1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 /* Operation Mode Strap Override */ 38 #define MII_KSZPHY_OMSO 0x16 39 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 40 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 41 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 42 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 43 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 44 45 /* general Interrupt control/status reg in vendor specific block. */ 46 #define MII_KSZPHY_INTCS 0x1B 47 #define KSZPHY_INTCS_JABBER BIT(15) 48 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 49 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 50 #define KSZPHY_INTCS_PARELLEL BIT(12) 51 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 52 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 53 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 54 #define KSZPHY_INTCS_LINK_UP BIT(8) 55 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 56 KSZPHY_INTCS_LINK_DOWN) 57 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 58 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 59 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 60 KSZPHY_INTCS_LINK_UP_STATUS) 61 62 /* LinkMD Control/Status */ 63 #define KSZ8081_LMD 0x1d 64 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 65 #define KSZ8081_LMD_STAT_NORMAL 0 66 #define KSZ8081_LMD_STAT_OPEN 1 67 #define KSZ8081_LMD_STAT_SHORT 2 68 #define KSZ8081_LMD_STAT_FAIL 3 69 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 70 /* Short cable (<10 meter) has been detected by LinkMD */ 71 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 72 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 73 74 #define KSZ9x31_LMD 0x12 75 #define KSZ9x31_LMD_VCT_EN BIT(15) 76 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 77 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 78 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 81 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 82 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 83 #define KSZ9x31_LMD_VCT_ST_OPEN 1 84 #define KSZ9x31_LMD_VCT_ST_SHORT 2 85 #define KSZ9x31_LMD_VCT_ST_FAIL 3 86 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 89 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 93 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 94 95 #define KSZPHY_WIRE_PAIR_MASK 0x3 96 97 #define LAN8814_CABLE_DIAG 0x12 98 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 100 #define LAN8814_PAIR_BIT_SHIFT 12 101 102 #define LAN8814_WIRE_PAIR_MASK 0xF 103 104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 105 #define LAN8814_INTC 0x18 106 #define LAN8814_INTS 0x1B 107 108 #define LAN8814_INT_LINK_DOWN BIT(2) 109 #define LAN8814_INT_LINK_UP BIT(0) 110 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 111 LAN8814_INT_LINK_DOWN) 112 113 #define LAN8814_INTR_CTRL_REG 0x34 114 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 116 117 /* Represents 1ppm adjustment in 2^32 format with 118 * each nsec contains 4 clock cycles. 119 * The value is calculated as following: (1/1000000)/((2^-32)/4) 120 */ 121 #define LAN8814_1PPM_FORMAT 17179 122 123 #define PTP_RX_MOD 0x024F 124 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 125 #define PTP_RX_TIMESTAMP_EN 0x024D 126 #define PTP_TX_TIMESTAMP_EN 0x028D 127 128 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 129 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 130 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 131 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 132 133 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 134 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 135 136 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 137 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 138 #define LTC_HARD_RESET 0x023F 139 #define LTC_HARD_RESET_ BIT(0) 140 141 #define TSU_HARD_RESET 0x02C1 142 #define TSU_HARD_RESET_ BIT(0) 143 144 #define PTP_CMD_CTL 0x0200 145 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 146 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 147 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 148 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 149 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 150 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 151 152 #define PTP_CLOCK_SET_SEC_MID 0x0206 153 #define PTP_CLOCK_SET_SEC_LO 0x0207 154 #define PTP_CLOCK_SET_NS_HI 0x0208 155 #define PTP_CLOCK_SET_NS_LO 0x0209 156 157 #define PTP_CLOCK_READ_SEC_MID 0x022A 158 #define PTP_CLOCK_READ_SEC_LO 0x022B 159 #define PTP_CLOCK_READ_NS_HI 0x022C 160 #define PTP_CLOCK_READ_NS_LO 0x022D 161 162 #define PTP_OPERATING_MODE 0x0241 163 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 164 165 #define PTP_TX_MOD 0x028F 166 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 167 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 168 169 #define PTP_RX_PARSE_CONFIG 0x0242 170 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 171 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 172 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 173 174 #define PTP_TX_PARSE_CONFIG 0x0282 175 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 176 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 177 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 178 179 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 180 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 181 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 182 183 #define PTP_LTC_STEP_ADJ_HI 0x0212 184 #define PTP_LTC_STEP_ADJ_LO 0x0213 185 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 186 187 #define LAN8814_INTR_STS_REG 0x0033 188 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 189 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 190 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 191 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 192 193 #define PTP_CAP_INFO 0x022A 194 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 195 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 196 197 #define PTP_TX_EGRESS_SEC_HI 0x0296 198 #define PTP_TX_EGRESS_SEC_LO 0x0297 199 #define PTP_TX_EGRESS_NS_HI 0x0294 200 #define PTP_TX_EGRESS_NS_LO 0x0295 201 #define PTP_TX_MSG_HEADER2 0x0299 202 203 #define PTP_RX_INGRESS_SEC_HI 0x0256 204 #define PTP_RX_INGRESS_SEC_LO 0x0257 205 #define PTP_RX_INGRESS_NS_HI 0x0254 206 #define PTP_RX_INGRESS_NS_LO 0x0255 207 #define PTP_RX_MSG_HEADER2 0x0259 208 209 #define PTP_TSU_INT_EN 0x0200 210 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 211 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 212 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 213 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 214 215 #define PTP_TSU_INT_STS 0x0201 216 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 217 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 218 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 219 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 220 221 #define LAN8814_LED_CTRL_1 0x0 222 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 223 224 /* PHY Control 1 */ 225 #define MII_KSZPHY_CTRL_1 0x1e 226 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 227 228 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 229 #define MII_KSZPHY_CTRL_2 0x1f 230 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 231 /* bitmap of PHY register to set interrupt mode */ 232 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 233 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 234 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 235 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 236 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 237 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 238 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 239 240 /* Write/read to/from extended registers */ 241 #define MII_KSZPHY_EXTREG 0x0b 242 #define KSZPHY_EXTREG_WRITE 0x8000 243 244 #define MII_KSZPHY_EXTREG_WRITE 0x0c 245 #define MII_KSZPHY_EXTREG_READ 0x0d 246 247 /* Extended registers */ 248 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 249 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 250 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 251 252 #define PS_TO_REG 200 253 #define FIFO_SIZE 8 254 255 /* Delay used to get the second part from the LTC */ 256 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 257 258 struct kszphy_hw_stat { 259 const char *string; 260 u8 reg; 261 u8 bits; 262 }; 263 264 static struct kszphy_hw_stat kszphy_hw_stats[] = { 265 { "phy_receive_errors", 21, 16}, 266 { "phy_idle_errors", 10, 8 }, 267 }; 268 269 struct kszphy_type { 270 u32 led_mode_reg; 271 u16 interrupt_level_mask; 272 u16 cable_diag_reg; 273 unsigned long pair_mask; 274 u16 disable_dll_tx_bit; 275 u16 disable_dll_rx_bit; 276 u16 disable_dll_mask; 277 bool has_broadcast_disable; 278 bool has_nand_tree_disable; 279 bool has_rmii_ref_clk_sel; 280 }; 281 282 /* Shared structure between the PHYs of the same package. */ 283 struct lan8814_shared_priv { 284 struct phy_device *phydev; 285 struct ptp_clock *ptp_clock; 286 struct ptp_clock_info ptp_clock_info; 287 288 /* Reference counter to how many ports in the package are enabling the 289 * timestamping 290 */ 291 u8 ref; 292 293 /* Lock for ptp_clock and ref */ 294 struct mutex shared_lock; 295 }; 296 297 struct lan8814_ptp_rx_ts { 298 struct list_head list; 299 u32 seconds; 300 u32 nsec; 301 u16 seq_id; 302 }; 303 304 struct kszphy_ptp_priv { 305 struct mii_timestamper mii_ts; 306 struct phy_device *phydev; 307 308 struct sk_buff_head tx_queue; 309 struct sk_buff_head rx_queue; 310 311 struct list_head rx_ts_list; 312 /* Lock for Rx ts fifo */ 313 spinlock_t rx_ts_lock; 314 315 int hwts_tx_type; 316 enum hwtstamp_rx_filters rx_filter; 317 int layer; 318 int version; 319 320 struct ptp_clock *ptp_clock; 321 struct ptp_clock_info ptp_clock_info; 322 /* Lock for ptp_clock */ 323 struct mutex ptp_lock; 324 struct ptp_pin_desc *pin_config; 325 326 s64 seconds; 327 /* Lock for accessing seconds */ 328 spinlock_t seconds_lock; 329 }; 330 331 struct kszphy_priv { 332 struct kszphy_ptp_priv ptp_priv; 333 const struct kszphy_type *type; 334 int led_mode; 335 u16 vct_ctrl1000; 336 bool rmii_ref_clk_sel; 337 bool rmii_ref_clk_sel_val; 338 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 339 }; 340 341 static const struct kszphy_type lan8814_type = { 342 .led_mode_reg = ~LAN8814_LED_CTRL_1, 343 .cable_diag_reg = LAN8814_CABLE_DIAG, 344 .pair_mask = LAN8814_WIRE_PAIR_MASK, 345 }; 346 347 static const struct kszphy_type ksz886x_type = { 348 .cable_diag_reg = KSZ8081_LMD, 349 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 350 }; 351 352 static const struct kszphy_type ksz8021_type = { 353 .led_mode_reg = MII_KSZPHY_CTRL_2, 354 .has_broadcast_disable = true, 355 .has_nand_tree_disable = true, 356 .has_rmii_ref_clk_sel = true, 357 }; 358 359 static const struct kszphy_type ksz8041_type = { 360 .led_mode_reg = MII_KSZPHY_CTRL_1, 361 }; 362 363 static const struct kszphy_type ksz8051_type = { 364 .led_mode_reg = MII_KSZPHY_CTRL_2, 365 .has_nand_tree_disable = true, 366 }; 367 368 static const struct kszphy_type ksz8081_type = { 369 .led_mode_reg = MII_KSZPHY_CTRL_2, 370 .has_broadcast_disable = true, 371 .has_nand_tree_disable = true, 372 .has_rmii_ref_clk_sel = true, 373 }; 374 375 static const struct kszphy_type ks8737_type = { 376 .interrupt_level_mask = BIT(14), 377 }; 378 379 static const struct kszphy_type ksz9021_type = { 380 .interrupt_level_mask = BIT(14), 381 }; 382 383 static const struct kszphy_type ksz9131_type = { 384 .interrupt_level_mask = BIT(14), 385 .disable_dll_tx_bit = BIT(12), 386 .disable_dll_rx_bit = BIT(12), 387 .disable_dll_mask = BIT_MASK(12), 388 }; 389 390 static const struct kszphy_type lan8841_type = { 391 .disable_dll_tx_bit = BIT(14), 392 .disable_dll_rx_bit = BIT(14), 393 .disable_dll_mask = BIT_MASK(14), 394 .cable_diag_reg = LAN8814_CABLE_DIAG, 395 .pair_mask = LAN8814_WIRE_PAIR_MASK, 396 }; 397 398 static int kszphy_extended_write(struct phy_device *phydev, 399 u32 regnum, u16 val) 400 { 401 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 402 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 403 } 404 405 static int kszphy_extended_read(struct phy_device *phydev, 406 u32 regnum) 407 { 408 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 409 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 410 } 411 412 static int kszphy_ack_interrupt(struct phy_device *phydev) 413 { 414 /* bit[7..0] int status, which is a read and clear register. */ 415 int rc; 416 417 rc = phy_read(phydev, MII_KSZPHY_INTCS); 418 419 return (rc < 0) ? rc : 0; 420 } 421 422 static int kszphy_config_intr(struct phy_device *phydev) 423 { 424 const struct kszphy_type *type = phydev->drv->driver_data; 425 int temp, err; 426 u16 mask; 427 428 if (type && type->interrupt_level_mask) 429 mask = type->interrupt_level_mask; 430 else 431 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 432 433 /* set the interrupt pin active low */ 434 temp = phy_read(phydev, MII_KSZPHY_CTRL); 435 if (temp < 0) 436 return temp; 437 temp &= ~mask; 438 phy_write(phydev, MII_KSZPHY_CTRL, temp); 439 440 /* enable / disable interrupts */ 441 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 442 err = kszphy_ack_interrupt(phydev); 443 if (err) 444 return err; 445 446 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 447 } else { 448 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 449 if (err) 450 return err; 451 452 err = kszphy_ack_interrupt(phydev); 453 } 454 455 return err; 456 } 457 458 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 459 { 460 int irq_status; 461 462 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 463 if (irq_status < 0) { 464 phy_error(phydev); 465 return IRQ_NONE; 466 } 467 468 if (!(irq_status & KSZPHY_INTCS_STATUS)) 469 return IRQ_NONE; 470 471 phy_trigger_machine(phydev); 472 473 return IRQ_HANDLED; 474 } 475 476 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 477 { 478 int ctrl; 479 480 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 481 if (ctrl < 0) 482 return ctrl; 483 484 if (val) 485 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 486 else 487 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 488 489 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 490 } 491 492 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 493 { 494 int rc, temp, shift; 495 496 switch (reg) { 497 case MII_KSZPHY_CTRL_1: 498 shift = 14; 499 break; 500 case MII_KSZPHY_CTRL_2: 501 shift = 4; 502 break; 503 default: 504 return -EINVAL; 505 } 506 507 temp = phy_read(phydev, reg); 508 if (temp < 0) { 509 rc = temp; 510 goto out; 511 } 512 513 temp &= ~(3 << shift); 514 temp |= val << shift; 515 rc = phy_write(phydev, reg, temp); 516 out: 517 if (rc < 0) 518 phydev_err(phydev, "failed to set led mode\n"); 519 520 return rc; 521 } 522 523 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 524 * unique (non-broadcast) address on a shared bus. 525 */ 526 static int kszphy_broadcast_disable(struct phy_device *phydev) 527 { 528 int ret; 529 530 ret = phy_read(phydev, MII_KSZPHY_OMSO); 531 if (ret < 0) 532 goto out; 533 534 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 535 out: 536 if (ret) 537 phydev_err(phydev, "failed to disable broadcast address\n"); 538 539 return ret; 540 } 541 542 static int kszphy_nand_tree_disable(struct phy_device *phydev) 543 { 544 int ret; 545 546 ret = phy_read(phydev, MII_KSZPHY_OMSO); 547 if (ret < 0) 548 goto out; 549 550 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 551 return 0; 552 553 ret = phy_write(phydev, MII_KSZPHY_OMSO, 554 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 555 out: 556 if (ret) 557 phydev_err(phydev, "failed to disable NAND tree mode\n"); 558 559 return ret; 560 } 561 562 /* Some config bits need to be set again on resume, handle them here. */ 563 static int kszphy_config_reset(struct phy_device *phydev) 564 { 565 struct kszphy_priv *priv = phydev->priv; 566 int ret; 567 568 if (priv->rmii_ref_clk_sel) { 569 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 570 if (ret) { 571 phydev_err(phydev, 572 "failed to set rmii reference clock\n"); 573 return ret; 574 } 575 } 576 577 if (priv->type && priv->led_mode >= 0) 578 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 579 580 return 0; 581 } 582 583 static int kszphy_config_init(struct phy_device *phydev) 584 { 585 struct kszphy_priv *priv = phydev->priv; 586 const struct kszphy_type *type; 587 588 if (!priv) 589 return 0; 590 591 type = priv->type; 592 593 if (type && type->has_broadcast_disable) 594 kszphy_broadcast_disable(phydev); 595 596 if (type && type->has_nand_tree_disable) 597 kszphy_nand_tree_disable(phydev); 598 599 return kszphy_config_reset(phydev); 600 } 601 602 static int ksz8041_fiber_mode(struct phy_device *phydev) 603 { 604 struct device_node *of_node = phydev->mdio.dev.of_node; 605 606 return of_property_read_bool(of_node, "micrel,fiber-mode"); 607 } 608 609 static int ksz8041_config_init(struct phy_device *phydev) 610 { 611 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 612 613 /* Limit supported and advertised modes in fiber mode */ 614 if (ksz8041_fiber_mode(phydev)) { 615 phydev->dev_flags |= MICREL_PHY_FXEN; 616 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 617 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 618 619 linkmode_and(phydev->supported, phydev->supported, mask); 620 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 621 phydev->supported); 622 linkmode_and(phydev->advertising, phydev->advertising, mask); 623 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 624 phydev->advertising); 625 phydev->autoneg = AUTONEG_DISABLE; 626 } 627 628 return kszphy_config_init(phydev); 629 } 630 631 static int ksz8041_config_aneg(struct phy_device *phydev) 632 { 633 /* Skip auto-negotiation in fiber mode */ 634 if (phydev->dev_flags & MICREL_PHY_FXEN) { 635 phydev->speed = SPEED_100; 636 return 0; 637 } 638 639 return genphy_config_aneg(phydev); 640 } 641 642 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 643 const bool ksz_8051) 644 { 645 int ret; 646 647 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 648 return 0; 649 650 ret = phy_read(phydev, MII_BMSR); 651 if (ret < 0) 652 return ret; 653 654 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 655 * exact PHY ID. However, they can be told apart by the extended 656 * capability registers presence. The KSZ8051 PHY has them while 657 * the switch does not. 658 */ 659 ret &= BMSR_ERCAP; 660 if (ksz_8051) 661 return ret; 662 else 663 return !ret; 664 } 665 666 static int ksz8051_match_phy_device(struct phy_device *phydev) 667 { 668 return ksz8051_ksz8795_match_phy_device(phydev, true); 669 } 670 671 static int ksz8081_config_init(struct phy_device *phydev) 672 { 673 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 674 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 675 * pull-down is missing, the factory test mode should be cleared by 676 * manually writing a 0. 