1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 /* Operation Mode Strap Override */ 38 #define MII_KSZPHY_OMSO 0x16 39 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 40 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 41 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 42 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 43 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 44 45 /* general Interrupt control/status reg in vendor specific block. */ 46 #define MII_KSZPHY_INTCS 0x1B 47 #define KSZPHY_INTCS_JABBER BIT(15) 48 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 49 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 50 #define KSZPHY_INTCS_PARELLEL BIT(12) 51 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 52 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 53 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 54 #define KSZPHY_INTCS_LINK_UP BIT(8) 55 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 56 KSZPHY_INTCS_LINK_DOWN) 57 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 58 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 59 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 60 KSZPHY_INTCS_LINK_UP_STATUS) 61 62 /* LinkMD Control/Status */ 63 #define KSZ8081_LMD 0x1d 64 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 65 #define KSZ8081_LMD_STAT_NORMAL 0 66 #define KSZ8081_LMD_STAT_OPEN 1 67 #define KSZ8081_LMD_STAT_SHORT 2 68 #define KSZ8081_LMD_STAT_FAIL 3 69 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 70 /* Short cable (<10 meter) has been detected by LinkMD */ 71 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 72 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 73 74 #define KSZ9x31_LMD 0x12 75 #define KSZ9x31_LMD_VCT_EN BIT(15) 76 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 77 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 78 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 81 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 82 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 83 #define KSZ9x31_LMD_VCT_ST_OPEN 1 84 #define KSZ9x31_LMD_VCT_ST_SHORT 2 85 #define KSZ9x31_LMD_VCT_ST_FAIL 3 86 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 89 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 93 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 94 95 #define KSZPHY_WIRE_PAIR_MASK 0x3 96 97 #define LAN8814_CABLE_DIAG 0x12 98 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 100 #define LAN8814_PAIR_BIT_SHIFT 12 101 102 #define LAN8814_WIRE_PAIR_MASK 0xF 103 104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 105 #define LAN8814_INTC 0x18 106 #define LAN8814_INTS 0x1B 107 108 #define LAN8814_INT_LINK_DOWN BIT(2) 109 #define LAN8814_INT_LINK_UP BIT(0) 110 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 111 LAN8814_INT_LINK_DOWN) 112 113 #define LAN8814_INTR_CTRL_REG 0x34 114 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 116 117 /* Represents 1ppm adjustment in 2^32 format with 118 * each nsec contains 4 clock cycles. 119 * The value is calculated as following: (1/1000000)/((2^-32)/4) 120 */ 121 #define LAN8814_1PPM_FORMAT 17179 122 123 #define PTP_RX_MOD 0x024F 124 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 125 #define PTP_RX_TIMESTAMP_EN 0x024D 126 #define PTP_TX_TIMESTAMP_EN 0x028D 127 128 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 129 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 130 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 131 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 132 133 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 134 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 135 136 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 137 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 138 #define LTC_HARD_RESET 0x023F 139 #define LTC_HARD_RESET_ BIT(0) 140 141 #define TSU_HARD_RESET 0x02C1 142 #define TSU_HARD_RESET_ BIT(0) 143 144 #define PTP_CMD_CTL 0x0200 145 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 146 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 147 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 148 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 149 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 150 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 151 152 #define PTP_CLOCK_SET_SEC_MID 0x0206 153 #define PTP_CLOCK_SET_SEC_LO 0x0207 154 #define PTP_CLOCK_SET_NS_HI 0x0208 155 #define PTP_CLOCK_SET_NS_LO 0x0209 156 157 #define PTP_CLOCK_READ_SEC_MID 0x022A 158 #define PTP_CLOCK_READ_SEC_LO 0x022B 159 #define PTP_CLOCK_READ_NS_HI 0x022C 160 #define PTP_CLOCK_READ_NS_LO 0x022D 161 162 #define PTP_OPERATING_MODE 0x0241 163 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 164 165 #define PTP_TX_MOD 0x028F 166 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 167 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 168 169 #define PTP_RX_PARSE_CONFIG 0x0242 170 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 171 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 172 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 173 174 #define PTP_TX_PARSE_CONFIG 0x0282 175 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 176 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 177 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 178 179 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 180 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 181 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 182 183 #define PTP_LTC_STEP_ADJ_HI 0x0212 184 #define PTP_LTC_STEP_ADJ_LO 0x0213 185 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 186 187 #define LAN8814_INTR_STS_REG 0x0033 188 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 189 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 190 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 191 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 192 193 #define PTP_CAP_INFO 0x022A 194 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 195 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 196 197 #define PTP_TX_EGRESS_SEC_HI 0x0296 198 #define PTP_TX_EGRESS_SEC_LO 0x0297 199 #define PTP_TX_EGRESS_NS_HI 0x0294 200 #define PTP_TX_EGRESS_NS_LO 0x0295 201 #define PTP_TX_MSG_HEADER2 0x0299 202 203 #define PTP_RX_INGRESS_SEC_HI 0x0256 204 #define PTP_RX_INGRESS_SEC_LO 0x0257 205 #define PTP_RX_INGRESS_NS_HI 0x0254 206 #define PTP_RX_INGRESS_NS_LO 0x0255 207 #define PTP_RX_MSG_HEADER2 0x0259 208 209 #define PTP_TSU_INT_EN 0x0200 210 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 211 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 212 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 213 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 214 215 #define PTP_TSU_INT_STS 0x0201 216 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 217 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 218 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 219 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 220 221 #define LAN8814_LED_CTRL_1 0x0 222 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 223 224 /* PHY Control 1 */ 225 #define MII_KSZPHY_CTRL_1 0x1e 226 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 227 228 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 229 #define MII_KSZPHY_CTRL_2 0x1f 230 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 231 /* bitmap of PHY register to set interrupt mode */ 232 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 233 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 234 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 235 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 236 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 237 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 238 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 239 240 /* Write/read to/from extended registers */ 241 #define MII_KSZPHY_EXTREG 0x0b 242 #define KSZPHY_EXTREG_WRITE 0x8000 243 244 #define MII_KSZPHY_EXTREG_WRITE 0x0c 245 #define MII_KSZPHY_EXTREG_READ 0x0d 246 247 /* Extended registers */ 248 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 249 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 250 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 251 252 #define PS_TO_REG 200 253 #define FIFO_SIZE 8 254 255 struct kszphy_hw_stat { 256 const char *string; 257 u8 reg; 258 u8 bits; 259 }; 260 261 static struct kszphy_hw_stat kszphy_hw_stats[] = { 262 { "phy_receive_errors", 21, 16}, 263 { "phy_idle_errors", 10, 8 }, 264 }; 265 266 struct kszphy_type { 267 u32 led_mode_reg; 268 u16 interrupt_level_mask; 269 u16 cable_diag_reg; 270 unsigned long pair_mask; 271 bool has_broadcast_disable; 272 bool has_nand_tree_disable; 273 bool has_rmii_ref_clk_sel; 274 }; 275 276 /* Shared structure between the PHYs of the same package. */ 277 struct lan8814_shared_priv { 278 struct phy_device *phydev; 279 struct ptp_clock *ptp_clock; 280 struct ptp_clock_info ptp_clock_info; 281 282 /* Reference counter to how many ports in the package are enabling the 283 * timestamping 284 */ 285 u8 ref; 286 287 /* Lock for ptp_clock and ref */ 288 struct mutex shared_lock; 289 }; 290 291 struct lan8814_ptp_rx_ts { 292 struct list_head list; 293 u32 seconds; 294 u32 nsec; 295 u16 seq_id; 296 }; 297 298 struct kszphy_ptp_priv { 299 struct mii_timestamper mii_ts; 300 struct phy_device *phydev; 301 302 struct sk_buff_head tx_queue; 303 struct sk_buff_head rx_queue; 304 305 struct list_head rx_ts_list; 306 /* Lock for Rx ts fifo */ 307 spinlock_t rx_ts_lock; 308 309 int hwts_tx_type; 310 enum hwtstamp_rx_filters rx_filter; 311 int layer; 312 int version; 313 }; 314 315 struct kszphy_priv { 316 struct kszphy_ptp_priv ptp_priv; 317 const struct kszphy_type *type; 318 int led_mode; 319 u16 vct_ctrl1000; 320 bool rmii_ref_clk_sel; 321 bool rmii_ref_clk_sel_val; 322 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 323 }; 324 325 static const struct kszphy_type lan8814_type = { 326 .led_mode_reg = ~LAN8814_LED_CTRL_1, 327 .cable_diag_reg = LAN8814_CABLE_DIAG, 328 .pair_mask = LAN8814_WIRE_PAIR_MASK, 329 }; 330 331 static const struct kszphy_type ksz886x_type = { 332 .cable_diag_reg = KSZ8081_LMD, 333 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 334 }; 335 336 static const struct kszphy_type ksz8021_type = { 337 .led_mode_reg = MII_KSZPHY_CTRL_2, 338 .has_broadcast_disable = true, 339 .has_nand_tree_disable = true, 340 .has_rmii_ref_clk_sel = true, 341 }; 342 343 static const struct kszphy_type ksz8041_type = { 344 .led_mode_reg = MII_KSZPHY_CTRL_1, 345 }; 346 347 static const struct kszphy_type ksz8051_type = { 348 .led_mode_reg = MII_KSZPHY_CTRL_2, 349 .has_nand_tree_disable = true, 350 }; 351 352 static const struct kszphy_type ksz8081_type = { 353 .led_mode_reg = MII_KSZPHY_CTRL_2, 354 .has_broadcast_disable = true, 355 .has_nand_tree_disable = true, 356 .has_rmii_ref_clk_sel = true, 357 }; 358 359 static const struct kszphy_type ks8737_type = { 360 .interrupt_level_mask = BIT(14), 361 }; 362 363 static const struct kszphy_type ksz9021_type = { 364 .interrupt_level_mask = BIT(14), 365 }; 366 367 static int kszphy_extended_write(struct phy_device *phydev, 368 u32 regnum, u16 val) 369 { 370 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 371 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 372 } 373 374 static int kszphy_extended_read(struct phy_device *phydev, 375 u32 regnum) 376 { 377 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 378 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 379 } 380 381 static int kszphy_ack_interrupt(struct phy_device *phydev) 382 { 383 /* bit[7..0] int status, which is a read and clear register. */ 384 int rc; 385 386 rc = phy_read(phydev, MII_KSZPHY_INTCS); 387 388 return (rc < 0) ? rc : 0; 389 } 390 391 static int kszphy_config_intr(struct phy_device *phydev) 392 { 393 const struct kszphy_type *type = phydev->drv->driver_data; 394 int temp, err; 395 u16 mask; 396 397 if (type && type->interrupt_level_mask) 398 mask = type->interrupt_level_mask; 399 else 400 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 401 402 /* set the interrupt pin active low */ 403 temp = phy_read(phydev, MII_KSZPHY_CTRL); 404 if (temp < 0) 405 return temp; 406 temp &= ~mask; 407 phy_write(phydev, MII_KSZPHY_CTRL, temp); 408 409 /* enable / disable interrupts */ 410 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 411 err = kszphy_ack_interrupt(phydev); 412 if (err) 413 return err; 414 415 temp = KSZPHY_INTCS_ALL; 416 err = phy_write(phydev, MII_KSZPHY_INTCS, temp); 417 } else { 418 temp = 0; 419 err = phy_write(phydev, MII_KSZPHY_INTCS, temp); 420 if (err) 421 return err; 422 423 err = kszphy_ack_interrupt(phydev); 424 } 425 426 return err; 427 } 428 429 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 430 { 431 int irq_status; 432 433 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 434 if (irq_status < 0) { 435 phy_error(phydev); 436 return IRQ_NONE; 437 } 438 439 if (!