xref: /openbmc/linux/drivers/net/phy/micrel.c (revision 2dfb62d6ce80b3536d1a915177ae82496bd7ac4a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/net/phy/micrel.c
4  *
5  * Driver for Micrel PHYs
6  *
7  * Author: David J. Choi
8  *
9  * Copyright (c) 2010-2013 Micrel, Inc.
10  * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11  *
12  * Support : Micrel Phys:
13  *		Giga phys: ksz9021, ksz9031, ksz9131
14  *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15  *			   ksz8021, ksz8031, ksz8051,
16  *			   ksz8081, ksz8091,
17  *			   ksz8061,
18  *		Switch : ksz8873, ksz886x
19  *			 ksz9477
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36 
37 /* Operation Mode Strap Override */
38 #define MII_KSZPHY_OMSO				0x16
39 #define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
40 #define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
41 #define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
42 #define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
43 #define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
44 
45 /* general Interrupt control/status reg in vendor specific block. */
46 #define MII_KSZPHY_INTCS			0x1B
47 #define KSZPHY_INTCS_JABBER			BIT(15)
48 #define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
49 #define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
50 #define KSZPHY_INTCS_PARELLEL			BIT(12)
51 #define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
52 #define KSZPHY_INTCS_LINK_DOWN			BIT(10)
53 #define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
54 #define KSZPHY_INTCS_LINK_UP			BIT(8)
55 #define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
56 						KSZPHY_INTCS_LINK_DOWN)
57 #define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
58 #define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
59 #define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
60 						 KSZPHY_INTCS_LINK_UP_STATUS)
61 
62 /* LinkMD Control/Status */
63 #define KSZ8081_LMD				0x1d
64 #define KSZ8081_LMD_ENABLE_TEST			BIT(15)
65 #define KSZ8081_LMD_STAT_NORMAL			0
66 #define KSZ8081_LMD_STAT_OPEN			1
67 #define KSZ8081_LMD_STAT_SHORT			2
68 #define KSZ8081_LMD_STAT_FAIL			3
69 #define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
70 /* Short cable (<10 meter) has been detected by LinkMD */
71 #define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
72 #define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
73 
74 #define KSZ9x31_LMD				0x12
75 #define KSZ9x31_LMD_VCT_EN			BIT(15)
76 #define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
77 #define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
78 #define KSZ9x31_LMD_VCT_SEL_RESULT		0
79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
81 #define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
82 #define KSZ9x31_LMD_VCT_ST_NORMAL		0
83 #define KSZ9x31_LMD_VCT_ST_OPEN			1
84 #define KSZ9x31_LMD_VCT_ST_SHORT		2
85 #define KSZ9x31_LMD_VCT_ST_FAIL			3
86 #define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
89 #define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
93 #define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
94 
95 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
96 #define LAN8814_INTC				0x18
97 #define LAN8814_INTS				0x1B
98 
99 #define LAN8814_INT_LINK_DOWN			BIT(2)
100 #define LAN8814_INT_LINK_UP			BIT(0)
101 #define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
102 						 LAN8814_INT_LINK_DOWN)
103 
104 #define LAN8814_INTR_CTRL_REG			0x34
105 #define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
106 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
107 
108 /* Represents 1ppm adjustment in 2^32 format with
109  * each nsec contains 4 clock cycles.
110  * The value is calculated as following: (1/1000000)/((2^-32)/4)
111  */
112 #define LAN8814_1PPM_FORMAT			17179
113 
114 #define PTP_RX_MOD				0x024F
115 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
116 #define PTP_RX_TIMESTAMP_EN			0x024D
117 #define PTP_TX_TIMESTAMP_EN			0x028D
118 
119 #define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
120 #define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
121 #define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
122 #define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
123 
124 #define PTP_TX_PARSE_L2_ADDR_EN			0x0284
125 #define PTP_RX_PARSE_L2_ADDR_EN			0x0244
126 
127 #define PTP_TX_PARSE_IP_ADDR_EN			0x0285
128 #define PTP_RX_PARSE_IP_ADDR_EN			0x0245
129 #define LTC_HARD_RESET				0x023F
130 #define LTC_HARD_RESET_				BIT(0)
131 
132 #define TSU_HARD_RESET				0x02C1
133 #define TSU_HARD_RESET_				BIT(0)
134 
135 #define PTP_CMD_CTL				0x0200
136 #define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
137 #define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
138 #define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
139 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
140 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
141 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
142 
143 #define PTP_CLOCK_SET_SEC_MID			0x0206
144 #define PTP_CLOCK_SET_SEC_LO			0x0207
145 #define PTP_CLOCK_SET_NS_HI			0x0208
146 #define PTP_CLOCK_SET_NS_LO			0x0209
147 
148 #define PTP_CLOCK_READ_SEC_MID			0x022A
149 #define PTP_CLOCK_READ_SEC_LO			0x022B
150 #define PTP_CLOCK_READ_NS_HI			0x022C
151 #define PTP_CLOCK_READ_NS_LO			0x022D
152 
153 #define PTP_OPERATING_MODE			0x0241
154 #define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
155 
156 #define PTP_TX_MOD				0x028F
157 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
158 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
159 
160 #define PTP_RX_PARSE_CONFIG			0x0242
161 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
162 #define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
163 #define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
164 
165 #define PTP_TX_PARSE_CONFIG			0x0282
166 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
167 #define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
168 #define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
169 
170 #define PTP_CLOCK_RATE_ADJ_HI			0x020C
171 #define PTP_CLOCK_RATE_ADJ_LO			0x020D
172 #define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
173 
174 #define PTP_LTC_STEP_ADJ_HI			0x0212
175 #define PTP_LTC_STEP_ADJ_LO			0x0213
176 #define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
177 
178 #define LAN8814_INTR_STS_REG			0x0033
179 #define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
180 #define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
181 #define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
182 #define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
183 
184 #define PTP_CAP_INFO				0x022A
185 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
186 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
187 
188 #define PTP_TX_EGRESS_SEC_HI			0x0296
189 #define PTP_TX_EGRESS_SEC_LO			0x0297
190 #define PTP_TX_EGRESS_NS_HI			0x0294
191 #define PTP_TX_EGRESS_NS_LO			0x0295
192 #define PTP_TX_MSG_HEADER2			0x0299
193 
194 #define PTP_RX_INGRESS_SEC_HI			0x0256
195 #define PTP_RX_INGRESS_SEC_LO			0x0257
196 #define PTP_RX_INGRESS_NS_HI			0x0254
197 #define PTP_RX_INGRESS_NS_LO			0x0255
198 #define PTP_RX_MSG_HEADER2			0x0259
199 
200 #define PTP_TSU_INT_EN				0x0200
201 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
202 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
203 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
