1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 36 /* Operation Mode Strap Override */ 37 #define MII_KSZPHY_OMSO 0x16 38 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 39 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 40 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 41 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 42 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 43 44 /* general Interrupt control/status reg in vendor specific block. */ 45 #define MII_KSZPHY_INTCS 0x1B 46 #define KSZPHY_INTCS_JABBER BIT(15) 47 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 48 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 49 #define KSZPHY_INTCS_PARELLEL BIT(12) 50 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 51 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 52 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 53 #define KSZPHY_INTCS_LINK_UP BIT(8) 54 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 55 KSZPHY_INTCS_LINK_DOWN) 56 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 57 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 58 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 59 KSZPHY_INTCS_LINK_UP_STATUS) 60 61 /* LinkMD Control/Status */ 62 #define KSZ8081_LMD 0x1d 63 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 64 #define KSZ8081_LMD_STAT_NORMAL 0 65 #define KSZ8081_LMD_STAT_OPEN 1 66 #define KSZ8081_LMD_STAT_SHORT 2 67 #define KSZ8081_LMD_STAT_FAIL 3 68 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 69 /* Short cable (<10 meter) has been detected by LinkMD */ 70 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 71 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 72 73 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 74 #define LAN8814_INTC 0x18 75 #define LAN8814_INTS 0x1B 76 77 #define LAN8814_INT_LINK_DOWN BIT(2) 78 #define LAN8814_INT_LINK_UP BIT(0) 79 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 80 LAN8814_INT_LINK_DOWN) 81 82 #define LAN8814_INTR_CTRL_REG 0x34 83 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 84 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 85 86 /* Represents 1ppm adjustment in 2^32 format with 87 * each nsec contains 4 clock cycles. 88 * The value is calculated as following: (1/1000000)/((2^-32)/4) 89 */ 90 #define LAN8814_1PPM_FORMAT 17179 91 92 #define PTP_RX_MOD 0x024F 93 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 94 #define PTP_RX_TIMESTAMP_EN 0x024D 95 #define PTP_TX_TIMESTAMP_EN 0x028D 96 97 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 98 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 99 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 100 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 101 102 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 103 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 104 105 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 106 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 107 #define LTC_HARD_RESET 0x023F 108 #define LTC_HARD_RESET_ BIT(0) 109 110 #define TSU_HARD_RESET 0x02C1 111 #define TSU_HARD_RESET_ BIT(0) 112 113 #define PTP_CMD_CTL 0x0200 114 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 115 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 116 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 117 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 118 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 119 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 120 121 #define PTP_CLOCK_SET_SEC_MID 0x0206 122 #define PTP_CLOCK_SET_SEC_LO 0x0207 123 #define PTP_CLOCK_SET_NS_HI 0x0208 124 #define PTP_CLOCK_SET_NS_LO 0x0209 125 126 #define PTP_CLOCK_READ_SEC_MID 0x022A 127 #define PTP_CLOCK_READ_SEC_LO 0x022B 128 #define PTP_CLOCK_READ_NS_HI 0x022C 129 #define PTP_CLOCK_READ_NS_LO 0x022D 130 131 #define PTP_OPERATING_MODE 0x0241 132 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 133 134 #define PTP_TX_MOD 0x028F 135 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 136 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 137 138 #define PTP_RX_PARSE_CONFIG 0x0242 139 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 140 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 141 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 142 143 #define PTP_TX_PARSE_CONFIG 0x0282 144 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 145 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 146 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 147 148 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 149 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 150 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 151 152 #define PTP_LTC_STEP_ADJ_HI 0x0212 153 #define PTP_LTC_STEP_ADJ_LO 0x0213 154 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 155 156 #define LAN8814_INTR_STS_REG 0x0033 157 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 158 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 159 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 160 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 161 162 #define PTP_CAP_INFO 0x022A 163 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 164 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 165 166 #define PTP_TX_EGRESS_SEC_HI 0x0296 167 #define PTP_TX_EGRESS_SEC_LO 0x0297 168 #define PTP_TX_EGRESS_NS_HI 0x0294 169 #define PTP_TX_EGRESS_NS_LO 0x0295 170 #define PTP_TX_MSG_HEADER2 0x0299 171 172 #define PTP_RX_INGRESS_SEC_HI 0x0256 173 #define PTP_RX_INGRESS_SEC_LO 0x0257 174 #define PTP_RX_INGRESS_NS_HI 0x0254 175 #define PTP_RX_INGRESS_NS_LO 0x0255 176 #define PTP_RX_MSG_HEADER2 0x0259 177 178 #define PTP_TSU_INT_EN 0x0200 179 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 180 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 181 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 182 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 183 184 #define PTP_TSU_INT_STS 0x0201 185 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 186 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 187 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 188 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 189 190 /* PHY Control 1 */ 191 #define MII_KSZPHY_CTRL_1 0x1e 192 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 193 194 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 195 #define MII_KSZPHY_CTRL_2 0x1f 196 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 197 /* bitmap of PHY register to set interrupt mode */ 198 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 199 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 200 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 201 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 202 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 203 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 204 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 205 206 /* Write/read to/from extended registers */ 207 #define MII_KSZPHY_EXTREG 0x0b 208 #define KSZPHY_EXTREG_WRITE 0x8000 209 210 #define MII_KSZPHY_EXTREG_WRITE 0x0c 211 #define MII_KSZPHY_EXTREG_READ 0x0d 212 213 /* Extended registers */ 214 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 215 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 216 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 217 218 #define PS_TO_REG 200 219 #define FIFO_SIZE 8 220 221 struct kszphy_hw_stat { 222 const char *string; 223 u8 reg; 224 u8 bits; 225 }; 226 227 static struct kszphy_hw_stat kszphy_hw_stats[] = { 228 { "phy_receive_errors", 21, 16}, 229 { "phy_idle_errors", 10, 8 }, 230 }; 231 232 struct kszphy_type { 233 u32 led_mode_reg; 234 u16 interrupt_level_mask; 235 bool has_broadcast_disable; 236 bool has_nand_tree_disable; 237 bool has_rmii_ref_clk_sel; 238 }; 239 240 /* Shared structure between the PHYs of the same package. */ 241 struct lan8814_shared_priv { 242 struct phy_device *phydev; 243 struct ptp_clock *ptp_clock; 244 struct ptp_clock_info ptp_clock_info; 245 246 /* Reference counter to how many ports in the package are enabling the 247 * timestamping 248 */ 249 u8 ref; 250 251 /* Lock for ptp_clock and ref */ 252 struct mutex shared_lock; 253 }; 254 255 struct lan8814_ptp_rx_ts { 256 struct list_head list; 257 u32 seconds; 258 u32 nsec; 259 u16 seq_id; 260 }; 261 262 struct kszphy_ptp_priv { 263 struct mii_timestamper mii_ts; 264 struct phy_device *phydev; 265 266 struct sk_buff_head tx_queue; 267 struct sk_buff_head rx_queue; 268 269 struct list_head rx_ts_list; 270 /* Lock for Rx ts fifo */ 271 spinlock_t rx_ts_lock; 272 273 int hwts_tx_type; 274 enum hwtstamp_rx_filters rx_filter; 275 int layer; 276 int version; 277 }; 278 279 struct kszphy_priv { 280 struct kszphy_ptp_priv ptp_priv; 281 const struct kszphy_type *type; 282 int led_mode; 283 bool rmii_ref_clk_sel; 284 bool rmii_ref_clk_sel_val; 285 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 286 }; 287 288 static const struct kszphy_type ksz8021_type = { 289 .led_mode_reg = MII_KSZPHY_CTRL_2, 290 .has_broadcast_disable = true, 291 .has_nand_tree_disable = true, 292 .has_rmii_ref_clk_sel = true, 293 }; 294 295 static const struct kszphy_type ksz8041_type = { 296 .led_mode_reg = MII_KSZPHY_CTRL_1, 297 }; 298 299 static const struct kszphy_type ksz8051_type = { 300 .led_mode_reg = MII_KSZPHY_CTRL_2, 301 .has_nand_tree_disable = true, 302 }; 303 304 static const struct kszphy_type ksz8081_type = { 305 .led_mode_reg = MII_KSZPHY_CTRL_2, 306 .has_broadcast_disable = true, 307 .has_nand_tree_disable = true, 308 .has_rmii_ref_clk_sel = true, 309 }; 310 311 static const struct kszphy_type ks8737_type = { 312 .interrupt_level_mask = BIT(14), 313 }; 314 315 static const struct kszphy_type ksz9021_type = { 316 .interrupt_level_mask = BIT(14), 317 }; 318 319 static int kszphy_extended_write(struct phy_device *phydev, 320 u32 regnum, u16 val) 321 { 322 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 323 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 324 } 325 326 static int kszphy_extended_read(struct phy_device *phydev, 327 u32 regnum) 328 { 329 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 330 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 331 } 332 333 static int kszphy_ack_interrupt(struct phy_device *phydev) 334 { 335 /* bit[7..0] int status, which is a read and clear register. */ 336 int rc; 337 338 rc = phy_read(phydev, MII_KSZPHY_INTCS); 339 340 return (rc < 0) ? rc : 0; 341 } 342 343 static int kszphy_config_intr(struct phy_device *phydev) 344 { 345 const struct kszphy_type *type = phydev->drv->driver_data; 346 int temp, err; 347 u16 mask; 348 349 if (type && type->interrupt_level_mask) 350 mask = type->interrupt_level_mask; 351 else 352 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 353 354 /* set the interrupt pin active low */ 355 temp = phy_read(phydev, MII_KSZPHY_CTRL); 356 if (temp < 0) 357 return temp; 358 temp &= ~mask; 359 phy_write(phydev, MII_KSZPHY_CTRL, temp); 360 361 /* enable / disable interrupts */ 362 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 363 err = kszphy_ack_interrupt(phydev); 364 if (err) 365 return err; 366 367 temp = KSZPHY_INTCS_ALL; 368 err = phy_write(phydev, MII_KSZPHY_INTCS, temp); 369 } else { 370 temp = 0; 371 err = phy_write(phydev, MII_KSZPHY_INTCS, temp); 372 if (err) 373 return err; 374 375 err = kszphy_ack_interrupt(phydev); 376 } 377 378 return err; 379 } 380 381 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 382 { 383 int irq_status; 384 385 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 386 if (irq_status < 0) { 387 phy_error(phydev); 388 return IRQ_NONE; 389 } 390 391 if (!