(irq_status & KSZPHY_INTCS_STATUS)) 440 return IRQ_NONE; 441 442 phy_trigger_machine(phydev); 443 444 return IRQ_HANDLED; 445 } 446 447 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 448 { 449 int ctrl; 450 451 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 452 if (ctrl < 0) 453 return ctrl; 454 455 if (val) 456 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 457 else 458 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 459 460 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 461 } 462 463 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 464 { 465 int rc, temp, shift; 466 467 switch (reg) { 468 case MII_KSZPHY_CTRL_1: 469 shift = 14; 470 break; 471 case MII_KSZPHY_CTRL_2: 472 shift = 4; 473 break; 474 default: 475 return -EINVAL; 476 } 477 478 temp = phy_read(phydev, reg); 479 if (temp < 0) { 480 rc = temp; 481 goto out; 482 } 483 484 temp &= ~(3 << shift); 485 temp |= val << shift; 486 rc = phy_write(phydev, reg, temp); 487 out: 488 if (rc < 0) 489 phydev_err(phydev, "failed to set led mode\n"); 490 491 return rc; 492 } 493 494 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 495 * unique (non-broadcast) address on a shared bus. 496 */ 497 static int kszphy_broadcast_disable(struct phy_device *phydev) 498 { 499 int ret; 500 501 ret = phy_read(phydev, MII_KSZPHY_OMSO); 502 if (ret < 0) 503 goto out; 504 505 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 506 out: 507 if (ret) 508 phydev_err(phydev, "failed to disable broadcast address\n"); 509 510 return ret; 511 } 512 513 static int kszphy_nand_tree_disable(struct phy_device *phydev) 514 { 515 int ret; 516 517 ret = phy_read(phydev, MII_KSZPHY_OMSO); 518 if (ret < 0) 519 goto out; 520 521 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 522 return 0; 523 524 ret = phy_write(phydev, MII_KSZPHY_OMSO, 525 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 526 out: 527 if (ret) 528 phydev_err(phydev, "failed to disable NAND tree mode\n"); 529 530 return ret; 531 } 532 533 /* Some config bits need to be set again on resume, handle them here. */ 534 static int kszphy_config_reset(struct phy_device *phydev) 535 { 536 struct kszphy_priv *priv = phydev->priv; 537 int ret; 538 539 if (priv->rmii_ref_clk_sel) { 540 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 541 if (ret) { 542 phydev_err(phydev, 543 "failed to set rmii reference clock\n"); 544 return ret; 545 } 546 } 547 548 if (priv->type && priv->led_mode >= 0) 549 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 550 551 return 0; 552 } 553 554 static int kszphy_config_init(struct phy_device *phydev) 555 { 556 struct kszphy_priv *priv = phydev->priv; 557 const struct kszphy_type *type; 558 559 if (!priv) 560 return 0; 561 562 type = priv->type; 563 564 if (type && type->has_broadcast_disable) 565 kszphy_broadcast_disable(phydev); 566 567 if (type && type->has_nand_tree_disable) 568 kszphy_nand_tree_disable(phydev); 569 570 return kszphy_config_reset(phydev); 571 } 572 573 static int ksz8041_fiber_mode(struct phy_device *phydev) 574 { 575 struct device_node *of_node = phydev->mdio.dev.of_node; 576 577 return of_property_read_bool(of_node, "micrel,fiber-mode"); 578 } 579 580 static int ksz8041_config_init(struct phy_device *phydev) 581 { 582 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 583 584 /* Limit supported and advertised modes in fiber mode */ 585 if (ksz8041_fiber_mode(phydev)) { 586 phydev->dev_flags |= MICREL_PHY_FXEN; 587 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 588 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 589 590 linkmode_and(phydev->supported, phydev->supported, mask); 591 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 592 phydev->supported); 593 linkmode_and(phydev->advertising, phydev->advertising, mask); 594 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 595 phydev->advertising); 596 phydev->autoneg = AUTONEG_DISABLE; 597 } 598 599 return kszphy_config_init(phydev); 600 } 601 602 static int ksz8041_config_aneg(struct phy_device *phydev) 603 { 604 /* Skip auto-negotiation in fiber mode */ 605 if (phydev->dev_flags & MICREL_PHY_FXEN) { 606 phydev->speed = SPEED_100; 607 return 0; 608 } 609 610 return genphy_config_aneg(phydev); 611 } 612 613 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 614 const bool ksz_8051) 615 { 616 int ret; 617 618 if ((phydev->phy_id & MICREL_PHY_ID_MASK) != PHY_ID_KSZ8051) 619 return 0; 620 621 ret = phy_read(phydev, MII_BMSR); 622 if (ret < 0) 623 return ret; 624 625 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 626 * exact PHY ID. However, they can be told apart by the extended 627 * capability registers presence. The KSZ8051 PHY has them while 628 * the switch does not. 629 */ 630 ret &= BMSR_ERCAP; 631 if (ksz_8051) 632 return ret; 633 else 634 return !ret; 635 } 636 637 static int ksz8051_match_phy_device(struct phy_device *phydev) 638 { 639 return ksz8051_ksz8795_match_phy_device(phydev, true); 640 } 641 642 static int ksz8081_config_init(struct phy_device *phydev) 643 { 644 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 645 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 646 * pull-down is missing, the factory test mode should be cleared by 647 * manually writing a 0. 648 */ 649 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 650 651 return kszphy_config_init(phydev); 652 } 653 654 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 655 { 656 u16 val; 657 658 switch (ctrl) { 659 case ETH_TP_MDI: 660 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 661 break; 662 case ETH_TP_MDI_X: 663 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 664 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 665 break; 666 case ETH_TP_MDI_AUTO: 667 val = 0; 668 break; 669 default: 670 return 0; 671 } 672 673 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 674 KSZ8081_CTRL2_HP_MDIX | 675 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 676 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 677 KSZ8081_CTRL2_HP_MDIX | val); 678 } 679 680 static int ksz8081_config_aneg(struct phy_device *phydev) 681 { 682 int ret; 683 684 ret = genphy_config_aneg(phydev); 685 if (ret) 686 return ret; 687 688 /* The MDI-X configuration is automatically changed by the PHY after 689 * switching from autoneg off to on. So, take MDI-X configuration under 690 * own control and set it after autoneg configuration was done. 691 */ 692 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 693 } 694 695 static int ksz8081_mdix_update(struct phy_device *phydev) 696 { 697 int ret; 698 699 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 700 if (ret < 0) 701 return ret; 702 703 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 704 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 705 phydev->mdix_ctrl = ETH_TP_MDI_X; 706 else 707 phydev->mdix_ctrl = ETH_TP_MDI; 708 } else { 709 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 710 } 711 712 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 713 if (ret < 0) 714 return ret; 715 716 if (ret & KSZ8081_CTRL1_MDIX_STAT) 717 phydev->mdix = ETH_TP_MDI; 718 else 719 phydev->mdix = ETH_TP_MDI_X; 720 721 return 0; 722 } 723 724 static int ksz8081_read_status(struct phy_device *phydev) 725 { 726 int ret; 727 728 ret = ksz8081_mdix_update(phydev); 729 if (ret < 0) 730 return ret; 731 732 return genphy_read_status(phydev); 733 } 734 735 static int ksz8061_config_init(struct phy_device *phydev) 736 { 737 int ret; 738 739 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 740 if (ret) 741 return ret; 742 743 return kszphy_config_init(phydev); 744 } 745 746 static int ksz8795_match_phy_device(struct phy_device *phydev) 747 { 748 return ksz8051_ksz8795_match_phy_device(phydev, false); 749 } 750 751 static int ksz9021_load_values_from_of(struct phy_device *phydev, 752 const struct device_node *of_node, 753 u16 reg, 754 const char *field1, const char *field2, 755 const char *field3, const char *field4) 756 { 757 int val1 = -1; 758 int val2 = -2; 759 int val3 = -3; 760 int val4 = -4; 761 int newval; 762 int matches = 0; 763 764 if (!of_property_read_u32(of_node, field1, &val1)) 765 matches++; 766 767 if (!of_property_read_u32(of_node, field2, &val2)) 768 matches++; 769 770 if (!of_property_read_u32(of_node, field3, &val3)) 771 matches++; 772 773 if (!of_property_read_u32(of_node, field4, &val4)) 774 matches++; 775 776 if (!matches) 777 return 0; 778 779 if (matches < 4) 780 newval = kszphy_extended_read(phydev, reg); 781 else 782 newval = 0; 783 784 if (val1 != -1) 785 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 786 787 if (val2 != -2) 788 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 789 790 if (val3 != -3) 791 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 792 793 if (val4 != -4) 794 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 795 796 return kszphy_extended_write(phydev, reg, newval); 797 } 798 799 static int ksz9021_config_init(struct phy_device *phydev) 800 { 801 const struct device_node *of_node; 802 const struct device *dev_walker; 803 804 /* The Micrel driver has a deprecated option to place phy OF 805 * properties in the MAC node. Walk up the tree of devices to 806 * find a device with an OF node. 807 */ 808 dev_walker = &phydev->mdio.dev; 809 do { 810 of_node = dev_walker->of_node; 811 dev_walker = dev_walker->parent; 812 813 } while (!of_node && dev_walker); 814 815 if (of_node) { 816 ksz9021_load_values_from_of(phydev, of_node, 817 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 818 "txen-skew-ps", "txc-skew-ps", 819 "rxdv-skew-ps", "rxc-skew-ps"); 820 ksz9021_load_values_from_of(phydev, of_node, 821 MII_KSZPHY_RX_DATA_PAD_SKEW, 822 "rxd0-skew-ps", "rxd1-skew-ps", 823 "rxd2-skew-ps", "rxd3-skew-ps"); 824 ksz9021_load_values_from_of(phydev, of_node, 825 MII_KSZPHY_TX_DATA_PAD_SKEW, 826 "txd0-skew-ps", "txd1-skew-ps", 827 "txd2-skew-ps", "txd3-skew-ps"); 828 } 829 return 0; 830 } 831 832 #define KSZ9031_PS_TO_REG 60 833 834 /* Extended registers */ 835 /* MMD Address 0x0 */ 836 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 837 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 838 839 /* MMD Address 0x2 */ 840 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 841 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 842 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 843 844 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 845 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 846 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 847 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 848 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 849 850 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 851 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 852 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 853 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 854 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 855 856 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 857 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 858 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 859 860 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 861 * provide different RGMII options we need to configure delay offset 862 * for each pad relative to build in delay. 863 */ 864 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 865 * 1.80ns 866 */ 867 #define RX_ID 0x7 868 #define RX_CLK_ID 0x19 869 870 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 871 * internal 1.2ns delay. 872 */ 873 #define RX_ND 0xc 874 #define RX_CLK_ND 0x0 875 876 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 877 #define TX_ID 0x0 878 #define TX_CLK_ID 0x1f 879 880 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 881 * dealy 882 */ 883 #define TX_ND 0x7 884 #define TX_CLK_ND 0xf 885 886 /* MMD Address 0x1C */ 887 #define MII_KSZ9031RN_EDPD 0x23 888 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 889 890 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 891 const struct device_node *of_node, 892 u16 reg, size_t field_sz, 893 const char *field[], u8 numfields, 894 bool *update) 895 { 896 int val[4] = {-1, -2, -3, -4}; 897 int matches = 0; 898 u16 mask; 899 u16 maxval; 900 u16 newval; 901 int i; 902 903 for (i = 0; i < numfields; i++) 904 if (!of_property_read_u32(of_node, field[i], val + i)) 905 matches++; 906 907 if (!matches) 908 return 0; 909 910 *update |= true; 911 912 if (matches < numfields) 913 newval = phy_read_mmd(phydev, 2, reg); 914 else 915 newval = 0; 916 917 maxval = (field_sz == 4) ? 