204 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
205 
206 #define PTP_TSU_INT_STS				0x0201
207 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
208 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
209 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
210 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
211 
212 #define LAN8814_LED_CTRL_1			0x0
213 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
214 
215 /* PHY Control 1 */
216 #define MII_KSZPHY_CTRL_1			0x1e
217 #define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
218 
219 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
220 #define MII_KSZPHY_CTRL_2			0x1f
221 #define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
222 /* bitmap of PHY register to set interrupt mode */
223 #define KSZ8081_CTRL2_HP_MDIX			BIT(15)
224 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
225 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
226 #define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
227 #define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
228 #define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
229 #define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
230 
231 /* Write/read to/from extended registers */
232 #define MII_KSZPHY_EXTREG			0x0b
233 #define KSZPHY_EXTREG_WRITE			0x8000
234 
235 #define MII_KSZPHY_EXTREG_WRITE			0x0c
236 #define MII_KSZPHY_EXTREG_READ			0x0d
237 
238 /* Extended registers */
239 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
240 #define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
241 #define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
242 
243 #define PS_TO_REG				200
244 #define FIFO_SIZE				8
245 
246 struct kszphy_hw_stat {
247 	const char *string;
248 	u8 reg;
249 	u8 bits;
250 };
251 
252 static struct kszphy_hw_stat kszphy_hw_stats[] = {
253 	{ "phy_receive_errors", 21, 16},
254 	{ "phy_idle_errors", 10, 8 },
255 };
256 
257 struct kszphy_type {
258 	u32 led_mode_reg;
259 	u16 interrupt_level_mask;
260 	bool has_broadcast_disable;
261 	bool has_nand_tree_disable;
262 	bool has_rmii_ref_clk_sel;
263 };
264 
265 /* Shared structure between the PHYs of the same package. */
266 struct lan8814_shared_priv {
267 	struct phy_device *phydev;
268 	struct ptp_clock *ptp_clock;
269 	struct ptp_clock_info ptp_clock_info;
270 
271 	/* Reference counter to how many ports in the package are enabling the
272 	 * timestamping
273 	 */
274 	u8 ref;
275 
276 	/* Lock for ptp_clock and ref */
277 	struct mutex shared_lock;
278 };
279 
280 struct lan8814_ptp_rx_ts {
281 	struct list_head list;
282 	u32 seconds;
283 	u32 nsec;
284 	u16 seq_id;
285 };
286 
287 struct kszphy_ptp_priv {
288 	struct mii_timestamper mii_ts;
289 	struct phy_device *phydev;
290 
291 	struct sk_buff_head tx_queue;
292 	struct sk_buff_head rx_queue;
293 
294 	struct list_head rx_ts_list;
295 	/* Lock for Rx ts fifo */
296 	spinlock_t rx_ts_lock;
297 
298 	int hwts_tx_type;
299 	enum hwtstamp_rx_filters rx_filter;
300 	int layer;
301 	int version;
302 };
303 
304 struct kszphy_priv {
305 	struct kszphy_ptp_priv ptp_priv;
306 	const struct kszphy_type *type;
307 	int led_mode;
308 	u16 vct_ctrl1000;
309 	bool rmii_ref_clk_sel;
310 	bool rmii_ref_clk_sel_val;
311 	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
312 };
313 
314 static const struct kszphy_type lan8814_type = {
315 	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
316 };
317 
318 static const struct kszphy_type ksz8021_type = {
319 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
320 	.has_broadcast_disable	= true,
321 	.has_nand_tree_disable	= true,
322 	.has_rmii_ref_clk_sel	= true,
323 };
324 
325 static const struct kszphy_type ksz8041_type = {
326 	.led_mode_reg		= MII_KSZPHY_CTRL_1,
327 };
328 
329 static const struct kszphy_type ksz8051_type = {
330 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
331 	.has_nand_tree_disable	= true,
332 };
333 
334 static const struct kszphy_type ksz8081_type = {
335 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
336 	.has_broadcast_disable	= true,
337 	.has_nand_tree_disable	= true,
338 	.has_rmii_ref_clk_sel	= true,
339 };
340 
341 static const struct kszphy_type ks8737_type = {
342 	.interrupt_level_mask	= BIT(14),
343 };
344 
345 static const struct kszphy_type ksz9021_type = {
346 	.interrupt_level_mask	= BIT(14),
347 };
348 
349 static int kszphy_extended_write(struct phy_device *phydev,
350 				u32 regnum, u16 val)
351 {
352 	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
353 	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
354 }
355 
356 static int kszphy_extended_read(struct phy_device *phydev,
357 				u32 regnum)
358 {
359 	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
360 	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
361 }
362 
363 static int kszphy_ack_interrupt(struct phy_device *phydev)
364 {
365 	/* bit[7..0] int status, which is a read and clear register. */
366 	int rc;
367 
368 	rc = phy_read(phydev, MII_KSZPHY_INTCS);
369 
370 	return (rc < 0) ? rc : 0;
371 }
372 
373 static int kszphy_config_intr(struct phy_device *phydev)
374 {
375 	const struct kszphy_type *type = phydev->drv->driver_data;
376 	int temp, err;
377 	u16 mask;
378 
379 	if (type && type->interrupt_level_mask)
380 		mask = type->interrupt_level_mask;
381 	else
382 		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
383 
384 	/* set the interrupt pin active low */
385 	temp = phy_read(phydev, MII_KSZPHY_CTRL);
386 	if (temp < 0)
387 		return temp;
388 	temp &= ~mask;
389 	phy_write(phydev, MII_KSZPHY_CTRL, temp);
390 
391 	/* enable / disable interrupts */
392 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
393 		err = kszphy_ack_interrupt(phydev);
394 		if (err)
395 			return err;
396 
397 		temp = KSZPHY_INTCS_ALL;
398 		err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
399 	} else {
400 		temp = 0;
401 		err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
402 		if (err)
403 			return err;
404 
405 		err = kszphy_ack_interrupt(phydev);
406 	}
407 
408 	return err;
409 }
410 
411 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
412 {
413 	int irq_status;
414 
415 	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
416 	if (irq_status < 0) {
417 		phy_error(phydev);
418 		return IRQ_NONE;
419 	}
420 
421 	if (!(irq_status & KSZPHY_INTCS_STATUS))
422 		return IRQ_NONE;
423 
424 	phy_trigger_machine(phydev);
425 
426 	return IRQ_HANDLED;
427 }
428 
429 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
430 {
431 	int ctrl;
432 
433 	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
434 	if (ctrl < 0)
435 		return ctrl;
436 
437 	if (val)
438 		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
439 	else
440 		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
441 
442 	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
443 }
444 
445 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
446 {
447 	int rc, temp, shift;
448 
449 	switch (reg) {
450 	case MII_KSZPHY_CTRL_1:
451 		shift = 14;
452 		break;
453 	case MII_KSZPHY_CTRL_2:
454 		shift = 4;
455 		break;
456 	default:
457 		return -EINVAL;
458 	}
459 
460 	temp = phy_read(phydev, reg);
461 	if (temp < 0) {
462 		rc = temp;
463 		goto out;
464 	}
465 
466 	temp &= ~(3 << shift);
467 	temp |= val << shift;
468 	rc = phy_write(phydev, reg, temp);
469 out:
470 	if (rc < 0)
471 		phydev_err(phydev, "failed to set led mode\n");
472 
473 	return rc;
474 }
475 
476 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
477  * unique (non-broadcast) address on a shared bus.