677 */ 678 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 679 680 return kszphy_config_init(phydev); 681 } 682 683 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 684 { 685 u16 val; 686 687 switch (ctrl) { 688 case ETH_TP_MDI: 689 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 690 break; 691 case ETH_TP_MDI_X: 692 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 693 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 694 break; 695 case ETH_TP_MDI_AUTO: 696 val = 0; 697 break; 698 default: 699 return 0; 700 } 701 702 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 703 KSZ8081_CTRL2_HP_MDIX | 704 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 705 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 706 KSZ8081_CTRL2_HP_MDIX | val); 707 } 708 709 static int ksz8081_config_aneg(struct phy_device *phydev) 710 { 711 int ret; 712 713 ret = genphy_config_aneg(phydev); 714 if (ret) 715 return ret; 716 717 /* The MDI-X configuration is automatically changed by the PHY after 718 * switching from autoneg off to on. So, take MDI-X configuration under 719 * own control and set it after autoneg configuration was done. 720 */ 721 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 722 } 723 724 static int ksz8081_mdix_update(struct phy_device *phydev) 725 { 726 int ret; 727 728 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 729 if (ret < 0) 730 return ret; 731 732 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 733 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 734 phydev->mdix_ctrl = ETH_TP_MDI_X; 735 else 736 phydev->mdix_ctrl = ETH_TP_MDI; 737 } else { 738 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 739 } 740 741 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 742 if (ret < 0) 743 return ret; 744 745 if (ret & KSZ8081_CTRL1_MDIX_STAT) 746 phydev->mdix = ETH_TP_MDI; 747 else 748 phydev->mdix = ETH_TP_MDI_X; 749 750 return 0; 751 } 752 753 static int ksz8081_read_status(struct phy_device *phydev) 754 { 755 int ret; 756 757 ret = ksz8081_mdix_update(phydev); 758 if (ret < 0) 759 return ret; 760 761 return genphy_read_status(phydev); 762 } 763 764 static int ksz8061_config_init(struct phy_device *phydev) 765 { 766 int ret; 767 768 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 769 if (ret) 770 return ret; 771 772 return kszphy_config_init(phydev); 773 } 774 775 static int ksz8795_match_phy_device(struct phy_device *phydev) 776 { 777 return ksz8051_ksz8795_match_phy_device(phydev, false); 778 } 779 780 static int ksz9021_load_values_from_of(struct phy_device *phydev, 781 const struct device_node *of_node, 782 u16 reg, 783 const char *field1, const char *field2, 784 const char *field3, const char *field4) 785 { 786 int val1 = -1; 787 int val2 = -2; 788 int val3 = -3; 789 int val4 = -4; 790 int newval; 791 int matches = 0; 792 793 if (!of_property_read_u32(of_node, field1, &val1)) 794 matches++; 795 796 if (!of_property_read_u32(of_node, field2, &val2)) 797 matches++; 798 799 if (!of_property_read_u32(of_node, field3, &val3)) 800 matches++; 801 802 if (!of_property_read_u32(of_node, field4, &val4)) 803 matches++; 804 805 if (!matches) 806 return 0; 807 808 if (matches < 4) 809 newval = kszphy_extended_read(phydev, reg); 810 else 811 newval = 0; 812 813 if (val1 != -1) 814 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 815 816 if (val2 != -2) 817 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 818 819 if (val3 != -3) 820 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 821 822 if (val4 != -4) 823 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 824 825 return kszphy_extended_write(phydev, reg, newval); 826 } 827 828 static int ksz9021_config_init(struct phy_device *phydev) 829 { 830 const struct device_node *of_node; 831 const struct device *dev_walker; 832 833 /* The Micrel driver has a deprecated option to place phy OF 834 * properties in the MAC node. Walk up the tree of devices to 835 * find a device with an OF node. 836 */ 837 dev_walker = &phydev->mdio.dev; 838 do { 839 of_node = dev_walker->of_node; 840 dev_walker = dev_walker->parent; 841 842 } while (!of_node && dev_walker); 843 844 if (of_node) { 845 ksz9021_load_values_from_of(phydev, of_node, 846 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 847 "txen-skew-ps", "txc-skew-ps", 848 "rxdv-skew-ps", "rxc-skew-ps"); 849 ksz9021_load_values_from_of(phydev, of_node, 850 MII_KSZPHY_RX_DATA_PAD_SKEW, 851 "rxd0-skew-ps", "rxd1-skew-ps", 852 "rxd2-skew-ps", "rxd3-skew-ps"); 853 ksz9021_load_values_from_of(phydev, of_node, 854 MII_KSZPHY_TX_DATA_PAD_SKEW, 855 "txd0-skew-ps", "txd1-skew-ps", 856 "txd2-skew-ps", "txd3-skew-ps"); 857 } 858 return 0; 859 } 860 861 #define KSZ9031_PS_TO_REG 60 862 863 /* Extended registers */ 864 /* MMD Address 0x0 */ 865 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 866 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 867 868 /* MMD Address 0x2 */ 869 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 870 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 871 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 872 873 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 874 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 875 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 876 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 877 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 878 879 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 880 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 881 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 882 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 883 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 884 885 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 886 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 887 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 888 889 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 890 * provide different RGMII options we need to configure delay offset 891 * for each pad relative to build in delay. 892 */ 893 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 894 * 1.80ns 895 */ 896 #define RX_ID 0x7 897 #define RX_CLK_ID 0x19 898 899 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 900 * internal 1.2ns delay. 901 */ 902 #define RX_ND 0xc 903 #define RX_CLK_ND 0x0 904 905 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 906 #define TX_ID 0x0 907 #define TX_CLK_ID 0x1f 908 909 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 910 * dealy 911 */ 912 #define TX_ND 0x7 913 #define TX_CLK_ND 0xf 914 915 /* MMD Address 0x1C */ 916 #define MII_KSZ9031RN_EDPD 0x23 917 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 918 919 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 920 const struct device_node *of_node, 921 u16 reg, size_t field_sz, 922 const char *field[], u8 numfields, 923 bool *update) 924 { 925 int val[4] = {-1, -2, -3, -4}; 926 int matches = 0; 927 u16 mask; 928 u16 maxval; 929 u16 newval; 930 int i; 931 932 for (i = 0; i < numfields; i++) 933 if (!of_property_read_u32(of_node, field[i], val + i)) 934 matches++; 935 936 if (!matches) 937 return 0; 938 939 *update |= true; 940 941 if (matches < numfields) 942 newval = phy_read_mmd(phydev, 2, reg); 943 else 944 newval = 0; 945 946 maxval = (field_sz == 4) ? 0xf : 0x1f; 947 for (i = 0; i < numfields; i++) 948 if (val[i] != -(i + 1)) { 949 mask = 0xffff; 950 mask ^= maxval << (field_sz * i); 951 newval = (newval & mask) | 952 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 953 << (field_sz * i)); 954 } 955 956 return phy_write_mmd(phydev, 2, reg, newval); 957 } 958 959 /* Center KSZ9031RNX FLP timing at 16ms. */ 960 static int ksz9031_center_flp_timing(struct phy_device *phydev) 961 { 962 int result; 963 964 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 965 0x0006); 966 if (result) 967 return result; 968 969 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 970 0x1A80); 971 if (result) 972 return result; 973 974 return genphy_restart_aneg(phydev); 975 } 976 977 /* Enable energy-detect power-down mode */ 978 static int ksz9031_enable_edpd(struct phy_device *phydev) 979 { 980 int reg; 981 982 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 983 if (reg < 0) 984 return reg; 985 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 986 reg | MII_KSZ9031RN_EDPD_ENABLE); 987 } 988 989 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 990 { 991 u16 rx, tx, rx_clk, tx_clk; 992 int ret; 993 994 switch (phydev->interface) { 995 case PHY_INTERFACE_MODE_RGMII: 996 tx = TX_ND; 997 tx_clk = TX_CLK_ND; 998 rx = RX_ND; 999 rx_clk = RX_CLK_ND; 1000 break; 1001 case PHY_INTERFACE_MODE_RGMII_ID: 1002 tx = TX_ID; 1003 tx_clk = TX_CLK_ID; 1004 rx = RX_ID; 1005 rx_clk = RX_CLK_ID; 1006 break; 1007 case PHY_INTERFACE_MODE_RGMII_RXID: 1008 tx = TX_ND; 1009 tx_clk = TX_CLK_ND; 1010 rx = RX_ID; 1011 rx_clk = RX_CLK_ID; 1012 break; 1013 case PHY_INTERFACE_MODE_RGMII_TXID: 1014 tx = TX_ID; 1015 tx_clk = TX_CLK_ID; 1016 rx = RX_ND; 1017 rx_clk = RX_CLK_ND; 1018 break; 1019 default: 1020 return 0; 1021 } 1022 1023 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1024 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1025 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1026 if (ret < 0) 1027 return ret; 1028 1029 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1030 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1031 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1032 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1033 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1034 if (ret < 0) 1035 return ret; 1036 1037 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1038 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1039 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1040 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1041 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1042 if (ret < 0) 1043 return ret; 1044 1045 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1046 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1047 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1048 } 1049 1050 static int ksz9031_config_init(struct phy_device *phydev) 1051 { 1052 const struct device_node *of_node; 1053 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1054 static const char *rx_data_skews[4] = { 1055 "rxd0-skew-ps", "rxd1-skew-ps", 1056 "rxd2-skew-ps", "rxd3-skew-ps" 1057 }; 1058 static const char *tx_data_skews[4] = { 1059 "txd0-skew-ps", "txd1-skew-ps", 1060 "txd2-skew-ps", "txd3-skew-ps" 1061 }; 1062 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1063 const struct device *dev_walker; 1064 int result; 1065 1066 result = ksz9031_enable_edpd(phydev); 1067 if (result < 0) 1068 return result; 1069 1070 /* The Micrel driver has a deprecated option to place phy OF 1071 * properties in the MAC node. Walk up the tree of devices to 1072 * find a device with an OF node. 1073 */ 1074 dev_walker = &phydev->mdio.dev; 1075 do { 1076 of_node = dev_walker->of_node; 1077 dev_walker = dev_walker->parent; 1078 } while (!of_node && dev_walker); 1079 1080 if (of_node) { 1081 bool update = false; 1082 1083 if (phy_interface_is_rgmii(phydev)) { 1084 result = ksz9031_config_rgmii_delay(phydev); 1085 if (result < 0) 1086 return result; 1087 } 1088 1089 ksz9031_of_load_skew_values(phydev, of_node, 1090 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1091 clk_skews, 2, &update); 1092 1093 ksz9031_of_load_skew_values(phydev, of_node, 1094 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1095 control_skews, 2, &update); 1096 1097 ksz9031_of_load_skew_values(phydev, of_node, 1098 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1099 rx_data_skews, 4, &update); 1100 1101 ksz9031_of_load_skew_values(phydev, of_node, 1102 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1103 tx_data_skews, 4, &update); 1104 1105 if (update && !phy_interface_is_rgmii(phydev)) 1106 phydev_warn(phydev, 1107 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1108 1109 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1110 * When the device links in the 1000BASE-T slave mode only, 1111 * the optional 125MHz reference output clock (CLK125_NDO) 1112 * has wide duty cycle variation. 1113 * 1114 * The optional CLK125_NDO clock does not meet the RGMII 1115 * 45/55 percent (min/max) duty cycle requirement and therefore 1116 * cannot be used directly by the MAC side for clocking 1117 * applications that have setup/hold time requirements on 1118 * rising and falling clock edges. 1119 * 1120 * Workaround: 1121 * Force the phy to be the master to receive a stable clock 1122 * which meets the duty cycle requirement. 1123 */ 1124 if (of_property_read_bool(of_node, "micrel,force-master")) { 1125 result = phy_read(phydev, MII_CTRL1000); 1126 if (result < 0) 1127 goto err_force_master; 1128 1129 /* enable master mode, config & prefer master */ 1130 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1131 result = phy_write(phydev, MII_CTRL1000, result); 1132 if (result < 0) 1133 goto err_force_master; 1134 } 1135 } 1136 1137 return ksz9031_center_flp_timing(phydev); 1138 1139 err_force_master: 1140 phydev_err(phydev, "failed to force the phy to master mode\n"); 1141 return result; 1142 } 1143 1144 #define KSZ9131_SKEW_5BIT_MAX 2400 1145 #define KSZ9131_SKEW_4BIT_MAX 800 1146 #define KSZ9131_OFFSET 700 1147 #define KSZ9131_STEP 100 1148 1149 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1150 struct device_node *of_node, 1151 u16 reg, size_t field_sz, 1152 char *field[], u8 numfields) 1153 { 1154 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1155 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1156 int skewval, skewmax = 0; 1157 int matches = 0; 1158 u16 maxval; 1159 u16 newval; 1160 u16 mask; 1161 int i; 1162 1163 /* psec properties in dts should mean x pico seconds */ 1164 if (field_sz == 5) 1165 skewmax = KSZ9131_SKEW_5BIT_MAX; 1166 else 1167 skewmax = KSZ9131_SKEW_4BIT_MAX; 1168 1169 for (i = 0; i < numfields; i++) 1170 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1171 if (skewval < -KSZ9131_OFFSET) 1172 skewval = -KSZ9131_OFFSET; 1173 else if (skewval > skewmax) 1174 skewval = skewmax; 1175 1176 val[i] = skewval + KSZ9131_OFFSET; 1177 matches++; 1178 } 1179 1180 if (!matches) 1181 return 0; 1182 1183 if (matches < numfields) 1184 newval = phy_read_mmd(phydev, 2, reg); 1185 else 1186 newval = 0; 1187 1188 maxval = (field_sz == 4) ? 0xf : 0x1f; 1189 for (i = 0; i < numfields; i++) 1190 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1191 mask = 0xffff; 1192 mask ^= maxval << (field_sz * i); 1193 newval = (newval & mask) | 1194 (((val[i] / KSZ9131_STEP) & maxval) 1195 << (field_sz * i)); 1196 } 1197 1198 return phy_write_mmd(phydev, 2, reg, newval); 1199 } 1200 1201 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1202 #define KSZ9131RN_RXC_DLL_CTRL 76 1203 #define KSZ9131RN_TXC_DLL_CTRL 77 1204 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1205 1206 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1207 { 1208 const struct kszphy_type *type = phydev->drv->driver_data; 1209 u16 rxcdll_val, txcdll_val; 1210 int ret; 1211 1212 switch (phydev->interface) { 1213 case PHY_INTERFACE_MODE_RGMII: 1214 rxcdll_val = type->disable_dll_rx_bit; 1215 txcdll_val = type->disable_dll_tx_bit; 1216 break; 1217 case PHY_INTERFACE_MODE_RGMII_ID: 1218 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1219 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1220 break; 1221 case PHY_INTERFACE_MODE_RGMII_RXID: 1222 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1223 txcdll_val = type->disable_dll_tx_bit; 1224 break; 1225 case PHY_INTERFACE_MODE_RGMII_TXID: 1226 rxcdll_val = type->disable_dll_rx_bit; 1227 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1228 break; 1229 default: 1230 return 0; 1231 } 1232 1233 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1234 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1235 rxcdll_val); 1236 if (ret < 0) 1237 return ret; 1238 1239 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1240 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1241 txcdll_val); 1242 } 1243 1244 /* Silicon Errata DS80000693B 1245 * 1246 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1247 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1248 * according to the datasheet (off if there is no link). 1249 */ 1250 static int ksz9131_led_errata(struct phy_device *phydev) 1251 { 1252 int reg; 1253 1254 reg = phy_read_mmd(phydev, 2, 0); 1255 if (reg < 0) 1256 return reg; 1257 1258 if (!