4626 	.cable_test_start	= ksz9x31_cable_test_start,
4627 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
4628 }, {
4629 	.phy_id		= PHY_ID_LAN8814,
4630 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4631 	.name		= "Microchip INDY Gigabit Quad PHY",
4632 	.flags          = PHY_POLL_CABLE_TEST,
4633 	.config_init	= lan8814_config_init,
4634 	.driver_data	= &lan8814_type,
4635 	.probe		= lan8814_probe,
4636 	.soft_reset	= genphy_soft_reset,
4637 	.read_status	= ksz9031_read_status,
4638 	.get_sset_count	= kszphy_get_sset_count,
4639 	.get_strings	= kszphy_get_strings,
4640 	.get_stats	= kszphy_get_stats,
4641 	.suspend	= genphy_suspend,
4642 	.resume		= kszphy_resume,
4643 	.config_intr	= lan8814_config_intr,
4644 	.handle_interrupt = lan8814_handle_interrupt,
4645 	.cable_test_start	= lan8814_cable_test_start,
4646 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4647 }, {
4648 	.phy_id		= PHY_ID_LAN8804,
4649 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4650 	.name		= "Microchip LAN966X Gigabit PHY",
4651 	.config_init	= lan8804_config_init,
4652 	.driver_data	= &ksz9021_type,
4653 	.probe		= kszphy_probe,
4654 	.soft_reset	= genphy_soft_reset,
4655 	.read_status	= ksz9031_read_status,
4656 	.get_sset_count	= kszphy_get_sset_count,
4657 	.get_strings	= kszphy_get_strings,
4658 	.get_stats	= kszphy_get_stats,
4659 	.suspend	= genphy_suspend,
4660 	.resume		= kszphy_resume,
4661 	.config_intr	= lan8804_config_intr,
4662 	.handle_interrupt = lan8804_handle_interrupt,
4663 }, {
4664 	.phy_id		= PHY_ID_LAN8841,
4665 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4666 	.name		= "Microchip LAN8841 Gigabit PHY",
4667 	.flags		= PHY_POLL_CABLE_TEST,
4668 	.driver_data	= &lan8841_type,
4669 	.config_init	= lan8841_config_init,
4670 	.probe		= lan8841_probe,
4671 	.soft_reset	= genphy_soft_reset,
4672 	.config_intr	= lan8841_config_intr,
4673 	.handle_interrupt = lan8841_handle_interrupt,
4674 	.get_sset_count = kszphy_get_sset_count,
4675 	.get_strings	= kszphy_get_strings,
4676 	.get_stats	= kszphy_get_stats,
4677 	.suspend	= genphy_suspend,
4678 	.resume		= genphy_resume,
4679 	.cable_test_start	= lan8814_cable_test_start,
4680 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4681 }, {
4682 	.phy_id		= PHY_ID_KSZ9131,
4683 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4684 	.name		= "Microchip KSZ9131 Gigabit PHY",
4685 	/* PHY_GBIT_FEATURES */
4686 	.flags		= PHY_POLL_CABLE_TEST,
4687 	.driver_data	= &ksz9131_type,
4688 	.probe		= kszphy_probe,
4689 	.config_init	= ksz9131_config_init,
4690 	.config_intr	= kszphy_config_intr,
4691 	.config_aneg	= ksz9131_config_aneg,
4692 	.read_status	= ksz9131_read_status,
4693 	.handle_interrupt = kszphy_handle_interrupt,
4694 	.get_sset_count = kszphy_get_sset_count,
4695 	.get_strings	= kszphy_get_strings,
4696 	.get_stats	= kszphy_get_stats,
4697 	.suspend	= kszphy_suspend,
4698 	.resume		= kszphy_resume,
4699 	.cable_test_start	= ksz9x31_cable_test_start,
4700 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
4701 	.get_features	= ksz9477_get_features,
4702 }, {
4703 	.phy_id		= PHY_ID_KSZ8873MLL,
4704 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4705 	.name		= "Micrel KSZ8873MLL Switch",
4706 	/* PHY_BASIC_FEATURES */
4707 	.config_init	= kszphy_config_init,
4708 	.config_aneg	= ksz8873mll_config_aneg,
4709 	.read_status	= ksz8873mll_read_status,
4710 	.suspend	= genphy_suspend,
4711 	.resume		= genphy_resume,
4712 }, {
4713 	.phy_id		= PHY_ID_KSZ886X,
4714 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4715 	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
4716 	.driver_data	= &ksz886x_type,
4717 	/* PHY_BASIC_FEATURES */
4718 	.flags		= PHY_POLL_CABLE_TEST,
4719 	.config_init	= kszphy_config_init,
4720 	.config_aneg	= ksz886x_config_aneg,
4721 	.read_status	= ksz886x_read_status,
4722 	.suspend	= genphy_suspend,
4723 	.resume		= genphy_resume,
4724 	.cable_test_start	= ksz886x_cable_test_start,
4725 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4726 }, {
4727 	.name		= "Micrel KSZ87XX Switch",
4728 	/* PHY_BASIC_FEATURES */
4729 	.config_init	= kszphy_config_init,
4730 	.match_phy_device = ksz8795_match_phy_device,
4731 	.suspend	= genphy_suspend,
4732 	.resume		= genphy_resume,
4733 }, {
4734 	.phy_id		= PHY_ID_KSZ9477,
4735 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4736 	.name		= "Microchip KSZ9477",
4737 	/* PHY_GBIT_FEATURES */
4738 	.config_init	= kszphy_config_init,
4739 	.config_intr	= kszphy_config_intr,
4740 	.handle_interrupt = kszphy_handle_interrupt,
4741 	.suspend	= genphy_suspend,
4742 	.resume		= genphy_resume,
4743 	.get_features	= ksz9477_get_features,
4744 } };
4745 
4746 module_phy_driver(ksphy_driver);
4747 
4748 MODULE_DESCRIPTION("Micrel PHY driver");
4749 MODULE_AUTHOR("David J. Choi");
4750 MODULE_LICENSE("GPL");
4751 
4752 static struct mdio_device_id __maybe_unused micrel_tbl[] = {
4753 	{ PHY_ID_KSZ9021, 0x000ffffe },
4754 	{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
4755 	{ PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
4756 	{ PHY_ID_KSZ8001, 0x00fffffc },
4757 	{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
4758 	{ PHY_ID_KSZ8021, 0x00ffffff },
4759 	{ PHY_ID_KSZ8031, 0x00ffffff },
4760 	{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
4761 	{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
4762 	{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
4763 	{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
4764 	{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
4765 	{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
4766 	{ PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
4767 	{ PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
4768 	{ PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
4769 	{ }
4770 };
4771 
4772 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
4773