478  */
479 static int kszphy_broadcast_disable(struct phy_device *phydev)
480 {
481 	int ret;
482 
483 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
484 	if (ret < 0)
485 		goto out;
486 
487 	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
488 out:
489 	if (ret)
490 		phydev_err(phydev, "failed to disable broadcast address\n");
491 
492 	return ret;
493 }
494 
495 static int kszphy_nand_tree_disable(struct phy_device *phydev)
496 {
497 	int ret;
498 
499 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
500 	if (ret < 0)
501 		goto out;
502 
503 	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
504 		return 0;
505 
506 	ret = phy_write(phydev, MII_KSZPHY_OMSO,
507 			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
508 out:
509 	if (ret)
510 		phydev_err(phydev, "failed to disable NAND tree mode\n");
511 
512 	return ret;
513 }
514 
515 /* Some config bits need to be set again on resume, handle them here. */
516 static int kszphy_config_reset(struct phy_device *phydev)
517 {
518 	struct kszphy_priv *priv = phydev->priv;
519 	int ret;
520 
521 	if (priv->rmii_ref_clk_sel) {
522 		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
523 		if (ret) {
524 			phydev_err(phydev,
525 				   "failed to set rmii reference clock\n");
526 			return ret;
527 		}
528 	}
529 
530 	if (priv->type && priv->led_mode >= 0)
531 		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
532 
533 	return 0;
534 }
535 
536 static int kszphy_config_init(struct phy_device *phydev)
537 {
538 	struct kszphy_priv *priv = phydev->priv;
539 	const struct kszphy_type *type;
540 
541 	if (!priv)
542 		return 0;
543 
544 	type = priv->type;
545 
546 	if (type && type->has_broadcast_disable)
547 		kszphy_broadcast_disable(phydev);
548 
549 	if (type && type->has_nand_tree_disable)
550 		kszphy_nand_tree_disable(phydev);
551 
552 	return kszphy_config_reset(phydev);
553 }
554 
555 static int ksz8041_fiber_mode(struct phy_device *phydev)
556 {
557 	struct device_node *of_node = phydev->mdio.dev.of_node;
558 
559 	return of_property_read_bool(of_node, "micrel,fiber-mode");
560 }
561 
562 static int ksz8041_config_init(struct phy_device *phydev)
563 {
564 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
565 
566 	/* Limit supported and advertised modes in fiber mode */
567 	if (ksz8041_fiber_mode(phydev)) {
568 		phydev->dev_flags |= MICREL_PHY_FXEN;
569 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
570 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
571 
572 		linkmode_and(phydev->supported, phydev->supported, mask);
573 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
574 				 phydev->supported);
575 		linkmode_and(phydev->advertising, phydev->advertising, mask);
576 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
577 				 phydev->advertising);
578 		phydev->autoneg = AUTONEG_DISABLE;
579 	}
580 
581 	return kszphy_config_init(phydev);
582 }
583 
584 static int ksz8041_config_aneg(struct phy_device *phydev)
585 {
586 	/* Skip auto-negotiation in fiber mode */
587 	if (phydev->dev_flags & MICREL_PHY_FXEN) {
588 		phydev->speed = SPEED_100;
589 		return 0;
590 	}
591 
592 	return genphy_config_aneg(phydev);
593 }
594 
595 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
596 					    const bool ksz_8051)
597 {
598 	int ret;
599 
600 	if ((phydev->phy_id & MICREL_PHY_ID_MASK) != PHY_ID_KSZ8051)
601 		return 0;
602 
603 	ret = phy_read(phydev, MII_BMSR);
604 	if (ret < 0)
605 		return ret;
606 
607 	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
608 	 * exact PHY ID. However, they can be told apart by the extended
609 	 * capability registers presence. The KSZ8051 PHY has them while
610 	 * the switch does not.
611 	 */
612 	ret &= BMSR_ERCAP;
613 	if (ksz_8051)
614 		return ret;
615 	else
616 		return !ret;
617 }
618 
619 static int ksz8051_match_phy_device(struct phy_device *phydev)
620 {
621 	return ksz8051_ksz8795_match_phy_device(phydev, true);
622 }
623 
624 static int ksz8081_config_init(struct phy_device *phydev)
625 {
626 	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
627 	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
628 	 * pull-down is missing, the factory test mode should be cleared by
629 	 * manually writing a 0.
630 	 */
631 	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
632 
633 	return kszphy_config_init(phydev);
634 }
635 
636 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
637 {
638 	u16 val;
639 
640 	switch (ctrl) {
641 	case ETH_TP_MDI:
642 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
643 		break;
644 	case ETH_TP_MDI_X:
645 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
646 			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
647 		break;
648 	case ETH_TP_MDI_AUTO:
649 		val = 0;
650 		break;
651 	default:
652 		return 0;
653 	}
654 
655 	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
656 			  KSZ8081_CTRL2_HP_MDIX |
657 			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
658 			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
659 			  KSZ8081_CTRL2_HP_MDIX | val);
660 }
661 
662 static int ksz8081_config_aneg(struct phy_device *phydev)
663 {
664 	int ret;
665 
666 	ret = genphy_config_aneg(phydev);
667 	if (ret)
668 		return ret;
669 
670 	/* The MDI-X configuration is automatically changed by the PHY after
671 	 * switching from autoneg off to on. So, take MDI-X configuration under
672 	 * own control and set it after autoneg configuration was done.
673 	 */
674 	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
675 }
676 
677 static int ksz8081_mdix_update(struct phy_device *phydev)
678 {
679 	int ret;
680 
681 	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
682 	if (ret < 0)
683 		return ret;
684 
685 	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
686 		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
687 			phydev->mdix_ctrl = ETH_TP_MDI_X;
688 		else
689 			phydev->mdix_ctrl = ETH_TP_MDI;
690 	} else {
691 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
692 	}
693 
694 	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
695 	if (ret < 0)
696 		return ret;
697 
698 	if (ret & KSZ8081_CTRL1_MDIX_STAT)
699 		phydev->mdix = ETH_TP_MDI;
700 	else
701 		phydev->mdix = ETH_TP_MDI_X;
702 
703 	return 0;
704 }
705 
706 static int ksz8081_read_status(struct phy_device *phydev)
707 {
708 	int ret;
709 
710 	ret = ksz8081_mdix_update(phydev);
711 	if (ret < 0)
712 		return ret;
713 
714 	return genphy_read_status(phydev);
715 }
716 
717 static int ksz8061_config_init(struct phy_device *phydev)
718 {
719 	int ret;
720 
721 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
722 	if (ret)
723 		return ret;
724 
725 	return kszphy_config_init(phydev);
726 }
727 
728 static int ksz8795_match_phy_device(struct phy_device *phydev)
729 {
730 	return ksz8051_ksz8795_match_phy_device(phydev, false);
731 }
732 
733 static int ksz9021_load_values_from_of(struct phy_device *phydev,
734 				       const struct device_node *of_node,
735 				       u16 reg,
736 				       const char *field1, const char *field2,
737 				       const char *field3, const char *field4)
738 {
739 	int val1 = -1;
740 	int val2 = -2;
741 	int val3 = -3;
742 	int val4 = -4;
743 	int newval;
744 	int matches = 0;
745 
746 	if (!of_property_read_u32(of_node, field1, &val1))
747 		matches++;
748 
749 	if (!of_property_read_u32(of_node, field2, &val2))
750 		matches++;
751 
752 	if (!of_property_read_u32(of_node, field3, &val3))
753 		matches++;
754 
755 	if (!of_property_read_u32(of_node, field4, &val4))
756 		matches++;
757 
758 	if (!matches)
759 		return 0;
760 
761 	if (matches < 4)
762 		newval = kszphy_extended_read(phydev, reg);
763 	else
764 		newval = 0;
765 
766 	if (val1 != -1)
767 		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
768 
769 	if (val2 != -2)
770 		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
771 
772 	if (val3 != -3)
773 		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
774 
775 	if (val4 != -4)
776 		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
777 
778 	return kszphy_extended_write(phydev, reg, newval);
779 }
780 
781 static int ksz9021_config_init(struct phy_device *phydev)
782 {
783 	const struct device_node *of_node;
784 	const struct device *dev_walker;
785 
786 	/* The Micrel driver has a deprecated option to place phy OF
787 	 * properties in the MAC node. Walk up the tree of devices to
788 	 * find a device with an OF node.