(reg & BIT(4))) 1259 return 0; 1260 1261 return phy_set_bits(phydev, 0x1e, BIT(9)); 1262 } 1263 1264 static int ksz9131_config_init(struct phy_device *phydev) 1265 { 1266 struct device_node *of_node; 1267 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1268 char *rx_data_skews[4] = { 1269 "rxd0-skew-psec", "rxd1-skew-psec", 1270 "rxd2-skew-psec", "rxd3-skew-psec" 1271 }; 1272 char *tx_data_skews[4] = { 1273 "txd0-skew-psec", "txd1-skew-psec", 1274 "txd2-skew-psec", "txd3-skew-psec" 1275 }; 1276 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1277 const struct device *dev_walker; 1278 int ret; 1279 1280 dev_walker = &phydev->mdio.dev; 1281 do { 1282 of_node = dev_walker->of_node; 1283 dev_walker = dev_walker->parent; 1284 } while (!of_node && dev_walker); 1285 1286 if (!of_node) 1287 return 0; 1288 1289 if (phy_interface_is_rgmii(phydev)) { 1290 ret = ksz9131_config_rgmii_delay(phydev); 1291 if (ret < 0) 1292 return ret; 1293 } 1294 1295 ret = ksz9131_of_load_skew_values(phydev, of_node, 1296 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1297 clk_skews, 2); 1298 if (ret < 0) 1299 return ret; 1300 1301 ret = ksz9131_of_load_skew_values(phydev, of_node, 1302 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1303 control_skews, 2); 1304 if (ret < 0) 1305 return ret; 1306 1307 ret = ksz9131_of_load_skew_values(phydev, of_node, 1308 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1309 rx_data_skews, 4); 1310 if (ret < 0) 1311 return ret; 1312 1313 ret = ksz9131_of_load_skew_values(phydev, of_node, 1314 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1315 tx_data_skews, 4); 1316 if (ret < 0) 1317 return ret; 1318 1319 ret = ksz9131_led_errata(phydev); 1320 if (ret < 0) 1321 return ret; 1322 1323 return 0; 1324 } 1325 1326 #define MII_KSZ9131_AUTO_MDIX 0x1C 1327 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1328 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1329 1330 static int ksz9131_mdix_update(struct phy_device *phydev) 1331 { 1332 int ret; 1333 1334 ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); 1335 if (ret < 0) 1336 return ret; 1337 1338 if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) { 1339 if (ret & MII_KSZ9131_AUTO_MDI_SET) 1340 phydev->mdix_ctrl = ETH_TP_MDI; 1341 else 1342 phydev->mdix_ctrl = ETH_TP_MDI_X; 1343 } else { 1344 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1345 } 1346 1347 if (ret & MII_KSZ9131_AUTO_MDI_SET) 1348 phydev->mdix = ETH_TP_MDI; 1349 else 1350 phydev->mdix = ETH_TP_MDI_X; 1351 1352 return 0; 1353 } 1354 1355 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1356 { 1357 u16 val; 1358 1359 switch (ctrl) { 1360 case ETH_TP_MDI: 1361 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1362 MII_KSZ9131_AUTO_MDI_SET; 1363 break; 1364 case ETH_TP_MDI_X: 1365 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1366 break; 1367 case ETH_TP_MDI_AUTO: 1368 val = 0; 1369 break; 1370 default: 1371 return 0; 1372 } 1373 1374 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1375 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1376 MII_KSZ9131_AUTO_MDI_SET, val); 1377 } 1378 1379 static int ksz9131_read_status(struct phy_device *phydev) 1380 { 1381 int ret; 1382 1383 ret = ksz9131_mdix_update(phydev); 1384 if (ret < 0) 1385 return ret; 1386 1387 return genphy_read_status(phydev); 1388 } 1389 1390 static int ksz9131_config_aneg(struct phy_device *phydev) 1391 { 1392 int ret; 1393 1394 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1395 if (ret) 1396 return ret; 1397 1398 return genphy_config_aneg(phydev); 1399 } 1400 1401 static int ksz9477_get_features(struct phy_device *phydev) 1402 { 1403 int ret; 1404 1405 ret = genphy_read_abilities(phydev); 1406 if (ret) 1407 return ret; 1408 1409 /* The "EEE control and capability 1" (Register 3.20) seems to be 1410 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1411 * on the 7.60 will affect 3.20. So, we need to construct our own list 1412 * of caps. 1413 * KSZ8563R should have 100BaseTX/Full only. 1414 */ 1415 linkmode_and(phydev->supported_eee, phydev->supported, 1416 PHY_EEE_CAP1_FEATURES); 1417 1418 return 0; 1419 } 1420 1421 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1422 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1423 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1424 static int ksz8873mll_read_status(struct phy_device *phydev) 1425 { 1426 int regval; 1427 1428 /* dummy read */ 1429 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1430 1431 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1432 1433 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1434 phydev->duplex = DUPLEX_HALF; 1435 else 1436 phydev->duplex = DUPLEX_FULL; 1437 1438 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1439 phydev->speed = SPEED_10; 1440 else 1441 phydev->speed = SPEED_100; 1442 1443 phydev->link = 1; 1444 phydev->pause = phydev->asym_pause = 0; 1445 1446 return 0; 1447 } 1448 1449 static int ksz9031_get_features(struct phy_device *phydev) 1450 { 1451 int ret; 1452 1453 ret = genphy_read_abilities(phydev); 1454 if (ret < 0) 1455 return ret; 1456 1457 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1458 * Whenever the device's Asymmetric Pause capability is set to 1, 1459 * link-up may fail after a link-up to link-down transition. 1460 * 1461 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1462 * 1463 * Workaround: 1464 * Do not enable the Asymmetric Pause capability bit. 1465 */ 1466 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1467 1468 /* We force setting the Pause capability as the core will force the 1469 * Asymmetric Pause capability to 1 otherwise. 1470 */ 1471 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1472 1473 return 0; 1474 } 1475 1476 static int ksz9031_read_status(struct phy_device *phydev) 1477 { 1478 int err; 1479 int regval; 1480 1481 err = genphy_read_status(phydev); 1482 if (err) 1483 return err; 1484 1485 /* Make sure the PHY is not broken. Read idle error count, 1486 * and reset the PHY if it is maxed out. 1487 */ 1488 regval = phy_read(phydev, MII_STAT1000); 1489 if ((regval & 0xFF) == 0xFF) { 1490 phy_init_hw(phydev); 1491 phydev->link = 0; 1492 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1493 phydev->drv->config_intr(phydev); 1494 return genphy_config_aneg(phydev); 1495 } 1496 1497 return 0; 1498 } 1499 1500 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1501 { 1502 struct kszphy_priv *priv = phydev->priv; 1503 int ret; 1504 1505 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1506 * Prior to running the cable diagnostics, Auto-negotiation should 1507 * be disabled, full duplex set and the link speed set to 1000Mbps 1508 * via the Basic Control Register. 1509 */ 1510 ret = phy_modify(phydev, MII_BMCR, 1511 BMCR_SPEED1000 | BMCR_FULLDPLX | 1512 BMCR_ANENABLE | BMCR_SPEED100, 1513 BMCR_SPEED1000 | BMCR_FULLDPLX); 1514 if (ret) 1515 return ret; 1516 1517 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1518 * The Master-Slave configuration should be set to Slave by writing 1519 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1520 * Register. 1521 */ 1522 ret = phy_read(phydev, MII_CTRL1000); 1523 if (ret < 0) 1524 return ret; 1525 1526 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1527 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1528 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1529 ret |= CTL1000_ENABLE_MASTER; 1530 1531 return phy_write(phydev, MII_CTRL1000, ret); 1532 } 1533 1534 static int ksz9x31_cable_test_result_trans(u16 status) 1535 { 1536 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1537 case KSZ9x31_LMD_VCT_ST_NORMAL: 1538 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1539 case KSZ9x31_LMD_VCT_ST_OPEN: 1540 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1541 case KSZ9x31_LMD_VCT_ST_SHORT: 1542 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1543 case KSZ9x31_LMD_VCT_ST_FAIL: 1544 fallthrough; 1545 default: 1546 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1547 } 1548 } 1549 1550 static bool ksz9x31_cable_test_failed(u16 status) 1551 { 1552 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1553 1554 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1555 } 1556 1557 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1558 { 1559 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1560 case KSZ9x31_LMD_VCT_ST_OPEN: 1561 fallthrough; 1562 case KSZ9x31_LMD_VCT_ST_SHORT: 1563 return true; 1564 } 1565 return false; 1566 } 1567 1568 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1569 { 1570 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1571 1572 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1573 * 1574 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1575 */ 1576 if (phydev_id_compare(phydev, PHY_ID_KSZ9131)) 1577 dt = clamp(dt - 22, 0, 255); 1578 1579 return (dt * 400) / 10; 1580 } 1581 1582 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1583 { 1584 int val, ret; 1585 1586 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1587 !(val & KSZ9x31_LMD_VCT_EN), 1588 30000, 100000, true); 1589 1590 return ret < 0 ? ret : 0; 1591 } 1592 1593 static int ksz9x31_cable_test_get_pair(int pair) 1594 { 1595 static const int ethtool_pair[] = { 1596 ETHTOOL_A_CABLE_PAIR_A, 1597 ETHTOOL_A_CABLE_PAIR_B, 1598 ETHTOOL_A_CABLE_PAIR_C, 1599 ETHTOOL_A_CABLE_PAIR_D, 1600 }; 1601 1602 return ethtool_pair[pair]; 1603 } 1604 1605 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1606 { 1607 int ret, val; 1608 1609 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1610 * To test each individual cable pair, set the cable pair in the Cable 1611 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1612 * Diagnostic Register, along with setting the Cable Diagnostics Test 1613 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1614 * will self clear when the test is concluded. 1615 */ 1616 ret = phy_write(phydev, KSZ9x31_LMD, 1617 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1618 if (ret) 1619 return ret; 1620 1621 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1622 if (ret) 1623 return ret; 1624 1625 val = phy_read(phydev, KSZ9x31_LMD); 1626 if (val < 0) 1627 return val; 1628 1629 if (ksz9x31_cable_test_failed(val)) 1630 return -EAGAIN; 1631 1632 ret = ethnl_cable_test_result(phydev, 1633 ksz9x31_cable_test_get_pair(pair), 1634 ksz9x31_cable_test_result_trans(val)); 1635 if (ret) 1636 return ret; 1637 1638 if (!ksz9x31_cable_test_fault_length_valid(val)) 1639 return 0; 1640 1641 return ethnl_cable_test_fault_length(phydev, 1642 ksz9x31_cable_test_get_pair(pair), 1643 ksz9x31_cable_test_fault_length(phydev, val)); 1644 } 1645 1646 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1647 bool *finished) 1648 { 1649 struct kszphy_priv *priv = phydev->priv; 1650 unsigned long pair_mask = 0xf; 1651 int retries = 20; 1652 int pair, ret, rv; 1653 1654 *finished = false; 1655 1656 /* Try harder if link partner is active */ 1657 while (pair_mask && retries--) { 1658 for_each_set_bit(pair, &pair_mask, 4) { 1659 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1660 if (ret == -EAGAIN) 1661 continue; 1662 if (ret < 0) 1663 return ret; 1664 clear_bit(pair, &pair_mask); 1665 } 1666 /* If link partner is in autonegotiation mode it will send 2ms 1667 * of FLPs with at least 6ms of silence. 1668 * Add 2ms sleep to have better chances to hit this silence. 1669 */ 1670 if (pair_mask) 1671 usleep_range(2000, 3000); 1672 } 1673 1674 /* Report remaining unfinished pair result as unknown. */ 1675 for_each_set_bit(pair, &pair_mask, 4) { 1676 ret = ethnl_cable_test_result(phydev, 1677 ksz9x31_cable_test_get_pair(pair), 1678 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1679 } 1680 1681 *finished = true; 1682 1683 /* Restore cached bits from before LinkMD got started. */ 1684 rv = phy_modify(phydev, MII_CTRL1000, 1685 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1686 priv->vct_ctrl1000); 1687 if (rv) 1688 return rv; 1689 1690 return ret; 1691 } 1692 1693 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1694 { 1695 return 0; 1696 } 1697 1698 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1699 { 1700 u16 val; 1701 1702 switch (ctrl) { 1703 case ETH_TP_MDI: 1704 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1705 break; 1706 case ETH_TP_MDI_X: 1707 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1708 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1709 * sheet seems to be missing: 1710 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1711 * 0 = Normal operation (transmit on TX+/TX- pins) 1712 */ 1713 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1714 break; 1715 case ETH_TP_MDI_AUTO: 1716 val = 0; 1717 break; 1718 default: 1719 return 0; 1720 } 1721 1722 return phy_modify(phydev, MII_BMCR, 1723 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1724 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1725 KSZ886X_BMCR_HP_MDIX | val); 1726 } 1727 1728 static int ksz886x_config_aneg(struct phy_device *phydev) 1729 { 1730 int ret; 1731 1732 ret = genphy_config_aneg(phydev); 1733 if (ret) 1734 return ret; 1735 1736 /* The MDI-X configuration is automatically changed by the PHY after 1737 * switching from autoneg off to on. So, take MDI-X configuration under 1738 * own control and set it after autoneg configuration was done. 1739 */ 1740 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1741 } 1742 1743 static int ksz886x_mdix_update(struct phy_device *phydev) 1744 { 1745 int ret; 1746 1747 ret = phy_read(phydev, MII_BMCR); 1748 if (ret < 0) 1749 return ret; 1750 1751 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1752 if (ret & KSZ886X_BMCR_FORCE_MDI) 1753 phydev->mdix_ctrl = ETH_TP_MDI_X; 1754 else 1755 phydev->mdix_ctrl = ETH_TP_MDI; 1756 } else { 1757 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1758 } 1759 1760 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1761 if (ret < 0) 1762 return ret; 1763 1764 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1765 if (ret & KSZ886X_CTRL_MDIX_STAT) 1766 phydev->mdix = ETH_TP_MDI_X; 1767 else 1768 phydev->mdix = ETH_TP_MDI; 1769 1770 return 0; 1771 } 1772 1773 static int ksz886x_read_status(struct phy_device *phydev) 1774 { 1775 int ret; 1776 1777 ret = ksz886x_mdix_update(phydev); 1778 if (ret < 0) 1779 return ret; 1780 1781 return genphy_read_status(phydev); 1782 } 1783 1784 struct ksz9477_errata_write { 1785 u8 dev_addr; 1786 u8 reg_addr; 1787 u16 val; 1788 }; 1789 1790 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 1791 /* Register settings are needed to improve PHY receive performance */ 1792 {0x01, 0x6f, 0xdd0b}, 1793 {0x01, 0x8f, 0x6032}, 1794 {0x01, 0x9d, 0x248c}, 1795 {0x01, 0x75, 0x0060}, 1796 {0x01, 0xd3, 0x7777}, 1797 {0x1c, 0x06, 0x3008}, 1798 {0x1c, 0x08, 0x2000}, 1799 1800 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 1801 {0x1c, 0x04, 0x00d0}, 1802 1803 /* Energy Efficient Ethernet (EEE) feature select must be manually disabled */ 1804 {0x07, 0x3c, 0x0000}, 1805 1806 /* Register settings are required to meet data sheet supply current specifications */ 1807 {0x1c, 0x13, 0x6eff}, 1808 {0x1c, 0x14, 0xe6ff}, 1809 {0x1c, 0x15, 0x6eff}, 1810 {0x1c, 0x16, 0xe6ff}, 1811 {0x1c, 0x17, 0x00ff}, 1812 {0x1c, 0x18, 0x43ff}, 1813 {0x1c, 0x19, 0xc3ff}, 1814 {0x1c, 0x1a, 0x6fff}, 1815 {0x1c, 0x1b, 0x07ff}, 1816 {0x1c, 0x1c, 0x0fff}, 1817 {0x1c, 0x1d, 0xe7ff}, 1818 {0x1c, 0x1e, 0xefff}, 1819 {0x1c, 0x20, 0xeeee}, 1820 }; 1821 1822 static int ksz9477_config_init(struct phy_device *phydev) 1823 { 1824 int err; 1825 int i; 1826 1827 /* Apply PHY settings to address errata listed in 1828 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 1829 * Silicon Errata and Data Sheet Clarification documents. 1830 * 1831 * Document notes: Before configuring the PHY MMD registers, it is 1832 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 1833 * disabled by writing to register 0xN100-0xN101. After writing the 1834 * MMD registers, and after all errata workarounds that involve PHY 1835 * register settings, write register 0xN100-0xN101 again to enable 1836 * and restart auto-negotiation. 1837 */ 1838 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 1839 if (err) 1840 return err; 1841 1842 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 1843 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 1844 1845 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 1846 if (err) 1847 return err; 1848 } 1849 1850 err = genphy_restart_aneg(phydev); 1851 if (err) 1852 return err; 1853 1854 return kszphy_config_init(phydev); 1855 } 1856 1857 static int kszphy_get_sset_count(struct phy_device *phydev) 1858 { 1859 return ARRAY_SIZE(kszphy_hw_stats); 1860 } 1861 1862 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 1863 { 1864 int i; 1865 1866 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) { 1867 strscpy(data + i * ETH_GSTRING_LEN, 1868 kszphy_hw_stats[i].string, ETH_GSTRING_LEN); 1869 } 1870 } 1871 1872 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 1873 { 1874 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 1875 struct kszphy_priv *priv = phydev->priv; 1876 int val; 1877 u64 ret; 1878 1879 val = phy_read(phydev, stat.reg); 1880 if (val < 0) { 1881 ret = U64_MAX; 1882 } else { 1883 val = val & ((1 << stat.bits) - 1); 1884 priv->stats[i] += val; 1885 ret = priv->stats[i]; 1886 } 1887 1888 return ret; 1889 } 1890 1891 static void kszphy_get_stats(struct phy_device *phydev, 1892 struct ethtool_stats *stats, u64 *data) 1893 { 1894 int i; 1895 1896 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 1897 data[i] = kszphy_get_stat(phydev, i); 1898 } 1899 1900 static int kszphy_suspend(struct phy_device *phydev) 1901 { 1902 /* Disable PHY Interrupts */ 1903 if (phy_interrupt_is_valid(phydev)) { 1904 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1905 if (phydev->drv->config_intr) 1906 phydev->drv->config_intr(phydev); 1907 } 1908 1909 return genphy_suspend(phydev); 1910 } 1911 1912 static void kszphy_parse_led_mode(struct phy_device *phydev) 1913 { 1914 const struct kszphy_type *type = phydev->drv->driver_data; 1915 const struct device_node *np = phydev->mdio.dev.of_node; 1916 struct kszphy_priv *priv = phydev->priv; 1917 int ret; 1918 1919 if (type && type->led_mode_reg) { 1920 ret = of_property_read_u32(np, "micrel,led-mode", 1921 &priv->led_mode); 1922 1923 if (ret) 1924 priv->led_mode = -1; 1925 1926 if (priv->led_mode > 3) { 1927 phydev_err(phydev, "invalid led mode: 0x%02x\n", 1928 priv->led_mode); 1929 priv->led_mode = -1; 1930 } 1931 } else { 1932 priv->led_mode = -1; 1933 } 1934 } 1935 1936 static int kszphy_resume(struct phy_device *phydev) 1937 { 1938 int ret; 1939 1940 genphy_resume(phydev); 1941 1942 /* After switching from power-down to normal mode, an internal global 1943 * reset is automatically generated. Wait a minimum of 1 ms before 1944 * read/write access to the PHY registers. 1945 */ 1946 usleep_range(1000, 2000); 1947 1948 ret = kszphy_config_reset(phydev); 1949 if (ret) 1950 return ret; 1951 1952 /* Enable PHY Interrupts */ 1953 if (phy_interrupt_is_valid(phydev)) { 1954 phydev->interrupts = PHY_INTERRUPT_ENABLED; 1955 if (phydev->drv->config_intr) 1956 phydev->drv->config_intr(phydev); 1957 } 1958 1959 return 0; 1960 } 1961 1962 static int kszphy_probe(struct phy_device *phydev) 1963 { 1964 const struct kszphy_type *type = phydev->drv->driver_data; 1965 const struct device_node *np = phydev->mdio.dev.of_node; 1966 struct kszphy_priv *priv; 1967 struct clk *clk; 1968 1969 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 1970 if (!priv) 1971 return -ENOMEM; 1972 1973 phydev->priv = priv; 1974 1975 priv->type = type; 1976 1977 kszphy_parse_led_mode(phydev); 1978 1979 clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref"); 1980 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 1981 if (!IS_ERR_OR_NULL(clk)) { 1982 unsigned long rate = clk_get_rate(clk); 1983 bool rmii_ref_clk_sel_25_mhz; 1984 1985 if (type) 1986 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 1987 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 1988 "micrel,rmii-reference-clock-select-25-mhz"); 1989 1990 if (rate > 24500000 && rate < 25500000) { 1991 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 1992 } else if (rate > 49500000 && rate < 50500000) { 1993 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 1994 } else { 1995 phydev_err(phydev, "Clock rate out of range: %ld\n", 1996 rate); 1997 return -EINVAL; 1998 } 1999 } 2000 2001 if (ksz8041_fiber_mode(phydev)) 2002 phydev->port = PORT_FIBRE; 2003 2004 /* Support legacy board-file configuration */ 2005 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2006 priv->rmii_ref_clk_sel = true; 2007 priv->rmii_ref_clk_sel_val = true; 2008 } 2009 2010 return 0; 2011 } 2012 2013 static int lan8814_cable_test_start(struct phy_device *phydev) 2014 { 2015 /* If autoneg is enabled, we won't be able to test cross pair 2016 * short. In this case, the PHY will "detect" a link and 2017 * confuse the internal state machine - disable auto neg here. 2018 * Set the speed to 1000mbit and full duplex. 