0xf : 0x1f; 918 for (i = 0; i < numfields; i++) 919 if (val[i] != -(i + 1)) { 920 mask = 0xffff; 921 mask ^= maxval << (field_sz * i); 922 newval = (newval & mask) | 923 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 924 << (field_sz * i)); 925 } 926 927 return phy_write_mmd(phydev, 2, reg, newval); 928 } 929 930 /* Center KSZ9031RNX FLP timing at 16ms. */ 931 static int ksz9031_center_flp_timing(struct phy_device *phydev) 932 { 933 int result; 934 935 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 936 0x0006); 937 if (result) 938 return result; 939 940 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 941 0x1A80); 942 if (result) 943 return result; 944 945 return genphy_restart_aneg(phydev); 946 } 947 948 /* Enable energy-detect power-down mode */ 949 static int ksz9031_enable_edpd(struct phy_device *phydev) 950 { 951 int reg; 952 953 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 954 if (reg < 0) 955 return reg; 956 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 957 reg | MII_KSZ9031RN_EDPD_ENABLE); 958 } 959 960 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 961 { 962 u16 rx, tx, rx_clk, tx_clk; 963 int ret; 964 965 switch (phydev->interface) { 966 case PHY_INTERFACE_MODE_RGMII: 967 tx = TX_ND; 968 tx_clk = TX_CLK_ND; 969 rx = RX_ND; 970 rx_clk = RX_CLK_ND; 971 break; 972 case PHY_INTERFACE_MODE_RGMII_ID: 973 tx = TX_ID; 974 tx_clk = TX_CLK_ID; 975 rx = RX_ID; 976 rx_clk = RX_CLK_ID; 977 break; 978 case PHY_INTERFACE_MODE_RGMII_RXID: 979 tx = TX_ND; 980 tx_clk = TX_CLK_ND; 981 rx = RX_ID; 982 rx_clk = RX_CLK_ID; 983 break; 984 case PHY_INTERFACE_MODE_RGMII_TXID: 985 tx = TX_ID; 986 tx_clk = TX_CLK_ID; 987 rx = RX_ND; 988 rx_clk = RX_CLK_ND; 989 break; 990 default: 991 return 0; 992 } 993 994 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 995 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 996 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 997 if (ret < 0) 998 return ret; 999 1000 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1001 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1002 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1003 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1004 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1005 if (ret < 0) 1006 return ret; 1007 1008 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1009 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1010 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1011 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1012 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1013 if (ret < 0) 1014 return ret; 1015 1016 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1017 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1018 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1019 } 1020 1021 static int ksz9031_config_init(struct phy_device *phydev) 1022 { 1023 const struct device_node *of_node; 1024 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1025 static const char *rx_data_skews[4] = { 1026 "rxd0-skew-ps", "rxd1-skew-ps", 1027 "rxd2-skew-ps", "rxd3-skew-ps" 1028 }; 1029 static const char *tx_data_skews[4] = { 1030 "txd0-skew-ps", "txd1-skew-ps", 1031 "txd2-skew-ps", "txd3-skew-ps" 1032 }; 1033 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1034 const struct device *dev_walker; 1035 int result; 1036 1037 result = ksz9031_enable_edpd(phydev); 1038 if (result < 0) 1039 return result; 1040 1041 /* The Micrel driver has a deprecated option to place phy OF 1042 * properties in the MAC node. Walk up the tree of devices to 1043 * find a device with an OF node. 1044 */ 1045 dev_walker = &phydev->mdio.dev; 1046 do { 1047 of_node = dev_walker->of_node; 1048 dev_walker = dev_walker->parent; 1049 } while (!of_node && dev_walker); 1050 1051 if (of_node) { 1052 bool update = false; 1053 1054 if (phy_interface_is_rgmii(phydev)) { 1055 result = ksz9031_config_rgmii_delay(phydev); 1056 if (result < 0) 1057 return result; 1058 } 1059 1060 ksz9031_of_load_skew_values(phydev, of_node, 1061 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1062 clk_skews, 2, &update); 1063 1064 ksz9031_of_load_skew_values(phydev, of_node, 1065 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1066 control_skews, 2, &update); 1067 1068 ksz9031_of_load_skew_values(phydev, of_node, 1069 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1070 rx_data_skews, 4, &update); 1071 1072 ksz9031_of_load_skew_values(phydev, of_node, 1073 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1074 tx_data_skews, 4, &update); 1075 1076 if (update && !phy_interface_is_rgmii(phydev)) 1077 phydev_warn(phydev, 1078 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1079 1080 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1081 * When the device links in the 1000BASE-T slave mode only, 1082 * the optional 125MHz reference output clock (CLK125_NDO) 1083 * has wide duty cycle variation. 1084 * 1085 * The optional CLK125_NDO clock does not meet the RGMII 1086 * 45/55 percent (min/max) duty cycle requirement and therefore 1087 * cannot be used directly by the MAC side for clocking 1088 * applications that have setup/hold time requirements on 1089 * rising and falling clock edges. 1090 * 1091 * Workaround: 1092 * Force the phy to be the master to receive a stable clock 1093 * which meets the duty cycle requirement. 1094 */ 1095 if (of_property_read_bool(of_node, "micrel,force-master")) { 1096 result = phy_read(phydev, MII_CTRL1000); 1097 if (result < 0) 1098 goto err_force_master; 1099 1100 /* enable master mode, config & prefer master */ 1101 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1102 result = phy_write(phydev, MII_CTRL1000, result); 1103 if (result < 0) 1104 goto err_force_master; 1105 } 1106 } 1107 1108 return ksz9031_center_flp_timing(phydev); 1109 1110 err_force_master: 1111 phydev_err(phydev, "failed to force the phy to master mode\n"); 1112 return result; 1113 } 1114 1115 #define KSZ9131_SKEW_5BIT_MAX 2400 1116 #define KSZ9131_SKEW_4BIT_MAX 800 1117 #define KSZ9131_OFFSET 700 1118 #define KSZ9131_STEP 100 1119 1120 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1121 struct device_node *of_node, 1122 u16 reg, size_t field_sz, 1123 char *field[], u8 numfields) 1124 { 1125 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1126 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1127 int skewval, skewmax = 0; 1128 int matches = 0; 1129 u16 maxval; 1130 u16 newval; 1131 u16 mask; 1132 int i; 1133 1134 /* psec properties in dts should mean x pico seconds */ 1135 if (field_sz == 5) 1136 skewmax = KSZ9131_SKEW_5BIT_MAX; 1137 else 1138 skewmax = KSZ9131_SKEW_4BIT_MAX; 1139 1140 for (i = 0; i < numfields; i++) 1141 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1142 if (skewval < -KSZ9131_OFFSET) 1143 skewval = -KSZ9131_OFFSET; 1144 else if (skewval > skewmax) 1145 skewval = skewmax; 1146 1147 val[i] = skewval + KSZ9131_OFFSET; 1148 matches++; 1149 } 1150 1151 if (!matches) 1152 return 0; 1153 1154 if (matches < numfields) 1155 newval = phy_read_mmd(phydev, 2, reg); 1156 else 1157 newval = 0; 1158 1159 maxval = (field_sz == 4) ? 0xf : 0x1f; 1160 for (i = 0; i < numfields; i++) 1161 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1162 mask = 0xffff; 1163 mask ^= maxval << (field_sz * i); 1164 newval = (newval & mask) | 1165 (((val[i] / KSZ9131_STEP) & maxval) 1166 << (field_sz * i)); 1167 } 1168 1169 return phy_write_mmd(phydev, 2, reg, newval); 1170 } 1171 1172 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1173 #define KSZ9131RN_RXC_DLL_CTRL 76 1174 #define KSZ9131RN_TXC_DLL_CTRL 77 1175 #define KSZ9131RN_DLL_CTRL_BYPASS BIT_MASK(12) 1176 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1177 #define KSZ9131RN_DLL_DISABLE_DELAY BIT(12) 1178 1179 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1180 { 1181 u16 rxcdll_val, txcdll_val; 1182 int ret; 1183 1184 switch (phydev->interface) { 1185 case PHY_INTERFACE_MODE_RGMII: 1186 rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY; 1187 txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY; 1188 break; 1189 case PHY_INTERFACE_MODE_RGMII_ID: 1190 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1191 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1192 break; 1193 case PHY_INTERFACE_MODE_RGMII_RXID: 1194 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1195 txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY; 1196 break; 1197 case PHY_INTERFACE_MODE_RGMII_TXID: 1198 rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY; 1199 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1200 break; 1201 default: 1202 return 0; 1203 } 1204 1205 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1206 KSZ9131RN_RXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS, 1207 rxcdll_val); 1208 if (ret < 0) 1209 return ret; 1210 1211 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1212 KSZ9131RN_TXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS, 1213 txcdll_val); 1214 } 1215 1216 /* Silicon Errata DS80000693B 1217 * 1218 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1219 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1220 * according to the datasheet (off if there is no link). 1221 */ 1222 static int ksz9131_led_errata(struct phy_device *phydev) 1223 { 1224 int reg; 1225 1226 reg = phy_read_mmd(phydev, 2, 0); 1227 if (reg < 0) 1228 return reg; 1229 1230 if (!(reg & BIT(4))) 1231 return 0; 1232 1233 return phy_set_bits(phydev, 0x1e, BIT(9)); 1234 } 1235 1236 static int ksz9131_config_init(struct phy_device *phydev) 1237 { 1238 struct device_node *of_node; 1239 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1240 char *rx_data_skews[4] = { 1241 "rxd0-skew-psec", "rxd1-skew-psec", 1242 "rxd2-skew-psec", "rxd3-skew-psec" 1243 }; 1244 char *tx_data_skews[4] = { 1245 "txd0-skew-psec", "txd1-skew-psec", 1246 "txd2-skew-psec", "txd3-skew-psec" 1247 }; 1248 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1249 const struct device *dev_walker; 1250 int ret; 1251 1252 dev_walker = &phydev->mdio.dev; 1253 do { 1254 of_node = dev_walker->of_node; 1255 dev_walker = dev_walker->parent; 1256 } while (!of_node && dev_walker); 1257 1258 if (!of_node) 1259 return 0; 1260 1261 if (phy_interface_is_rgmii(phydev)) { 1262 ret = ksz9131_config_rgmii_delay(phydev); 1263 if (ret < 0) 1264 return ret; 1265 } 1266 1267 ret = ksz9131_of_load_skew_values(phydev, of_node, 1268 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1269 clk_skews, 2); 1270 if (ret < 0) 1271 return ret; 1272 1273 ret = ksz9131_of_load_skew_values(phydev, of_node, 1274 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1275 control_skews, 2); 1276 if (ret < 0) 1277 return ret; 1278 1279 ret = ksz9131_of_load_skew_values(phydev, of_node, 1280 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1281 rx_data_skews, 4); 1282 if (ret < 0) 1283 return ret; 1284 1285 ret = ksz9131_of_load_skew_values(phydev, of_node, 1286 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1287 tx_data_skews, 4); 1288 if (ret < 0) 1289 return ret; 1290 1291 ret = ksz9131_led_errata(phydev); 1292 if (ret < 0) 1293 return ret; 1294 1295 return 0; 1296 } 1297 1298 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1299 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1300 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1301 static int ksz8873mll_read_status(struct phy_device *phydev) 1302 { 1303 int regval; 1304 1305 /* dummy read */ 1306 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1307 1308 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1309 1310 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1311 phydev->duplex = DUPLEX_HALF; 1312 else 1313 phydev->duplex = DUPLEX_FULL; 1314 1315 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1316 phydev->speed = SPEED_10; 1317 else 1318 phydev->speed = SPEED_100; 1319 1320 phydev->link = 1; 1321 phydev->pause = phydev->asym_pause = 0; 1322 1323 return 0; 1324 } 1325 1326 static int ksz9031_get_features(struct phy_device *phydev) 1327 { 1328 int ret; 1329 1330 ret = genphy_read_abilities(phydev); 1331 if (ret < 0) 1332 return ret; 1333 1334 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1335 * Whenever the device's Asymmetric Pause capability is set to 1, 1336 * link-up may fail after a link-up to link-down transition. 