789 	 */
790 	dev_walker = &phydev->mdio.dev;
791 	do {
792 		of_node = dev_walker->of_node;
793 		dev_walker = dev_walker->parent;
794 
795 	} while (!of_node && dev_walker);
796 
797 	if (of_node) {
798 		ksz9021_load_values_from_of(phydev, of_node,
799 				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
800 				    "txen-skew-ps", "txc-skew-ps",
801 				    "rxdv-skew-ps", "rxc-skew-ps");
802 		ksz9021_load_values_from_of(phydev, of_node,
803 				    MII_KSZPHY_RX_DATA_PAD_SKEW,
804 				    "rxd0-skew-ps", "rxd1-skew-ps",
805 				    "rxd2-skew-ps", "rxd3-skew-ps");
806 		ksz9021_load_values_from_of(phydev, of_node,
807 				    MII_KSZPHY_TX_DATA_PAD_SKEW,
808 				    "txd0-skew-ps", "txd1-skew-ps",
809 				    "txd2-skew-ps", "txd3-skew-ps");
810 	}
811 	return 0;
812 }
813 
814 #define KSZ9031_PS_TO_REG		60
815 
816 /* Extended registers */
817 /* MMD Address 0x0 */
818 #define MII_KSZ9031RN_FLP_BURST_TX_LO	3
819 #define MII_KSZ9031RN_FLP_BURST_TX_HI	4
820 
821 /* MMD Address 0x2 */
822 #define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
823 #define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
824 #define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
825 
826 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
827 #define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
828 #define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
829 #define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
830 #define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
831 
832 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
833 #define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
834 #define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
835 #define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
836 #define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
837 
838 #define MII_KSZ9031RN_CLK_PAD_SKEW	8
839 #define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
840 #define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
841 
842 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
843  * provide different RGMII options we need to configure delay offset
844  * for each pad relative to build in delay.
845  */
846 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
847  * 1.80ns
848  */
849 #define RX_ID				0x7
850 #define RX_CLK_ID			0x19
851 
852 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
853  * internal 1.2ns delay.
854  */
855 #define RX_ND				0xc
856 #define RX_CLK_ND			0x0
857 
858 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
859 #define TX_ID				0x0
860 #define TX_CLK_ID			0x1f
861 
862 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
863  * dealy
864  */
865 #define TX_ND				0x7
866 #define TX_CLK_ND			0xf
867 
868 /* MMD Address 0x1C */
869 #define MII_KSZ9031RN_EDPD		0x23
870 #define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
871 
872 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
873 				       const struct device_node *of_node,
874 				       u16 reg, size_t field_sz,
875 				       const char *field[], u8 numfields,
876 				       bool *update)
877 {
878 	int val[4] = {-1, -2, -3, -4};
879 	int matches = 0;
880 	u16 mask;
881 	u16 maxval;
882 	u16 newval;
883 	int i;
884 
885 	for (i = 0; i < numfields; i++)
886 		if (!of_property_read_u32(of_node, field[i], val + i))
887 			matches++;
888 
889 	if (!matches)
890 		return 0;
891 
892 	*update |= true;
893 
894 	if (matches < numfields)
895 		newval = phy_read_mmd(phydev, 2, reg);
896 	else
897 		newval = 0;
898 
899 	maxval = (field_sz == 4) ? 0xf : 0x1f;
900 	for (i = 0; i < numfields; i++)
901 		if (val[i] != -(i + 1)) {
902 			mask = 0xffff;
903 			mask ^= maxval << (field_sz * i);
904 			newval = (newval & mask) |
905 				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
906 					<< (field_sz * i));
907 		}
908 
909 	return phy_write_mmd(phydev, 2, reg, newval);
910 }
911 
912 /* Center KSZ9031RNX FLP timing at 16ms. */
913 static int ksz9031_center_flp_timing(struct phy_device *phydev)
914 {
915 	int result;
916 
917 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
918 			       0x0006);
919 	if (result)
920 		return result;
921 
922 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
923 			       0x1A80);
924 	if (result)
925 		return result;
926 
927 	return genphy_restart_aneg(phydev);
928 }
929 
930 /* Enable energy-detect power-down mode */
931 static int ksz9031_enable_edpd(struct phy_device *phydev)
932 {
933 	int reg;
934 
935 	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
936 	if (reg < 0)
937 		return reg;
938 	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
939 			     reg | MII_KSZ9031RN_EDPD_ENABLE);
940 }
941 
942 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
943 {
944 	u16 rx, tx, rx_clk, tx_clk;
945 	int ret;
946 
947 	switch (phydev->interface) {
948 	case PHY_INTERFACE_MODE_RGMII:
949 		tx = TX_ND;
950 		tx_clk = TX_CLK_ND;
951 		rx = RX_ND;
952 		rx_clk = RX_CLK_ND;
953 		break;
954 	case PHY_INTERFACE_MODE_RGMII_ID:
955 		tx = TX_ID;
956 		tx_clk = TX_CLK_ID;
957 		rx = RX_ID;
958 		rx_clk = RX_CLK_ID;
959 		break;
960 	case PHY_INTERFACE_MODE_RGMII_RXID:
961 		tx = TX_ND;
962 		tx_clk = TX_CLK_ND;
963 		rx = RX_ID;
964 		rx_clk = RX_CLK_ID;
965 		break;
966 	case PHY_INTERFACE_MODE_RGMII_TXID:
967 		tx = TX_ID;
968 		tx_clk = TX_CLK_ID;
969 		rx = RX_ND;
970 		rx_clk = RX_CLK_ND;
971 		break;
972 	default:
973 		return 0;
974 	}
975 
976 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
977 			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
978 			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
979 	if (ret < 0)
980 		return ret;
981 
982 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
983 			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
984 			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
985 			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
986 			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
987 	if (ret < 0)
988 		return ret;
989 
990 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
991 			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
992 			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
993 			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
994 			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
995 	if (ret < 0)
996 		return ret;
997 
998 	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
999 			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1000 			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1001 }
1002 
1003 static int ksz9031_config_init(struct phy_device *phydev)
1004 {
1005 	const struct device_node *of_node;
1006 	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1007 	static const char *rx_data_skews[4] = {
1008 		"rxd0-skew-ps", "rxd1-skew-ps",
1009 		"rxd2-skew-ps", "rxd3-skew-ps"
1010 	};
1011 	static const char *tx_data_skews[4] = {
1012 		"txd0-skew-ps", "txd1-skew-ps",
1013 		"txd2-skew-ps", "txd3-skew-ps"
1014 	};
1015 	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1016 	const struct device *dev_walker;
1017 	int result;
1018 
1019 	result = ksz9031_enable_edpd(phydev);
1020 	if (result < 0)
1021 		return result;
1022 
1023 	/* The Micrel driver has a deprecated option to place phy OF
1024 	 * properties in the MAC node. Walk up the tree of devices to
1025 	 * find a device with an OF node.
1026 	 */
1027 	dev_walker = &phydev->mdio.dev;
1028 	do {
1029 		of_node = dev_walker->of_node;
1030 		dev_walker = dev_walker->parent;
1031 	} while (!of_node && dev_walker);
1032 
1033 	if (of_node) {
1034 		bool update = false;
1035 
1036 		if (phy_interface_is_rgmii(phydev)) {
1037 			result = ksz9031_config_rgmii_delay(phydev);
1038 			if (result < 0)
1039 				return result;
1040 		}
1041 
1042 		ksz9031_of_load_skew_values(phydev, of_node,
1043 				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1044 				clk_skews, 2, &update);
1045 
1046 		ksz9031_of_load_skew_values(phydev, of_node,
1047 				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1048 				control_skews, 2, &update);
1049 
1050 		ksz9031_of_load_skew_values(phydev, of_node,
1051 				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1052 				rx_data_skews, 4, &update);
1053 
1054 		ksz9031_of_load_skew_values(phydev, of_node,
1055 				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1056 				tx_data_skews, 4, &update);
1057 
1058 		if (update && !phy_interface_is_rgmii(phydev))
1059 			phydev_warn(phydev,
1060 				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1061 
1062 		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1063 		 * When the device links in the 1000BASE-T slave mode only,
1064 		 * the optional 125MHz reference output clock (CLK125_NDO)
1065 		 * has wide duty cycle variation.
1066 		 *
1067 		 * The optional CLK125_NDO clock does not meet the RGMII
1068 		 * 45/55 percent (min/max) duty cycle requirement and therefore
1069 		 * cannot be used directly by the MAC side for clocking
1070 		 * applications that have setup/hold time requirements on
1071 		 * rising and falling clock edges.