(irq_status & KSZPHY_INTCS_STATUS)) 392 return IRQ_NONE; 393 394 phy_trigger_machine(phydev); 395 396 return IRQ_HANDLED; 397 } 398 399 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 400 { 401 int ctrl; 402 403 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 404 if (ctrl < 0) 405 return ctrl; 406 407 if (val) 408 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 409 else 410 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 411 412 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 413 } 414 415 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 416 { 417 int rc, temp, shift; 418 419 switch (reg) { 420 case MII_KSZPHY_CTRL_1: 421 shift = 14; 422 break; 423 case MII_KSZPHY_CTRL_2: 424 shift = 4; 425 break; 426 default: 427 return -EINVAL; 428 } 429 430 temp = phy_read(phydev, reg); 431 if (temp < 0) { 432 rc = temp; 433 goto out; 434 } 435 436 temp &= ~(3 << shift); 437 temp |= val << shift; 438 rc = phy_write(phydev, reg, temp); 439 out: 440 if (rc < 0) 441 phydev_err(phydev, "failed to set led mode\n"); 442 443 return rc; 444 } 445 446 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 447 * unique (non-broadcast) address on a shared bus. 448 */ 449 static int kszphy_broadcast_disable(struct phy_device *phydev) 450 { 451 int ret; 452 453 ret = phy_read(phydev, MII_KSZPHY_OMSO); 454 if (ret < 0) 455 goto out; 456 457 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 458 out: 459 if (ret) 460 phydev_err(phydev, "failed to disable broadcast address\n"); 461 462 return ret; 463 } 464 465 static int kszphy_nand_tree_disable(struct phy_device *phydev) 466 { 467 int ret; 468 469 ret = phy_read(phydev, MII_KSZPHY_OMSO); 470 if (ret < 0) 471 goto out; 472 473 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 474 return 0; 475 476 ret = phy_write(phydev, MII_KSZPHY_OMSO, 477 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 478 out: 479 if (ret) 480 phydev_err(phydev, "failed to disable NAND tree mode\n"); 481 482 return ret; 483 } 484 485 /* Some config bits need to be set again on resume, handle them here. */ 486 static int kszphy_config_reset(struct phy_device *phydev) 487 { 488 struct kszphy_priv *priv = phydev->priv; 489 int ret; 490 491 if (priv->rmii_ref_clk_sel) { 492 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 493 if (ret) { 494 phydev_err(phydev, 495 "failed to set rmii reference clock\n"); 496 return ret; 497 } 498 } 499 500 if (priv->led_mode >= 0) 501 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 502 503 return 0; 504 } 505 506 static int kszphy_config_init(struct phy_device *phydev) 507 { 508 struct kszphy_priv *priv = phydev->priv; 509 const struct kszphy_type *type; 510 511 if (!priv) 512 return 0; 513 514 type = priv->type; 515 516 if (type->has_broadcast_disable) 517 kszphy_broadcast_disable(phydev); 518 519 if (type->has_nand_tree_disable) 520 kszphy_nand_tree_disable(phydev); 521 522 return kszphy_config_reset(phydev); 523 } 524 525 static int ksz8041_fiber_mode(struct phy_device *phydev) 526 { 527 struct device_node *of_node = phydev->mdio.dev.of_node; 528 529 return of_property_read_bool(of_node, "micrel,fiber-mode"); 530 } 531 532 static int ksz8041_config_init(struct phy_device *phydev) 533 { 534 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 535 536 /* Limit supported and advertised modes in fiber mode */ 537 if (ksz8041_fiber_mode(phydev)) { 538 phydev->dev_flags |= MICREL_PHY_FXEN; 539 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 540 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 541 542 linkmode_and(phydev->supported, phydev->supported, mask); 543 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 544 phydev->supported); 545 linkmode_and(phydev->advertising, phydev->advertising, mask); 546 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 547 phydev->advertising); 548 phydev->autoneg = AUTONEG_DISABLE; 549 } 550 551 return kszphy_config_init(phydev); 552 } 553 554 static int ksz8041_config_aneg(struct phy_device *phydev) 555 { 556 /* Skip auto-negotiation in fiber mode */ 557 if (phydev->dev_flags & MICREL_PHY_FXEN) { 558 phydev->speed = SPEED_100; 559 return 0; 560 } 561 562 return genphy_config_aneg(phydev); 563 } 564 565 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 566 const bool ksz_8051) 567 { 568 int ret; 569 570 if ((phydev->phy_id & MICREL_PHY_ID_MASK) != PHY_ID_KSZ8051) 571 return 0; 572 573 ret = phy_read(phydev, MII_BMSR); 574 if (ret < 0) 575 return ret; 576 577 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 578 * exact PHY ID. However, they can be told apart by the extended 579 * capability registers presence. The KSZ8051 PHY has them while 580 * the switch does not. 581 */ 582 ret &= BMSR_ERCAP; 583 if (ksz_8051) 584 return ret; 585 else 586 return !ret; 587 } 588 589 static int ksz8051_match_phy_device(struct phy_device *phydev) 590 { 591 return ksz8051_ksz8795_match_phy_device(phydev, true); 592 } 593 594 static int ksz8081_config_init(struct phy_device *phydev) 595 { 596 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 597 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 598 * pull-down is missing, the factory test mode should be cleared by 599 * manually writing a 0. 600 */ 601 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 602 603 return kszphy_config_init(phydev); 604 } 605 606 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 607 { 608 u16 val; 609 610 switch (ctrl) { 611 case ETH_TP_MDI: 612 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 613 break; 614 case ETH_TP_MDI_X: 615 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 616 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 617 break; 618 case ETH_TP_MDI_AUTO: 619 val = 0; 620 break; 621 default: 622 return 0; 623 } 624 625 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 626 KSZ8081_CTRL2_HP_MDIX | 627 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 628 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 629 KSZ8081_CTRL2_HP_MDIX | val); 630 } 631 632 static int ksz8081_config_aneg(struct phy_device *phydev) 633 { 634 int ret; 635 636 ret = genphy_config_aneg(phydev); 637 if (ret) 638 return ret; 639 640 /* The MDI-X configuration is automatically changed by the PHY after 641 * switching from autoneg off to on. So, take MDI-X configuration under 642 * own control and set it after autoneg configuration was done. 643 */ 644 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 645 } 646 647 static int ksz8081_mdix_update(struct phy_device *phydev) 648 { 649 int ret; 650 651 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 652 if (ret < 0) 653 return ret; 654 655 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 656 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 657 phydev->mdix_ctrl = ETH_TP_MDI_X; 658 else 659 phydev->mdix_ctrl = ETH_TP_MDI; 660 } else { 661 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 662 } 663 664 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 665 if (ret < 0) 666 return ret; 667 668 if (ret & KSZ8081_CTRL1_MDIX_STAT) 669 phydev->mdix = ETH_TP_MDI; 670 else 671 phydev->mdix = ETH_TP_MDI_X; 672 673 return 0; 674 } 675 676 static int ksz8081_read_status(struct phy_device *phydev) 677 { 678 int ret; 679 680 ret = ksz8081_mdix_update(phydev); 681 if (ret < 0) 682 return ret; 683 684 return genphy_read_status(phydev); 685 } 686 687 static int ksz8061_config_init(struct phy_device *phydev) 688 { 689 int ret; 690 691 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 692 if (ret) 693 return ret; 694 695 return kszphy_config_init(phydev); 696 } 697 698 static int ksz8795_match_phy_device(struct phy_device *phydev) 699 { 700 return ksz8051_ksz8795_match_phy_device(phydev, false); 701 } 702 703 static int ksz9021_load_values_from_of(struct phy_device *phydev, 704 const struct device_node *of_node, 705 u16 reg, 706 const char *field1, const char *field2, 707 const char *field3, const char *field4) 708 { 709 int val1 = -1; 710 int val2 = -2; 711 int val3 = -3; 712 int val4 = -4; 713 int newval; 714 int matches = 0; 715 716 if (!of_property_read_u32(of_node, field1, &val1)) 717 matches++; 718 719 if (!of_property_read_u32(of_node, field2, &val2)) 720 matches++; 721 722 if (!of_property_read_u32(of_node, field3, &val3)) 723 matches++; 724 725 if (!of_property_read_u32(of_node, field4, &val4)) 726 matches++; 727 728 if (!matches) 729 return 0; 730 731 if (matches < 4) 732 newval = kszphy_extended_read(phydev, reg); 733 else 734 newval = 0; 735 736 if (val1 != -1) 737 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 738 739 if (val2 != -2) 740 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 741 742 if (val3 != -3) 743 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 744 745 if (val4 != -4) 746 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 747 748 return kszphy_extended_write(phydev, reg, newval); 749 } 750 751 static int ksz9021_config_init(struct phy_device *phydev) 752 { 753 const struct device_node *of_node; 754 const struct device *dev_walker; 755 756 /* The Micrel driver has a deprecated option to place phy OF 757 * properties in the MAC node. Walk up the tree of devices to 758 * find a device with an OF node. 759 */ 760 dev_walker = &phydev->mdio.dev; 761 do { 762 of_node = dev_walker->of_node; 763 dev_walker = dev_walker->parent; 764 765 } while (!of_node && dev_walker); 766 767 if (of_node) { 768 ksz9021_load_values_from_of(phydev, of_node, 769 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 770 "txen-skew-ps", "txc-skew-ps", 771 "rxdv-skew-ps", "rxc-skew-ps"); 772 ksz9021_load_values_from_of(phydev, of_node, 773 MII_KSZPHY_RX_DATA_PAD_SKEW, 774 "rxd0-skew-ps", "rxd1-skew-ps", 775 "rxd2-skew-ps", "rxd3-skew-ps"); 776 ksz9021_load_values_from_of(phydev, of_node, 777 MII_KSZPHY_TX_DATA_PAD_SKEW, 778 "txd0-skew-ps", "txd1-skew-ps", 779 "txd2-skew-ps", "txd3-skew-ps"); 780 } 781 return 0; 782 } 783 784 #define KSZ9031_PS_TO_REG 60 785 786 /* Extended registers */ 787 /* MMD Address 0x0 */ 788 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 789 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 790 791 /* MMD Address 0x2 */ 792 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 793 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 794 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 795 796 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 797 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 798 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 799 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 800 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 801 802 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 803 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 804 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 805 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 806 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 807 808 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 809 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 810 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 811 812 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 813 * provide different RGMII options we need to configure delay offset 814 * for each pad relative to build in delay. 