1337 * 1338 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1339 * 1340 * Workaround: 1341 * Do not enable the Asymmetric Pause capability bit. 1342 */ 1343 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1344 1345 /* We force setting the Pause capability as the core will force the 1346 * Asymmetric Pause capability to 1 otherwise. 1347 */ 1348 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1349 1350 return 0; 1351 } 1352 1353 static int ksz9031_read_status(struct phy_device *phydev) 1354 { 1355 int err; 1356 int regval; 1357 1358 err = genphy_read_status(phydev); 1359 if (err) 1360 return err; 1361 1362 /* Make sure the PHY is not broken. Read idle error count, 1363 * and reset the PHY if it is maxed out. 1364 */ 1365 regval = phy_read(phydev, MII_STAT1000); 1366 if ((regval & 0xFF) == 0xFF) { 1367 phy_init_hw(phydev); 1368 phydev->link = 0; 1369 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1370 phydev->drv->config_intr(phydev); 1371 return genphy_config_aneg(phydev); 1372 } 1373 1374 return 0; 1375 } 1376 1377 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1378 { 1379 struct kszphy_priv *priv = phydev->priv; 1380 int ret; 1381 1382 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1383 * Prior to running the cable diagnostics, Auto-negotiation should 1384 * be disabled, full duplex set and the link speed set to 1000Mbps 1385 * via the Basic Control Register. 1386 */ 1387 ret = phy_modify(phydev, MII_BMCR, 1388 BMCR_SPEED1000 | BMCR_FULLDPLX | 1389 BMCR_ANENABLE | BMCR_SPEED100, 1390 BMCR_SPEED1000 | BMCR_FULLDPLX); 1391 if (ret) 1392 return ret; 1393 1394 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1395 * The Master-Slave configuration should be set to Slave by writing 1396 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1397 * Register. 1398 */ 1399 ret = phy_read(phydev, MII_CTRL1000); 1400 if (ret < 0) 1401 return ret; 1402 1403 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1404 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1405 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1406 ret |= CTL1000_ENABLE_MASTER; 1407 1408 return phy_write(phydev, MII_CTRL1000, ret); 1409 } 1410 1411 static int ksz9x31_cable_test_result_trans(u16 status) 1412 { 1413 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1414 case KSZ9x31_LMD_VCT_ST_NORMAL: 1415 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1416 case KSZ9x31_LMD_VCT_ST_OPEN: 1417 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1418 case KSZ9x31_LMD_VCT_ST_SHORT: 1419 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1420 case KSZ9x31_LMD_VCT_ST_FAIL: 1421 fallthrough; 1422 default: 1423 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1424 } 1425 } 1426 1427 static bool ksz9x31_cable_test_failed(u16 status) 1428 { 1429 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1430 1431 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1432 } 1433 1434 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1435 { 1436 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1437 case KSZ9x31_LMD_VCT_ST_OPEN: 1438 fallthrough; 1439 case KSZ9x31_LMD_VCT_ST_SHORT: 1440 return true; 1441 } 1442 return false; 1443 } 1444 1445 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1446 { 1447 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1448 1449 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1450 * 1451 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1452 */ 1453 if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_KSZ9131) 1454 dt = clamp(dt - 22, 0, 255); 1455 1456 return (dt * 400) / 10; 1457 } 1458 1459 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1460 { 1461 int val, ret; 1462 1463 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1464 !(val & KSZ9x31_LMD_VCT_EN), 1465 30000, 100000, true); 1466 1467 return ret < 0 ? ret : 0; 1468 } 1469 1470 static int ksz9x31_cable_test_get_pair(int pair) 1471 { 1472 static const int ethtool_pair[] = { 1473 ETHTOOL_A_CABLE_PAIR_A, 1474 ETHTOOL_A_CABLE_PAIR_B, 1475 ETHTOOL_A_CABLE_PAIR_C, 1476 ETHTOOL_A_CABLE_PAIR_D, 1477 }; 1478 1479 return ethtool_pair[pair]; 1480 } 1481 1482 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1483 { 1484 int ret, val; 1485 1486 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1487 * To test each individual cable pair, set the cable pair in the Cable 1488 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1489 * Diagnostic Register, along with setting the Cable Diagnostics Test 1490 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1491 * will self clear when the test is concluded. 1492 */ 1493 ret = phy_write(phydev, KSZ9x31_LMD, 1494 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1495 if (ret) 1496 return ret; 1497 1498 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1499 if (ret) 1500 return ret; 1501 1502 val = phy_read(phydev, KSZ9x31_LMD); 1503 if (val < 0) 1504 return val; 1505 1506 if (ksz9x31_cable_test_failed(val)) 1507 return -EAGAIN; 1508 1509 ret = ethnl_cable_test_result(phydev, 1510 ksz9x31_cable_test_get_pair(pair), 1511 ksz9x31_cable_test_result_trans(val)); 1512 if (ret) 1513 return ret; 1514 1515 if (!ksz9x31_cable_test_fault_length_valid(val)) 1516 return 0; 1517 1518 return ethnl_cable_test_fault_length(phydev, 1519 ksz9x31_cable_test_get_pair(pair), 1520 ksz9x31_cable_test_fault_length(phydev, val)); 1521 } 1522 1523 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1524 bool *finished) 1525 { 1526 struct kszphy_priv *priv = phydev->priv; 1527 unsigned long pair_mask = 0xf; 1528 int retries = 20; 1529 int pair, ret, rv; 1530 1531 *finished = false; 1532 1533 /* Try harder if link partner is active */ 1534 while (pair_mask && retries--) { 1535 for_each_set_bit(pair, &pair_mask, 4) { 1536 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1537 if (ret == -EAGAIN) 1538 continue; 1539 if (ret < 0) 1540 return ret; 1541 clear_bit(pair, &pair_mask); 1542 } 1543 /* If link partner is in autonegotiation mode it will send 2ms 1544 * of FLPs with at least 6ms of silence. 1545 * Add 2ms sleep to have better chances to hit this silence. 1546 */ 1547 if (pair_mask) 1548 usleep_range(2000, 3000); 1549 } 1550 1551 /* Report remaining unfinished pair result as unknown. */ 1552 for_each_set_bit(pair, &pair_mask, 4) { 1553 ret = ethnl_cable_test_result(phydev, 1554 ksz9x31_cable_test_get_pair(pair), 1555 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1556 } 1557 1558 *finished = true; 1559 1560 /* Restore cached bits from before LinkMD got started. */ 1561 rv = phy_modify(phydev, MII_CTRL1000, 1562 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1563 priv->vct_ctrl1000); 1564 if (rv) 1565 return rv; 1566 1567 return ret; 1568 } 1569 1570 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1571 { 1572 return 0; 1573 } 1574 1575 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1576 { 1577 u16 val; 1578 1579 switch (ctrl) { 1580 case ETH_TP_MDI: 1581 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1582 break; 1583 case ETH_TP_MDI_X: 1584 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1585 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1586 * sheet seems to be missing: 1587 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1588 * 0 = Normal operation (transmit on TX+/TX- pins) 1589 */ 1590 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1591 break; 1592 case ETH_TP_MDI_AUTO: 1593 val = 0; 1594 break; 1595 default: 1596 return 0; 1597 } 1598 1599 return phy_modify(phydev, MII_BMCR, 1600 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1601 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1602 KSZ886X_BMCR_HP_MDIX | val); 1603 } 1604 1605 static int ksz886x_config_aneg(struct phy_device *phydev) 1606 { 1607 int ret; 1608 1609 ret = genphy_config_aneg(phydev); 1610 if (ret) 1611 return ret; 1612 1613 /* The MDI-X configuration is automatically changed by the PHY after 1614 * switching from autoneg off to on. So, take MDI-X configuration under 1615 * own control and set it after autoneg configuration was done. 1616 */ 1617 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1618 } 1619 1620 static int ksz886x_mdix_update(struct phy_device *phydev) 1621 { 1622 int ret; 1623 1624 ret = phy_read(phydev, MII_BMCR); 1625 if (ret < 0) 1626 return ret; 1627 1628 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1629 if (ret & KSZ886X_BMCR_FORCE_MDI) 1630 phydev->mdix_ctrl = ETH_TP_MDI_X; 1631 else 1632 phydev->mdix_ctrl = ETH_TP_MDI; 1633 } else { 1634 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1635 } 1636 1637 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1638 if (ret < 0) 1639 return ret; 1640 1641 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1642 if (ret & KSZ886X_CTRL_MDIX_STAT) 1643 phydev->mdix = ETH_TP_MDI_X; 1644 else 1645 phydev->mdix = ETH_TP_MDI; 1646 1647 return 0; 1648 } 1649 1650 static int ksz886x_read_status(struct phy_device *phydev) 1651 { 1652 int ret; 1653 1654 ret = ksz886x_mdix_update(phydev); 1655 if (ret < 0) 1656 return ret; 1657 1658 return genphy_read_status(phydev); 1659 } 1660 1661 static int kszphy_get_sset_count(struct phy_device *phydev) 1662 { 1663 return ARRAY_SIZE(kszphy_hw_stats); 1664 } 1665 1666 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 1667 { 1668 int i; 1669 1670 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) { 1671 strscpy(data + i * ETH_GSTRING_LEN, 1672 kszphy_hw_stats[i].string, ETH_GSTRING_LEN); 1673 } 1674 } 1675 1676 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 1677 { 1678 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 1679 struct kszphy_priv *priv = phydev->priv; 1680 int val; 1681 u64 ret; 1682 1683 val = phy_read(phydev, stat.reg); 1684 if (val < 0) { 1685 ret = U64_MAX; 1686 } else { 1687 val = val & ((1 << stat.bits) - 1); 1688 priv->stats[i] += val; 1689 ret = priv->stats[i]; 1690 } 1691 1692 return ret; 1693 } 1694 1695 static void kszphy_get_stats(struct phy_device *phydev, 1696 struct ethtool_stats *stats, u64 *data) 1697 { 1698 int i; 1699 1700 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 1701 data[i] = kszphy_get_stat(phydev, i); 1702 } 1703 1704 static int kszphy_suspend(struct phy_device *phydev) 1705 { 1706 /* Disable PHY Interrupts */ 1707 if (phy_interrupt_is_valid(phydev)) { 1708 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1709 if (phydev->drv->config_intr) 1710 phydev->drv->config_intr(phydev); 1711 } 1712 1713 return genphy_suspend(phydev); 1714 } 1715 1716 static void kszphy_parse_led_mode(struct phy_device *phydev) 1717 { 1718 const struct kszphy_type *type = phydev->drv->driver_data; 1719 const struct device_node *np = phydev->mdio.dev.of_node; 1720 struct kszphy_priv *priv = phydev->priv; 1721 int ret; 1722 1723 if (type && type->led_mode_reg) { 1724 ret = of_property_read_u32(np, "micrel,led-mode", 1725 &priv->led_mode); 1726 1727 if (ret) 1728 priv->led_mode = -1; 1729 1730 if (priv->led_mode > 3) { 1731 phydev_err(phydev, "invalid led mode: 0x%02x\n", 1732 priv->led_mode); 1733 priv->led_mode = -1; 1734 } 1735 } else { 1736 priv->led_mode = -1; 1737 } 1738 } 1739 1740 static int kszphy_resume(struct phy_device *phydev) 1741 { 1742 int ret; 1743 1744 genphy_resume(phydev); 1745 1746 /* After switching from power-down to normal mode, an internal global 1747 * reset is automatically generated. Wait a minimum of 1 ms before 1748 * read/write access to the PHY registers. 1749 */ 1750 usleep_range(1000, 2000); 1751 1752 ret = kszphy_config_reset(phydev); 1753 if (ret) 1754 return ret; 1755 1756 /* Enable PHY Interrupts */ 1757 if (phy_interrupt_is_valid(phydev)) { 1758 phydev->interrupts = PHY_INTERRUPT_ENABLED; 1759 if (phydev->drv->config_intr) 1760 phydev->drv->config_intr(phydev); 1761 } 1762 1763 return 0; 1764 } 1765 1766 static int kszphy_probe(struct phy_device *phydev) 1767 { 1768 const struct kszphy_type *type = phydev->drv->driver_data; 1769 const struct device_node *np = phydev->mdio.dev.of_node; 1770 struct kszphy_priv *priv; 1771 struct clk *clk; 1772 1773 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 1774 if (!priv) 1775 return -ENOMEM; 1776 1777 phydev->priv = priv; 1778 1779 priv->type = type; 1780 1781 kszphy_parse_led_mode(phydev); 1782 1783 clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref"); 1784 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 1785 if (!IS_ERR_OR_NULL(clk)) { 1786 unsigned long rate = clk_get_rate(clk); 1787 bool rmii_ref_clk_sel_25_mhz; 1788 1789 if (type) 1790 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 1791 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 1792 "micrel,rmii-reference-clock-select-25-mhz"); 1793 1794 if (rate > 24500000 && rate < 25500000) { 1795 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 1796 } else if (rate > 49500000 && rate < 50500000) { 1797 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 1798 } else { 1799 phydev_err(phydev, "Clock rate out of range: %ld\n", 1800 rate); 1801 return -EINVAL; 1802 } 1803 } 1804 1805 if (ksz8041_fiber_mode(phydev)) 1806 phydev->port = PORT_FIBRE; 1807 1808 /* Support legacy board-file configuration */ 1809 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 1810 priv->rmii_ref_clk_sel = true; 1811 priv->rmii_ref_clk_sel_val = true; 1812 } 1813 1814 return 0; 1815 } 1816 1817 static int lan8814_cable_test_start(struct phy_device *phydev) 1818 { 1819 /* If autoneg is enabled, we won't be able to test cross pair 1820 * short. In this case, the PHY will "detect" a link and 1821 * confuse the internal state machine - disable auto neg here. 1822 * Set the speed to 1000mbit and full duplex. 