2019 */ 2020 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2021 BMCR_SPEED1000 | BMCR_FULLDPLX); 2022 } 2023 2024 static int ksz886x_cable_test_start(struct phy_device *phydev) 2025 { 2026 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2027 return -EOPNOTSUPP; 2028 2029 /* If autoneg is enabled, we won't be able to test cross pair 2030 * short. In this case, the PHY will "detect" a link and 2031 * confuse the internal state machine - disable auto neg here. 2032 * If autoneg is disabled, we should set the speed to 10mbit. 2033 */ 2034 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2035 } 2036 2037 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2038 { 2039 switch (FIELD_GET(mask, status)) { 2040 case KSZ8081_LMD_STAT_NORMAL: 2041 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2042 case KSZ8081_LMD_STAT_SHORT: 2043 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2044 case KSZ8081_LMD_STAT_OPEN: 2045 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2046 case KSZ8081_LMD_STAT_FAIL: 2047 fallthrough; 2048 default: 2049 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2050 } 2051 } 2052 2053 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2054 { 2055 return FIELD_GET(mask, status) == 2056 KSZ8081_LMD_STAT_FAIL; 2057 } 2058 2059 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2060 { 2061 switch (FIELD_GET(mask, status)) { 2062 case KSZ8081_LMD_STAT_OPEN: 2063 fallthrough; 2064 case KSZ8081_LMD_STAT_SHORT: 2065 return true; 2066 } 2067 return false; 2068 } 2069 2070 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2071 u16 status, u16 data_mask) 2072 { 2073 int dt; 2074 2075 /* According to the data sheet the distance to the fault is 2076 * DELTA_TIME * 0.4 meters for ksz phys. 2077 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2078 */ 2079 dt = FIELD_GET(data_mask, status); 2080 2081 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2082 return ((dt - 22) * 800) / 10; 2083 else 2084 return (dt * 400) / 10; 2085 } 2086 2087 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2088 { 2089 const struct kszphy_type *type = phydev->drv->driver_data; 2090 int val, ret; 2091 2092 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2093 !(val & KSZ8081_LMD_ENABLE_TEST), 2094 30000, 100000, true); 2095 2096 return ret < 0 ? ret : 0; 2097 } 2098 2099 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2100 { 2101 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2102 ETHTOOL_A_CABLE_PAIR_B, 2103 ETHTOOL_A_CABLE_PAIR_C, 2104 ETHTOOL_A_CABLE_PAIR_D, 2105 }; 2106 u32 fault_length; 2107 int ret; 2108 int val; 2109 2110 val = KSZ8081_LMD_ENABLE_TEST; 2111 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2112 2113 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2114 if (ret < 0) 2115 return ret; 2116 2117 ret = ksz886x_cable_test_wait_for_completion(phydev); 2118 if (ret) 2119 return ret; 2120 2121 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2122 if (val < 0) 2123 return val; 2124 2125 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2126 return -EAGAIN; 2127 2128 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2129 ksz886x_cable_test_result_trans(val, 2130 LAN8814_CABLE_DIAG_STAT_MASK 2131 )); 2132 if (ret) 2133 return ret; 2134 2135 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2136 return 0; 2137 2138 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2139 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2140 2141 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2142 } 2143 2144 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2145 { 2146 static const int ethtool_pair[] = { 2147 ETHTOOL_A_CABLE_PAIR_A, 2148 ETHTOOL_A_CABLE_PAIR_B, 2149 }; 2150 int ret, val, mdix; 2151 u32 fault_length; 2152 2153 /* There is no way to choice the pair, like we do one ksz9031. 2154 * We can workaround this limitation by using the MDI-X functionality. 2155 */ 2156 if (pair == 0) 2157 mdix = ETH_TP_MDI; 2158 else 2159 mdix = ETH_TP_MDI_X; 2160 2161 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2162 case PHY_ID_KSZ8081: 2163 ret = ksz8081_config_mdix(phydev, mdix); 2164 break; 2165 case PHY_ID_KSZ886X: 2166 ret = ksz886x_config_mdix(phydev, mdix); 2167 break; 2168 default: 2169 ret = -ENODEV; 2170 } 2171 2172 if (ret) 2173 return ret; 2174 2175 /* Now we are ready to fire. This command will send a 100ns pulse 2176 * to the pair. 2177 */ 2178 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2179 if (ret) 2180 return ret; 2181 2182 ret = ksz886x_cable_test_wait_for_completion(phydev); 2183 if (ret) 2184 return ret; 2185 2186 val = phy_read(phydev, KSZ8081_LMD); 2187 if (val < 0) 2188 return val; 2189 2190 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2191 return -EAGAIN; 2192 2193 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2194 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2195 if (ret) 2196 return ret; 2197 2198 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2199 return 0; 2200 2201 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2202 2203 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2204 } 2205 2206 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2207 bool *finished) 2208 { 2209 const struct kszphy_type *type = phydev->drv->driver_data; 2210 unsigned long pair_mask = type->pair_mask; 2211 int retries = 20; 2212 int ret = 0; 2213 int pair; 2214 2215 *finished = false; 2216 2217 /* Try harder if link partner is active */ 2218 while (pair_mask && retries--) { 2219 for_each_set_bit(pair, &pair_mask, 4) { 2220 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2221 ret = lan8814_cable_test_one_pair(phydev, pair); 2222 else 2223 ret = ksz886x_cable_test_one_pair(phydev, pair); 2224 if (ret == -EAGAIN) 2225 continue; 2226 if (ret < 0) 2227 return ret; 2228 clear_bit(pair, &pair_mask); 2229 } 2230 /* If link partner is in autonegotiation mode it will send 2ms 2231 * of FLPs with at least 6ms of silence. 2232 * Add 2ms sleep to have better chances to hit this silence. 2233 */ 2234 if (pair_mask) 2235 msleep(2); 2236 } 2237 2238 *finished = true; 2239 2240 return ret; 2241 } 2242 2243 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2244 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2245 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2246 2247 #define LAN8814_QSGMII_SOFT_RESET 0x43 2248 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2249 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2250 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2251 #define LAN8814_ALIGN_SWAP 0x4a 2252 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2253 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2254 2255 #define LAN8804_ALIGN_SWAP 0x4a 2256 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2257 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2258 #define LAN8814_CLOCK_MANAGEMENT 0xd 2259 #define LAN8814_LINK_QUALITY 0x8e 2260 2261 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2262 { 2263 int data; 2264 2265 phy_lock_mdio_bus(phydev); 2266 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2267 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2268 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2269 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2270 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2271 phy_unlock_mdio_bus(phydev); 2272 2273 return data; 2274 } 2275 2276 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2277 u16 val) 2278 { 2279 phy_lock_mdio_bus(phydev); 2280 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2281 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2282 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2283 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2284 2285 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2286 if (val != 0) 2287 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2288 val); 2289 phy_unlock_mdio_bus(phydev); 2290 return val; 2291 } 2292 2293 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2294 { 2295 u16 val = 0; 2296 2297 if (enable) 2298 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2299 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2300 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2301 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2302 2303 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val); 2304 } 2305 2306 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2307 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2308 { 2309 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI); 2310 *seconds = (*seconds << 16) | 2311 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO); 2312 2313 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI); 2314 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2315 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO); 2316 2317 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2); 2318 } 2319 2320 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2321 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2322 { 2323 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI); 2324 *seconds = *seconds << 16 | 2325 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO); 2326 2327 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI); 2328 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2329 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO); 2330 2331 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2); 2332 } 2333 2334 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info) 2335 { 2336 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2337 struct phy_device *phydev = ptp_priv->phydev; 2338 struct lan8814_shared_priv *shared = phydev->shared->priv; 2339 2340 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2341 SOF_TIMESTAMPING_RX_HARDWARE | 2342 SOF_TIMESTAMPING_RAW_HARDWARE; 2343 2344 info->phc_index = ptp_clock_index(shared->ptp_clock); 2345 2346 info->tx_types = 2347 (1 << HWTSTAMP_TX_OFF) | 2348 (1 << HWTSTAMP_TX_ON) | 2349 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 2350 2351 info->rx_filters = 2352 (1 << HWTSTAMP_FILTER_NONE) | 2353 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2354 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 2355 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 2356 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2357 2358 return 0; 2359 } 2360 2361 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 2362 { 2363 int i; 2364 2365 for (i = 0; i < FIFO_SIZE; ++i) 2366 lanphy_read_page_reg(phydev, 5, 2367 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 2368 2369 /* Read to clear overflow status bit */ 2370 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2371 } 2372 2373 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr) 2374 { 2375 struct kszphy_ptp_priv *ptp_priv = 2376 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2377 struct phy_device *phydev = ptp_priv->phydev; 2378 struct lan8814_shared_priv *shared = phydev->shared->priv; 2379 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2380 struct hwtstamp_config config; 2381 int txcfg = 0, rxcfg = 0; 2382 int pkt_ts_enable; 2383 2384 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2385 return -EFAULT; 2386 2387 ptp_priv->hwts_tx_type = config.tx_type; 2388 ptp_priv->rx_filter = config.rx_filter; 2389 2390 switch (config.rx_filter) { 2391 case HWTSTAMP_FILTER_NONE: 2392 ptp_priv->layer = 0; 2393 ptp_priv->version = 0; 2394 break; 2395 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2396 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2397 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2398 ptp_priv->layer = PTP_CLASS_L4; 2399 ptp_priv->version = PTP_CLASS_V2; 2400 break; 2401 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2402 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2403 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2404 ptp_priv->layer = PTP_CLASS_L2; 2405 ptp_priv->version = PTP_CLASS_V2; 2406 break; 2407 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2408 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2409 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2410 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 2411 ptp_priv->version = PTP_CLASS_V2; 2412 break; 2413 default: 2414 return -ERANGE; 2415 } 2416 2417 if (ptp_priv->layer & PTP_CLASS_L2) { 2418 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 2419 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 2420 } else if (ptp_priv->layer & PTP_CLASS_L4) { 2421 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 2422 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 2423 } 2424 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg); 2425 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg); 2426 2427 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 2428 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 2429 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 2430 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 2431 2432 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) 2433 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2434 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2435 2436 if (config.rx_filter != HWTSTAMP_FILTER_NONE) 2437 lan8814_config_ts_intr(ptp_priv->phydev, true); 2438 else 2439 lan8814_config_ts_intr(ptp_priv->phydev, false); 2440 2441 mutex_lock(&shared->shared_lock); 2442 if (config.rx_filter != HWTSTAMP_FILTER_NONE) 2443 shared->ref++; 2444 else 2445 shared->ref--; 2446 2447 if (shared->ref) 2448 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2449 PTP_CMD_CTL_PTP_ENABLE_); 2450 else 2451 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2452 PTP_CMD_CTL_PTP_DISABLE_); 2453 mutex_unlock(&shared->shared_lock); 2454 2455 /* In case of multiple starts and stops, these needs to be cleared */ 2456 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2457 list_del(&rx_ts->list); 2458 kfree(rx_ts); 2459 } 2460 skb_queue_purge(&ptp_priv->rx_queue); 2461 skb_queue_purge(&ptp_priv->tx_queue); 2462 2463 lan8814_flush_fifo(ptp_priv->phydev, false); 2464 lan8814_flush_fifo(ptp_priv->phydev, true); 2465 2466 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; 2467 } 2468 2469 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 2470 struct sk_buff *skb, int type) 2471 { 2472 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2473 2474 switch (ptp_priv->hwts_tx_type) { 2475 case HWTSTAMP_TX_ONESTEP_SYNC: 2476 if (ptp_msg_is_sync(skb, type)) { 2477 kfree_skb(skb); 2478 return; 2479 } 2480 fallthrough; 2481 case HWTSTAMP_TX_ON: 2482 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2483 skb_queue_tail(&ptp_priv->tx_queue, skb); 2484 break; 2485 case HWTSTAMP_TX_OFF: 2486 default: 2487 kfree_skb(skb); 2488 break; 2489 } 2490 } 2491 2492 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 2493 { 2494 struct ptp_header *ptp_header; 2495 u32 type; 2496 2497 skb_push(skb, ETH_HLEN); 2498 type = ptp_classify_raw(skb); 2499 ptp_header = ptp_parse_header(skb, type); 2500 skb_pull_inline(skb, ETH_HLEN); 2501 2502 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2503 } 2504 2505 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 2506 struct sk_buff *skb) 2507 { 2508 struct skb_shared_hwtstamps *shhwtstamps; 2509 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2510 unsigned long flags; 2511 bool ret = false; 2512 u16 skb_sig; 2513 2514 lan8814_get_sig_rx(skb, &skb_sig); 2515 2516 /* Iterate over all RX timestamps and match it with the received skbs */ 2517 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2518 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2519 /* Check if we found the signature we were looking for. */ 2520 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2521 continue; 2522 2523 shhwtstamps = skb_hwtstamps(skb); 2524 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2525 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 2526 rx_ts->nsec); 2527 list_del(&rx_ts->list); 2528 kfree(rx_ts); 2529 2530 ret = true; 2531 break; 2532 } 2533 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2534 2535 if (ret) 2536 netif_rx(skb); 2537 return ret; 2538 } 2539 2540 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 2541 { 2542 struct kszphy_ptp_priv *ptp_priv = 2543 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2544 2545 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 2546 type == PTP_CLASS_NONE) 2547 return false; 2548 2549 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 2550 return false; 2551 2552 /* If we failed to match then add it to the queue for when the timestamp 2553 * will come 2554 */ 2555 if (!lan8814_match_rx_skb(ptp_priv, skb)) 2556 skb_queue_tail(&ptp_priv->rx_queue, skb); 2557 2558 return true; 2559 } 2560 2561 static void lan8814_ptp_clock_set(struct phy_device *phydev, 2562 u32 seconds, u32 nano_seconds) 2563 { 2564 u32 sec_low, sec_high, nsec_low, nsec_high; 2565 2566 sec_low = seconds & 0xffff; 2567 sec_high = (seconds >> 16) & 0xffff; 2568 nsec_low = nano_seconds & 0xffff; 2569 nsec_high = (nano_seconds >> 16) & 0x3fff; 2570 2571 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low); 2572 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high); 2573 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low); 2574 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high); 2575 2576 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_); 2577 } 2578 2579 static void lan8814_ptp_clock_get(struct phy_device *phydev, 2580 u32 *seconds, u32 *nano_seconds) 2581 { 2582 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_); 2583 2584 *seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID); 2585 *seconds = (*seconds << 16) | 2586 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO); 2587 2588 *nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI); 2589 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2590 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO); 2591 } 2592 2593 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 2594 struct timespec64 *ts) 2595 { 2596 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2597 ptp_clock_info); 2598 struct phy_device *phydev = shared->phydev; 2599 u32 nano_seconds; 2600 u32 seconds; 2601 2602 mutex_lock(&shared->shared_lock); 2603 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 