815 */ 816 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 817 * 1.80ns 818 */ 819 #define RX_ID 0x7 820 #define RX_CLK_ID 0x19 821 822 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 823 * internal 1.2ns delay. 824 */ 825 #define RX_ND 0xc 826 #define RX_CLK_ND 0x0 827 828 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 829 #define TX_ID 0x0 830 #define TX_CLK_ID 0x1f 831 832 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 833 * dealy 834 */ 835 #define TX_ND 0x7 836 #define TX_CLK_ND 0xf 837 838 /* MMD Address 0x1C */ 839 #define MII_KSZ9031RN_EDPD 0x23 840 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 841 842 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 843 const struct device_node *of_node, 844 u16 reg, size_t field_sz, 845 const char *field[], u8 numfields, 846 bool *update) 847 { 848 int val[4] = {-1, -2, -3, -4}; 849 int matches = 0; 850 u16 mask; 851 u16 maxval; 852 u16 newval; 853 int i; 854 855 for (i = 0; i < numfields; i++) 856 if (!of_property_read_u32(of_node, field[i], val + i)) 857 matches++; 858 859 if (!matches) 860 return 0; 861 862 *update |= true; 863 864 if (matches < numfields) 865 newval = phy_read_mmd(phydev, 2, reg); 866 else 867 newval = 0; 868 869 maxval = (field_sz == 4) ? 0xf : 0x1f; 870 for (i = 0; i < numfields; i++) 871 if (val[i] != -(i + 1)) { 872 mask = 0xffff; 873 mask ^= maxval << (field_sz * i); 874 newval = (newval & mask) | 875 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 876 << (field_sz * i)); 877 } 878 879 return phy_write_mmd(phydev, 2, reg, newval); 880 } 881 882 /* Center KSZ9031RNX FLP timing at 16ms. */ 883 static int ksz9031_center_flp_timing(struct phy_device *phydev) 884 { 885 int result; 886 887 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 888 0x0006); 889 if (result) 890 return result; 891 892 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 893 0x1A80); 894 if (result) 895 return result; 896 897 return genphy_restart_aneg(phydev); 898 } 899 900 /* Enable energy-detect power-down mode */ 901 static int ksz9031_enable_edpd(struct phy_device *phydev) 902 { 903 int reg; 904 905 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 906 if (reg < 0) 907 return reg; 908 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 909 reg | MII_KSZ9031RN_EDPD_ENABLE); 910 } 911 912 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 913 { 914 u16 rx, tx, rx_clk, tx_clk; 915 int ret; 916 917 switch (phydev->interface) { 918 case PHY_INTERFACE_MODE_RGMII: 919 tx = TX_ND; 920 tx_clk = TX_CLK_ND; 921 rx = RX_ND; 922 rx_clk = RX_CLK_ND; 923 break; 924 case PHY_INTERFACE_MODE_RGMII_ID: 925 tx = TX_ID; 926 tx_clk = TX_CLK_ID; 927 rx = RX_ID; 928 rx_clk = RX_CLK_ID; 929 break; 930 case PHY_INTERFACE_MODE_RGMII_RXID: 931 tx = TX_ND; 932 tx_clk = TX_CLK_ND; 933 rx = RX_ID; 934 rx_clk = RX_CLK_ID; 935 break; 936 case PHY_INTERFACE_MODE_RGMII_TXID: 937 tx = TX_ID; 938 tx_clk = TX_CLK_ID; 939 rx = RX_ND; 940 rx_clk = RX_CLK_ND; 941 break; 942 default: 943 return 0; 944 } 945 946 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 947 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 948 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 949 if (ret < 0) 950 return ret; 951 952 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 953 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 954 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 955 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 956 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 957 if (ret < 0) 958 return ret; 959 960 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 961 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 962 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 963 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 964 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 965 if (ret < 0) 966 return ret; 967 968 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 969 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 970 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 971 } 972 973 static int ksz9031_config_init(struct phy_device *phydev) 974 { 975 const struct device_node *of_node; 976 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 977 static const char *rx_data_skews[4] = { 978 "rxd0-skew-ps", "rxd1-skew-ps", 979 "rxd2-skew-ps", "rxd3-skew-ps" 980 }; 981 static const char *tx_data_skews[4] = { 982 "txd0-skew-ps", "txd1-skew-ps", 983 "txd2-skew-ps", "txd3-skew-ps" 984 }; 985 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 986 const struct device *dev_walker; 987 int result; 988 989 result = ksz9031_enable_edpd(phydev); 990 if (result < 0) 991 return result; 992 993 /* The Micrel driver has a deprecated option to place phy OF 994 * properties in the MAC node. Walk up the tree of devices to 995 * find a device with an OF node. 996 */ 997 dev_walker = &phydev->mdio.dev; 998 do { 999 of_node = dev_walker->of_node; 1000 dev_walker = dev_walker->parent; 1001 } while (!of_node && dev_walker); 1002 1003 if (of_node) { 1004 bool update = false; 1005 1006 if (phy_interface_is_rgmii(phydev)) { 1007 result = ksz9031_config_rgmii_delay(phydev); 1008 if (result < 0) 1009 return result; 1010 } 1011 1012 ksz9031_of_load_skew_values(phydev, of_node, 1013 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1014 clk_skews, 2, &update); 1015 1016 ksz9031_of_load_skew_values(phydev, of_node, 1017 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1018 control_skews, 2, &update); 1019 1020 ksz9031_of_load_skew_values(phydev, of_node, 1021 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1022 rx_data_skews, 4, &update); 1023 1024 ksz9031_of_load_skew_values(phydev, of_node, 1025 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1026 tx_data_skews, 4, &update); 1027 1028 if (update && !phy_interface_is_rgmii(phydev)) 1029 phydev_warn(phydev, 1030 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1031 1032 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1033 * When the device links in the 1000BASE-T slave mode only, 1034 * the optional 125MHz reference output clock (CLK125_NDO) 1035 * has wide duty cycle variation. 1036 * 1037 * The optional CLK125_NDO clock does not meet the RGMII 1038 * 45/55 percent (min/max) duty cycle requirement and therefore 1039 * cannot be used directly by the MAC side for clocking 1040 * applications that have setup/hold time requirements on 1041 * rising and falling clock edges. 1042 * 1043 * Workaround: 1044 * Force the phy to be the master to receive a stable clock 1045 * which meets the duty cycle requirement. 1046 */ 1047 if (of_property_read_bool(of_node, "micrel,force-master")) { 1048 result = phy_read(phydev, MII_CTRL1000); 1049 if (result < 0) 1050 goto err_force_master; 1051 1052 /* enable master mode, config & prefer master */ 1053 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1054 result = phy_write(phydev, MII_CTRL1000, result); 1055 if (result < 0) 1056 goto err_force_master; 1057 } 1058 } 1059 1060 return ksz9031_center_flp_timing(phydev); 1061 1062 err_force_master: 1063 phydev_err(phydev, "failed to force the phy to master mode\n"); 1064 return result; 1065 } 1066 1067 #define KSZ9131_SKEW_5BIT_MAX 2400 1068 #define KSZ9131_SKEW_4BIT_MAX 800 1069 #define KSZ9131_OFFSET 700 1070 #define KSZ9131_STEP 100 1071 1072 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1073 struct device_node *of_node, 1074 u16 reg, size_t field_sz, 1075 char *field[], u8 numfields) 1076 { 1077 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1078 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1079 int skewval, skewmax = 0; 1080 int matches = 0; 1081 u16 maxval; 1082 u16 newval; 1083 u16 mask; 1084 int i; 1085 1086 /* psec properties in dts should mean x pico seconds */ 1087 if (field_sz == 5) 1088 skewmax = KSZ9131_SKEW_5BIT_MAX; 1089 else 1090 skewmax = KSZ9131_SKEW_4BIT_MAX; 1091 1092 for (i = 0; i < numfields; i++) 1093 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1094 if (skewval < -KSZ9131_OFFSET) 1095 skewval = -KSZ9131_OFFSET; 1096 else if (skewval > skewmax) 1097 skewval = skewmax; 1098 1099 val[i] = skewval + KSZ9131_OFFSET; 1100 matches++; 1101 } 1102 1103 if (!matches) 1104 return 0; 1105 1106 if (matches < numfields) 1107 newval = phy_read_mmd(phydev, 2, reg); 1108 else 1109 newval = 0; 1110 1111 maxval = (field_sz == 4) ? 0xf : 0x1f; 1112 for (i = 0; i < numfields; i++) 1113 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1114 mask = 0xffff; 1115 mask ^= maxval << (field_sz * i); 1116 newval = (newval & mask) | 1117 (((val[i] / KSZ9131_STEP) & maxval) 1118 << (field_sz * i)); 1119 } 1120 1121 return phy_write_mmd(phydev, 2, reg, newval); 1122 } 1123 1124 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1125 #define KSZ9131RN_RXC_DLL_CTRL 76 1126 #define KSZ9131RN_TXC_DLL_CTRL 77 1127 #define KSZ9131RN_DLL_CTRL_BYPASS BIT_MASK(12) 1128 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1129 #define KSZ9131RN_DLL_DISABLE_DELAY BIT(12) 1130 1131 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1132 { 1133 u16 rxcdll_val, txcdll_val; 1134 int ret; 1135 1136 switch (phydev->interface) { 1137 case PHY_INTERFACE_MODE_RGMII: 1138 rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY; 1139 txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY; 1140 break; 1141 case PHY_INTERFACE_MODE_RGMII_ID: 1142 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1143 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1144 break; 1145 case PHY_INTERFACE_MODE_RGMII_RXID: 1146 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1147 txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY; 1148 break; 1149 case PHY_INTERFACE_MODE_RGMII_TXID: 1150 rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY; 1151 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1152 break; 1153 default: 1154 return 0; 1155 } 1156 1157 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1158 KSZ9131RN_RXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS, 1159 rxcdll_val); 1160 if (ret < 0) 1161 return ret; 1162 1163 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1164 KSZ9131RN_TXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS, 1165 txcdll_val); 1166 } 1167 1168 /* Silicon Errata DS80000693B 1169 * 1170 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1171 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1172 * according to the datasheet (off if there is no link). 