1072 		 *
1073 		 * Workaround:
1074 		 * Force the phy to be the master to receive a stable clock
1075 		 * which meets the duty cycle requirement.
1076 		 */
1077 		if (of_property_read_bool(of_node, "micrel,force-master")) {
1078 			result = phy_read(phydev, MII_CTRL1000);
1079 			if (result < 0)
1080 				goto err_force_master;
1081 
1082 			/* enable master mode, config & prefer master */
1083 			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1084 			result = phy_write(phydev, MII_CTRL1000, result);
1085 			if (result < 0)
1086 				goto err_force_master;
1087 		}
1088 	}
1089 
1090 	return ksz9031_center_flp_timing(phydev);
1091 
1092 err_force_master:
1093 	phydev_err(phydev, "failed to force the phy to master mode\n");
1094 	return result;
1095 }
1096 
1097 #define KSZ9131_SKEW_5BIT_MAX	2400
1098 #define KSZ9131_SKEW_4BIT_MAX	800
1099 #define KSZ9131_OFFSET		700
1100 #define KSZ9131_STEP		100
1101 
1102 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1103 				       struct device_node *of_node,
1104 				       u16 reg, size_t field_sz,
1105 				       char *field[], u8 numfields)
1106 {
1107 	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1108 		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1109 	int skewval, skewmax = 0;
1110 	int matches = 0;
1111 	u16 maxval;
1112 	u16 newval;
1113 	u16 mask;
1114 	int i;
1115 
1116 	/* psec properties in dts should mean x pico seconds */
1117 	if (field_sz == 5)
1118 		skewmax = KSZ9131_SKEW_5BIT_MAX;
1119 	else
1120 		skewmax = KSZ9131_SKEW_4BIT_MAX;
1121 
1122 	for (i = 0; i < numfields; i++)
1123 		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1124 			if (skewval < -KSZ9131_OFFSET)
1125 				skewval = -KSZ9131_OFFSET;
1126 			else if (skewval > skewmax)
1127 				skewval = skewmax;
1128 
1129 			val[i] = skewval + KSZ9131_OFFSET;
1130 			matches++;
1131 		}
1132 
1133 	if (!matches)
1134 		return 0;
1135 
1136 	if (matches < numfields)
1137 		newval = phy_read_mmd(phydev, 2, reg);
1138 	else
1139 		newval = 0;
1140 
1141 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1142 	for (i = 0; i < numfields; i++)
1143 		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1144 			mask = 0xffff;
1145 			mask ^= maxval << (field_sz * i);
1146 			newval = (newval & mask) |
1147 				(((val[i] / KSZ9131_STEP) & maxval)
1148 					<< (field_sz * i));
1149 		}
1150 
1151 	return phy_write_mmd(phydev, 2, reg, newval);
1152 }
1153 
1154 #define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1155 #define KSZ9131RN_RXC_DLL_CTRL		76
1156 #define KSZ9131RN_TXC_DLL_CTRL		77
1157 #define KSZ9131RN_DLL_CTRL_BYPASS	BIT_MASK(12)
1158 #define KSZ9131RN_DLL_ENABLE_DELAY	0
1159 #define KSZ9131RN_DLL_DISABLE_DELAY	BIT(12)
1160 
1161 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1162 {
1163 	u16 rxcdll_val, txcdll_val;
1164 	int ret;
1165 
1166 	switch (phydev->interface) {
1167 	case PHY_INTERFACE_MODE_RGMII:
1168 		rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
1169 		txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
1170 		break;
1171 	case PHY_INTERFACE_MODE_RGMII_ID:
1172 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1173 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1174 		break;
1175 	case PHY_INTERFACE_MODE_RGMII_RXID:
1176 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1177 		txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
1178 		break;
1179 	case PHY_INTERFACE_MODE_RGMII_TXID:
1180 		rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
1181 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1182 		break;
1183 	default:
1184 		return 0;
1185 	}
1186 
1187 	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1188 			     KSZ9131RN_RXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS,
1189 			     rxcdll_val);
1190 	if (ret < 0)
1191 		return ret;
1192 
1193 	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1194 			      KSZ9131RN_TXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS,
1195 			      txcdll_val);
1196 }
1197 
1198 /* Silicon Errata DS80000693B
1199  *
1200  * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1201  * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1202  * according to the datasheet (off if there is no link).
1203  */
1204 static int ksz9131_led_errata(struct phy_device *phydev)
1205 {
1206 	int reg;
1207 
1208 	reg = phy_read_mmd(phydev, 2, 0);
1209 	if (reg < 0)
1210 		return reg;
1211 
1212 	if (!(reg & BIT(4)))
1213 		return 0;
1214 
1215 	return phy_set_bits(phydev, 0x1e, BIT(9));
1216 }
1217 
1218 static int ksz9131_config_init(struct phy_device *phydev)
1219 {
1220 	struct device_node *of_node;
1221 	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1222 	char *rx_data_skews[4] = {
1223 		"rxd0-skew-psec", "rxd1-skew-psec",
1224 		"rxd2-skew-psec", "rxd3-skew-psec"
1225 	};
1226 	char *tx_data_skews[4] = {
1227 		"txd0-skew-psec", "txd1-skew-psec",
1228 		"txd2-skew-psec", "txd3-skew-psec"
1229 	};
1230 	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1231 	const struct device *dev_walker;
1232 	int ret;
1233 
1234 	dev_walker = &phydev->mdio.dev;
1235 	do {
1236 		of_node = dev_walker->of_node;
1237 		dev_walker = dev_walker->parent;
1238 	} while (!of_node && dev_walker);
1239 
1240 	if (!of_node)
1241 		return 0;
1242 
1243 	if (phy_interface_is_rgmii(phydev)) {
1244 		ret = ksz9131_config_rgmii_delay(phydev);
1245 		if (ret < 0)
1246 			return ret;
1247 	}
1248 
1249 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1250 					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1251 					  clk_skews, 2);
1252 	if (ret < 0)
1253 		return ret;
1254 
1255 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1256 					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1257 					  control_skews, 2);
1258 	if (ret < 0)
1259 		return ret;
1260 
1261 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1262 					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1263 					  rx_data_skews, 4);
1264 	if (ret < 0)
1265 		return ret;
1266 
1267 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1268 					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1269 					  tx_data_skews, 4);
1270 	if (ret < 0)
1271 		return ret;
1272 
1273 	ret = ksz9131_led_errata(phydev);
1274 	if (ret < 0)
1275 		return ret;
1276 
1277 	return 0;
1278 }
1279 
1280 #define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1281 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1282 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1283 static int ksz8873mll_read_status(struct phy_device *phydev)
1284 {
1285 	int regval;
1286 
1287 	/* dummy read */
1288 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1289 
1290 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1291 
1292 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1293 		phydev->duplex = DUPLEX_HALF;
1294 	else
1295 		phydev->duplex = DUPLEX_FULL;
1296 
1297 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1298 		phydev->speed = SPEED_10;
1299 	else
1300 		phydev->speed = SPEED_100;
1301 
1302 	phydev->link = 1;
1303 	phydev->pause = phydev->asym_pause = 0;
1304 
1305 	return 0;
1306 }
1307 
1308 static int ksz9031_get_features(struct phy_device *phydev)
1309 {
1310 	int ret;
1311 
1312 	ret = genphy_read_abilities(phydev);
1313 	if (ret < 0)
1314 		return ret;
1315 
1316 	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1317 	 * Whenever the device's Asymmetric Pause capability is set to 1,
1318 	 * link-up may fail after a link-up to link-down transition.
1319 	 *
1320 	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1321 	 *
1322 	 * Workaround:
1323 	 * Do not enable the Asymmetric Pause capability bit.
1324 	 */
1325 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1326 
1327 	/* We force setting the Pause capability as the core will force the
1328 	 * Asymmetric Pause capability to 1 otherwise.