2604 mutex_unlock(&shared->shared_lock); 2605 ts->tv_sec = seconds; 2606 ts->tv_nsec = nano_seconds; 2607 2608 return 0; 2609 } 2610 2611 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 2612 const struct timespec64 *ts) 2613 { 2614 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2615 ptp_clock_info); 2616 struct phy_device *phydev = shared->phydev; 2617 2618 mutex_lock(&shared->shared_lock); 2619 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 2620 mutex_unlock(&shared->shared_lock); 2621 2622 return 0; 2623 } 2624 2625 static void lan8814_ptp_clock_step(struct phy_device *phydev, 2626 s64 time_step_ns) 2627 { 2628 u32 nano_seconds_step; 2629 u64 abs_time_step_ns; 2630 u32 unsigned_seconds; 2631 u32 nano_seconds; 2632 u32 remainder; 2633 s32 seconds; 2634 2635 if (time_step_ns > 15000000000LL) { 2636 /* convert to clock set */ 2637 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2638 unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL, 2639 &remainder); 2640 nano_seconds += remainder; 2641 if (nano_seconds >= 1000000000) { 2642 unsigned_seconds++; 2643 nano_seconds -= 1000000000; 2644 } 2645 lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds); 2646 return; 2647 } else if (time_step_ns < -15000000000LL) { 2648 /* convert to clock set */ 2649 time_step_ns = -time_step_ns; 2650 2651 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2652 unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 2653 &remainder); 2654 nano_seconds_step = remainder; 2655 if (nano_seconds < nano_seconds_step) { 2656 unsigned_seconds--; 2657 nano_seconds += 1000000000; 2658 } 2659 nano_seconds -= nano_seconds_step; 2660 lan8814_ptp_clock_set(phydev, unsigned_seconds, 2661 nano_seconds); 2662 return; 2663 } 2664 2665 /* do clock step */ 2666 if (time_step_ns >= 0) { 2667 abs_time_step_ns = (u64)time_step_ns; 2668 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 2669 &remainder); 2670 nano_seconds = remainder; 2671 } else { 2672 abs_time_step_ns = (u64)(-time_step_ns); 2673 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 2674 &remainder)); 2675 nano_seconds = remainder; 2676 if (nano_seconds > 0) { 2677 /* subtracting nano seconds is not allowed 2678 * convert to subtracting from seconds, 2679 * and adding to nanoseconds 2680 */ 2681 seconds--; 2682 nano_seconds = (1000000000 - nano_seconds); 2683 } 2684 } 2685 2686 if (nano_seconds > 0) { 2687 /* add 8 ns to cover the likely normal increment */ 2688 nano_seconds += 8; 2689 } 2690 2691 if (nano_seconds >= 1000000000) { 2692 /* carry into seconds */ 2693 seconds++; 2694 nano_seconds -= 1000000000; 2695 } 2696 2697 while (seconds) { 2698 if (seconds > 0) { 2699 u32 adjustment_value = (u32)seconds; 2700 u16 adjustment_value_lo, adjustment_value_hi; 2701 2702 if (adjustment_value > 0xF) 2703 adjustment_value = 0xF; 2704 2705 adjustment_value_lo = adjustment_value & 0xffff; 2706 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2707 2708 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2709 adjustment_value_lo); 2710 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2711 PTP_LTC_STEP_ADJ_DIR_ | 2712 adjustment_value_hi); 2713 seconds -= ((s32)adjustment_value); 2714 } else { 2715 u32 adjustment_value = (u32)(-seconds); 2716 u16 adjustment_value_lo, adjustment_value_hi; 2717 2718 if (adjustment_value > 0xF) 2719 adjustment_value = 0xF; 2720 2721 adjustment_value_lo = adjustment_value & 0xffff; 2722 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2723 2724 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2725 adjustment_value_lo); 2726 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2727 adjustment_value_hi); 2728 seconds += ((s32)adjustment_value); 2729 } 2730 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2731 PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 2732 } 2733 if (nano_seconds) { 2734 u16 nano_seconds_lo; 2735 u16 nano_seconds_hi; 2736 2737 nano_seconds_lo = nano_seconds & 0xffff; 2738 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 2739 2740 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2741 nano_seconds_lo); 2742 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2743 PTP_LTC_STEP_ADJ_DIR_ | 2744 nano_seconds_hi); 2745 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2746 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 2747 } 2748 } 2749 2750 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 2751 { 2752 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2753 ptp_clock_info); 2754 struct phy_device *phydev = shared->phydev; 2755 2756 mutex_lock(&shared->shared_lock); 2757 lan8814_ptp_clock_step(phydev, delta); 2758 mutex_unlock(&shared->shared_lock); 2759 2760 return 0; 2761 } 2762 2763 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 2764 { 2765 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2766 ptp_clock_info); 2767 struct phy_device *phydev = shared->phydev; 2768 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 2769 bool positive = true; 2770 u32 kszphy_rate_adj; 2771 2772 if (scaled_ppm < 0) { 2773 scaled_ppm = -scaled_ppm; 2774 positive = false; 2775 } 2776 2777 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 2778 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 2779 2780 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 2781 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 2782 2783 if (positive) 2784 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 2785 2786 mutex_lock(&shared->shared_lock); 2787 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi); 2788 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo); 2789 mutex_unlock(&shared->shared_lock); 2790 2791 return 0; 2792 } 2793 2794 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 2795 { 2796 struct ptp_header *ptp_header; 2797 u32 type; 2798 2799 type = ptp_classify_raw(skb); 2800 ptp_header = ptp_parse_header(skb, type); 2801 2802 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2803 } 2804 2805 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 2806 u32 seconds, u32 nsec, u16 seq_id) 2807 { 2808 struct skb_shared_hwtstamps shhwtstamps; 2809 struct sk_buff *skb, *skb_tmp; 2810 unsigned long flags; 2811 bool ret = false; 2812 u16 skb_sig; 2813 2814 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 2815 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 2816 lan8814_get_sig_tx(skb, &skb_sig); 2817 2818 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 2819 continue; 2820 2821 __skb_unlink(skb, &ptp_priv->tx_queue); 2822 ret = true; 2823 break; 2824 } 2825 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 2826 2827 if (ret) { 2828 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2829 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 2830 skb_complete_tx_timestamp(skb, &shhwtstamps); 2831 } 2832 } 2833 2834 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 2835 { 2836 struct phy_device *phydev = ptp_priv->phydev; 2837 u32 seconds, nsec; 2838 u16 seq_id; 2839 2840 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 2841 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 2842 } 2843 2844 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 2845 { 2846 struct phy_device *phydev = ptp_priv->phydev; 2847 u32 reg; 2848 2849 do { 2850 lan8814_dequeue_tx_skb(ptp_priv); 2851 2852 /* If other timestamps are available in the FIFO, 2853 * process them. 2854 */ 2855 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2856 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 2857 } 2858 2859 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 2860 struct lan8814_ptp_rx_ts *rx_ts) 2861 { 2862 struct skb_shared_hwtstamps *shhwtstamps; 2863 struct sk_buff *skb, *skb_tmp; 2864 unsigned long flags; 2865 bool ret = false; 2866 u16 skb_sig; 2867 2868 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 2869 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 2870 lan8814_get_sig_rx(skb, &skb_sig); 2871 2872 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2873 continue; 2874 2875 __skb_unlink(skb, &ptp_priv->rx_queue); 2876 2877 ret = true; 2878 break; 2879 } 2880 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 2881 2882 if (ret) { 2883 shhwtstamps = skb_hwtstamps(skb); 2884 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2885 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 2886 netif_rx(skb); 2887 } 2888 2889 return ret; 2890 } 2891 2892 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 2893 struct lan8814_ptp_rx_ts *rx_ts) 2894 { 2895 unsigned long flags; 2896 2897 /* If we failed to match the skb add it to the queue for when 2898 * the frame will come 2899 */ 2900 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 2901 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2902 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 2903 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2904 } else { 2905 kfree(rx_ts); 2906 } 2907 } 2908 2909 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 2910 { 2911 struct phy_device *phydev = ptp_priv->phydev; 2912 struct lan8814_ptp_rx_ts *rx_ts; 2913 u32 reg; 2914 2915 do { 2916 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 2917 if (!rx_ts) 2918 return; 2919 2920 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 2921 &rx_ts->seq_id); 2922 lan8814_match_rx_ts(ptp_priv, rx_ts); 2923 2924 /* If other timestamps are available in the FIFO, 2925 * process them. 2926 */ 2927 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2928 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 2929 } 2930 2931 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 2932 { 2933 struct kszphy_priv *priv = phydev->priv; 2934 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 2935 2936 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 2937 lan8814_get_tx_ts(ptp_priv); 2938 2939 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 2940 lan8814_get_rx_ts(ptp_priv); 2941 2942 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 2943 lan8814_flush_fifo(phydev, true); 2944 skb_queue_purge(&ptp_priv->tx_queue); 2945 } 2946 2947 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 2948 lan8814_flush_fifo(phydev, false); 2949 skb_queue_purge(&ptp_priv->rx_queue); 2950 } 2951 } 2952 2953 static int lan8804_config_init(struct phy_device *phydev) 2954 { 2955 int val; 2956 2957 /* MDI-X setting for swap A,B transmit */ 2958 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP); 2959 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK; 2960 val |= LAN8804_ALIGN_TX_A_B_SWAP; 2961 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val); 2962 2963 /* Make sure that the PHY will not stop generating the clock when the 2964 * link partner goes down 2965 */ 2966 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e); 2967 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY); 2968 2969 return 0; 2970 } 2971 2972 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 2973 { 2974 int status; 2975 2976 status = phy_read(phydev, LAN8814_INTS); 2977 if (status < 0) { 2978 phy_error(phydev); 2979 return IRQ_NONE; 2980 } 2981 2982 if (status > 0) 2983 phy_trigger_machine(phydev); 2984 2985 return IRQ_HANDLED; 2986 } 2987 2988 #define LAN8804_OUTPUT_CONTROL 25 2989 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 2990 #define LAN8804_CONTROL 31 2991 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 2992 2993 static int lan8804_config_intr(struct phy_device *phydev) 2994 { 2995 int err; 2996 2997 /* This is an internal PHY of lan966x and is not possible to change the 2998 * polarity on the GIC found in lan966x, therefore change the polarity 2999 * of the interrupt in the PHY from being active low instead of active 3000 * high. 3001 */ 3002 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 3003 3004 /* By default interrupt buffer is open-drain in which case the interrupt 3005 * can be active only low. Therefore change the interrupt buffer to be 3006 * push-pull to be able to change interrupt polarity 3007 */ 3008 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 3009 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 3010 3011 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3012 err = phy_read(phydev, LAN8814_INTS); 3013 if (err < 0) 3014 return err; 3015 3016 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3017 if (err) 3018 return err; 3019 } else { 3020 err = phy_write(phydev, LAN8814_INTC, 0); 3021 if (err) 3022 return err; 3023 3024 err = phy_read(phydev, LAN8814_INTS); 3025 if (err < 0) 3026 return err; 3027 } 3028 3029 return 0; 3030 } 3031 3032 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 3033 { 3034 int ret = IRQ_NONE; 3035 int irq_status; 3036 3037 irq_status = phy_read(phydev, LAN8814_INTS); 3038 if (irq_status < 0) { 3039 phy_error(phydev); 3040 return IRQ_NONE; 3041 } 3042 3043 if (irq_status & LAN8814_INT_LINK) { 3044 phy_trigger_machine(phydev); 3045 ret = IRQ_HANDLED; 3046 } 3047 3048 while (true) { 3049 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 3050 if (!irq_status) 3051 break; 3052 3053 lan8814_handle_ptp_interrupt(phydev, irq_status); 3054 ret = IRQ_HANDLED; 3055 } 3056 3057 return ret; 3058 } 3059 3060 static int lan8814_ack_interrupt(struct phy_device *phydev) 3061 { 3062 /* bit[12..0] int status, which is a read and clear register. */ 3063 int rc; 3064 3065 rc = phy_read(phydev, LAN8814_INTS); 3066 3067 return (rc < 0) ? rc : 0; 3068 } 3069 3070 static int lan8814_config_intr(struct phy_device *phydev) 3071 { 3072 int err; 3073 3074 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG, 3075 LAN8814_INTR_CTRL_REG_POLARITY | 3076 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 3077 3078 /* enable / disable interrupts */ 3079 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3080 err = lan8814_ack_interrupt(phydev); 3081 if (err) 3082 return err; 3083 3084 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3085 } else { 3086 err = phy_write(phydev, LAN8814_INTC, 0); 3087 if (err) 3088 return err; 3089 3090 err = lan8814_ack_interrupt(phydev); 3091 } 3092 3093 return err; 3094 } 3095 3096 static void lan8814_ptp_init(struct phy_device *phydev) 3097 { 3098 struct kszphy_priv *priv = phydev->priv; 3099 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3100 u32 temp; 3101 3102 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 3103 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 3104 return; 3105 3106 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_); 3107 3108 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD); 3109 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3110 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp); 3111 3112 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD); 3113 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3114 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp); 3115 3116 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0); 3117 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0); 3118 3119 /* Removing default registers configs related to L2 and IP */ 3120 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0); 3121 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0); 3122 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0); 3123 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0); 3124 3125 skb_queue_head_init(&ptp_priv->tx_queue); 3126 skb_queue_head_init(&ptp_priv->rx_queue); 3127 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 3128 spin_lock_init(&ptp_priv->rx_ts_lock); 3129 3130 ptp_priv->phydev = phydev; 3131 3132 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 3133 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 3134 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 3135 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 3136 3137 phydev->mii_ts = &ptp_priv->mii_ts; 3138 } 3139 3140 static int lan8814_ptp_probe_once(struct phy_device *phydev) 3141 { 3142 struct lan8814_shared_priv *shared = phydev->shared->priv; 3143 3144 /* Initialise shared lock for clock*/ 3145 mutex_init(&shared->shared_lock); 3146 3147 shared->ptp_clock_info.owner = THIS_MODULE; 3148 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 3149 shared->ptp_clock_info.max_adj = 31249999; 3150 shared->ptp_clock_info.n_alarm = 0; 3151 shared->ptp_clock_info.n_ext_ts = 0; 3152 shared->ptp_clock_info.n_pins = 0; 3153 shared->ptp_clock_info.pps = 0; 3154 shared->ptp_clock_info.pin_config = NULL; 3155 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 3156 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 3157 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 3158 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 3159 shared->ptp_clock_info.getcrosststamp = NULL; 3160 3161 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 3162 &phydev->mdio.dev); 3163 if (IS_ERR(shared->ptp_clock)) { 3164 phydev_err(phydev, "ptp_clock_register failed %lu\n", 3165 PTR_ERR(shared->ptp_clock)); 3166 return -EINVAL; 3167 } 3168 3169 /* Check if PHC support is missing at the configuration level */ 3170 if (!shared->ptp_clock) 3171 return 0; 3172 3173 phydev_dbg(phydev, "successfully registered ptp clock\n"); 3174 3175 shared->phydev = phydev; 3176 3177 /* The EP.4 is shared between all the PHYs in the package and also it 3178 * can be accessed by any of the PHYs 3179 */ 3180 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_); 3181 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE, 3182 PTP_OPERATING_MODE_STANDALONE_); 3183 3184 return 0; 3185 } 3186 3187 static void lan8814_setup_led(struct phy_device *phydev, int val) 3188 { 3189 int temp; 3190 3191 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1); 3192 3193 if (val) 3194 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3195 else 3196 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3197 3198 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp); 3199 } 3200 3201 static int lan8814_config_init(struct phy_device *phydev) 3202 { 3203 struct kszphy_priv *lan8814 = phydev->priv; 3204 int val; 3205 3206 /* Reset the PHY */ 3207 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET); 3208 val |= LAN8814_QSGMII_SOFT_RESET_BIT; 3209 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val); 3210 3211 /* Disable ANEG with QSGMII PCS Host side */ 3212 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG); 3213 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA; 3214 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val); 3215 3216 /* MDI-X setting for swap A,B transmit */ 3217 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP); 3218 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK; 3219 val |= LAN8814_ALIGN_TX_A_B_SWAP; 3220 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val); 3221 3222 if (lan8814->led_mode >= 0) 3223 lan8814_setup_led(phydev, lan8814->led_mode); 3224 3225 return 0; 3226 } 3227 3228 /* It is expected that there will not be any 'lan8814_take_coma_mode' 3229 * function called in suspend. Because the GPIO line can be shared, so if one of 3230 * the phys goes back in coma mode, then all the other PHYs will go, which is 3231 * wrong. 