1173 */ 1174 static int ksz9131_led_errata(struct phy_device *phydev) 1175 { 1176 int reg; 1177 1178 reg = phy_read_mmd(phydev, 2, 0); 1179 if (reg < 0) 1180 return reg; 1181 1182 if (!(reg & BIT(4))) 1183 return 0; 1184 1185 return phy_set_bits(phydev, 0x1e, BIT(9)); 1186 } 1187 1188 static int ksz9131_config_init(struct phy_device *phydev) 1189 { 1190 struct device_node *of_node; 1191 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1192 char *rx_data_skews[4] = { 1193 "rxd0-skew-psec", "rxd1-skew-psec", 1194 "rxd2-skew-psec", "rxd3-skew-psec" 1195 }; 1196 char *tx_data_skews[4] = { 1197 "txd0-skew-psec", "txd1-skew-psec", 1198 "txd2-skew-psec", "txd3-skew-psec" 1199 }; 1200 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1201 const struct device *dev_walker; 1202 int ret; 1203 1204 dev_walker = &phydev->mdio.dev; 1205 do { 1206 of_node = dev_walker->of_node; 1207 dev_walker = dev_walker->parent; 1208 } while (!of_node && dev_walker); 1209 1210 if (!of_node) 1211 return 0; 1212 1213 if (phy_interface_is_rgmii(phydev)) { 1214 ret = ksz9131_config_rgmii_delay(phydev); 1215 if (ret < 0) 1216 return ret; 1217 } 1218 1219 ret = ksz9131_of_load_skew_values(phydev, of_node, 1220 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1221 clk_skews, 2); 1222 if (ret < 0) 1223 return ret; 1224 1225 ret = ksz9131_of_load_skew_values(phydev, of_node, 1226 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1227 control_skews, 2); 1228 if (ret < 0) 1229 return ret; 1230 1231 ret = ksz9131_of_load_skew_values(phydev, of_node, 1232 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1233 rx_data_skews, 4); 1234 if (ret < 0) 1235 return ret; 1236 1237 ret = ksz9131_of_load_skew_values(phydev, of_node, 1238 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1239 tx_data_skews, 4); 1240 if (ret < 0) 1241 return ret; 1242 1243 ret = ksz9131_led_errata(phydev); 1244 if (ret < 0) 1245 return ret; 1246 1247 return 0; 1248 } 1249 1250 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1251 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1252 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1253 static int ksz8873mll_read_status(struct phy_device *phydev) 1254 { 1255 int regval; 1256 1257 /* dummy read */ 1258 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1259 1260 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1261 1262 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1263 phydev->duplex = DUPLEX_HALF; 1264 else 1265 phydev->duplex = DUPLEX_FULL; 1266 1267 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1268 phydev->speed = SPEED_10; 1269 else 1270 phydev->speed = SPEED_100; 1271 1272 phydev->link = 1; 1273 phydev->pause = phydev->asym_pause = 0; 1274 1275 return 0; 1276 } 1277 1278 static int ksz9031_get_features(struct phy_device *phydev) 1279 { 1280 int ret; 1281 1282 ret = genphy_read_abilities(phydev); 1283 if (ret < 0) 1284 return ret; 1285 1286 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1287 * Whenever the device's Asymmetric Pause capability is set to 1, 1288 * link-up may fail after a link-up to link-down transition. 1289 * 1290 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1291 * 1292 * Workaround: 1293 * Do not enable the Asymmetric Pause capability bit. 1294 */ 1295 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1296 1297 /* We force setting the Pause capability as the core will force the 1298 * Asymmetric Pause capability to 1 otherwise. 1299 */ 1300 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1301 1302 return 0; 1303 } 1304 1305 static int ksz9031_read_status(struct phy_device *phydev) 1306 { 1307 int err; 1308 int regval; 1309 1310 err = genphy_read_status(phydev); 1311 if (err) 1312 return err; 1313 1314 /* Make sure the PHY is not broken. Read idle error count, 1315 * and reset the PHY if it is maxed out. 1316 */ 1317 regval = phy_read(phydev, MII_STAT1000); 1318 if ((regval & 0xFF) == 0xFF) { 1319 phy_init_hw(phydev); 1320 phydev->link = 0; 1321 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1322 phydev->drv->config_intr(phydev); 1323 return genphy_config_aneg(phydev); 1324 } 1325 1326 return 0; 1327 } 1328 1329 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1330 { 1331 return 0; 1332 } 1333 1334 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1335 { 1336 u16 val; 1337 1338 switch (ctrl) { 1339 case ETH_TP_MDI: 1340 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1341 break; 1342 case ETH_TP_MDI_X: 1343 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1344 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1345 * sheet seems to be missing: 1346 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1347 * 0 = Normal operation (transmit on TX+/TX- pins) 1348 */ 1349 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1350 break; 1351 case ETH_TP_MDI_AUTO: 1352 val = 0; 1353 break; 1354 default: 1355 return 0; 1356 } 1357 1358 return phy_modify(phydev, MII_BMCR, 1359 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1360 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1361 KSZ886X_BMCR_HP_MDIX | val); 1362 } 1363 1364 static int ksz886x_config_aneg(struct phy_device *phydev) 1365 { 1366 int ret; 1367 1368 ret = genphy_config_aneg(phydev); 1369 if (ret) 1370 return ret; 1371 1372 /* The MDI-X configuration is automatically changed by the PHY after 1373 * switching from autoneg off to on. So, take MDI-X configuration under 1374 * own control and set it after autoneg configuration was done. 1375 */ 1376 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1377 } 1378 1379 static int ksz886x_mdix_update(struct phy_device *phydev) 1380 { 1381 int ret; 1382 1383 ret = phy_read(phydev, MII_BMCR); 1384 if (ret < 0) 1385 return ret; 1386 1387 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1388 if (ret & KSZ886X_BMCR_FORCE_MDI) 1389 phydev->mdix_ctrl = ETH_TP_MDI_X; 1390 else 1391 phydev->mdix_ctrl = ETH_TP_MDI; 1392 } else { 1393 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1394 } 1395 1396 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1397 if (ret < 0) 1398 return ret; 1399 1400 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1401 if (ret & KSZ886X_CTRL_MDIX_STAT) 1402 phydev->mdix = ETH_TP_MDI_X; 1403 else 1404 phydev->mdix = ETH_TP_MDI; 1405 1406 return 0; 1407 } 1408 1409 static int ksz886x_read_status(struct phy_device *phydev) 1410 { 1411 int ret; 1412 1413 ret = ksz886x_mdix_update(phydev); 1414 if (ret < 0) 1415 return ret; 1416 1417 return genphy_read_status(phydev); 1418 } 1419 1420 static int kszphy_get_sset_count(struct phy_device *phydev) 1421 { 1422 return ARRAY_SIZE(kszphy_hw_stats); 1423 } 1424 1425 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 1426 { 1427 int i; 1428 1429 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) { 1430 strlcpy(data + i * ETH_GSTRING_LEN, 1431 kszphy_hw_stats[i].string, ETH_GSTRING_LEN); 1432 } 1433 } 1434 1435 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 1436 { 1437 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 1438 struct kszphy_priv *priv = phydev->priv; 1439 int val; 1440 u64 ret; 1441 1442 val = phy_read(phydev, stat.reg); 1443 if (val < 0) { 1444 ret = U64_MAX; 1445 } else { 1446 val = val & ((1 << stat.bits) - 1); 1447 priv->stats[i] += val; 1448 ret = priv->stats[i]; 1449 } 1450 1451 return ret; 1452 } 1453 1454 static void kszphy_get_stats(struct phy_device *phydev, 1455 struct ethtool_stats *stats, u64 *data) 1456 { 1457 int i; 1458 1459 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 1460 data[i] = kszphy_get_stat(phydev, i); 1461 } 1462 1463 static int kszphy_suspend(struct phy_device *phydev) 1464 { 1465 /* Disable PHY Interrupts */ 1466 if (phy_interrupt_is_valid(phydev)) { 1467 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1468 if (phydev->drv->config_intr) 1469 phydev->drv->config_intr(phydev); 1470 } 1471 1472 return genphy_suspend(phydev); 1473 } 1474 1475 static int kszphy_resume(struct phy_device *phydev) 1476 { 1477 int ret; 1478 1479 genphy_resume(phydev); 1480 1481 /* After switching from power-down to normal mode, an internal global 1482 * reset is automatically generated. Wait a minimum of 1 ms before 1483 * read/write access to the PHY registers. 1484 */ 1485 usleep_range(1000, 2000); 1486 1487 ret = kszphy_config_reset(phydev); 1488 if (ret) 1489 return ret; 1490 1491 /* Enable PHY Interrupts */ 1492 if (phy_interrupt_is_valid(phydev)) { 1493 phydev->interrupts = PHY_INTERRUPT_ENABLED; 1494 if (phydev->drv->config_intr) 1495 phydev->drv->config_intr(phydev); 1496 } 1497 1498 return 0; 1499 } 1500 1501 static int kszphy_probe(struct phy_device *phydev) 1502 { 1503 const struct kszphy_type *type = phydev->drv->driver_data; 1504 const struct device_node *np = phydev->mdio.dev.of_node; 1505 struct kszphy_priv *priv; 1506 struct clk *clk; 1507 int ret; 1508 1509 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 1510 if (!priv) 1511 return -ENOMEM; 1512 1513 phydev->priv = priv; 1514 1515 priv->type = type; 1516 1517 if (type->led_mode_reg) { 1518 ret = of_property_read_u32(np, "micrel,led-mode", 1519 &priv->led_mode); 1520 if (ret) 1521 priv->led_mode = -1; 1522 1523 if (priv->led_mode > 3) { 1524 phydev_err(phydev, "invalid led mode: 0x%02x\n", 1525 priv->led_mode); 1526 priv->led_mode = -1; 1527 } 1528 } else { 1529 priv->led_mode = -1; 1530 } 1531 1532 clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref"); 1533 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 1534 if (!IS_ERR_OR_NULL(clk)) { 1535 unsigned long rate = clk_get_rate(clk); 1536 bool rmii_ref_clk_sel_25_mhz; 1537 1538 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 1539 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 1540 "micrel,rmii-reference-clock-select-25-mhz"); 1541 1542 if (rate > 24500000 && rate < 25500000) { 1543 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 1544 } else if (rate > 49500000 && rate < 50500000) { 1545 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 1546 } else { 1547 phydev_err(phydev, "Clock rate out of range: %ld\n", 1548 rate); 1549 return -EINVAL; 1550 } 1551 } 1552 1553 if (ksz8041_fiber_mode(phydev)) 1554 phydev->port = PORT_FIBRE; 1555 1556 /* Support legacy board-file configuration */ 1557 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 1558 priv->rmii_ref_clk_sel = true; 1559 priv->rmii_ref_clk_sel_val = true; 1560 } 1561 1562 return 0; 1563 } 1564 1565 static int ksz886x_cable_test_start(struct phy_device *phydev) 1566 { 1567 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 1568 return -EOPNOTSUPP; 1569 1570 /* If autoneg is enabled, we won't be able to test cross pair 1571 * short. In this case, the PHY will "detect" a link and 1572 * confuse the internal state machine - disable auto neg here. 1573 * If autoneg is disabled, we should set the speed to 10mbit. 1574 */ 1575 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 1576 } 1577 1578 static int ksz886x_cable_test_result_trans(u16 status) 1579 { 1580 switch (FIELD_GET(KSZ8081_LMD_STAT_MASK, status)) { 1581 case KSZ8081_LMD_STAT_NORMAL: 1582 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1583 case KSZ8081_LMD_STAT_SHORT: 1584 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1585 case KSZ8081_LMD_STAT_OPEN: 1586 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1587 case KSZ8081_LMD_STAT_FAIL: 1588 fallthrough; 1589 default: 1590 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1591 } 1592 } 1593 1594 static bool ksz886x_cable_test_failed(u16 status) 1595 { 1596 return FIELD_GET(KSZ8081_LMD_STAT_MASK, status) == 1597 KSZ8081_LMD_STAT_FAIL; 1598 } 1599 1600 static bool ksz886x_cable_test_fault_length_valid(u16 status) 1601 { 1602 switch (FIELD_GET(KSZ8081_LMD_STAT_MASK, status)) { 1603 case KSZ8081_LMD_STAT_OPEN: 1604 fallthrough; 1605 case KSZ8081_LMD_STAT_SHORT: 1606 return true; 1607 } 1608 return false; 1609 } 1610 1611 static int ksz886x_cable_test_fault_length(u16 status) 1612 { 1613 int dt; 1614 1615 /* According to the data sheet the distance to the fault is 1616 * DELTA_TIME * 0.4 meters. 