1329 	 */
1330 	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1331 
1332 	return 0;
1333 }
1334 
1335 static int ksz9031_read_status(struct phy_device *phydev)
1336 {
1337 	int err;
1338 	int regval;
1339 
1340 	err = genphy_read_status(phydev);
1341 	if (err)
1342 		return err;
1343 
1344 	/* Make sure the PHY is not broken. Read idle error count,
1345 	 * and reset the PHY if it is maxed out.
1346 	 */
1347 	regval = phy_read(phydev, MII_STAT1000);
1348 	if ((regval & 0xFF) == 0xFF) {
1349 		phy_init_hw(phydev);
1350 		phydev->link = 0;
1351 		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1352 			phydev->drv->config_intr(phydev);
1353 		return genphy_config_aneg(phydev);
1354 	}
1355 
1356 	return 0;
1357 }
1358 
1359 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1360 {
1361 	struct kszphy_priv *priv = phydev->priv;
1362 	int ret;
1363 
1364 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1365 	 * Prior to running the cable diagnostics, Auto-negotiation should
1366 	 * be disabled, full duplex set and the link speed set to 1000Mbps
1367 	 * via the Basic Control Register.
1368 	 */
1369 	ret = phy_modify(phydev, MII_BMCR,
1370 			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1371 			 BMCR_ANENABLE | BMCR_SPEED100,
1372 			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1373 	if (ret)
1374 		return ret;
1375 
1376 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1377 	 * The Master-Slave configuration should be set to Slave by writing
1378 	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1379 	 * Register.
1380 	 */
1381 	ret = phy_read(phydev, MII_CTRL1000);
1382 	if (ret < 0)
1383 		return ret;
1384 
1385 	/* Cache these bits, they need to be restored once LinkMD finishes. */
1386 	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1387 	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1388 	ret |= CTL1000_ENABLE_MASTER;
1389 
1390 	return phy_write(phydev, MII_CTRL1000, ret);
1391 }
1392 
1393 static int ksz9x31_cable_test_result_trans(u16 status)
1394 {
1395 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1396 	case KSZ9x31_LMD_VCT_ST_NORMAL:
1397 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1398 	case KSZ9x31_LMD_VCT_ST_OPEN:
1399 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1400 	case KSZ9x31_LMD_VCT_ST_SHORT:
1401 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1402 	case KSZ9x31_LMD_VCT_ST_FAIL:
1403 		fallthrough;
1404 	default:
1405 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1406 	}
1407 }
1408 
1409 static bool ksz9x31_cable_test_failed(u16 status)
1410 {
1411 	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1412 
1413 	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1414 }
1415 
1416 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1417 {
1418 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1419 	case KSZ9x31_LMD_VCT_ST_OPEN:
1420 		fallthrough;
1421 	case KSZ9x31_LMD_VCT_ST_SHORT:
1422 		return true;
1423 	}
1424 	return false;
1425 }
1426 
1427 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1428 {
1429 	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1430 
1431 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1432 	 *
1433 	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1434 	 */
1435 	if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_KSZ9131)
1436 		dt = clamp(dt - 22, 0, 255);
1437 
1438 	return (dt * 400) / 10;
1439 }
1440 
1441 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1442 {
1443 	int val, ret;
1444 
1445 	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1446 				    !(val & KSZ9x31_LMD_VCT_EN),
1447 				    30000, 100000, true);
1448 
1449 	return ret < 0 ? ret : 0;
1450 }
1451 
1452 static int ksz9x31_cable_test_get_pair(int pair)
1453 {
1454 	static const int ethtool_pair[] = {
1455 		ETHTOOL_A_CABLE_PAIR_A,
1456 		ETHTOOL_A_CABLE_PAIR_B,
1457 		ETHTOOL_A_CABLE_PAIR_C,
1458 		ETHTOOL_A_CABLE_PAIR_D,
1459 	};
1460 
1461 	return ethtool_pair[pair];
1462 }
1463 
1464 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1465 {
1466 	int ret, val;
1467 
1468 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1469 	 * To test each individual cable pair, set the cable pair in the Cable
1470 	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1471 	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1472 	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1473 	 * will self clear when the test is concluded.
1474 	 */
1475 	ret = phy_write(phydev, KSZ9x31_LMD,
1476 			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1477 	if (ret)
1478 		return ret;
1479 
1480 	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1481 	if (ret)
1482 		return ret;
1483 
1484 	val = phy_read(phydev, KSZ9x31_LMD);
1485 	if (val < 0)
1486 		return val;
1487 
1488 	if (ksz9x31_cable_test_failed(val))
1489 		return -EAGAIN;
1490 
1491 	ret = ethnl_cable_test_result(phydev,
1492 				      ksz9x31_cable_test_get_pair(pair),
1493 				      ksz9x31_cable_test_result_trans(val));
1494 	if (ret)
1495 		return ret;
1496 
1497 	if (!ksz9x31_cable_test_fault_length_valid(val))
1498 		return 0;
1499 
1500 	return ethnl_cable_test_fault_length(phydev,
1501 					     ksz9x31_cable_test_get_pair(pair),
1502 					     ksz9x31_cable_test_fault_length(phydev, val));
1503 }
1504 
1505 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1506 					 bool *finished)
1507 {
1508 	struct kszphy_priv *priv = phydev->priv;
1509 	unsigned long pair_mask = 0xf;
1510 	int retries = 20;
1511 	int pair, ret, rv;
1512 
1513 	*finished = false;
1514 
1515 	/* Try harder if link partner is active */
1516 	while (pair_mask && retries--) {
1517 		for_each_set_bit(pair, &pair_mask, 4) {
1518 			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1519 			if (ret == -EAGAIN)
1520 				continue;
1521 			if (ret < 0)
1522 				return ret;
1523 			clear_bit(pair, &pair_mask);
1524 		}
1525 		/* If link partner is in autonegotiation mode it will send 2ms
1526 		 * of FLPs with at least 6ms of silence.
1527 		 * Add 2ms sleep to have better chances to hit this silence.
1528 		 */
1529 		if (pair_mask)
1530 			usleep_range(2000, 3000);
1531 	}
1532 
1533 	/* Report remaining unfinished pair result as unknown. */
1534 	for_each_set_bit(pair, &pair_mask, 4) {
1535 		ret = ethnl_cable_test_result(phydev,
1536 					      ksz9x31_cable_test_get_pair(pair),
1537 					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1538 	}
1539 
1540 	*finished = true;
1541 
1542 	/* Restore cached bits from before LinkMD got started. */
1543 	rv = phy_modify(phydev, MII_CTRL1000,
1544 			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1545 			priv->vct_ctrl1000);
1546 	if (rv)
1547 		return rv;
1548 
1549 	return ret;
1550 }
1551 
1552 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1553 {
1554 	return 0;
1555 }
1556 
1557 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1558 {
1559 	u16 val;
1560 
1561 	switch (ctrl) {
1562 	case ETH_TP_MDI:
1563 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1564 		break;
1565 	case ETH_TP_MDI_X:
1566 		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1567 		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1568 		 * sheet seems to be missing:
1569 		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1570 		 * 0 = Normal operation (transmit on TX+/TX- pins)
1571 		 */
1572 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1573 		break;
1574 	case ETH_TP_MDI_AUTO:
1575 		val = 0;
1576 		break;
1577 	default:
1578 		return 0;
1579 	}
1580 
1581 	return phy_modify(phydev, MII_BMCR,
1582 			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1583 			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1584 			  KSZ886X_BMCR_HP_MDIX | val);
1585 }
1586 
1587 static int ksz886x_config_aneg(struct phy_device *phydev)
1588 {
1589 	int ret;
1590 
1591 	ret = genphy_config_aneg(phydev);
1592 	if (ret)
1593 		return ret;
1594 
1595 	/* The MDI-X configuration is automatically changed by the PHY after
1596 	 * switching from autoneg off to on. So, take MDI-X configuration under
1597 	 * own control and set it after autoneg configuration was done.