3232 */ 3233 static int lan8814_release_coma_mode(struct phy_device *phydev) 3234 { 3235 struct gpio_desc *gpiod; 3236 3237 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 3238 GPIOD_OUT_HIGH_OPEN_DRAIN | 3239 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 3240 if (IS_ERR(gpiod)) 3241 return PTR_ERR(gpiod); 3242 3243 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 3244 gpiod_set_value_cansleep(gpiod, 0); 3245 3246 return 0; 3247 } 3248 3249 static int lan8814_probe(struct phy_device *phydev) 3250 { 3251 const struct kszphy_type *type = phydev->drv->driver_data; 3252 struct kszphy_priv *priv; 3253 u16 addr; 3254 int err; 3255 3256 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 3257 if (!priv) 3258 return -ENOMEM; 3259 3260 phydev->priv = priv; 3261 3262 priv->type = type; 3263 3264 kszphy_parse_led_mode(phydev); 3265 3266 /* Strap-in value for PHY address, below register read gives starting 3267 * phy address value 3268 */ 3269 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F; 3270 devm_phy_package_join(&phydev->mdio.dev, phydev, 3271 addr, sizeof(struct lan8814_shared_priv)); 3272 3273 if (phy_package_init_once(phydev)) { 3274 err = lan8814_release_coma_mode(phydev); 3275 if (err) 3276 return err; 3277 3278 err = lan8814_ptp_probe_once(phydev); 3279 if (err) 3280 return err; 3281 } 3282 3283 lan8814_ptp_init(phydev); 3284 3285 return 0; 3286 } 3287 3288 #define LAN8841_MMD_TIMER_REG 0 3289 #define LAN8841_MMD0_REGISTER_17 17 3290 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 3291 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 3292 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 3293 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 3294 #define LAN8841_MMD_ANALOG_REG 28 3295 #define LAN8841_ANALOG_CONTROL_1 1 3296 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 3297 #define LAN8841_ANALOG_CONTROL_10 13 3298 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 3299 #define LAN8841_ANALOG_CONTROL_11 14 3300 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 3301 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 3302 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 3303 #define LAN8841_BTRX_POWER_DOWN 70 3304 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 3305 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 3306 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 3307 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 3308 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 3309 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 3310 #define LAN8841_ADC_CHANNEL_MASK 198 3311 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 3312 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 3313 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 3314 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 3315 #define LAN8841_PTP_CMD_CTL 256 3316 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 3317 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 3318 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 3319 #define LAN8841_PTP_RX_PARSE_CONFIG 368 3320 #define LAN8841_PTP_TX_PARSE_CONFIG 432 3321 #define LAN8841_PTP_RX_MODE 381 3322 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 3323 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 3324 3325 static int lan8841_config_init(struct phy_device *phydev) 3326 { 3327 int ret; 3328 3329 ret = ksz9131_config_init(phydev); 3330 if (ret) 3331 return ret; 3332 3333 /* Initialize the HW by resetting everything */ 3334 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3335 LAN8841_PTP_CMD_CTL, 3336 LAN8841_PTP_CMD_CTL_PTP_RESET, 3337 LAN8841_PTP_CMD_CTL_PTP_RESET); 3338 3339 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3340 LAN8841_PTP_CMD_CTL, 3341 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 3342 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 3343 3344 /* Don't process any frames */ 3345 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3346 LAN8841_PTP_RX_PARSE_CONFIG, 0); 3347 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3348 LAN8841_PTP_TX_PARSE_CONFIG, 0); 3349 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3350 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 3351 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3352 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 3353 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3354 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 3355 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3356 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 3357 3358 /* 100BT Clause 40 improvenent errata */ 3359 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3360 LAN8841_ANALOG_CONTROL_1, 3361 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 3362 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3363 LAN8841_ANALOG_CONTROL_10, 3364 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 3365 3366 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 3367 * Magnetics 3368 */ 3369 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3370 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 3371 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 3372 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3373 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 3374 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 3375 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3376 LAN8841_BTRX_POWER_DOWN, 3377 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 3378 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 3379 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 3380 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 3381 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 3382 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 3383 } 3384 3385 /* LDO Adjustment errata */ 3386 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3387 LAN8841_ANALOG_CONTROL_11, 3388 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 3389 3390 /* 100BT RGMII latency tuning errata */ 3391 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 3392 LAN8841_ADC_CHANNEL_MASK, 0x0); 3393 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 3394 LAN8841_MMD0_REGISTER_17, 3395 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 3396 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 3397 3398 return 0; 3399 } 3400 3401 #define LAN8841_OUTPUT_CTRL 25 3402 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 3403 #define LAN8841_INT_PTP BIT(9) 3404 3405 static int lan8841_config_intr(struct phy_device *phydev) 3406 { 3407 int err; 3408 3409 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 3410 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 3411 3412 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3413 err = phy_read(phydev, LAN8814_INTS); 3414 if (err) 3415 return err; 3416 3417 /* Enable / disable interrupts. It is OK to enable PTP interrupt 3418 * even if it PTP is not enabled. Because the underneath blocks 3419 * will not enable the PTP so we will never get the PTP 3420 * interrupt. 3421 */ 3422 err = phy_write(phydev, LAN8814_INTC, 3423 LAN8814_INT_LINK | LAN8841_INT_PTP); 3424 } else { 3425 err = phy_write(phydev, LAN8814_INTC, 0); 3426 if (err) 3427 return err; 3428 3429 err = phy_read(phydev, LAN8814_INTS); 3430 } 3431 3432 return err; 3433 } 3434 3435 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 3436 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 3437 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 3438 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 3439 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 3440 #define LAN8841_PTP_TX_MSG_HEADER2 455 3441 3442 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 3443 u32 *sec, u32 *nsec, u16 *seq) 3444 { 3445 struct phy_device *phydev = ptp_priv->phydev; 3446 3447 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 3448 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 3449 return false; 3450 3451 *nsec = ((*nsec & 0x3fff) << 16); 3452 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 3453 3454 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 3455 *sec = *sec << 16; 3456 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 3457 3458 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 3459 3460 return true; 3461 } 3462 3463 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 3464 { 3465 u32 sec, nsec; 3466 u16 seq; 3467 3468 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 3469 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 3470 } 3471 3472 #define LAN8841_PTP_INT_STS 259 3473 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 3474 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 3475 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 3476 3477 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 3478 { 3479 struct phy_device *phydev = ptp_priv->phydev; 3480 int i; 3481 3482 for (i = 0; i < FIFO_SIZE; ++i) 3483 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 3484 3485 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 3486 } 3487 3488 #define LAN8841_PTP_GPIO_CAP_STS 506 3489 #define LAN8841_PTP_GPIO_SEL 327 3490 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 3491 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 3492 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 3493 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 3494 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 3495 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 3496 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 3497 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 3498 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 3499 3500 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 3501 { 3502 struct phy_device *phydev = ptp_priv->phydev; 3503 struct ptp_clock_event ptp_event = {0}; 3504 int pin, ret, tmp; 3505 s32 sec, nsec; 3506 3507 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 3508 if (pin == -1) 3509 return; 3510 3511 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 3512 if (tmp < 0) 3513 return; 3514 3515 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 3516 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 3517 if (ret) 3518 return; 3519 3520 mutex_lock(&ptp_priv->ptp_lock); 3521 if (tmp & BIT(pin)) { 3522 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 3523 sec <<= 16; 3524 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 3525 3526 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 3527 nsec <<= 16; 3528 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 3529 } else { 3530 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 3531 sec <<= 16; 3532 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 3533 3534 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 3535 nsec <<= 16; 3536 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 3537 } 3538 mutex_unlock(&ptp_priv->ptp_lock); 3539 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 3540 if (ret) 3541 return; 3542 3543 ptp_event.index = 0; 3544 ptp_event.timestamp = ktime_set(sec, nsec); 3545 ptp_event.type = PTP_CLOCK_EXTTS; 3546 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 3547 } 3548 3549 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 3550 { 3551 struct kszphy_priv *priv = phydev->priv; 3552 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3553 u16 status; 3554 3555 do { 3556 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 3557 3558 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 3559 lan8841_ptp_process_tx_ts(ptp_priv); 3560 3561 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 3562 lan8841_gpio_process_cap(ptp_priv); 3563 3564 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 3565 lan8841_ptp_flush_fifo(ptp_priv); 3566 skb_queue_purge(&ptp_priv->tx_queue); 3567 } 3568 3569 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 3570 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 3571 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 3572 } 3573 3574 #define LAN8841_INTS_PTP BIT(9) 3575 3576 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 3577 { 3578 irqreturn_t ret = IRQ_NONE; 3579 int irq_status; 3580 3581 irq_status = phy_read(phydev, LAN8814_INTS); 3582 if (irq_status < 0) { 3583 phy_error(phydev); 3584 return IRQ_NONE; 3585 } 3586 3587 if (irq_status & LAN8814_INT_LINK) { 3588 phy_trigger_machine(phydev); 3589 ret = IRQ_HANDLED; 3590 } 3591 3592 if (irq_status & LAN8841_INTS_PTP) { 3593 lan8841_handle_ptp_interrupt(phydev); 3594 ret = IRQ_HANDLED; 3595 } 3596 3597 return ret; 3598 } 3599 3600 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 3601 struct ethtool_ts_info *info) 3602 { 3603 struct kszphy_ptp_priv *ptp_priv; 3604 3605 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3606 3607 info->phc_index = ptp_priv->ptp_clock ? 3608 ptp_clock_index(ptp_priv->ptp_clock) : -1; 3609 if (info->phc_index == -1) { 3610 info->so_timestamping |= SOF_TIMESTAMPING_TX_SOFTWARE | 3611 SOF_TIMESTAMPING_RX_SOFTWARE | 3612 SOF_TIMESTAMPING_SOFTWARE; 3613 return 0; 3614 } 3615 3616 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 3617 SOF_TIMESTAMPING_RX_HARDWARE | 3618 SOF_TIMESTAMPING_RAW_HARDWARE; 3619 3620 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 3621 (1 << HWTSTAMP_TX_ON) | 3622 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 3623 3624 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 3625 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 3626 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 3627 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 3628 3629 return 0; 3630 } 3631 3632 #define LAN8841_PTP_INT_EN 260 3633 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 3634 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 3635 3636 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 3637 bool enable) 3638 { 3639 struct phy_device *phydev = ptp_priv->phydev; 3640 3641 if (enable) { 3642 /* Enable interrupts on the TX side */ 3643 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 3644 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3645 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 3646 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3647 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 3648 3649 /* Enable the modification of the frame on RX side, 3650 * this will add the ns and 2 bits of sec in the reserved field 3651 * of the PTP header 3652 */ 3653 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3654 LAN8841_PTP_RX_MODE, 3655 LAN8841_PTP_INSERT_TS_EN | 3656 LAN8841_PTP_INSERT_TS_32BIT, 3657 LAN8841_PTP_INSERT_TS_EN | 3658 LAN8841_PTP_INSERT_TS_32BIT); 3659 3660 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 3661 } else { 3662 /* Disable interrupts on the TX side */ 3663 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 3664 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3665 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 3666 3667 /* Disable modification of the RX frames */ 3668 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3669 LAN8841_PTP_RX_MODE, 3670 LAN8841_PTP_INSERT_TS_EN | 3671 LAN8841_PTP_INSERT_TS_32BIT, 0); 3672 3673 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 3674 } 3675 } 3676 3677 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 3678 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 3679 #define LAN8841_PTP_TX_MOD 445 3680 3681 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr) 3682 { 3683 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3684 struct phy_device *phydev = ptp_priv->phydev; 3685 struct hwtstamp_config config; 3686 int txcfg = 0, rxcfg = 0; 3687 int pkt_ts_enable; 3688 3689 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 3690 return -EFAULT; 3691 3692 ptp_priv->hwts_tx_type = config.tx_type; 3693 ptp_priv->rx_filter = config.rx_filter; 3694 3695 switch (config.rx_filter) { 3696 case HWTSTAMP_FILTER_NONE: 3697 ptp_priv->layer = 0; 3698 ptp_priv->version = 0; 3699 break; 3700 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3701 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3702 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3703 ptp_priv->layer = PTP_CLASS_L4; 3704 ptp_priv->version = PTP_CLASS_V2; 3705 break; 3706 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3707 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3708 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3709 ptp_priv->layer = PTP_CLASS_L2; 3710 ptp_priv->version = PTP_CLASS_V2; 3711 break; 3712 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3713 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3714 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3715 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 3716 ptp_priv->version = PTP_CLASS_V2; 3717 break; 3718 default: 3719 return -ERANGE; 3720 } 3721 3722 /* Setup parsing of the frames and enable the timestamping for ptp 3723 * frames 3724 */ 3725 if (ptp_priv->layer & PTP_CLASS_L2) { 3726 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 3727 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 3728 } else if (ptp_priv->layer & PTP_CLASS_L4) { 3729 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 3730 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 3731 } 3732 3733 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 3734 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 3735 3736 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 3737 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 3738 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 3739 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 3740 3741 /* Enable / disable of the TX timestamp in the SYNC frames */ 3742 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 3743 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3744 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 3745 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 3746 3747 /* Now enable/disable the timestamping */ 3748 lan8841_ptp_enable_processing(ptp_priv, 3749 config.rx_filter != HWTSTAMP_FILTER_NONE); 3750 3751 skb_queue_purge(&ptp_priv->tx_queue); 3752 3753 lan8841_ptp_flush_fifo(ptp_priv); 3754 3755 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; 3756 } 3757 3758 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 3759 struct sk_buff *skb, int type) 3760 { 3761 struct kszphy_ptp_priv *ptp_priv = 3762 