1617 */ 1618 dt = FIELD_GET(KSZ8081_LMD_DELTA_TIME_MASK, status); 1619 1620 return (dt * 400) / 10; 1621 } 1622 1623 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 1624 { 1625 int val, ret; 1626 1627 ret = phy_read_poll_timeout(phydev, KSZ8081_LMD, val, 1628 !(val & KSZ8081_LMD_ENABLE_TEST), 1629 30000, 100000, true); 1630 1631 return ret < 0 ? ret : 0; 1632 } 1633 1634 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 1635 { 1636 static const int ethtool_pair[] = { 1637 ETHTOOL_A_CABLE_PAIR_A, 1638 ETHTOOL_A_CABLE_PAIR_B, 1639 }; 1640 int ret, val, mdix; 1641 1642 /* There is no way to choice the pair, like we do one ksz9031. 1643 * We can workaround this limitation by using the MDI-X functionality. 1644 */ 1645 if (pair == 0) 1646 mdix = ETH_TP_MDI; 1647 else 1648 mdix = ETH_TP_MDI_X; 1649 1650 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 1651 case PHY_ID_KSZ8081: 1652 ret = ksz8081_config_mdix(phydev, mdix); 1653 break; 1654 case PHY_ID_KSZ886X: 1655 ret = ksz886x_config_mdix(phydev, mdix); 1656 break; 1657 default: 1658 ret = -ENODEV; 1659 } 1660 1661 if (ret) 1662 return ret; 1663 1664 /* Now we are ready to fire. This command will send a 100ns pulse 1665 * to the pair. 1666 */ 1667 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 1668 if (ret) 1669 return ret; 1670 1671 ret = ksz886x_cable_test_wait_for_completion(phydev); 1672 if (ret) 1673 return ret; 1674 1675 val = phy_read(phydev, KSZ8081_LMD); 1676 if (val < 0) 1677 return val; 1678 1679 if (ksz886x_cable_test_failed(val)) 1680 return -EAGAIN; 1681 1682 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 1683 ksz886x_cable_test_result_trans(val)); 1684 if (ret) 1685 return ret; 1686 1687 if (!ksz886x_cable_test_fault_length_valid(val)) 1688 return 0; 1689 1690 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], 1691 ksz886x_cable_test_fault_length(val)); 1692 } 1693 1694 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 1695 bool *finished) 1696 { 1697 unsigned long pair_mask = 0x3; 1698 int retries = 20; 1699 int pair, ret; 1700 1701 *finished = false; 1702 1703 /* Try harder if link partner is active */ 1704 while (pair_mask && retries--) { 1705 for_each_set_bit(pair, &pair_mask, 4) { 1706 ret = ksz886x_cable_test_one_pair(phydev, pair); 1707 if (ret == -EAGAIN) 1708 continue; 1709 if (ret < 0) 1710 return ret; 1711 clear_bit(pair, &pair_mask); 1712 } 1713 /* If link partner is in autonegotiation mode it will send 2ms 1714 * of FLPs with at least 6ms of silence. 1715 * Add 2ms sleep to have better chances to hit this silence. 1716 */ 1717 if (pair_mask) 1718 msleep(2); 1719 } 1720 1721 *finished = true; 1722 1723 return ret; 1724 } 1725 1726 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 1727 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 1728 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 1729 1730 #define LAN8814_QSGMII_SOFT_RESET 0x43 1731 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 1732 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 1733 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 1734 #define LAN8814_ALIGN_SWAP 0x4a 1735 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 1736 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 1737 1738 #define LAN8804_ALIGN_SWAP 0x4a 1739 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 1740 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 1741 #define LAN8814_CLOCK_MANAGEMENT 0xd 1742 #define LAN8814_LINK_QUALITY 0x8e 1743 1744 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 1745 { 1746 u32 data; 1747 1748 phy_lock_mdio_bus(phydev); 1749 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 1750 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 1751 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 1752 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 1753 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 1754 phy_unlock_mdio_bus(phydev); 1755 1756 return data; 1757 } 1758 1759 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 1760 u16 val) 1761 { 1762 phy_lock_mdio_bus(phydev); 1763 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 1764 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 1765 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 1766 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 1767 1768 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 1769 if (val != 0) 1770 phydev_err(phydev, "Error: phy_write has returned error %d\n", 1771 val); 1772 phy_unlock_mdio_bus(phydev); 1773 return val; 1774 } 1775 1776 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 1777 { 1778 u16 val = 0; 1779 1780 if (enable) 1781 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 1782 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 1783 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 1784 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 1785 1786 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val); 1787 } 1788 1789 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 1790 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 1791 { 1792 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI); 1793 *seconds = (*seconds << 16) | 1794 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO); 1795 1796 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI); 1797 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 1798 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO); 1799 1800 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2); 1801 } 1802 1803 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 1804 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 1805 { 1806 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI); 1807 *seconds = *seconds << 16 | 1808 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO); 1809 1810 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI); 1811 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 1812 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO); 1813 1814 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2); 1815 } 1816 1817 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info) 1818 { 1819 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 1820 struct phy_device *phydev = ptp_priv->phydev; 1821 struct lan8814_shared_priv *shared = phydev->shared->priv; 1822 1823 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 1824 SOF_TIMESTAMPING_RX_HARDWARE | 1825 SOF_TIMESTAMPING_RAW_HARDWARE; 1826 1827 info->phc_index = ptp_clock_index(shared->ptp_clock); 1828 1829 info->tx_types = 1830 (1 << HWTSTAMP_TX_OFF) | 1831 (1 << HWTSTAMP_TX_ON) | 1832 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 1833 1834 info->rx_filters = 1835 (1 << HWTSTAMP_FILTER_NONE) | 1836 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 1837 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 1838 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 1839 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 1840 1841 return 0; 1842 } 1843 1844 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 1845 { 1846 int i; 1847 1848 for (i = 0; i < FIFO_SIZE; ++i) 1849 lanphy_read_page_reg(phydev, 5, 1850 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 1851 1852 /* Read to clear overflow status bit */ 1853 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 1854 } 1855 1856 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr) 1857 { 1858 struct kszphy_ptp_priv *ptp_priv = 1859 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 1860 struct phy_device *phydev = ptp_priv->phydev; 1861 struct lan8814_shared_priv *shared = phydev->shared->priv; 1862 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 1863 struct hwtstamp_config config; 1864 int txcfg = 0, rxcfg = 0; 1865 int pkt_ts_enable; 1866 1867 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1868 return -EFAULT; 1869 1870 ptp_priv->hwts_tx_type = config.tx_type; 1871 ptp_priv->rx_filter = config.rx_filter; 1872 1873 switch (config.rx_filter) { 1874 case HWTSTAMP_FILTER_NONE: 1875 ptp_priv->layer = 0; 1876 ptp_priv->version = 0; 1877 break; 1878 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1879 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1880 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1881 ptp_priv->layer = PTP_CLASS_L4; 1882 ptp_priv->version = PTP_CLASS_V2; 1883 break; 1884 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1885 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1886 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1887 ptp_priv->layer = PTP_CLASS_L2; 1888 ptp_priv->version = PTP_CLASS_V2; 1889 break; 1890 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1891 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1892 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1893 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 1894 ptp_priv->version = PTP_CLASS_V2; 1895 break; 1896 default: 1897 return -ERANGE; 1898 } 1899 1900 if (ptp_priv->layer & PTP_CLASS_L2) { 1901 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 1902 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 1903 } else if (ptp_priv->layer & PTP_CLASS_L4) { 1904 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 1905 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 1906 } 1907 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg); 1908 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg); 