1823 */ 1824 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 1825 BMCR_SPEED1000 | BMCR_FULLDPLX); 1826 } 1827 1828 static int ksz886x_cable_test_start(struct phy_device *phydev) 1829 { 1830 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 1831 return -EOPNOTSUPP; 1832 1833 /* If autoneg is enabled, we won't be able to test cross pair 1834 * short. In this case, the PHY will "detect" a link and 1835 * confuse the internal state machine - disable auto neg here. 1836 * If autoneg is disabled, we should set the speed to 10mbit. 1837 */ 1838 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 1839 } 1840 1841 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 1842 { 1843 switch (FIELD_GET(mask, status)) { 1844 case KSZ8081_LMD_STAT_NORMAL: 1845 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1846 case KSZ8081_LMD_STAT_SHORT: 1847 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1848 case KSZ8081_LMD_STAT_OPEN: 1849 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1850 case KSZ8081_LMD_STAT_FAIL: 1851 fallthrough; 1852 default: 1853 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1854 } 1855 } 1856 1857 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 1858 { 1859 return FIELD_GET(mask, status) == 1860 KSZ8081_LMD_STAT_FAIL; 1861 } 1862 1863 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 1864 { 1865 switch (FIELD_GET(mask, status)) { 1866 case KSZ8081_LMD_STAT_OPEN: 1867 fallthrough; 1868 case KSZ8081_LMD_STAT_SHORT: 1869 return true; 1870 } 1871 return false; 1872 } 1873 1874 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 1875 u16 status, u16 data_mask) 1876 { 1877 int dt; 1878 1879 /* According to the data sheet the distance to the fault is 1880 * DELTA_TIME * 0.4 meters for ksz phys. 1881 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 1882 */ 1883 dt = FIELD_GET(data_mask, status); 1884 1885 if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_LAN8814) 1886 return ((dt - 22) * 800) / 10; 1887 else 1888 return (dt * 400) / 10; 1889 } 1890 1891 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 1892 { 1893 const struct kszphy_type *type = phydev->drv->driver_data; 1894 int val, ret; 1895 1896 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 1897 !(val & KSZ8081_LMD_ENABLE_TEST), 1898 30000, 100000, true); 1899 1900 return ret < 0 ? ret : 0; 1901 } 1902 1903 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 1904 { 1905 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 1906 ETHTOOL_A_CABLE_PAIR_B, 1907 ETHTOOL_A_CABLE_PAIR_C, 1908 ETHTOOL_A_CABLE_PAIR_D, 1909 }; 1910 u32 fault_length; 1911 int ret; 1912 int val; 1913 1914 val = KSZ8081_LMD_ENABLE_TEST; 1915 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 1916 1917 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 1918 if (ret < 0) 1919 return ret; 1920 1921 ret = ksz886x_cable_test_wait_for_completion(phydev); 1922 if (ret) 1923 return ret; 1924 1925 val = phy_read(phydev, LAN8814_CABLE_DIAG); 1926 if (val < 0) 1927 return val; 1928 1929 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 1930 return -EAGAIN; 1931 1932 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 1933 ksz886x_cable_test_result_trans(val, 1934 LAN8814_CABLE_DIAG_STAT_MASK 1935 )); 1936 if (ret) 1937 return ret; 1938 1939 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 1940 return 0; 1941 1942 fault_length = ksz886x_cable_test_fault_length(phydev, val, 1943 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 1944 1945 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 1946 } 1947 1948 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 1949 { 1950 static const int ethtool_pair[] = { 1951 ETHTOOL_A_CABLE_PAIR_A, 1952 ETHTOOL_A_CABLE_PAIR_B, 1953 }; 1954 int ret, val, mdix; 1955 u32 fault_length; 1956 1957 /* There is no way to choice the pair, like we do one ksz9031. 1958 * We can workaround this limitation by using the MDI-X functionality. 1959 */ 1960 if (pair == 0) 1961 mdix = ETH_TP_MDI; 1962 else 1963 mdix = ETH_TP_MDI_X; 1964 1965 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 1966 case PHY_ID_KSZ8081: 1967 ret = ksz8081_config_mdix(phydev, mdix); 1968 break; 1969 case PHY_ID_KSZ886X: 1970 ret = ksz886x_config_mdix(phydev, mdix); 1971 break; 1972 default: 1973 ret = -ENODEV; 1974 } 1975 1976 if (ret) 1977 return ret; 1978 1979 /* Now we are ready to fire. This command will send a 100ns pulse 1980 * to the pair. 1981 */ 1982 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 1983 if (ret) 1984 return ret; 1985 1986 ret = ksz886x_cable_test_wait_for_completion(phydev); 1987 if (ret) 1988 return ret; 1989 1990 val = phy_read(phydev, KSZ8081_LMD); 1991 if (val < 0) 1992 return val; 1993 1994 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 1995 return -EAGAIN; 1996 1997 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 1998 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 1999 if (ret) 2000 return ret; 2001 2002 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2003 return 0; 2004 2005 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2006 2007 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2008 } 2009 2010 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2011 bool *finished) 2012 { 2013 const struct kszphy_type *type = phydev->drv->driver_data; 2014 unsigned long pair_mask = type->pair_mask; 2015 int retries = 20; 2016 int pair, ret; 2017 2018 *finished = false; 2019 2020 /* Try harder if link partner is active */ 2021 while (pair_mask && retries--) { 2022 for_each_set_bit(pair, &pair_mask, 4) { 2023 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2024 ret = lan8814_cable_test_one_pair(phydev, pair); 2025 else 2026 ret = ksz886x_cable_test_one_pair(phydev, pair); 2027 if (ret == -EAGAIN) 2028 continue; 2029 if (ret < 0) 2030 return ret; 2031 clear_bit(pair, &pair_mask); 2032 } 2033 /* If link partner is in autonegotiation mode it will send 2ms 2034 * of FLPs with at least 6ms of silence. 2035 * Add 2ms sleep to have better chances to hit this silence. 2036 */ 2037 if (pair_mask) 2038 msleep(2); 2039 } 2040 2041 *finished = true; 2042 2043 return ret; 2044 } 2045 2046 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2047 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2048 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2049 2050 #define LAN8814_QSGMII_SOFT_RESET 0x43 2051 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2052 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2053 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2054 #define LAN8814_ALIGN_SWAP 0x4a 2055 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2056 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2057 2058 #define LAN8804_ALIGN_SWAP 0x4a 2059 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2060 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2061 #define LAN8814_CLOCK_MANAGEMENT 0xd 2062 #define LAN8814_LINK_QUALITY 0x8e 2063 2064 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2065 { 2066 int data; 2067 2068 phy_lock_mdio_bus(phydev); 2069 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2070 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2071 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2072 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2073 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2074 phy_unlock_mdio_bus(phydev); 2075 2076 return data; 2077 } 2078 2079 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2080 u16 val) 2081 { 2082 phy_lock_mdio_bus(phydev); 2083 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2084 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2085 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2086 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2087 2088 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2089 if (val != 0) 2090 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2091 val); 2092 phy_unlock_mdio_bus(phydev); 2093 return val; 2094 } 2095 2096 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2097 { 2098 u16 val = 0; 2099 2100 if (enable) 2101 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2102 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2103 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2104 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2105 2106 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val); 2107 } 2108 2109 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2110 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2111 { 2112 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI); 2113 *seconds = (*seconds << 16) | 2114 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO); 2115 2116 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI); 2117 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2118 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO); 2119 2120 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2); 2121 } 2122 2123 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2124 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2125 { 2126 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI); 2127 *seconds = *seconds << 16 | 2128 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO); 2129 2130 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI); 2131 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2132 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO); 2133 2134 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2); 2135 } 2136 2137 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info) 2138 { 2139 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2140 struct phy_device *phydev = ptp_priv->phydev; 2141 struct lan8814_shared_priv *shared = phydev->shared->priv; 2142 2143 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2144 SOF_TIMESTAMPING_RX_HARDWARE | 2145 SOF_TIMESTAMPING_RAW_HARDWARE; 2146 2147 info->phc_index = ptp_clock_index(shared->ptp_clock); 2148 2149 info->tx_types = 2150 (1 << HWTSTAMP_TX_OFF) | 2151 (1 << HWTSTAMP_TX_ON) | 2152 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 2153 2154 info->rx_filters = 2155 (1 << HWTSTAMP_FILTER_NONE) | 2156 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2157 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 2158 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 2159 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2160 2161 return 0; 2162 } 2163 2164 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 2165 { 2166 int i; 2167 2168 for (i = 0; i < FIFO_SIZE; ++i) 2169 lanphy_read_page_reg(phydev, 5, 2170 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 2171 2172 /* Read to clear overflow status bit */ 2173 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2174 } 2175 2176 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr) 2177 { 2178 struct kszphy_ptp_priv *ptp_priv = 2179 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2180 struct phy_device *phydev = ptp_priv->phydev; 2181 struct lan8814_shared_priv *shared = phydev->shared->priv; 2182 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2183 struct hwtstamp_config config; 2184 int txcfg = 0, rxcfg = 0; 2185 int pkt_ts_enable; 2186 2187 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2188 return -EFAULT; 2189 2190 ptp_priv->hwts_tx_type = config.tx_type; 2191 ptp_priv->rx_filter = config.rx_filter; 2192 2193 switch (config.rx_filter) { 2194 case HWTSTAMP_FILTER_NONE: 2195 ptp_priv->layer = 0; 2196 ptp_priv->version = 0; 2197 break; 2198 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2199 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2200 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2201 ptp_priv->layer = PTP_CLASS_L4; 2202 ptp_priv->version = PTP_CLASS_V2; 2203 break; 2204 