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3763 struct ptp_header *header = ptp_parse_header(skb, type); 3764 struct skb_shared_hwtstamps *shhwtstamps; 3765 struct timespec64 ts; 3766 unsigned long flags; 3767 u32 ts_header; 3768 3769 if (!header) 3770 return false; 3771 3772 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 3773 type == PTP_CLASS_NONE) 3774 return false; 3775 3776 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 3777 return false; 3778 3779 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 3780 ts.tv_sec = ptp_priv->seconds; 3781 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 3782 ts_header = __be32_to_cpu(header->reserved2); 3783 3784 shhwtstamps = skb_hwtstamps(skb); 3785 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3786 3787 /* Check for any wrap arounds for the second part */ 3788 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 3789 ts.tv_sec -= GENMASK(1, 0) + 1; 3790 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 3791 ts.tv_sec += 1; 3792 3793 shhwtstamps->hwtstamp = 3794 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 3795 ts_header & GENMASK(29, 0)); 3796 header->reserved2 = 0; 3797 3798 netif_rx(skb); 3799 3800 return true; 3801 } 3802 3803 #define LAN8841_EVENT_A 0 3804 #define LAN8841_EVENT_B 1 3805 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 3806 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 3807 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 3808 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 3809 3810 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 3811 s64 sec, u32 nsec) 3812 { 3813 struct phy_device *phydev = ptp_priv->phydev; 3814 int ret; 3815 3816 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 3817 upper_16_bits(sec)); 3818 if (ret) 3819 return ret; 3820 3821 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 3822 lower_16_bits(sec)); 3823 if (ret) 3824 return ret; 3825 3826 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 3827 upper_16_bits(nsec)); 3828 if (ret) 3829 return ret; 3830 3831 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 3832 lower_16_bits(nsec)); 3833 } 3834 3835 #define LAN8841_BUFFER_TIME 2 3836 3837 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 3838 const struct timespec64 *ts) 3839 { 3840 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 3841 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 3842 } 3843 3844 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 3845 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 3846 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 3847 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 3848 3849 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 3850 s64 sec, u32 nsec) 3851 { 3852 struct phy_device *phydev = ptp_priv->phydev; 3853 int ret; 3854 3855 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 3856 upper_16_bits(sec)); 3857 if (ret) 3858 return ret; 3859 3860 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 3861 lower_16_bits(sec)); 3862 if (ret) 3863 return ret; 3864 3865 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 3866 upper_16_bits(nsec)); 3867 if (ret) 3868 return ret; 3869 3870 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 3871 lower_16_bits(nsec)); 3872 } 3873 3874 #define LAN8841_PTP_LTC_SET_SEC_HI 262 3875 #define LAN8841_PTP_LTC_SET_SEC_MID 263 3876 #define LAN8841_PTP_LTC_SET_SEC_LO 264 3877 #define LAN8841_PTP_LTC_SET_NS_HI 265 3878 #define LAN8841_PTP_LTC_SET_NS_LO 266 3879 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 3880 3881 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 3882 const struct timespec64 *ts) 3883 { 3884 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3885 ptp_clock_info); 3886 struct phy_device *phydev = ptp_priv->phydev; 3887 unsigned long flags; 3888 int ret; 3889 3890 /* Set the value to be stored */ 3891 mutex_lock(&ptp_priv->ptp_lock); 3892 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 3893 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 3894 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 3895 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 3896 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 3897 3898 /* Set the command to load the LTC */ 3899 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 3900 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 3901 ret = lan8841_ptp_update_target(ptp_priv, ts); 3902 mutex_unlock(&ptp_priv->ptp_lock); 3903 3904 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 3905 ptp_priv->seconds = ts->tv_sec; 3906 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 3907 3908 return ret; 3909 } 3910 3911 #define LAN8841_PTP_LTC_RD_SEC_HI 358 3912 #define LAN8841_PTP_LTC_RD_SEC_MID 359 3913 #define LAN8841_PTP_LTC_RD_SEC_LO 360 3914 #define LAN8841_PTP_LTC_RD_NS_HI 361 3915 #define LAN8841_PTP_LTC_RD_NS_LO 362 3916 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 3917 3918 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 3919 struct timespec64 *ts) 3920 { 3921 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3922 ptp_clock_info); 3923 struct phy_device *phydev = ptp_priv->phydev; 3924 time64_t s; 3925 s64 ns; 3926 3927 mutex_lock(&ptp_priv->ptp_lock); 3928 /* Issue the command to read the LTC */ 3929 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 3930 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 3931 3932 /* Read the LTC */ 3933 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 3934 s <<= 16; 3935 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 3936 s <<= 16; 3937 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 3938 3939 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 3940 ns <<= 16; 3941 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 3942 mutex_unlock(&ptp_priv->ptp_lock); 3943 3944 set_normalized_timespec64(ts, s, ns); 3945 return 0; 3946 } 3947 3948 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 3949 struct timespec64 *ts) 3950 { 3951 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3952 ptp_clock_info); 3953 struct phy_device *phydev = ptp_priv->phydev; 3954 time64_t s; 3955 3956 mutex_lock(&ptp_priv->ptp_lock); 3957 /* Issue the command to read the LTC */ 3958 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 3959 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 3960 3961 /* Read the LTC */ 3962 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 3963 s <<= 16; 3964 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 3965 s <<= 16; 3966 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 3967 mutex_unlock(&ptp_priv->ptp_lock); 3968 3969 set_normalized_timespec64(ts, s, 0); 3970 } 3971 3972 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 3973 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 3974 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 3975 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 3976 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 3977 3978 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 3979 { 3980 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3981 ptp_clock_info); 3982 struct phy_device *phydev = ptp_priv->phydev; 3983 struct timespec64 ts; 3984 bool add = true; 3985 u32 nsec; 3986 s32 sec; 3987 int ret; 3988 3989 /* The HW allows up to 15 sec to adjust the time, but here we limit to 3990 * 10 sec the adjustment. The reason is, in case the adjustment is 14 3991 * sec and 999999999 nsec, then we add 8ns to compansate the actual 3992 * increment so the value can be bigger than 15 sec. Therefore limit the 3993 * possible adjustments so we will not have these corner cases 3994 */ 3995 if (delta > 10000000000LL || delta < -10000000000LL) { 3996 /* The timeadjustment is too big, so fall back using set time */ 3997 u64 now; 3998 3999 ptp->gettime64(ptp, &ts); 4000 4001 now = ktime_to_ns(timespec64_to_ktime(ts)); 4002 ts = ns_to_timespec64(now + delta); 4003 4004 ptp->settime64(ptp, &ts); 4005 return 0; 4006 } 4007 4008 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 4009 if (delta < 0 && nsec != 0) { 4010 /* It is not allowed to adjust low the nsec part, therefore 4011 * subtract more from second part and add to nanosecond such 4012 * that would roll over, so the second part will increase 4013 */ 4014 sec--; 4015 nsec = NSEC_PER_SEC - nsec; 4016 } 4017 4018 /* Calculate the adjustments and the direction */ 4019 if (delta < 0) 4020 add = false; 4021 4022 if (nsec > 0) 4023 /* add 8 ns to cover the likely normal increment */ 4024 nsec += 8; 4025 4026 if (nsec >= NSEC_PER_SEC) { 4027 /* carry into seconds */ 4028 sec++; 4029 nsec -= NSEC_PER_SEC; 4030 } 4031 4032 mutex_lock(&ptp_priv->ptp_lock); 4033 if (sec) { 4034 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 4035 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4036 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 4037 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4038 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 4039 } 4040 4041 if (nsec) { 4042 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 4043 nsec & 0xffff); 4044 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4045 (nsec >> 16) & 0x3fff); 4046 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4047 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 4048 } 4049 mutex_unlock(&ptp_priv->ptp_lock); 4050 4051 /* Update the target clock */ 4052 ptp->gettime64(ptp, &ts); 4053 mutex_lock(&ptp_priv->ptp_lock); 4054 ret = lan8841_ptp_update_target(ptp_priv, &ts); 4055 mutex_unlock(&ptp_priv->ptp_lock); 4056 4057 return ret; 4058 } 4059 4060 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 4061 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 4062 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 4063 4064 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 4065 { 4066 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4067 ptp_clock_info); 4068 struct phy_device *phydev = ptp_priv->phydev; 4069 bool faster = true; 4070 u32 rate; 4071 4072 if (!scaled_ppm) 4073 return 0; 4074 4075 if (scaled_ppm < 0) { 4076 scaled_ppm = -scaled_ppm; 4077 faster = false; 4078 } 4079 4080 rate = LAN8814_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 4081 rate += (LAN8814_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 4082 4083 mutex_lock(&ptp_priv->ptp_lock); 4084 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 4085 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 4086 : upper_16_bits(rate) & 0x3fff); 4087 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 4088 mutex_unlock(&ptp_priv->ptp_lock); 4089 4090 return 0; 4091 } 4092 4093 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 4094 enum ptp_pin_function func, unsigned int chan) 4095 { 4096 switch (func) { 4097 case PTP_PF_NONE: 4098 case PTP_PF_PEROUT: 4099 case PTP_PF_EXTTS: 4100 break; 4101 default: 4102 return -1; 4103 } 4104 4105 return 0; 4106 } 4107 4108 #define LAN8841_PTP_GPIO_NUM 10 4109 #define LAN8841_GPIO_EN 128 4110 #define LAN8841_GPIO_DIR 129 4111 #define LAN8841_GPIO_BUF 130 4112 4113 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 4114 { 4115 struct phy_device *phydev = ptp_priv->phydev; 4116 int ret; 4117 4118 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4119 if (ret) 4120 return ret; 4121 4122 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4123 if (ret) 4124 return ret; 4125 4126 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4127 } 4128 4129 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 4130 { 4131 struct phy_device *phydev = ptp_priv->phydev; 4132 int ret; 4133 4134 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4135 if (ret) 4136 return ret; 4137 4138 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4139 if (ret) 4140 return ret; 4141 4142 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4143 } 4144 4145 #define LAN8841_GPIO_DATA_SEL1 131 4146 #define LAN8841_GPIO_DATA_SEL2 132 4147 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 4148 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 4149 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 4150 #define LAN8841_PTP_GENERAL_CONFIG 257 4151 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 4152 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 4153 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 4154 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 4155 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 4156 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 4157 4158 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 4159 u8 event) 4160 { 4161 struct phy_device *phydev = ptp_priv->phydev; 4162 u16 tmp; 4163 int ret; 4164 4165 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 4166 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 4167 * depending on the pin, it requires to read a different register 4168 */ 4169 if (pin < 5) { 4170 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 4171 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 4172 } else { 4173 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 4174 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 4175 } 4176 if (ret) 4177 return ret; 4178 4179 /* Disable the event */ 4180 if (event == LAN8841_EVENT_A) 4181 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4182 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 4183 else 4184 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4185 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 4186 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 4187 } 4188 4189 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 4190 u8 event, int pulse_width) 4191 { 4192 struct phy_device *phydev = ptp_priv->phydev; 4193 u16 tmp; 4194 int ret; 4195 4196 /* Enable the event */ 4197 if (event == LAN8841_EVENT_A) 4198 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 4199 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4200 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 4201 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4202 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 4203 else 4204 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 4205 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4206 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 4207 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4208 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 4209 if (ret) 4210 return ret; 4211 4212 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 4213 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 4214 * depending on the pin, it requires to read a different register 4215 */ 4216 if (event == LAN8841_EVENT_A) 4217 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 4218 else 4219 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 4220 4221 if (pin < 5) 4222 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 4223 tmp << (3 * pin)); 4224 else 4225 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 4226 tmp << (3 * (pin - 5))); 4227 4228 return ret; 4229 } 4230 4231 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 4232 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 4233 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 4234 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 4235 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 4236 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 4237 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 4238 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 4239 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 4240 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 4241 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 4242 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 4243 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 4244 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 4245 4246 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 4247 struct ptp_clock_request *rq, int on) 4248 { 4249 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4250 ptp_clock_info); 4251 struct phy_device *phydev = ptp_priv->phydev; 4252 struct timespec64 ts_on, ts_period; 4253 s64 on_nsec, period_nsec; 4254 int pulse_width; 4255 int pin; 4256 int ret; 4257 4258 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE) 4259 return -EOPNOTSUPP; 4260 4261 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 4262 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 4263 return -EINVAL; 4264 4265 if (!on) { 4266 ret = lan8841_ptp_perout_off(ptp_priv, pin); 4267 if (ret) 4268 return ret; 4269 4270 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 4271 } 4272 4273 ts_on.tv_sec = rq->perout.on.sec; 4274 ts_on.tv_nsec = rq->perout.on.nsec; 4275 on_nsec = timespec64_to_ns(&ts_on); 4276 4277 ts_period.tv_sec = rq->perout.period.sec; 4278 ts_period.tv_nsec = rq->perout.period.nsec; 4279 period_nsec = timespec64_to_ns(&ts_period); 4280 4281 if (period_nsec < 200) { 4282 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 4283 phydev_name(phydev)); 4284 return -EOPNOTSUPP; 4285 } 4286 4287 if (on_nsec >= period_nsec) { 4288 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 4289 phydev_name(phydev)); 4290 return -EINVAL; 4291 } 4292 4293 switch (on_nsec) { 4294 case 200000000: 4295 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 4296 break; 4297 case 100000000: 4298 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 4299 break; 4300 case 50000000: 4301 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 4302 break; 4303 case 10000000: 4304 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 4305 break; 4306 case 5000000: 4307 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 4308 break; 4309 case 1000000: 4310 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 4311 break; 4312 case 500000: 4313 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 4314 break; 4315 case 100000: 4316 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 4317 break; 4318 case 50000: 4319 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 4320 break; 4321 case 10000: 4322 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 4323 break; 4324 case 5000: 4325 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 4326 break; 4327 case 1000: 4328 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 4329 break; 4330 case 500: 4331 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 4332 break; 4333 case 100: 4334 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 4335 break; 4336 default: 4337 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 4338 phydev_name(phydev)); 4339 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 4340 break; 4341 } 4342 4343 mutex_lock(&ptp_priv->ptp_lock); 4344 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 4345 rq->perout.start.nsec); 4346 