1909 1910 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 1911 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 1912 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 1913 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 1914 1915 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) 1916 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 1917 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 1918 1919 if (config.rx_filter != HWTSTAMP_FILTER_NONE) 1920 lan8814_config_ts_intr(ptp_priv->phydev, true); 1921 else 1922 lan8814_config_ts_intr(ptp_priv->phydev, false); 1923 1924 mutex_lock(&shared->shared_lock); 1925 if (config.rx_filter != HWTSTAMP_FILTER_NONE) 1926 shared->ref++; 1927 else 1928 shared->ref--; 1929 1930 if (shared->ref) 1931 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 1932 PTP_CMD_CTL_PTP_ENABLE_); 1933 else 1934 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 1935 PTP_CMD_CTL_PTP_DISABLE_); 1936 mutex_unlock(&shared->shared_lock); 1937 1938 /* In case of multiple starts and stops, these needs to be cleared */ 1939 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 1940 list_del(&rx_ts->list); 1941 kfree(rx_ts); 1942 } 1943 skb_queue_purge(&ptp_priv->rx_queue); 1944 skb_queue_purge(&ptp_priv->tx_queue); 1945 1946 lan8814_flush_fifo(ptp_priv->phydev, false); 1947 lan8814_flush_fifo(ptp_priv->phydev, true); 1948 1949 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; 1950 } 1951 1952 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 1953 struct sk_buff *skb, int type) 1954 { 1955 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 1956 1957 switch (ptp_priv->hwts_tx_type) { 1958 case HWTSTAMP_TX_ONESTEP_SYNC: 1959 if (ptp_msg_is_sync(skb, type)) { 1960 kfree_skb(skb); 1961 return; 1962 } 1963 fallthrough; 1964 case HWTSTAMP_TX_ON: 1965 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1966 skb_queue_tail(&ptp_priv->tx_queue, skb); 1967 break; 1968 case HWTSTAMP_TX_OFF: 1969 default: 1970 kfree_skb(skb); 1971 break; 1972 } 1973 } 1974 1975 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 1976 { 1977 struct ptp_header *ptp_header; 1978 u32 type; 1979 1980 skb_push(skb, ETH_HLEN); 1981 type = ptp_classify_raw(skb); 1982 ptp_header = ptp_parse_header(skb, type); 1983 skb_pull_inline(skb, ETH_HLEN); 1984 1985 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 1986 } 1987 1988 static bool lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 1989 struct sk_buff *skb) 1990 { 1991 struct skb_shared_hwtstamps *shhwtstamps; 1992 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 1993 unsigned long flags; 1994 bool ret = false; 1995 u16 skb_sig; 1996 1997 lan8814_get_sig_rx(skb, &skb_sig); 1998 1999 /* Iterate over all RX timestamps and match it with the received skbs */ 2000 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2001 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2002 /* Check if we found the signature we were looking for. */ 2003 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2004 continue; 2005 2006 shhwtstamps = skb_hwtstamps(skb); 2007 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2008 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 2009 rx_ts->nsec); 2010 list_del(&rx_ts->list); 2011 kfree(rx_ts); 2012 2013 ret = true; 2014 break; 2015 } 2016 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2017 2018 if (ret) 2019 netif_rx(skb); 2020 return ret; 2021 } 2022 2023 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 2024 { 2025 struct kszphy_ptp_priv *ptp_priv = 2026 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2027 2028 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 2029 type == PTP_CLASS_NONE) 2030 return false; 2031 2032 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 2033 return false; 2034 2035 /* If we failed to match then add it to the queue for when the timestamp 2036 * will come 2037 */ 2038 if (!lan8814_match_rx_ts(ptp_priv, skb)) 2039 skb_queue_tail(&ptp_priv->rx_queue, skb); 2040 2041 return true; 2042 } 2043 2044 static void lan8814_ptp_clock_set(struct phy_device *phydev, 2045 u32 seconds, u32 nano_seconds) 2046 { 2047 u32 sec_low, sec_high, nsec_low, nsec_high; 2048 2049 sec_low = seconds & 0xffff; 2050 sec_high = (seconds >> 16) & 0xffff; 2051 nsec_low = nano_seconds & 0xffff; 2052 nsec_high = (nano_seconds >> 16) & 0x3fff; 2053 2054 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low); 2055 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high); 2056 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low); 2057 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high); 2058 2059 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_); 2060 } 2061 2062 static void lan8814_ptp_clock_get(struct phy_device *phydev, 2063 u32 *seconds, u32 *nano_seconds) 2064 { 2065 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_); 2066 2067 *seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID); 2068 *seconds = (*seconds << 16) | 2069 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO); 2070 2071 *nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI); 2072 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2073 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO); 2074 } 2075 2076 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 2077 struct timespec64 *ts) 2078 { 2079 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2080 ptp_clock_info); 2081 struct phy_device *phydev = shared->phydev; 2082 u32 nano_seconds; 2083 u32 seconds; 2084 2085 mutex_lock(&shared->shared_lock); 2086 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 2087 mutex_unlock(&shared->shared_lock); 2088 ts->tv_sec = seconds; 2089 ts->tv_nsec = nano_seconds; 2090 2091 return 0; 2092 } 2093 2094 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 2095 const struct timespec64 *ts) 2096 { 2097 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2098 ptp_clock_info); 2099 struct phy_device *phydev = shared->phydev; 2100 2101 mutex_lock(&shared->shared_lock); 2102 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 2103 mutex_unlock(&shared->shared_lock); 2104 2105 return 0; 2106 } 2107 2108 static void lan8814_ptp_clock_step(struct phy_device *phydev, 2109 s64 time_step_ns) 2110 { 2111 u32 nano_seconds_step; 2112 u64 abs_time_step_ns; 2113 u32 unsigned_seconds; 2114 u32 nano_seconds; 2115 u32 remainder; 2116 s32 seconds; 2117 2118 if (time_step_ns > 15000000000LL) { 2119 /* convert to clock set */ 2120 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2121 unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL, 2122 &remainder); 2123 nano_seconds += remainder; 2124 if (nano_seconds >= 1000000000) { 2125 unsigned_seconds++; 2126 nano_seconds -= 1000000000; 2127 } 2128 lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds); 2129 return; 2130 } else if (time_step_ns < -15000000000LL) { 2131 /* convert to clock set */ 2132 time_step_ns = -time_step_ns; 2133 2134 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2135 unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 2136 &remainder); 2137 nano_seconds_step = remainder; 2138 if (nano_seconds < nano_seconds_step) { 2139 unsigned_seconds--; 2140 nano_seconds += 1000000000; 2141 } 2142 nano_seconds -= nano_seconds_step; 2143 lan8814_ptp_clock_set(phydev, unsigned_seconds, 2144 nano_seconds); 2145 return; 2146 } 2147 2148 /* do clock step */ 2149 if (time_step_ns >= 0) { 2150 abs_time_step_ns = (u64)time_step_ns; 2151 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 2152 &remainder); 2153 nano_seconds = remainder; 2154 } else { 2155 abs_time_step_ns = (u64)(-time_step_ns); 2156 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 2157 &remainder)); 2158 nano_seconds = remainder; 2159 if (nano_seconds > 0) { 2160 /* subtracting nano seconds is not allowed 2161 * convert to subtracting from seconds, 2162 * and adding to nanoseconds 2163 */ 2164 seconds--; 2165 nano_seconds = (1000000000 - nano_seconds); 2166 } 2167 } 2168 2169 if (nano_seconds > 0) { 2170 /* add 8 ns to cover the likely normal increment */ 2171 nano_seconds += 8; 2172 } 2173 2174 if (nano_seconds >= 1000000000) { 2175 /* carry into seconds */ 2176 seconds++; 2177 nano_seconds -= 1000000000; 2178 } 2179 2180 while (seconds) { 2181 if (seconds > 0) { 2182 u32 adjustment_value = (u32)seconds; 2183 u16 adjustment_value_lo, adjustment_value_hi; 2184 2185 if (adjustment_value > 0xF) 2186 adjustment_value = 0xF; 2187 2188 adjustment_value_lo = adjustment_value & 0xffff; 2189 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2190 2191 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2192 adjustment_value_lo); 2193 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2194 PTP_LTC_STEP_ADJ_DIR_ | 2195 adjustment_value_hi); 2196 seconds -= ((s32)adjustment_value); 2197 } else { 2198 u32 adjustment_value = (u32)(-seconds); 2199 u16 adjustment_value_lo, adjustment_value_hi; 2200 2201 if (adjustment_value > 0xF) 2202 adjustment_value = 0xF; 2203 2204 adjustment_value_lo = adjustment_value & 0xffff; 2205 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2206 2207 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2208 adjustment_value_lo); 2209 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2210 adjustment_value_hi); 2211 seconds += ((s32)adjustment_value); 2212 } 2213 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2214 PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 2215 } 2216 if (nano_seconds) { 2217 u16 nano_seconds_lo; 2218 u16 nano_seconds_hi; 2219 2220 nano_seconds_lo = nano_seconds & 0xffff; 2221 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 2222 2223 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2224 nano_seconds_lo); 2225 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2226 PTP_LTC_STEP_ADJ_DIR_ | 2227 nano_seconds_hi); 2228 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2229 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 2230 } 2231 } 2232 2233 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 2234 { 2235 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2236 ptp_clock_info); 2237 struct phy_device *phydev = shared->phydev; 2238 2239 mutex_lock(&shared->shared_lock); 2240 lan8814_ptp_clock_step(phydev, delta); 2241 mutex_unlock(&shared->shared_lock); 2242 2243 return 0; 2244 } 2245 2246 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 2247 { 2248 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2249 ptp_clock_info); 2250 struct phy_device *phydev = shared->phydev; 2251 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 2252 bool positive = true; 2253 u32 kszphy_rate_adj; 2254 2255 if (scaled_ppm < 0) { 2256 scaled_ppm = -scaled_ppm; 2257 positive = false; 2258 } 2259 2260 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 2261 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 2262 2263 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 2264 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 