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2205 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2206 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2207 ptp_priv->layer = PTP_CLASS_L2; 2208 ptp_priv->version = PTP_CLASS_V2; 2209 break; 2210 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2211 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2212 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2213 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 2214 ptp_priv->version = PTP_CLASS_V2; 2215 break; 2216 default: 2217 return -ERANGE; 2218 } 2219 2220 if (ptp_priv->layer & PTP_CLASS_L2) { 2221 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 2222 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 2223 } else if (ptp_priv->layer & PTP_CLASS_L4) { 2224 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 2225 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 2226 } 2227 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg); 2228 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg); 2229 2230 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 2231 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 2232 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 2233 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 2234 2235 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) 2236 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2237 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2238 2239 if (config.rx_filter != HWTSTAMP_FILTER_NONE) 2240 lan8814_config_ts_intr(ptp_priv->phydev, true); 2241 else 2242 lan8814_config_ts_intr(ptp_priv->phydev, false); 2243 2244 mutex_lock(&shared->shared_lock); 2245 if (config.rx_filter != HWTSTAMP_FILTER_NONE) 2246 shared->ref++; 2247 else 2248 shared->ref--; 2249 2250 if (shared->ref) 2251 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2252 PTP_CMD_CTL_PTP_ENABLE_); 2253 else 2254 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2255 PTP_CMD_CTL_PTP_DISABLE_); 2256 mutex_unlock(&shared->shared_lock); 2257 2258 /* In case of multiple starts and stops, these needs to be cleared */ 2259 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2260 list_del(&rx_ts->list); 2261 kfree(rx_ts); 2262 } 2263 skb_queue_purge(&ptp_priv->rx_queue); 2264 skb_queue_purge(&ptp_priv->tx_queue); 2265 2266 lan8814_flush_fifo(ptp_priv->phydev, false); 2267 lan8814_flush_fifo(ptp_priv->phydev, true); 2268 2269 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; 2270 } 2271 2272 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 2273 struct sk_buff *skb, int type) 2274 { 2275 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2276 2277 switch (ptp_priv->hwts_tx_type) { 2278 case HWTSTAMP_TX_ONESTEP_SYNC: 2279 if (ptp_msg_is_sync(skb, type)) { 2280 kfree_skb(skb); 2281 return; 2282 } 2283 fallthrough; 2284 case HWTSTAMP_TX_ON: 2285 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2286 skb_queue_tail(&ptp_priv->tx_queue, skb); 2287 break; 2288 case HWTSTAMP_TX_OFF: 2289 default: 2290 kfree_skb(skb); 2291 break; 2292 } 2293 } 2294 2295 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 2296 { 2297 struct ptp_header *ptp_header; 2298 u32 type; 2299 2300 skb_push(skb, ETH_HLEN); 2301 type = ptp_classify_raw(skb); 2302 ptp_header = ptp_parse_header(skb, type); 2303 skb_pull_inline(skb, ETH_HLEN); 2304 2305 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2306 } 2307 2308 static bool lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 2309 struct sk_buff *skb) 2310 { 2311 struct skb_shared_hwtstamps *shhwtstamps; 2312 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2313 unsigned long flags; 2314 bool ret = false; 2315 u16 skb_sig; 2316 2317 lan8814_get_sig_rx(skb, &skb_sig); 2318 2319 /* Iterate over all RX timestamps and match it with the received skbs */ 2320 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2321 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2322 /* Check if we found the signature we were looking for. */ 2323 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2324 continue; 2325 2326 shhwtstamps = skb_hwtstamps(skb); 2327 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2328 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 2329 rx_ts->nsec); 2330 list_del(&rx_ts->list); 2331 kfree(rx_ts); 2332 2333 ret = true; 2334 break; 2335 } 2336 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2337 2338 if (ret) 2339 netif_rx(skb); 2340 return ret; 2341 } 2342 2343 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 2344 { 2345 struct kszphy_ptp_priv *ptp_priv = 2346 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2347 2348 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 2349 type == PTP_CLASS_NONE) 2350 return false; 2351 2352 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 2353 return false; 2354 2355 /* If we failed to match then add it to the queue for when the timestamp 2356 * will come 2357 */ 2358 if (!lan8814_match_rx_ts(ptp_priv, skb)) 2359 skb_queue_tail(&ptp_priv->rx_queue, skb); 2360 2361 return true; 2362 } 2363 2364 static void lan8814_ptp_clock_set(struct phy_device *phydev, 2365 u32 seconds, u32 nano_seconds) 2366 { 2367 u32 sec_low, sec_high, nsec_low, nsec_high; 2368 2369 sec_low = seconds & 0xffff; 2370 sec_high = (seconds >> 16) & 0xffff; 2371 nsec_low = nano_seconds & 0xffff; 2372 nsec_high = (nano_seconds >> 16) & 0x3fff; 2373 2374 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low); 2375 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high); 2376 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low); 2377 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high); 2378 2379 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_); 2380 } 2381 2382 static void lan8814_ptp_clock_get(struct phy_device *phydev, 2383 u32 *seconds, u32 *nano_seconds) 2384 { 2385 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_); 2386 2387 *seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID); 2388 *seconds = (*seconds << 16) | 2389 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO); 2390 2391 *nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI); 2392 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2393 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO); 2394 } 2395 2396 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 2397 struct timespec64 *ts) 2398 { 2399 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2400 ptp_clock_info); 2401 struct phy_device *phydev = shared->phydev; 2402 u32 nano_seconds; 2403 u32 seconds; 2404 2405 mutex_lock(&shared->shared_lock); 2406 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 2407 mutex_unlock(&shared->shared_lock); 2408 ts->tv_sec = seconds; 2409 ts->tv_nsec = nano_seconds; 2410 2411 return 0; 2412 } 2413 2414 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 2415 const struct timespec64 *ts) 2416 { 2417 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2418 ptp_clock_info); 2419 struct phy_device *phydev = shared->phydev; 2420 2421 mutex_lock(&shared->shared_lock); 2422 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 2423 mutex_unlock(&shared->shared_lock); 2424 2425 return 0; 2426 } 2427 2428 static void lan8814_ptp_clock_step(struct phy_device *phydev, 2429 s64 time_step_ns) 2430 { 2431 u32 nano_seconds_step; 2432 u64 abs_time_step_ns; 2433 u32 unsigned_seconds; 2434 u32 nano_seconds; 2435 u32 remainder; 2436 s32 seconds; 2437 2438 if (time_step_ns > 15000000000LL) { 2439 /* convert to clock set */ 2440 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2441 unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL, 2442 &remainder); 2443 nano_seconds += remainder; 2444 if (nano_seconds >= 1000000000) { 2445 unsigned_seconds++; 2446 nano_seconds -= 1000000000; 2447 } 2448 lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds); 2449 return; 2450 } else if (time_step_ns < -15000000000LL) { 2451 /* convert to clock set */ 2452 time_step_ns = -time_step_ns; 2453 2454 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2455 unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 2456 &remainder); 2457 nano_seconds_step = remainder; 2458 if (nano_seconds < nano_seconds_step) { 2459 unsigned_seconds--; 2460 nano_seconds += 1000000000; 2461 } 2462 nano_seconds -= nano_seconds_step; 2463 lan8814_ptp_clock_set(phydev, unsigned_seconds, 2464 nano_seconds); 2465 return; 2466 } 2467 2468 /* do clock step */ 2469 if (time_step_ns >= 0) { 2470 abs_time_step_ns = (u64)time_step_ns; 2471 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 2472 &remainder); 2473 nano_seconds = remainder; 2474 } else { 2475 abs_time_step_ns = (u64)(-time_step_ns); 2476 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 2477 &remainder)); 2478 nano_seconds = remainder; 2479 if (nano_seconds > 0) { 2480 /* subtracting nano seconds is not allowed 2481 * convert to subtracting from seconds, 2482 * and adding to nanoseconds 2483 */ 2484 seconds--; 2485 nano_seconds = (1000000000 - nano_seconds); 2486 } 2487 } 2488 2489 if (nano_seconds > 0) { 2490 /* add 8 ns to cover the likely normal increment */ 2491 nano_seconds += 8; 2492 } 2493 2494 if (nano_seconds >= 1000000000) { 2495 /* carry into seconds */ 2496 seconds++; 2497 nano_seconds -= 1000000000; 2498 } 2499 2500 while (seconds) { 2501 if (seconds > 0) { 2502 u32 adjustment_value = (u32)seconds; 2503 u16 adjustment_value_lo, adjustment_value_hi; 2504 2505 if (adjustment_value > 0xF) 2506 adjustment_value = 0xF; 2507 2508 adjustment_value_lo = adjustment_value & 0xffff; 2509 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2510 2511 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2512 adjustment_value_lo); 2513 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2514 PTP_LTC_STEP_ADJ_DIR_ | 2515 adjustment_value_hi); 2516 seconds -= ((s32)adjustment_value); 2517 } else { 2518 u32 adjustment_value = (u32)(-seconds); 2519 u16 adjustment_value_lo, adjustment_value_hi; 2520 2521 if (adjustment_value > 0xF) 2522 adjustment_value = 0xF; 2523 2524 adjustment_value_lo = adjustment_value & 0xffff; 2525 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2526 2527 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2528 adjustment_value_lo); 2529 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2530 adjustment_value_hi); 2531 seconds += ((s32)adjustment_value); 2532 } 2533 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2534 PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 2535 } 2536 if (nano_seconds) { 2537 u16 nano_seconds_lo; 2538 u16 nano_seconds_hi; 2539 2540 nano_seconds_lo = nano_seconds & 0xffff; 2541 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 2542 2543 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2544 nano_seconds_lo); 2545 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2546 PTP_LTC_STEP_ADJ_DIR_ | 2547 nano_seconds_hi); 2548 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2549 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 2550 } 2551 } 2552 2553 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 2554 { 2555 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2556 ptp_clock_info); 2557 struct phy_device *phydev = shared->phydev; 2558 2559 mutex_lock(&shared->shared_lock); 2560 lan8814_ptp_clock_step(phydev, delta); 2561 mutex_unlock(&shared->shared_lock); 2562 2563 return 0; 2564 } 2565 2566 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 2567 { 2568 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2569 ptp_clock_info); 2570 struct phy_device *phydev = shared->phydev; 2571 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 2572 bool positive = true; 2573 u32 kszphy_rate_adj; 2574 2575 if (scaled_ppm < 0) { 2576 scaled_ppm = -scaled_ppm; 2577 positive = false; 2578 } 2579 2580 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 2581 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 2582 2583 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 2584 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 2585 2586 if (positive) 2587 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 2588 2589 mutex_lock(&shared->shared_lock); 2590 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi); 2591 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo); 2592 mutex_unlock(&shared->shared_lock); 2593 2594 return 0; 2595 } 2596 2597 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 2598 { 2599 struct ptp_header *ptp_header; 2600 u32 type; 2601 2602 type = ptp_classify_raw(skb); 2603 ptp_header = ptp_parse_header(skb, type); 2604 2605 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2606 } 2607 2608 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 2609 { 2610 