1598 	 */
1599 	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1600 }
1601 
1602 static int ksz886x_mdix_update(struct phy_device *phydev)
1603 {
1604 	int ret;
1605 
1606 	ret = phy_read(phydev, MII_BMCR);
1607 	if (ret < 0)
1608 		return ret;
1609 
1610 	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1611 		if (ret & KSZ886X_BMCR_FORCE_MDI)
1612 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1613 		else
1614 			phydev->mdix_ctrl = ETH_TP_MDI;
1615 	} else {
1616 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1617 	}
1618 
1619 	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1620 	if (ret < 0)
1621 		return ret;
1622 
1623 	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1624 	if (ret & KSZ886X_CTRL_MDIX_STAT)
1625 		phydev->mdix = ETH_TP_MDI_X;
1626 	else
1627 		phydev->mdix = ETH_TP_MDI;
1628 
1629 	return 0;
1630 }
1631 
1632 static int ksz886x_read_status(struct phy_device *phydev)
1633 {
1634 	int ret;
1635 
1636 	ret = ksz886x_mdix_update(phydev);
1637 	if (ret < 0)
1638 		return ret;
1639 
1640 	return genphy_read_status(phydev);
1641 }
1642 
1643 static int kszphy_get_sset_count(struct phy_device *phydev)
1644 {
1645 	return ARRAY_SIZE(kszphy_hw_stats);
1646 }
1647 
1648 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
1649 {
1650 	int i;
1651 
1652 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
1653 		strlcpy(data + i * ETH_GSTRING_LEN,
1654 			kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
1655 	}
1656 }
1657 
1658 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
1659 {
1660 	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
1661 	struct kszphy_priv *priv = phydev->priv;
1662 	int val;
1663 	u64 ret;
1664 
1665 	val = phy_read(phydev, stat.reg);
1666 	if (val < 0) {
1667 		ret = U64_MAX;
1668 	} else {
1669 		val = val & ((1 << stat.bits) - 1);
1670 		priv->stats[i] += val;
1671 		ret = priv->stats[i];
1672 	}
1673 
1674 	return ret;
1675 }
1676 
1677 static void kszphy_get_stats(struct phy_device *phydev,
1678 			     struct ethtool_stats *stats, u64 *data)
1679 {
1680 	int i;
1681 
1682 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
1683 		data[i] = kszphy_get_stat(phydev, i);
1684 }
1685 
1686 static int kszphy_suspend(struct phy_device *phydev)
1687 {
1688 	/* Disable PHY Interrupts */
1689 	if (phy_interrupt_is_valid(phydev)) {
1690 		phydev->interrupts = PHY_INTERRUPT_DISABLED;
1691 		if (phydev->drv->config_intr)
1692 			phydev->drv->config_intr(phydev);
1693 	}
1694 
1695 	return genphy_suspend(phydev);
1696 }
1697 
1698 static void kszphy_parse_led_mode(struct phy_device *phydev)
1699 {
1700 	const struct kszphy_type *type = phydev->drv->driver_data;
1701 	const struct device_node *np = phydev->mdio.dev.of_node;
1702 	struct kszphy_priv *priv = phydev->priv;
1703 	int ret;
1704 
1705 	if (type && type->led_mode_reg) {
1706 		ret = of_property_read_u32(np, "micrel,led-mode",
1707 					   &priv->led_mode);
1708 
1709 		if (ret)
1710 			priv->led_mode = -1;
1711 
1712 		if (priv->led_mode > 3) {
1713 			phydev_err(phydev, "invalid led mode: 0x%02x\n",
1714 				   priv->led_mode);
1715 			priv->led_mode = -1;
1716 		}
1717 	} else {
1718 		priv->led_mode = -1;
1719 	}
1720 }
1721 
1722 static int kszphy_resume(struct phy_device *phydev)
1723 {
1724 	int ret;
1725 
1726 	genphy_resume(phydev);
1727 
1728 	/* After switching from power-down to normal mode, an internal global
1729 	 * reset is automatically generated. Wait a minimum of 1 ms before
1730 	 * read/write access to the PHY registers.
1731 	 */
1732 	usleep_range(1000, 2000);
1733 
1734 	ret = kszphy_config_reset(phydev);
1735 	if (ret)
1736 		return ret;
1737 
1738 	/* Enable PHY Interrupts */
1739 	if (phy_interrupt_is_valid(phydev)) {
1740 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
1741 		if (phydev->drv->config_intr)
1742 			phydev->drv->config_intr(phydev);
1743 	}
1744 
1745 	return 0;
1746 }
1747 
1748 static int kszphy_probe(struct phy_device *phydev)
1749 {
1750 	const struct kszphy_type *type = phydev->drv->driver_data;
1751 	const struct device_node *np = phydev->mdio.dev.of_node;
1752 	struct kszphy_priv *priv;
1753 	struct clk *clk;
1754 
1755 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
1756 	if (!priv)
1757 		return -ENOMEM;
1758 
1759 	phydev->priv = priv;
1760 
1761 	priv->type = type;
1762 
1763 	kszphy_parse_led_mode(phydev);
1764 
1765 	clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref");
1766 	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
1767 	if (!IS_ERR_OR_NULL(clk)) {
1768 		unsigned long rate = clk_get_rate(clk);
1769 		bool rmii_ref_clk_sel_25_mhz;
1770 
1771 		if (type)
1772 			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
1773 		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
1774 				"micrel,rmii-reference-clock-select-25-mhz");
1775 
1776 		if (rate > 24500000 && rate < 25500000) {
1777 			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
1778 		} else if (rate > 49500000 && rate < 50500000) {
1779 			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
1780 		} else {
1781 			phydev_err(phydev, "Clock rate out of range: %ld\n",
1782 				   rate);
1783 			return -EINVAL;
1784 		}
1785 	}
1786 
1787 	if (ksz8041_fiber_mode(phydev))
1788 		phydev->port = PORT_FIBRE;
1789 
1790 	/* Support legacy board-file configuration */
1791 	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
1792 		priv->rmii_ref_clk_sel = true;
1793 		priv->rmii_ref_clk_sel_val = true;
1794 	}
1795 
1796 	return 0;
1797 }
1798 
1799 static int ksz886x_cable_test_start(struct phy_device *phydev)
1800 {
1801 	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
1802 		return -EOPNOTSUPP;
1803 
1804 	/* If autoneg is enabled, we won't be able to test cross pair
1805 	 * short. In this case, the PHY will "detect" a link and
1806 	 * confuse the internal state machine - disable auto neg here.
1807 	 * If autoneg is disabled, we should set the speed to 10mbit.
1808 	 */
1809 	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
1810 }
1811 
1812 static int ksz886x_cable_test_result_trans(u16 status)
1813 {
1814 	switch (FIELD_GET(KSZ8081_LMD_STAT_MASK, status)) {
1815 	case KSZ8081_LMD_STAT_NORMAL:
1816 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1817 	case KSZ8081_LMD_STAT_SHORT:
1818 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1819 	case KSZ8081_LMD_STAT_OPEN:
1820 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1821 	case KSZ8081_LMD_STAT_FAIL:
1822 		fallthrough;
1823 	default:
1824 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1825 	}
1826 }
1827 
1828 static bool ksz886x_cable_test_failed(u16 status)
1829 {
1830 	return FIELD_GET(KSZ8081_LMD_STAT_MASK, status) ==
1831 		KSZ8081_LMD_STAT_FAIL;
1832 }
1833 
1834 static bool ksz886x_cable_test_fault_length_valid(u16 status)
1835 {
1836 	switch (FIELD_GET(KSZ8081_LMD_STAT_MASK, status)) {
1837 	case KSZ8081_LMD_STAT_OPEN:
1838 		fallthrough;
1839 	case KSZ8081_LMD_STAT_SHORT:
1840 		return true;
1841 	}
1842 	return false;
1843 }
1844 
1845 static int ksz886x_cable_test_fault_length(u16 status)
1846 {
1847 	int dt;
1848 
1849 	/* According to the data sheet the distance to the fault is
1850 	 * DELTA_TIME * 0.4 meters.