2265 2266 if (positive) 2267 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 2268 2269 mutex_lock(&shared->shared_lock); 2270 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi); 2271 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo); 2272 mutex_unlock(&shared->shared_lock); 2273 2274 return 0; 2275 } 2276 2277 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 2278 { 2279 struct ptp_header *ptp_header; 2280 u32 type; 2281 2282 type = ptp_classify_raw(skb); 2283 ptp_header = ptp_parse_header(skb, type); 2284 2285 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2286 } 2287 2288 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 2289 { 2290 struct phy_device *phydev = ptp_priv->phydev; 2291 struct skb_shared_hwtstamps shhwtstamps; 2292 struct sk_buff *skb, *skb_tmp; 2293 unsigned long flags; 2294 u32 seconds, nsec; 2295 bool ret = false; 2296 u16 skb_sig; 2297 u16 seq_id; 2298 2299 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 2300 2301 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 2302 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 2303 lan8814_get_sig_tx(skb, &skb_sig); 2304 2305 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 2306 continue; 2307 2308 __skb_unlink(skb, &ptp_priv->tx_queue); 2309 ret = true; 2310 break; 2311 } 2312 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 2313 2314 if (ret) { 2315 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2316 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 2317 skb_complete_tx_timestamp(skb, &shhwtstamps); 2318 } 2319 } 2320 2321 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 2322 { 2323 struct phy_device *phydev = ptp_priv->phydev; 2324 u32 reg; 2325 2326 do { 2327 lan8814_dequeue_tx_skb(ptp_priv); 2328 2329 /* If other timestamps are available in the FIFO, 2330 * process them. 2331 */ 2332 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2333 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 2334 } 2335 2336 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 2337 struct lan8814_ptp_rx_ts *rx_ts) 2338 { 2339 struct skb_shared_hwtstamps *shhwtstamps; 2340 struct sk_buff *skb, *skb_tmp; 2341 unsigned long flags; 2342 bool ret = false; 2343 u16 skb_sig; 2344 2345 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 2346 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 2347 lan8814_get_sig_rx(skb, &skb_sig); 2348 2349 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2350 continue; 2351 2352 __skb_unlink(skb, &ptp_priv->rx_queue); 2353 2354 ret = true; 2355 break; 2356 } 2357 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 2358 2359 if (ret) { 2360 shhwtstamps = skb_hwtstamps(skb); 2361 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2362 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 2363 netif_rx(skb); 2364 } 2365 2366 return ret; 2367 } 2368 2369 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 2370 { 2371 struct phy_device *phydev = ptp_priv->phydev; 2372 struct lan8814_ptp_rx_ts *rx_ts; 2373 unsigned long flags; 2374 u32 reg; 2375 2376 do { 2377 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 2378 if (!rx_ts) 2379 return; 2380 2381 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 2382 &rx_ts->seq_id); 2383 2384 /* If we failed to match the skb add it to the queue for when 2385 * the frame will come 2386 */ 2387 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 2388 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2389 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 2390 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2391 } else { 2392 kfree(rx_ts); 2393 } 2394 2395 /* If other timestamps are available in the FIFO, 2396 * process them. 2397 */ 2398 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2399 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 2400 } 2401 2402 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev) 2403 { 2404 struct kszphy_priv *priv = phydev->priv; 2405 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 2406 u16 status; 2407 2408 status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2409 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 2410 lan8814_get_tx_ts(ptp_priv); 2411 2412 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 2413 lan8814_get_rx_ts(ptp_priv); 2414 2415 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 2416 lan8814_flush_fifo(phydev, true); 2417 skb_queue_purge(&ptp_priv->tx_queue); 2418 } 2419 2420 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 2421 lan8814_flush_fifo(phydev, false); 2422 skb_queue_purge(&ptp_priv->rx_queue); 2423 } 2424 } 2425 2426 static int lan8804_config_init(struct phy_device *phydev) 2427 { 2428 int val; 2429 2430 /* MDI-X setting for swap A,B transmit */ 2431 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP); 2432 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK; 2433 val |= LAN8804_ALIGN_TX_A_B_SWAP; 2434 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val); 2435 2436 /* Make sure that the PHY will not stop generating the clock when the 2437 * link partner goes down 2438 */ 2439 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e); 2440 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY); 2441 2442 return 0; 2443 } 2444 2445 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 2446 { 2447 u16 tsu_irq_status; 2448 int irq_status; 2449 2450 irq_status = phy_read(phydev, LAN8814_INTS); 2451 if (irq_status > 0 && (irq_status & LAN8814_INT_LINK)) 2452 phy_trigger_machine(phydev); 2453 2454 if (irq_status < 0) { 2455 phy_error(phydev); 2456 return IRQ_NONE; 2457 } 2458 2459 while (1) { 2460 tsu_irq_status = lanphy_read_page_reg(phydev, 4, 2461 LAN8814_INTR_STS_REG); 2462 2463 if (tsu_irq_status > 0 && 2464 (tsu_irq_status & (LAN8814_INTR_STS_REG_1588_TSU0_ | 2465 LAN8814_INTR_STS_REG_1588_TSU1_ | 2466 LAN8814_INTR_STS_REG_1588_TSU2_ | 2467 LAN8814_INTR_STS_REG_1588_TSU3_))) 2468 lan8814_handle_ptp_interrupt(phydev); 2469 else 2470 break; 2471 } 2472 return IRQ_HANDLED; 2473 } 2474 2475 static int lan8814_ack_interrupt(struct phy_device *phydev) 2476 { 2477 /* bit[12..0] int status, which is a read and clear register. */ 2478 int rc; 2479 2480 rc = phy_read(phydev, LAN8814_INTS); 2481 2482 return (rc < 0) ? rc : 0; 2483 } 2484 2485 static int lan8814_config_intr(struct phy_device *phydev) 2486 { 2487 int err; 2488 2489 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG, 2490 LAN8814_INTR_CTRL_REG_POLARITY | 2491 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 2492 2493 /* enable / disable interrupts */ 2494 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 2495 err = lan8814_ack_interrupt(phydev); 2496 if (err) 2497 return err; 2498 2499 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 2500 } else { 2501 err = phy_write(phydev, LAN8814_INTC, 0); 2502 if (err) 2503 return err; 2504 2505 err = lan8814_ack_interrupt(phydev); 2506 } 2507 2508 return err; 2509 } 2510 2511 static void lan8814_ptp_init(struct phy_device *phydev) 2512 { 2513 struct kszphy_priv *priv = phydev->priv; 2514 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 2515 u32 temp; 2516 2517 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_); 2518 2519 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD); 2520 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 2521 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp); 2522 2523 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD); 2524 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 2525 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp); 2526 2527 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0); 2528 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0); 2529 2530 /* Removing default registers configs related to L2 and IP */ 2531 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0); 2532 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0); 2533 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0); 2534 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0); 2535 2536 skb_queue_head_init(&ptp_priv->tx_queue); 2537 skb_queue_head_init(&ptp_priv->rx_queue); 2538 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 2539 spin_lock_init(&ptp_priv->rx_ts_lock); 2540 2541 ptp_priv->phydev = phydev; 2542 2543 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 2544 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 2545 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 2546 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 2547 2548 phydev->mii_ts = &ptp_priv->mii_ts; 2549 } 2550 2551 static int lan8814_ptp_probe_once(struct phy_device *phydev) 2552 { 2553 struct lan8814_shared_priv *shared = phydev->shared->priv; 2554 2555 /* Initialise shared lock for clock*/ 2556 mutex_init(&shared->shared_lock); 2557 2558 shared->ptp_clock_info.owner = THIS_MODULE; 2559 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 2560 shared->ptp_clock_info.max_adj = 31249999; 2561 shared->ptp_clock_info.n_alarm = 0; 2562 shared->ptp_clock_info.n_ext_ts = 0; 2563 shared->ptp_clock_info.n_pins = 0; 2564 shared->ptp_clock_info.pps = 0; 2565 shared->ptp_clock_info.pin_config = NULL; 2566 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 2567 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 2568 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 2569 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 2570 shared->ptp_clock_info.getcrosststamp = NULL; 2571 2572 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 2573 &phydev->mdio.dev); 2574 if (IS_ERR_OR_NULL(shared->ptp_clock)) { 2575 phydev_err(phydev, "ptp_clock_register failed %lu\n", 2576 PTR_ERR(shared->ptp_clock)); 2577 return -EINVAL; 2578 } 2579 2580 phydev_dbg(phydev, "successfully registered ptp clock\n"); 2581 2582 shared->phydev = phydev; 2583 2584 /* The EP.4 is shared between all the PHYs in the package and also it 2585 * can be accessed by any of the PHYs 2586 */ 2587 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_); 2588 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE, 2589 PTP_OPERATING_MODE_STANDALONE_); 2590 2591 return 0; 2592 } 2593 2594 static int lan8814_config_init(struct phy_device *phydev) 2595 { 2596 int val; 2597 2598 /* Reset the PHY */ 2599 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET); 2600 val |= LAN8814_QSGMII_SOFT_RESET_BIT; 2601 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val); 2602 2603 /* Disable ANEG with QSGMII PCS Host side */ 2604 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG); 2605 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA; 2606 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val); 2607 2608 /* MDI-X setting for swap A,B transmit */ 2609 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP); 2610 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK; 2611 val |= LAN8814_ALIGN_TX_A_B_SWAP; 2612 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val); 2613 2614 return 0; 2615 } 2616 2617 static int