mutex_unlock(&ptp_priv->ptp_lock); 4347 if (ret) 4348 return ret; 4349 4350 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 4351 rq->perout.period.nsec); 4352 if (ret) 4353 return ret; 4354 4355 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 4356 pulse_width); 4357 if (ret) 4358 return ret; 4359 4360 ret = lan8841_ptp_perout_on(ptp_priv, pin); 4361 if (ret) 4362 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 4363 4364 return ret; 4365 } 4366 4367 #define LAN8841_PTP_GPIO_CAP_EN 496 4368 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 4369 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 4370 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 4371 4372 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 4373 u32 flags) 4374 { 4375 struct phy_device *phydev = ptp_priv->phydev; 4376 u16 tmp = 0; 4377 int ret; 4378 4379 /* Set GPIO to be intput */ 4380 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4381 if (ret) 4382 return ret; 4383 4384 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4385 if (ret) 4386 return ret; 4387 4388 /* Enable capture on the edges of the pin */ 4389 if (flags & PTP_RISING_EDGE) 4390 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 4391 if (flags & PTP_FALLING_EDGE) 4392 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 4393 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 4394 if (ret) 4395 return ret; 4396 4397 /* Enable interrupt */ 4398 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4399 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 4400 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 4401 } 4402 4403 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 4404 { 4405 struct phy_device *phydev = ptp_priv->phydev; 4406 int ret; 4407 4408 /* Set GPIO to be output */ 4409 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4410 if (ret) 4411 return ret; 4412 4413 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4414 if (ret) 4415 return ret; 4416 4417 /* Disable capture on both of the edges */ 4418 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 4419 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 4420 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 4421 0); 4422 if (ret) 4423 return ret; 4424 4425 /* Disable interrupt */ 4426 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4427 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 4428 0); 4429 } 4430 4431 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 4432 struct ptp_clock_request *rq, int on) 4433 { 4434 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4435 ptp_clock_info); 4436 int pin; 4437 int ret; 4438 4439 /* Reject requests with unsupported flags */ 4440 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 4441 PTP_EXTTS_EDGES | 4442 PTP_STRICT_FLAGS)) 4443 return -EOPNOTSUPP; 4444 4445 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 4446 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 4447 return -EINVAL; 4448 4449 mutex_lock(&ptp_priv->ptp_lock); 4450 if (on) 4451 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 4452 else 4453 ret = lan8841_ptp_extts_off(ptp_priv, pin); 4454 mutex_unlock(&ptp_priv->ptp_lock); 4455 4456 return ret; 4457 } 4458 4459 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 4460 struct ptp_clock_request *rq, int on) 4461 { 4462 switch (rq->type) { 4463 case PTP_CLK_REQ_EXTTS: 4464 return lan8841_ptp_extts(ptp, rq, on); 4465 case PTP_CLK_REQ_PEROUT: 4466 return lan8841_ptp_perout(ptp, rq, on); 4467 default: 4468 return -EOPNOTSUPP; 4469 } 4470 4471 return 0; 4472 } 4473 4474 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 4475 { 4476 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4477 ptp_clock_info); 4478 struct timespec64 ts; 4479 unsigned long flags; 4480 4481 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 4482 4483 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4484 ptp_priv->seconds = ts.tv_sec; 4485 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4486 4487 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 4488 } 4489 4490 static struct ptp_clock_info lan8841_ptp_clock_info = { 4491 .owner = THIS_MODULE, 4492 .name = "lan8841 ptp", 4493 .max_adj = 31249999, 4494 .gettime64 = lan8841_ptp_gettime64, 4495 .settime64 = lan8841_ptp_settime64, 4496 .adjtime = lan8841_ptp_adjtime, 4497 .adjfine = lan8841_ptp_adjfine, 4498 .verify = lan8841_ptp_verify, 4499 .enable = lan8841_ptp_enable, 4500 .do_aux_work = lan8841_ptp_do_aux_work, 4501 .n_per_out = LAN8841_PTP_GPIO_NUM, 4502 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 4503 .n_pins = LAN8841_PTP_GPIO_NUM, 4504 }; 4505 4506 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 4507 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 4508 4509 static int lan8841_probe(struct phy_device *phydev) 4510 { 4511 struct kszphy_ptp_priv *ptp_priv; 4512 struct kszphy_priv *priv; 4513 int err; 4514 4515 err = kszphy_probe(phydev); 4516 if (err) 4517 return err; 4518 4519 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4520 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 4521 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 4522 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 4523 4524 /* Register the clock */ 4525 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 4526 return 0; 4527 4528 priv = phydev->priv; 4529 ptp_priv = &priv->ptp_priv; 4530 4531 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 4532 LAN8841_PTP_GPIO_NUM, 4533 sizeof(*ptp_priv->pin_config), 4534 GFP_KERNEL); 4535 if (!ptp_priv->pin_config) 4536 return -ENOMEM; 4537 4538 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 4539 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 4540 4541 snprintf(p->name, sizeof(p->name), "pin%d", i); 4542 p->index = i; 4543 p->func = PTP_PF_NONE; 4544 } 4545 4546 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 4547 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 4548 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 4549 &phydev->mdio.dev); 4550 if (IS_ERR(ptp_priv->ptp_clock)) { 4551 phydev_err(phydev, "ptp_clock_register failed: %lu\n", 4552 PTR_ERR(ptp_priv->ptp_clock)); 4553 return -EINVAL; 4554 } 4555 4556 if (!ptp_priv->ptp_clock) 4557 return 0; 4558 4559 /* Initialize the SW */ 4560 skb_queue_head_init(&ptp_priv->tx_queue); 4561 ptp_priv->phydev = phydev; 4562 mutex_init(&ptp_priv->ptp_lock); 4563 spin_lock_init(&ptp_priv->seconds_lock); 4564 4565 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 4566 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 4567 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; 4568 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 4569 4570 phydev->mii_ts = &ptp_priv->mii_ts; 4571 4572 return 0; 4573 } 4574 4575 static int lan8841_suspend(struct phy_device *phydev) 4576 { 4577 struct kszphy_priv *priv = phydev->priv; 4578 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4579 4580 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 4581 4582 return genphy_suspend(phydev); 4583 } 4584 4585 static struct phy_driver ksphy_driver[] = { 4586 { 4587 .phy_id = PHY_ID_KS8737, 4588 .phy_id_mask = MICREL_PHY_ID_MASK, 4589 .name = "Micrel KS8737", 4590 /* PHY_BASIC_FEATURES */ 4591 .driver_data = &ks8737_type, 4592 .probe = kszphy_probe, 4593 .config_init = kszphy_config_init, 4594 .config_intr = kszphy_config_intr, 4595 .handle_interrupt = kszphy_handle_interrupt, 4596 .suspend = kszphy_suspend, 4597 .resume = kszphy_resume, 4598 }, { 4599 .phy_id = PHY_ID_KSZ8021, 4600 .phy_id_mask = 0x00ffffff, 4601 .name = "Micrel KSZ8021 or KSZ8031", 4602 /* PHY_BASIC_FEATURES */ 4603 .driver_data = &ksz8021_type, 4604 .probe = kszphy_probe, 4605 .config_init = kszphy_config_init, 4606 .config_intr = kszphy_config_intr, 4607 .handle_interrupt = kszphy_handle_interrupt, 4608 .get_sset_count = kszphy_get_sset_count, 4609 .get_strings = kszphy_get_strings, 4610 .get_stats = kszphy_get_stats, 4611 .suspend = kszphy_suspend, 4612 .resume = kszphy_resume, 4613 }, { 4614 .phy_id = PHY_ID_KSZ8031, 4615 .phy_id_mask = 0x00ffffff, 4616 .name = "Micrel KSZ8031", 4617 /* PHY_BASIC_FEATURES */ 4618 .driver_data = &ksz8021_type, 4619 .probe = kszphy_probe, 4620 .config_init = kszphy_config_init, 4621 .config_intr = kszphy_config_intr, 4622 .handle_interrupt = kszphy_handle_interrupt, 4623 .get_sset_count = kszphy_get_sset_count, 4624 .get_strings = kszphy_get_strings, 4625 .get_stats = kszphy_get_stats, 4626 .suspend = kszphy_suspend, 4627 .resume = kszphy_resume, 4628 }, { 4629 .phy_id = PHY_ID_KSZ8041, 4630 .phy_id_mask = MICREL_PHY_ID_MASK, 4631 .name = "Micrel KSZ8041", 4632 /* PHY_BASIC_FEATURES */ 4633 .driver_data = &ksz8041_type, 4634 .probe = kszphy_probe, 4635 .config_init = ksz8041_config_init, 4636 .config_aneg = ksz8041_config_aneg, 4637 .config_intr = kszphy_config_intr, 4638 .handle_interrupt = kszphy_handle_interrupt, 4639 .get_sset_count = kszphy_get_sset_count, 4640 .get_strings = kszphy_get_strings, 4641 .get_stats = kszphy_get_stats, 4642 /* No suspend/resume callbacks because of errata DS80000700A, 4643 * receiver error following software power down. 4644 */ 4645 }, { 4646 .phy_id = PHY_ID_KSZ8041RNLI, 4647 .phy_id_mask = MICREL_PHY_ID_MASK, 4648 .name = "Micrel KSZ8041RNLI", 4649 /* PHY_BASIC_FEATURES */ 4650 .driver_data = &ksz8041_type, 4651 .probe = kszphy_probe, 4652 .config_init = kszphy_config_init, 4653 .config_intr = kszphy_config_intr, 4654 .handle_interrupt = kszphy_handle_interrupt, 4655 .get_sset_count = kszphy_get_sset_count, 4656 .get_strings = kszphy_get_strings, 4657 .get_stats = kszphy_get_stats, 4658 .suspend = kszphy_suspend, 4659 .resume = kszphy_resume, 4660 }, { 4661 .name = "Micrel KSZ8051", 4662 /* PHY_BASIC_FEATURES */ 4663 .driver_data = &ksz8051_type, 4664 .probe = kszphy_probe, 4665 .config_init = kszphy_config_init, 4666 .config_intr = kszphy_config_intr, 4667 .handle_interrupt = kszphy_handle_interrupt, 4668 .get_sset_count = kszphy_get_sset_count, 4669 .get_strings = kszphy_get_strings, 4670 .get_stats = kszphy_get_stats, 4671 .match_phy_device = ksz8051_match_phy_device, 4672 .suspend = kszphy_suspend, 4673 .resume = kszphy_resume, 4674 }, { 4675 .phy_id = PHY_ID_KSZ8001, 4676 .name = "Micrel KSZ8001 or KS8721", 4677 .phy_id_mask = 0x00fffffc, 4678 /* PHY_BASIC_FEATURES */ 4679 .driver_data = &ksz8041_type, 4680 .probe = kszphy_probe, 4681 .config_init = kszphy_config_init, 4682 .config_intr = kszphy_config_intr, 4683 .handle_interrupt = kszphy_handle_interrupt, 4684 .get_sset_count = kszphy_get_sset_count, 4685 .get_strings = kszphy_get_strings, 4686 .get_stats = kszphy_get_stats, 4687 .suspend = kszphy_suspend, 4688 .resume = kszphy_resume, 4689 }, { 4690 .phy_id = PHY_ID_KSZ8081, 4691 .name = "Micrel KSZ8081 or KSZ8091", 4692 .phy_id_mask = MICREL_PHY_ID_MASK, 4693 .flags = PHY_POLL_CABLE_TEST, 4694 /* PHY_BASIC_FEATURES */ 4695 .driver_data = &ksz8081_type, 4696 .probe = kszphy_probe, 4697 .config_init = ksz8081_config_init, 4698 .soft_reset = genphy_soft_reset, 4699 .config_aneg = ksz8081_config_aneg, 4700 .read_status = ksz8081_read_status, 4701 .config_intr = kszphy_config_intr, 4702 .handle_interrupt = kszphy_handle_interrupt, 4703 .get_sset_count = kszphy_get_sset_count, 4704 .get_strings = kszphy_get_strings, 4705 .get_stats = kszphy_get_stats, 4706 .suspend = kszphy_suspend, 4707 .resume = kszphy_resume, 4708 .cable_test_start = ksz886x_cable_test_start, 4709 .cable_test_get_status = ksz886x_cable_test_get_status, 4710 }, { 4711 .phy_id = PHY_ID_KSZ8061, 4712 .name = "Micrel KSZ8061", 4713 .phy_id_mask = MICREL_PHY_ID_MASK, 4714 /* PHY_BASIC_FEATURES */ 4715 .probe = kszphy_probe, 4716 .config_init = ksz8061_config_init, 4717 .config_intr = kszphy_config_intr, 4718 .handle_interrupt = kszphy_handle_interrupt, 4719 .suspend = kszphy_suspend, 4720 .resume = kszphy_resume, 4721 }, { 4722 .phy_id = PHY_ID_KSZ9021, 4723 .phy_id_mask = 0x000ffffe, 4724 .name = "Micrel KSZ9021 Gigabit PHY", 4725 /* PHY_GBIT_FEATURES */ 4726 .driver_data = &ksz9021_type, 4727 .probe = kszphy_probe, 4728 .get_features = ksz9031_get_features, 4729 .config_init = ksz9021_config_init, 4730 .config_intr = kszphy_config_intr, 4731 .handle_interrupt = kszphy_handle_interrupt, 4732 .get_sset_count = kszphy_get_sset_count, 4733 .get_strings = kszphy_get_strings, 4734 .get_stats = kszphy_get_stats, 4735 .suspend = kszphy_suspend, 4736 .resume = kszphy_resume, 4737 .read_mmd = genphy_read_mmd_unsupported, 4738 .write_mmd = genphy_write_mmd_unsupported, 4739 }, { 4740 .phy_id = PHY_ID_KSZ9031, 4741 .phy_id_mask = MICREL_PHY_ID_MASK, 4742 .name = "Micrel KSZ9031 Gigabit PHY", 4743 .flags = PHY_POLL_CABLE_TEST, 4744 .driver_data = &ksz9021_type, 4745 .probe = kszphy_probe, 4746 .get_features = ksz9031_get_features, 4747 .config_init = ksz9031_config_init, 4748 .soft_reset = genphy_soft_reset, 4749 .read_status = ksz9031_read_status, 4750 .config_intr = kszphy_config_intr, 4751 .handle_interrupt = kszphy_handle_interrupt, 4752 .get_sset_count = kszphy_get_sset_count, 4753 .get_strings = kszphy_get_strings, 4754 .get_stats = kszphy_get_stats, 4755 .suspend = kszphy_suspend, 4756 .resume = kszphy_resume, 4757 .cable_test_start = ksz9x31_cable_test_start, 4758 .cable_test_get_status = ksz9x31_cable_test_get_status, 4759 }, { 4760 .phy_id = PHY_ID_LAN8814, 4761 .phy_id_mask = MICREL_PHY_ID_MASK, 4762 .name = "Microchip INDY Gigabit Quad PHY", 4763 .flags = PHY_POLL_CABLE_TEST, 4764 .config_init = lan8814_config_init, 4765 .driver_data = &lan8814_type, 4766 .probe = lan8814_probe, 4767 .soft_reset = genphy_soft_reset, 4768 .read_status = ksz9031_read_status, 4769 .get_sset_count = kszphy_get_sset_count, 4770 .get_strings = kszphy_get_strings, 4771 .get_stats = kszphy_get_stats, 4772 .suspend = genphy_suspend, 4773 .resume = kszphy_resume, 4774 .config_intr = lan8814_config_intr, 4775 .handle_interrupt = lan8814_handle_interrupt, 4776 .cable_test_start = lan8814_cable_test_start, 4777 .cable_test_get_status = ksz886x_cable_test_get_status, 4778 }, { 4779 .phy_id = PHY_ID_LAN8804, 4780 .phy_id_mask = MICREL_PHY_ID_MASK, 4781 .name = "Microchip LAN966X Gigabit PHY", 4782 .config_init = lan8804_config_init, 4783 .driver_data = &ksz9021_type, 4784 .probe = kszphy_probe, 4785 .soft_reset = genphy_soft_reset, 4786 .read_status = ksz9031_read_status, 4787 .get_sset_count = kszphy_get_sset_count, 4788 .get_strings = kszphy_get_strings, 4789 .get_stats = kszphy_get_stats, 4790 .suspend = genphy_suspend, 4791 .resume = kszphy_resume, 4792 .config_intr = lan8804_config_intr, 4793 .handle_interrupt = lan8804_handle_interrupt, 4794 }, { 4795 .phy_id = PHY_ID_LAN8841, 4796 .phy_id_mask = MICREL_PHY_ID_MASK, 4797 .name = "Microchip LAN8841 Gigabit PHY", 4798 .flags = PHY_POLL_CABLE_TEST, 4799 .driver_data = &lan8841_type, 4800 .config_init = lan8841_config_init, 4801 .probe = lan8841_probe, 4802 .soft_reset = genphy_soft_reset, 4803 .config_intr = lan8841_config_intr, 4804 .handle_interrupt = lan8841_handle_interrupt, 4805 .get_sset_count = kszphy_get_sset_count, 4806 .get_strings = kszphy_get_strings, 4807 .get_stats = kszphy_get_stats, 4808 .suspend = lan8841_suspend, 4809 .resume = genphy_resume, 4810 .cable_test_start = lan8814_cable_test_start, 4811 .cable_test_get_status = ksz886x_cable_test_get_status, 4812 }, { 4813 .phy_id = PHY_ID_KSZ9131, 4814 .phy_id_mask = MICREL_PHY_ID_MASK, 4815 .name = "Microchip KSZ9131 Gigabit PHY", 4816 /* PHY_GBIT_FEATURES */ 4817 .flags = PHY_POLL_CABLE_TEST, 4818 .driver_data = &ksz9131_type, 4819 .probe = kszphy_probe, 4820 .config_init = ksz9131_config_init, 4821 .config_intr = kszphy_config_intr, 4822 .config_aneg = ksz9131_config_aneg, 4823 .read_status = ksz9131_read_status, 4824 .handle_interrupt = kszphy_handle_interrupt, 4825 .get_sset_count = kszphy_get_sset_count, 4826 .get_strings = kszphy_get_strings, 4827 .get_stats = kszphy_get_stats, 4828 .suspend = kszphy_suspend, 4829 .resume = kszphy_resume, 4830 .cable_test_start = ksz9x31_cable_test_start, 4831 .cable_test_get_status = ksz9x31_cable_test_get_status, 4832 .get_features = ksz9477_get_features, 4833 }, { 4834 .phy_id = PHY_ID_KSZ8873MLL, 4835 .phy_id_mask = MICREL_PHY_ID_MASK, 4836 .name = "Micrel KSZ8873MLL Switch", 4837 /* PHY_BASIC_FEATURES */ 4838 .config_init = kszphy_config_init, 4839 .config_aneg = ksz8873mll_config_aneg, 4840 .read_status = ksz8873mll_read_status, 4841 .suspend = genphy_suspend, 4842 .resume = genphy_resume, 4843 }, { 4844 .phy_id = PHY_ID_KSZ886X, 4845 .phy_id_mask = MICREL_PHY_ID_MASK, 4846 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 4847 .driver_data = &ksz886x_type, 4848 /* PHY_BASIC_FEATURES */ 4849 .flags = PHY_POLL_CABLE_TEST, 4850 .config_init = kszphy_config_init, 4851 .config_aneg = ksz886x_config_aneg, 4852 .read_status = ksz886x_read_status, 4853 .suspend = genphy_suspend, 4854 .resume = genphy_resume, 4855 .cable_test_start = ksz886x_cable_test_start, 4856 .cable_test_get_status = ksz886x_cable_test_get_status, 4857 }, { 4858 .name = "Micrel KSZ87XX Switch", 4859 /* PHY_BASIC_FEATURES */ 4860 .config_init = kszphy_config_init, 4861 .match_phy_device = ksz8795_match_phy_device, 4862 .suspend = genphy_suspend, 4863 .resume = genphy_resume, 4864 }, { 4865 .phy_id = PHY_ID_KSZ9477, 4866 .phy_id_mask = MICREL_PHY_ID_MASK, 4867 .name = "Microchip KSZ9477", 4868 /* PHY_GBIT_FEATURES */ 4869 .config_init = ksz9477_config_init, 4870 .config_intr = kszphy_config_intr, 4871 .handle_interrupt = kszphy_handle_interrupt, 4872 .suspend = genphy_suspend, 4873 .resume = genphy_resume, 4874 .get_features = ksz9477_get_features, 4875 } }; 4876 4877 module_phy_driver(ksphy_driver); 4878 4879 MODULE_DESCRIPTION("Micrel PHY driver"); 4880 MODULE_AUTHOR("David J. Choi"); 4881 MODULE_LICENSE("GPL"); 4882 4883 static struct mdio_device_id __maybe_unused micrel_tbl[] = { 4884 { PHY_ID_KSZ9021, 0x000ffffe }, 4885 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK }, 4886 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK }, 4887 { PHY_ID_KSZ8001, 0x00fffffc }, 4888 { PHY_ID_KS8737, MICREL_PHY_ID_MASK }, 4889 { PHY_ID_KSZ8021, 0x00ffffff }, 4890 { PHY_ID_KSZ8031, 0x00ffffff }, 4891 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK }, 4892 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK }, 4893 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK }, 4894 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK }, 4895 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK }, 4896 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK }, 4897 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK }, 4898 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK }, 4899 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK }, 4900 { } 4901 }; 4902 4903 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 4904