struct phy_device *phydev = ptp_priv->phydev; 2611 struct skb_shared_hwtstamps shhwtstamps; 2612 struct sk_buff *skb, *skb_tmp; 2613 unsigned long flags; 2614 u32 seconds, nsec; 2615 bool ret = false; 2616 u16 skb_sig; 2617 u16 seq_id; 2618 2619 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 2620 2621 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 2622 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 2623 lan8814_get_sig_tx(skb, &skb_sig); 2624 2625 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 2626 continue; 2627 2628 __skb_unlink(skb, &ptp_priv->tx_queue); 2629 ret = true; 2630 break; 2631 } 2632 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 2633 2634 if (ret) { 2635 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2636 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 2637 skb_complete_tx_timestamp(skb, &shhwtstamps); 2638 } 2639 } 2640 2641 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 2642 { 2643 struct phy_device *phydev = ptp_priv->phydev; 2644 u32 reg; 2645 2646 do { 2647 lan8814_dequeue_tx_skb(ptp_priv); 2648 2649 /* If other timestamps are available in the FIFO, 2650 * process them. 2651 */ 2652 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2653 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 2654 } 2655 2656 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 2657 struct lan8814_ptp_rx_ts *rx_ts) 2658 { 2659 struct skb_shared_hwtstamps *shhwtstamps; 2660 struct sk_buff *skb, *skb_tmp; 2661 unsigned long flags; 2662 bool ret = false; 2663 u16 skb_sig; 2664 2665 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 2666 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 2667 lan8814_get_sig_rx(skb, &skb_sig); 2668 2669 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2670 continue; 2671 2672 __skb_unlink(skb, &ptp_priv->rx_queue); 2673 2674 ret = true; 2675 break; 2676 } 2677 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 2678 2679 if (ret) { 2680 shhwtstamps = skb_hwtstamps(skb); 2681 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2682 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 2683 netif_rx(skb); 2684 } 2685 2686 return ret; 2687 } 2688 2689 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 2690 { 2691 struct phy_device *phydev = ptp_priv->phydev; 2692 struct lan8814_ptp_rx_ts *rx_ts; 2693 unsigned long flags; 2694 u32 reg; 2695 2696 do { 2697 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 2698 if (!rx_ts) 2699 return; 2700 2701 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 2702 &rx_ts->seq_id); 2703 2704 /* If we failed to match the skb add it to the queue for when 2705 * the frame will come 2706 */ 2707 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 2708 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2709 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 2710 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2711 } else { 2712 kfree(rx_ts); 2713 } 2714 2715 /* If other timestamps are available in the FIFO, 2716 * process them. 2717 */ 2718 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2719 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 2720 } 2721 2722 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev) 2723 { 2724 struct kszphy_priv *priv = phydev->priv; 2725 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 2726 u16 status; 2727 2728 status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2729 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 2730 lan8814_get_tx_ts(ptp_priv); 2731 2732 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 2733 lan8814_get_rx_ts(ptp_priv); 2734 2735 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 2736 lan8814_flush_fifo(phydev, true); 2737 skb_queue_purge(&ptp_priv->tx_queue); 2738 } 2739 2740 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 2741 lan8814_flush_fifo(phydev, false); 2742 skb_queue_purge(&ptp_priv->rx_queue); 2743 } 2744 } 2745 2746 static int lan8804_config_init(struct phy_device *phydev) 2747 { 2748 int val; 2749 2750 /* MDI-X setting for swap A,B transmit */ 2751 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP); 2752 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK; 2753 val |= LAN8804_ALIGN_TX_A_B_SWAP; 2754 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val); 2755 2756 /* Make sure that the PHY will not stop generating the clock when the 2757 * link partner goes down 2758 */ 2759 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e); 2760 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY); 2761 2762 return 0; 2763 } 2764 2765 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 2766 { 2767 int status; 2768 2769 status = phy_read(phydev, LAN8814_INTS); 2770 if (status < 0) { 2771 phy_error(phydev); 2772 return IRQ_NONE; 2773 } 2774 2775 if (status > 0) 2776 phy_trigger_machine(phydev); 2777 2778 return IRQ_HANDLED; 2779 } 2780 2781 #define LAN8804_OUTPUT_CONTROL 25 2782 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 2783 #define LAN8804_CONTROL 31 2784 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 2785 2786 static int lan8804_config_intr(struct phy_device *phydev) 2787 { 2788 int err; 2789 2790 /* This is an internal PHY of lan966x and is not possible to change the 2791 * polarity on the GIC found in lan966x, therefore change the polarity 2792 * of the interrupt in the PHY from being active low instead of active 2793 * high. 2794 */ 2795 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 2796 2797 /* By default interrupt buffer is open-drain in which case the interrupt 2798 * can be active only low. Therefore change the interrupt buffer to be 2799 * push-pull to be able to change interrupt polarity 2800 */ 2801 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 2802 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 2803 2804 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 2805 err = phy_read(phydev, LAN8814_INTS); 2806 if (err < 0) 2807 return err; 2808 2809 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 2810 if (err) 2811 return err; 2812 } else { 2813 err = phy_write(phydev, LAN8814_INTC, 0); 2814 if (err) 2815 return err; 2816 2817 err = phy_read(phydev, LAN8814_INTS); 2818 if (err < 0) 2819 return err; 2820 } 2821 2822 return 0; 2823 } 2824 2825 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 2826 { 2827 int irq_status, tsu_irq_status; 2828 int ret = IRQ_NONE; 2829 2830 irq_status = phy_read(phydev, LAN8814_INTS); 2831 if (irq_status < 0) { 2832 phy_error(phydev); 2833 return IRQ_NONE; 2834 } 2835 2836 if (irq_status & LAN8814_INT_LINK) { 2837 phy_trigger_machine(phydev); 2838 ret = IRQ_HANDLED; 2839 } 2840 2841 while (1) { 2842 tsu_irq_status = lanphy_read_page_reg(phydev, 4, 2843 LAN8814_INTR_STS_REG); 2844 2845 if (tsu_irq_status > 0 && 2846 (tsu_irq_status & (LAN8814_INTR_STS_REG_1588_TSU0_ | 2847 LAN8814_INTR_STS_REG_1588_TSU1_ | 2848 LAN8814_INTR_STS_REG_1588_TSU2_ | 2849 LAN8814_INTR_STS_REG_1588_TSU3_))) { 2850 lan8814_handle_ptp_interrupt(phydev); 2851 ret = IRQ_HANDLED; 2852 } else { 2853 break; 2854 } 2855 } 2856 2857 return ret; 2858 } 2859 2860 static int lan8814_ack_interrupt(struct phy_device *phydev) 2861 { 2862 /* bit[12..0] int status, which is a read and clear register. */ 2863 int rc; 2864 2865 rc = phy_read(phydev, LAN8814_INTS); 2866 2867 return (rc < 0) ? rc : 0; 2868 } 2869 2870 static int lan8814_config_intr(struct phy_device *phydev) 2871 { 2872 int err; 2873 2874 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG, 2875 LAN8814_INTR_CTRL_REG_POLARITY | 2876 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 2877 2878 /* enable / disable interrupts */ 2879 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 2880 err = lan8814_ack_interrupt(phydev); 2881 if (err) 2882 return err; 2883 2884 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 2885 } else { 2886 err = phy_write(phydev, LAN8814_INTC, 0); 2887 if (err) 2888 return err; 2889 2890 err = lan8814_ack_interrupt(phydev); 2891 } 2892 2893 return err; 2894 } 2895 2896 static void lan8814_ptp_init(struct phy_device *phydev) 2897 { 2898 struct kszphy_priv *priv = phydev->priv; 2899 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 2900 u32 temp; 2901 2902 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 2903 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 2904 return; 2905 2906 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_); 2907 2908 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD); 2909 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 2910 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp); 2911 2912 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD); 2913 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 2914 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp); 2915 2916 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0); 2917 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0); 2918 2919 /* Removing default registers configs related to L2 and IP */ 2920 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0); 2921 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0); 2922 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0); 2923 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0); 2924 2925 skb_queue_head_init(&ptp_priv->tx_queue); 2926 skb_queue_head_init(&ptp_priv->rx_queue); 2927 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 2928 spin_lock_init(&ptp_priv->rx_ts_lock); 2929 2930 ptp_priv->phydev = phydev; 2931 2932 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 2933 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 2934 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 2935 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 2936 2937 phydev->mii_ts = &ptp_priv->mii_ts; 2938 } 2939 2940 static int lan8814_ptp_probe_once(struct phy_device *phydev) 2941 { 2942 struct lan8814_shared_priv *shared = phydev->shared->priv; 2943 2944 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 2945 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 2946 return 0; 2947 2948 /* Initialise shared lock for clock*/ 2949 mutex_init(&shared->shared_lock); 2950 2951 shared->ptp_clock_info.owner = THIS_MODULE; 2952 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 2953 shared->ptp_clock_info.max_adj = 31249999; 2954 shared->ptp_clock_info.n_alarm = 0; 2955 shared->ptp_clock_info.n_ext_ts = 0; 2956 shared->ptp_clock_info.n_pins = 0; 2957 shared->ptp_clock_info.pps = 0; 2958 shared->ptp_clock_info.pin_config = NULL; 2959 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 2960 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 2961 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 2962 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 2963 shared->ptp_clock_info.getcrosststamp = NULL; 2964 2965 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 2966 &phydev->mdio.dev); 2967 if (IS_ERR_OR_NULL(shared->ptp_clock)) { 2968 phydev_err(phydev, "ptp_clock_register failed %lu\n", 2969 PTR_ERR(shared->ptp_clock)); 2970 return -EINVAL; 2971 } 2972 2973 phydev_dbg(phydev, "successfully registered ptp clock\n"); 2974 2975 shared->phydev = phydev; 2976 2977 /* The EP.4 is shared between all the PHYs in the package and also it 2978 * can be accessed by any of the PHYs 2979 */ 2980 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_); 2981 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE, 2982 PTP_OPERATING_MODE_STANDALONE_); 2983 2984 return 0; 2985 } 2986 2987 static void lan8814_setup_led(struct phy_device *phydev, int val) 2988 { 2989 int temp; 2990 2991 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1); 2992 2993 if (val) 2994 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 2995 else 2996 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 2997 2998 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp); 2999 } 3000 3001 static int lan8814_config_init(struct phy_device *phydev) 3002 { 3003 struct kszphy_priv *lan8814 = phydev->priv; 3004 int val; 3005 3006 /* Reset the PHY */ 3007 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET); 3008 val |= LAN8814_QSGMII_SOFT_RESET_BIT; 3009 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val); 3010 3011 /* Disable ANEG with QSGMII PCS Host side */ 3012 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG); 3013 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA; 3014 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val); 3015 3016 /* MDI-X setting for swap A,B transmit */ 3017 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP); 3018 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK; 3019 val |= LAN8814_ALIGN_TX_A_B_SWAP; 3020 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val); 3021 3022 if (lan8814->led_mode >= 0) 3023 lan8814_setup_led(phydev, lan8814->led_mode); 3024 3025 return 0; 3026 } 3027 3028 /* It is expected that there will not be any 'lan8814_take_coma_mode' 3029 * function called in suspend. Because the GPIO line can be shared, so if one of 3030 * the phys goes back in coma mode, then all the other PHYs will go, which is 3031 * wrong. 