lan8814_probe(struct phy_device *phydev) 2618 { 2619 struct kszphy_priv *priv; 2620 u16 addr; 2621 int err; 2622 2623 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 2624 if (!priv) 2625 return -ENOMEM; 2626 2627 priv->led_mode = -1; 2628 2629 phydev->priv = priv; 2630 2631 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 2632 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 2633 return 0; 2634 2635 /* Strap-in value for PHY address, below register read gives starting 2636 * phy address value 2637 */ 2638 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F; 2639 devm_phy_package_join(&phydev->mdio.dev, phydev, 2640 addr, sizeof(struct lan8814_shared_priv)); 2641 2642 if (phy_package_init_once(phydev)) { 2643 err = lan8814_ptp_probe_once(phydev); 2644 if (err) 2645 return err; 2646 } 2647 2648 lan8814_ptp_init(phydev); 2649 2650 return 0; 2651 } 2652 2653 static struct phy_driver ksphy_driver[] = { 2654 { 2655 .phy_id = PHY_ID_KS8737, 2656 .phy_id_mask = MICREL_PHY_ID_MASK, 2657 .name = "Micrel KS8737", 2658 /* PHY_BASIC_FEATURES */ 2659 .driver_data = &ks8737_type, 2660 .config_init = kszphy_config_init, 2661 .config_intr = kszphy_config_intr, 2662 .handle_interrupt = kszphy_handle_interrupt, 2663 .suspend = kszphy_suspend, 2664 .resume = kszphy_resume, 2665 }, { 2666 .phy_id = PHY_ID_KSZ8021, 2667 .phy_id_mask = 0x00ffffff, 2668 .name = "Micrel KSZ8021 or KSZ8031", 2669 /* PHY_BASIC_FEATURES */ 2670 .driver_data = &ksz8021_type, 2671 .probe = kszphy_probe, 2672 .config_init = kszphy_config_init, 2673 .config_intr = kszphy_config_intr, 2674 .handle_interrupt = kszphy_handle_interrupt, 2675 .get_sset_count = kszphy_get_sset_count, 2676 .get_strings = kszphy_get_strings, 2677 .get_stats = kszphy_get_stats, 2678 .suspend = kszphy_suspend, 2679 .resume = kszphy_resume, 2680 }, { 2681 .phy_id = PHY_ID_KSZ8031, 2682 .phy_id_mask = 0x00ffffff, 2683 .name = "Micrel KSZ8031", 2684 /* PHY_BASIC_FEATURES */ 2685 .driver_data = &ksz8021_type, 2686 .probe = kszphy_probe, 2687 .config_init = kszphy_config_init, 2688 .config_intr = kszphy_config_intr, 2689 .handle_interrupt = kszphy_handle_interrupt, 2690 .get_sset_count = kszphy_get_sset_count, 2691 .get_strings = kszphy_get_strings, 2692 .get_stats = kszphy_get_stats, 2693 .suspend = kszphy_suspend, 2694 .resume = kszphy_resume, 2695 }, { 2696 .phy_id = PHY_ID_KSZ8041, 2697 .phy_id_mask = MICREL_PHY_ID_MASK, 2698 .name = "Micrel KSZ8041", 2699 /* PHY_BASIC_FEATURES */ 2700 .driver_data = &ksz8041_type, 2701 .probe = kszphy_probe, 2702 .config_init = ksz8041_config_init, 2703 .config_aneg = ksz8041_config_aneg, 2704 .config_intr = kszphy_config_intr, 2705 .handle_interrupt = kszphy_handle_interrupt, 2706 .get_sset_count = kszphy_get_sset_count, 2707 .get_strings = kszphy_get_strings, 2708 .get_stats = kszphy_get_stats, 2709 /* No suspend/resume callbacks because of errata DS80000700A, 2710 * receiver error following software power down. 2711 */ 2712 }, { 2713 .phy_id = PHY_ID_KSZ8041RNLI, 2714 .phy_id_mask = MICREL_PHY_ID_MASK, 2715 .name = "Micrel KSZ8041RNLI", 2716 /* PHY_BASIC_FEATURES */ 2717 .driver_data = &ksz8041_type, 2718 .probe = kszphy_probe, 2719 .config_init = kszphy_config_init, 2720 .config_intr = kszphy_config_intr, 2721 .handle_interrupt = kszphy_handle_interrupt, 2722 .get_sset_count = kszphy_get_sset_count, 2723 .get_strings = kszphy_get_strings, 2724 .get_stats = kszphy_get_stats, 2725 .suspend = kszphy_suspend, 2726 .resume = kszphy_resume, 2727 }, { 2728 .name = "Micrel KSZ8051", 2729 /* PHY_BASIC_FEATURES */ 2730 .driver_data = &ksz8051_type, 2731 .probe = kszphy_probe, 2732 .config_init = kszphy_config_init, 2733 .config_intr = kszphy_config_intr, 2734 .handle_interrupt = kszphy_handle_interrupt, 2735 .get_sset_count = kszphy_get_sset_count, 2736 .get_strings = kszphy_get_strings, 2737 .get_stats = kszphy_get_stats, 2738 .match_phy_device = ksz8051_match_phy_device, 2739 .suspend = kszphy_suspend, 2740 .resume = kszphy_resume, 2741 }, { 2742 .phy_id = PHY_ID_KSZ8001, 2743 .name = "Micrel KSZ8001 or KS8721", 2744 .phy_id_mask = 0x00fffffc, 2745 /* PHY_BASIC_FEATURES */ 2746 .driver_data = &ksz8041_type, 2747 .probe = kszphy_probe, 2748 .config_init = kszphy_config_init, 2749 .config_intr = kszphy_config_intr, 2750 .handle_interrupt = kszphy_handle_interrupt, 2751 .get_sset_count = kszphy_get_sset_count, 2752 .get_strings = kszphy_get_strings, 2753 .get_stats = kszphy_get_stats, 2754 .suspend = kszphy_suspend, 2755 .resume = kszphy_resume, 2756 }, { 2757 .phy_id = PHY_ID_KSZ8081, 2758 .name = "Micrel KSZ8081 or KSZ8091", 2759 .phy_id_mask = MICREL_PHY_ID_MASK, 2760 .flags = PHY_POLL_CABLE_TEST, 2761 /* PHY_BASIC_FEATURES */ 2762 .driver_data = &ksz8081_type, 2763 .probe = kszphy_probe, 2764 .config_init = ksz8081_config_init, 2765 .soft_reset = genphy_soft_reset, 2766 .config_aneg = ksz8081_config_aneg, 2767 .read_status = ksz8081_read_status, 2768 .config_intr = kszphy_config_intr, 2769 .handle_interrupt = kszphy_handle_interrupt, 2770 .get_sset_count = kszphy_get_sset_count, 2771 .get_strings = kszphy_get_strings, 2772 .get_stats = kszphy_get_stats, 2773 .suspend = kszphy_suspend, 2774 .resume = kszphy_resume, 2775 .cable_test_start = ksz886x_cable_test_start, 2776 .cable_test_get_status = ksz886x_cable_test_get_status, 2777 }, { 2778 .phy_id = PHY_ID_KSZ8061, 2779 .name = "Micrel KSZ8061", 2780 .phy_id_mask = MICREL_PHY_ID_MASK, 2781 /* PHY_BASIC_FEATURES */ 2782 .config_init = ksz8061_config_init, 2783 .config_intr = kszphy_config_intr, 2784 .handle_interrupt = kszphy_handle_interrupt, 2785 .suspend = kszphy_suspend, 2786 .resume = kszphy_resume, 2787 }, { 2788 .phy_id = PHY_ID_KSZ9021, 2789 .phy_id_mask = 0x000ffffe, 2790 .name = "Micrel KSZ9021 Gigabit PHY", 2791 /* PHY_GBIT_FEATURES */ 2792 .driver_data = &ksz9021_type, 2793 .probe = kszphy_probe, 2794 .get_features = ksz9031_get_features, 2795 .config_init = ksz9021_config_init, 2796 .config_intr = kszphy_config_intr, 2797 .handle_interrupt = kszphy_handle_interrupt, 2798 .get_sset_count = kszphy_get_sset_count, 2799 .get_strings = kszphy_get_strings, 2800 .get_stats = kszphy_get_stats, 2801 .suspend = kszphy_suspend, 2802 .resume = kszphy_resume, 2803 .read_mmd = genphy_read_mmd_unsupported, 2804 .write_mmd = genphy_write_mmd_unsupported, 2805 }, { 2806 .phy_id = PHY_ID_KSZ9031, 2807 .phy_id_mask = MICREL_PHY_ID_MASK, 2808 .name = "Micrel KSZ9031 Gigabit PHY", 2809 .driver_data = &ksz9021_type, 2810 .probe = kszphy_probe, 2811 .get_features = ksz9031_get_features, 2812 .config_init = ksz9031_config_init, 2813 .soft_reset = genphy_soft_reset, 2814 .read_status = ksz9031_read_status, 2815 .config_intr = kszphy_config_intr, 2816 .handle_interrupt = kszphy_handle_interrupt, 2817 .get_sset_count = kszphy_get_sset_count, 2818 .get_strings = kszphy_get_strings, 2819 .get_stats = kszphy_get_stats, 2820 .suspend = kszphy_suspend, 2821 .resume = kszphy_resume, 2822 }, { 2823 .phy_id = PHY_ID_LAN8814, 2824 .phy_id_mask = MICREL_PHY_ID_MASK, 2825 .name = "Microchip INDY Gigabit Quad PHY", 2826 .config_init = lan8814_config_init, 2827 .probe = lan8814_probe, 2828 .soft_reset = genphy_soft_reset, 2829 .read_status = ksz9031_read_status, 2830 .get_sset_count = kszphy_get_sset_count, 2831 .get_strings = kszphy_get_strings, 2832 .get_stats = kszphy_get_stats, 2833 .suspend = genphy_suspend, 2834 .resume = kszphy_resume, 2835 .config_intr = lan8814_config_intr, 2836 .handle_interrupt = lan8814_handle_interrupt, 2837 }, { 2838 .phy_id = PHY_ID_LAN8804, 2839 .phy_id_mask = MICREL_PHY_ID_MASK, 2840 .name = "Microchip LAN966X Gigabit PHY", 2841 .config_init = lan8804_config_init, 2842 .driver_data = &ksz9021_type, 2843 .probe = kszphy_probe, 2844 .soft_reset = genphy_soft_reset, 2845 .read_status = ksz9031_read_status, 2846 .get_sset_count = kszphy_get_sset_count, 2847 .get_strings = kszphy_get_strings, 2848 .get_stats = kszphy_get_stats, 2849 .suspend = genphy_suspend, 2850 .resume = kszphy_resume, 2851 }, { 2852 .phy_id = PHY_ID_KSZ9131, 2853 .phy_id_mask = MICREL_PHY_ID_MASK, 2854 .name = "Microchip KSZ9131 Gigabit PHY", 2855 /* PHY_GBIT_FEATURES */ 2856 .driver_data = &ksz9021_type, 2857 .probe = kszphy_probe, 2858 .config_init = ksz9131_config_init, 2859 .config_intr = kszphy_config_intr, 2860 .handle_interrupt = kszphy_handle_interrupt, 2861 .get_sset_count = kszphy_get_sset_count, 2862 .get_strings = kszphy_get_strings, 2863 .get_stats = kszphy_get_stats, 2864 .suspend = kszphy_suspend, 2865 .resume = kszphy_resume, 2866 }, { 2867 .phy_id = PHY_ID_KSZ8873MLL, 2868 .phy_id_mask = MICREL_PHY_ID_MASK, 2869 .name = "Micrel KSZ8873MLL Switch", 2870 /* PHY_BASIC_FEATURES */ 2871 .config_init = kszphy_config_init, 2872 .config_aneg = ksz8873mll_config_aneg, 2873 .read_status = ksz8873mll_read_status, 2874 .suspend = genphy_suspend, 2875 .resume = genphy_resume, 2876 }, { 2877 .phy_id = PHY_ID_KSZ886X, 2878 .phy_id_mask = MICREL_PHY_ID_MASK, 2879 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 2880 /* PHY_BASIC_FEATURES */ 2881 .flags = PHY_POLL_CABLE_TEST, 2882 .config_init = kszphy_config_init, 2883 .config_aneg = ksz886x_config_aneg, 2884 .read_status = ksz886x_read_status, 2885 .suspend = genphy_suspend, 2886 .resume = genphy_resume, 2887 .cable_test_start = ksz886x_cable_test_start, 2888 .cable_test_get_status = ksz886x_cable_test_get_status, 2889 }, { 2890 .name = "Micrel KSZ87XX Switch", 2891 /* PHY_BASIC_FEATURES */ 2892 .config_init = kszphy_config_init, 2893 .match_phy_device = ksz8795_match_phy_device, 2894 .suspend = genphy_suspend, 2895 .resume = genphy_resume, 2896 }, { 2897 .phy_id = PHY_ID_KSZ9477, 2898 .phy_id_mask = MICREL_PHY_ID_MASK, 2899 .name = "Microchip KSZ9477", 2900 /* PHY_GBIT_FEATURES */ 2901 .config_init = kszphy_config_init, 2902 .suspend = genphy_suspend, 2903 .resume = genphy_resume, 2904 } }; 2905 2906 module_phy_driver(ksphy_driver); 2907 2908 MODULE_DESCRIPTION("Micrel PHY driver"); 2909 MODULE_AUTHOR("David J. Choi"); 2910 MODULE_LICENSE("GPL"); 2911 2912 static struct mdio_device_id __maybe_unused micrel_tbl[] = { 2913 { PHY_ID_KSZ9021, 0x000ffffe }, 2914 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK }, 2915 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK }, 2916 { PHY_ID_KSZ8001, 0x00fffffc }, 2917 { PHY_ID_KS8737, MICREL_PHY_ID_MASK }, 2918 { PHY_ID_KSZ8021, 0x00ffffff }, 2919 { PHY_ID_KSZ8031, 0x00ffffff }, 2920 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK }, 2921 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK }, 2922 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK }, 2923 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK }, 2924 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK }, 2925 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK }, 2926 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK }, 2927 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK }, 2928 { } 2929 }; 2930 2931 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 2932