3032 */ 3033 static int lan8814_release_coma_mode(struct phy_device *phydev) 3034 { 3035 struct gpio_desc *gpiod; 3036 3037 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 3038 GPIOD_OUT_HIGH_OPEN_DRAIN | 3039 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 3040 if (IS_ERR(gpiod)) 3041 return PTR_ERR(gpiod); 3042 3043 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 3044 gpiod_set_value_cansleep(gpiod, 0); 3045 3046 return 0; 3047 } 3048 3049 static int lan8814_probe(struct phy_device *phydev) 3050 { 3051 const struct kszphy_type *type = phydev->drv->driver_data; 3052 struct kszphy_priv *priv; 3053 u16 addr; 3054 int err; 3055 3056 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 3057 if (!priv) 3058 return -ENOMEM; 3059 3060 phydev->priv = priv; 3061 3062 priv->type = type; 3063 3064 kszphy_parse_led_mode(phydev); 3065 3066 /* Strap-in value for PHY address, below register read gives starting 3067 * phy address value 3068 */ 3069 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F; 3070 devm_phy_package_join(&phydev->mdio.dev, phydev, 3071 addr, sizeof(struct lan8814_shared_priv)); 3072 3073 if (phy_package_init_once(phydev)) { 3074 err = lan8814_release_coma_mode(phydev); 3075 if (err) 3076 return err; 3077 3078 err = lan8814_ptp_probe_once(phydev); 3079 if (err) 3080 return err; 3081 } 3082 3083 lan8814_ptp_init(phydev); 3084 3085 return 0; 3086 } 3087 3088 static struct phy_driver ksphy_driver[] = { 3089 { 3090 .phy_id = PHY_ID_KS8737, 3091 .phy_id_mask = MICREL_PHY_ID_MASK, 3092 .name = "Micrel KS8737", 3093 /* PHY_BASIC_FEATURES */ 3094 .driver_data = &ks8737_type, 3095 .probe = kszphy_probe, 3096 .config_init = kszphy_config_init, 3097 .config_intr = kszphy_config_intr, 3098 .handle_interrupt = kszphy_handle_interrupt, 3099 .suspend = kszphy_suspend, 3100 .resume = kszphy_resume, 3101 }, { 3102 .phy_id = PHY_ID_KSZ8021, 3103 .phy_id_mask = 0x00ffffff, 3104 .name = "Micrel KSZ8021 or KSZ8031", 3105 /* PHY_BASIC_FEATURES */ 3106 .driver_data = &ksz8021_type, 3107 .probe = kszphy_probe, 3108 .config_init = kszphy_config_init, 3109 .config_intr = kszphy_config_intr, 3110 .handle_interrupt = kszphy_handle_interrupt, 3111 .get_sset_count = kszphy_get_sset_count, 3112 .get_strings = kszphy_get_strings, 3113 .get_stats = kszphy_get_stats, 3114 .suspend = kszphy_suspend, 3115 .resume = kszphy_resume, 3116 }, { 3117 .phy_id = PHY_ID_KSZ8031, 3118 .phy_id_mask = 0x00ffffff, 3119 .name = "Micrel KSZ8031", 3120 /* PHY_BASIC_FEATURES */ 3121 .driver_data = &ksz8021_type, 3122 .probe = kszphy_probe, 3123 .config_init = kszphy_config_init, 3124 .config_intr = kszphy_config_intr, 3125 .handle_interrupt = kszphy_handle_interrupt, 3126 .get_sset_count = kszphy_get_sset_count, 3127 .get_strings = kszphy_get_strings, 3128 .get_stats = kszphy_get_stats, 3129 .suspend = kszphy_suspend, 3130 .resume = kszphy_resume, 3131 }, { 3132 .phy_id = PHY_ID_KSZ8041, 3133 .phy_id_mask = MICREL_PHY_ID_MASK, 3134 .name = "Micrel KSZ8041", 3135 /* PHY_BASIC_FEATURES */ 3136 .driver_data = &ksz8041_type, 3137 .probe = kszphy_probe, 3138 .config_init = ksz8041_config_init, 3139 .config_aneg = ksz8041_config_aneg, 3140 .config_intr = kszphy_config_intr, 3141 .handle_interrupt = kszphy_handle_interrupt, 3142 .get_sset_count = kszphy_get_sset_count, 3143 .get_strings = kszphy_get_strings, 3144 .get_stats = kszphy_get_stats, 3145 /* No suspend/resume callbacks because of errata DS80000700A, 3146 * receiver error following software power down. 3147 */ 3148 }, { 3149 .phy_id = PHY_ID_KSZ8041RNLI, 3150 .phy_id_mask = MICREL_PHY_ID_MASK, 3151 .name = "Micrel KSZ8041RNLI", 3152 /* PHY_BASIC_FEATURES */ 3153 .driver_data = &ksz8041_type, 3154 .probe = kszphy_probe, 3155 .config_init = kszphy_config_init, 3156 .config_intr = kszphy_config_intr, 3157 .handle_interrupt = kszphy_handle_interrupt, 3158 .get_sset_count = kszphy_get_sset_count, 3159 .get_strings = kszphy_get_strings, 3160 .get_stats = kszphy_get_stats, 3161 .suspend = kszphy_suspend, 3162 .resume = kszphy_resume, 3163 }, { 3164 .name = "Micrel KSZ8051", 3165 /* PHY_BASIC_FEATURES */ 3166 .driver_data = &ksz8051_type, 3167 .probe = kszphy_probe, 3168 .config_init = kszphy_config_init, 3169 .config_intr = kszphy_config_intr, 3170 .handle_interrupt = kszphy_handle_interrupt, 3171 .get_sset_count = kszphy_get_sset_count, 3172 .get_strings = kszphy_get_strings, 3173 .get_stats = kszphy_get_stats, 3174 .match_phy_device = ksz8051_match_phy_device, 3175 .suspend = kszphy_suspend, 3176 .resume = kszphy_resume, 3177 }, { 3178 .phy_id = PHY_ID_KSZ8001, 3179 .name = "Micrel KSZ8001 or KS8721", 3180 .phy_id_mask = 0x00fffffc, 3181 /* PHY_BASIC_FEATURES */ 3182 .driver_data = &ksz8041_type, 3183 .probe = kszphy_probe, 3184 .config_init = kszphy_config_init, 3185 .config_intr = kszphy_config_intr, 3186 .handle_interrupt = kszphy_handle_interrupt, 3187 .get_sset_count = kszphy_get_sset_count, 3188 .get_strings = kszphy_get_strings, 3189 .get_stats = kszphy_get_stats, 3190 .suspend = kszphy_suspend, 3191 .resume = kszphy_resume, 3192 }, { 3193 .phy_id = PHY_ID_KSZ8081, 3194 .name = "Micrel KSZ8081 or KSZ8091", 3195 .phy_id_mask = MICREL_PHY_ID_MASK, 3196 .flags = PHY_POLL_CABLE_TEST, 3197 /* PHY_BASIC_FEATURES */ 3198 .driver_data = &ksz8081_type, 3199 .probe = kszphy_probe, 3200 .config_init = ksz8081_config_init, 3201 .soft_reset = genphy_soft_reset, 3202 .config_aneg = ksz8081_config_aneg, 3203 .read_status = ksz8081_read_status, 3204 .config_intr = kszphy_config_intr, 3205 .handle_interrupt = kszphy_handle_interrupt, 3206 .get_sset_count = kszphy_get_sset_count, 3207 .get_strings = kszphy_get_strings, 3208 .get_stats = kszphy_get_stats, 3209 .suspend = kszphy_suspend, 3210 .resume = kszphy_resume, 3211 .cable_test_start = ksz886x_cable_test_start, 3212 .cable_test_get_status = ksz886x_cable_test_get_status, 3213 }, { 3214 .phy_id = PHY_ID_KSZ8061, 3215 .name = "Micrel KSZ8061", 3216 .phy_id_mask = MICREL_PHY_ID_MASK, 3217 /* PHY_BASIC_FEATURES */ 3218 .probe = kszphy_probe, 3219 .config_init = ksz8061_config_init, 3220 .config_intr = kszphy_config_intr, 3221 .handle_interrupt = kszphy_handle_interrupt, 3222 .suspend = kszphy_suspend, 3223 .resume = kszphy_resume, 3224 }, { 3225 .phy_id = PHY_ID_KSZ9021, 3226 .phy_id_mask = 0x000ffffe, 3227 .name = "Micrel KSZ9021 Gigabit PHY", 3228 /* PHY_GBIT_FEATURES */ 3229 .driver_data = &ksz9021_type, 3230 .probe = kszphy_probe, 3231 .get_features = ksz9031_get_features, 3232 .config_init = ksz9021_config_init, 3233 .config_intr = kszphy_config_intr, 3234 .handle_interrupt = kszphy_handle_interrupt, 3235 .get_sset_count = kszphy_get_sset_count, 3236 .get_strings = kszphy_get_strings, 3237 .get_stats = kszphy_get_stats, 3238 .suspend = kszphy_suspend, 3239 .resume = kszphy_resume, 3240 .read_mmd = genphy_read_mmd_unsupported, 3241 .write_mmd = genphy_write_mmd_unsupported, 3242 }, { 3243 .phy_id = PHY_ID_KSZ9031, 3244 .phy_id_mask = MICREL_PHY_ID_MASK, 3245 .name = "Micrel KSZ9031 Gigabit PHY", 3246 .flags = PHY_POLL_CABLE_TEST, 3247 .driver_data = &ksz9021_type, 3248 .probe = kszphy_probe, 3249 .get_features = ksz9031_get_features, 3250 .config_init = ksz9031_config_init, 3251 .soft_reset = genphy_soft_reset, 3252 .read_status = ksz9031_read_status, 3253 .config_intr = kszphy_config_intr, 3254 .handle_interrupt = kszphy_handle_interrupt, 3255 .get_sset_count = kszphy_get_sset_count, 3256 .get_strings = kszphy_get_strings, 3257 .get_stats = kszphy_get_stats, 3258 .suspend = kszphy_suspend, 3259 .resume = kszphy_resume, 3260 .cable_test_start = ksz9x31_cable_test_start, 3261 .cable_test_get_status = ksz9x31_cable_test_get_status, 3262 }, { 3263 .phy_id = PHY_ID_LAN8814, 3264 .phy_id_mask = MICREL_PHY_ID_MASK, 3265 .name = "Microchip INDY Gigabit Quad PHY", 3266 .flags = PHY_POLL_CABLE_TEST, 3267 .config_init = lan8814_config_init, 3268 .driver_data = &lan8814_type, 3269 .probe = lan8814_probe, 3270 .soft_reset = genphy_soft_reset, 3271 .read_status = ksz9031_read_status, 3272 .get_sset_count = kszphy_get_sset_count, 3273 .get_strings = kszphy_get_strings, 3274 .get_stats = kszphy_get_stats, 3275 .suspend = genphy_suspend, 3276 .resume = kszphy_resume, 3277 .config_intr = lan8814_config_intr, 3278 .handle_interrupt = lan8814_handle_interrupt, 3279 .cable_test_start = lan8814_cable_test_start, 3280 .cable_test_get_status = ksz886x_cable_test_get_status, 3281 }, { 3282 .phy_id = PHY_ID_LAN8804, 3283 .phy_id_mask = MICREL_PHY_ID_MASK, 3284 .name = "Microchip LAN966X Gigabit PHY", 3285 .config_init = lan8804_config_init, 3286 .driver_data = &ksz9021_type, 3287 .probe = kszphy_probe, 3288 .soft_reset = genphy_soft_reset, 3289 .read_status = ksz9031_read_status, 3290 .get_sset_count = kszphy_get_sset_count, 3291 .get_strings = kszphy_get_strings, 3292 .get_stats = kszphy_get_stats, 3293 .suspend = genphy_suspend, 3294 .resume = kszphy_resume, 3295 .config_intr = lan8804_config_intr, 3296 .handle_interrupt = lan8804_handle_interrupt, 3297 }, { 3298 .phy_id = PHY_ID_KSZ9131, 3299 .phy_id_mask = MICREL_PHY_ID_MASK, 3300 .name = "Microchip KSZ9131 Gigabit PHY", 3301 /* PHY_GBIT_FEATURES */ 3302 .flags = PHY_POLL_CABLE_TEST, 3303 .driver_data = &ksz9021_type, 3304 .probe = kszphy_probe, 3305 .config_init = ksz9131_config_init, 3306 .config_intr = kszphy_config_intr, 3307 .handle_interrupt = kszphy_handle_interrupt, 3308 .get_sset_count = kszphy_get_sset_count, 3309 .get_strings = kszphy_get_strings, 3310 .get_stats = kszphy_get_stats, 3311 .suspend = kszphy_suspend, 3312 .resume = kszphy_resume, 3313 .cable_test_start = ksz9x31_cable_test_start, 3314 .cable_test_get_status = ksz9x31_cable_test_get_status, 3315 }, { 3316 .phy_id = PHY_ID_KSZ8873MLL, 3317 .phy_id_mask = MICREL_PHY_ID_MASK, 3318 .name = "Micrel KSZ8873MLL Switch", 3319 /* PHY_BASIC_FEATURES */ 3320 .config_init = kszphy_config_init, 3321 .config_aneg = ksz8873mll_config_aneg, 3322 .read_status = ksz8873mll_read_status, 3323 .suspend = genphy_suspend, 3324 .resume = genphy_resume, 3325 }, { 3326 .phy_id = PHY_ID_KSZ886X, 3327 .phy_id_mask = MICREL_PHY_ID_MASK, 3328 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 3329 .driver_data = &ksz886x_type, 3330 /* PHY_BASIC_FEATURES */ 3331 .flags = PHY_POLL_CABLE_TEST, 3332 .config_init = kszphy_config_init, 3333 .config_aneg = ksz886x_config_aneg, 3334 .read_status = ksz886x_read_status, 3335 .suspend = genphy_suspend, 3336 .resume = genphy_resume, 3337 .cable_test_start = ksz886x_cable_test_start, 3338 .cable_test_get_status = ksz886x_cable_test_get_status, 3339 }, { 3340 .name = "Micrel KSZ87XX Switch", 3341 /* PHY_BASIC_FEATURES */ 3342 .config_init = kszphy_config_init, 3343 .match_phy_device = ksz8795_match_phy_device, 3344 .suspend = genphy_suspend, 3345 .resume = genphy_resume, 3346 }, { 3347 .phy_id = PHY_ID_KSZ9477, 3348 .phy_id_mask = MICREL_PHY_ID_MASK, 3349 .name = "Microchip KSZ9477", 3350 /* PHY_GBIT_FEATURES */ 3351 .config_init = kszphy_config_init, 3352 .config_intr = kszphy_config_intr, 3353 .handle_interrupt = kszphy_handle_interrupt, 3354 .suspend = genphy_suspend, 3355 .resume = genphy_resume, 3356 } }; 3357 3358 module_phy_driver(ksphy_driver); 3359 3360 MODULE_DESCRIPTION("Micrel PHY driver"); 3361 MODULE_AUTHOR("David J. Choi"); 3362 MODULE_LICENSE("GPL"); 3363 3364 static struct mdio_device_id __maybe_unused micrel_tbl[] = { 3365 { PHY_ID_KSZ9021, 0x000ffffe }, 3366 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK }, 3367 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK }, 3368 { PHY_ID_KSZ8001, 0x00fffffc }, 3369 { PHY_ID_KS8737, MICREL_PHY_ID_MASK }, 3370 { PHY_ID_KSZ8021, 0x00ffffff }, 3371 { PHY_ID_KSZ8031, 0x00ffffff }, 3372 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK }, 3373 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK }, 3374 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK }, 3375 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK }, 3376 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK }, 3377 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK }, 3378 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK }, 3379 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK }, 3380 { } 3381 }; 3382 3383 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 3384