1851 	 */
1852 	dt = FIELD_GET(KSZ8081_LMD_DELTA_TIME_MASK, status);
1853 
1854 	return (dt * 400) / 10;
1855 }
1856 
1857 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
1858 {
1859 	int val, ret;
1860 
1861 	ret = phy_read_poll_timeout(phydev, KSZ8081_LMD, val,
1862 				    !(val & KSZ8081_LMD_ENABLE_TEST),
1863 				    30000, 100000, true);
1864 
1865 	return ret < 0 ? ret : 0;
1866 }
1867 
1868 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
1869 {
1870 	static const int ethtool_pair[] = {
1871 		ETHTOOL_A_CABLE_PAIR_A,
1872 		ETHTOOL_A_CABLE_PAIR_B,
1873 	};
1874 	int ret, val, mdix;
1875 
1876 	/* There is no way to choice the pair, like we do one ksz9031.
1877 	 * We can workaround this limitation by using the MDI-X functionality.
1878 	 */
1879 	if (pair == 0)
1880 		mdix = ETH_TP_MDI;
1881 	else
1882 		mdix = ETH_TP_MDI_X;
1883 
1884 	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
1885 	case PHY_ID_KSZ8081:
1886 		ret = ksz8081_config_mdix(phydev, mdix);
1887 		break;
1888 	case PHY_ID_KSZ886X:
1889 		ret = ksz886x_config_mdix(phydev, mdix);
1890 		break;
1891 	default:
1892 		ret = -ENODEV;
1893 	}
1894 
1895 	if (ret)
1896 		return ret;
1897 
1898 	/* Now we are ready to fire. This command will send a 100ns pulse
1899 	 * to the pair.
1900 	 */
1901 	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
1902 	if (ret)
1903 		return ret;
1904 
1905 	ret = ksz886x_cable_test_wait_for_completion(phydev);
1906 	if (ret)
1907 		return ret;
1908 
1909 	val = phy_read(phydev, KSZ8081_LMD);
1910 	if (val < 0)
1911 		return val;
1912 
1913 	if (ksz886x_cable_test_failed(val))
1914 		return -EAGAIN;
1915 
1916 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
1917 				      ksz886x_cable_test_result_trans(val));
1918 	if (ret)
1919 		return ret;
1920 
1921 	if (!ksz886x_cable_test_fault_length_valid(val))
1922 		return 0;
1923 
1924 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair],
1925 					     ksz886x_cable_test_fault_length(val));
1926 }
1927 
1928 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
1929 					 bool *finished)
1930 {
1931 	unsigned long pair_mask = 0x3;
1932 	int retries = 20;
1933 	int pair, ret;
1934 
1935 	*finished = false;
1936 
1937 	/* Try harder if link partner is active */
1938 	while (pair_mask && retries--) {
1939 		for_each_set_bit(pair, &pair_mask, 4) {
1940 			ret = ksz886x_cable_test_one_pair(phydev, pair);
1941 			if (ret == -EAGAIN)
1942 				continue;
1943 			if (ret < 0)
1944 				return ret;
1945 			clear_bit(pair, &pair_mask);
1946 		}
1947 		/* If link partner is in autonegotiation mode it will send 2ms
1948 		 * of FLPs with at least 6ms of silence.
1949 		 * Add 2ms sleep to have better chances to hit this silence.
1950 		 */
1951 		if (pair_mask)
1952 			msleep(2);
1953 	}
1954 
1955 	*finished = true;
1956 
1957 	return ret;
1958 }
1959 
1960 #define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
1961 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
1962 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
1963 
1964 #define LAN8814_QSGMII_SOFT_RESET			0x43
1965 #define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
1966 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
1967 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
1968 #define LAN8814_ALIGN_SWAP				0x4a
1969 #define LAN8814_ALIGN_TX_A_B_SWAP			0x1
1970 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
1971 
1972 #define LAN8804_ALIGN_SWAP				0x4a
1973 #define LAN8804_ALIGN_TX_A_B_SWAP			0x1
1974 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
1975 #define LAN8814_CLOCK_MANAGEMENT			0xd
1976 #define LAN8814_LINK_QUALITY				0x8e
1977 
1978 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
1979 {
1980 	int data;
1981 
1982 	phy_lock_mdio_bus(phydev);
1983 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
1984 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
1985 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
1986 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
1987 	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
1988 	phy_unlock_mdio_bus(phydev);
1989 
1990 	return data;
1991 }
1992 
1993 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
1994 				 u16 val)
1995 {
1996 	phy_lock_mdio_bus(phydev);
1997 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
1998 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
1999 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2000 		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2001 
2002 	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2003 	if (val != 0)
2004 		phydev_err(phydev, "Error: phy_write has returned error %d\n",
2005 			   val);
2006 	phy_unlock_mdio_bus(phydev);
2007 	return val;
2008 }
2009 
2010 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2011 {
2012 	u16 val = 0;
2013 
2014 	if (enable)
2015 		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2016 		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2017 		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2018 		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2019 
2020 	return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2021 }
2022 
2023 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2024 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2025 {
2026 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2027 	*seconds = (*seconds << 16) |
2028 		   lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2029 
2030 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2031 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2032 			lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2033 
2034 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2035 }
2036 
2037 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2038 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2039 {
2040 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2041 	*seconds = *seconds << 16 |
2042 		   lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2043 
2044 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2045 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2046 			lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2047 
2048 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2049 }
2050 
2051 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
2052 {
2053 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2054 	struct phy_device *phydev = ptp_priv->phydev;
2055 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2056 
2057 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2058 				SOF_TIMESTAMPING_RX_HARDWARE |
2059 				SOF_TIMESTAMPING_RAW_HARDWARE;
2060 
2061 	info->phc_index = ptp_clock_index(shared->ptp_clock);
2062 
2063 	info->tx_types =
2064 		(1 << HWTSTAMP_TX_OFF) |
2065 		(1 << HWTSTAMP_TX_ON) |
2066 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
2067 
2068 	info->rx_filters =
2069 		(1 << HWTSTAMP_FILTER_NONE) |
2070 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2071 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2072 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2073 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2074 
2075 	return 0;
2076 }
2077 
2078 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2079 {
2080 	int i;
2081 
2082 	for (i = 0; i < FIFO_SIZE; ++i)
2083 		lanphy_read_page_reg(phydev, 5,
2084 				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2085 
2086 	/* Read to clear overflow status bit */
2087 	lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2088 }
2089 
2090 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
2091 {
2092 	struct kszphy_ptp_priv *ptp_priv =
2093 			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2094 	struct phy_device *phydev = ptp_priv->phydev;
2095 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2096 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2097 	struct hwtstamp_config config;
2098 	int txcfg = 0, rxcfg = 0;
2099 	int pkt_ts_enable;
2100 
2101 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2102 		return -EFAULT;
2103 
2104 	ptp_priv->hwts_tx_type = config.tx_type;
2105 	ptp_priv->rx_filter = config.rx_filter;
2106 
2107 	switch (config.rx_filter) {
2108 	case HWTSTAMP_FILTER_NONE:
2109 		ptp_priv->layer = 0;
2110 		ptp_priv->version = 0;
2111 		break;
2112 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2113 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2114 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2115 		ptp_priv->layer = PTP_CLASS_L4;
2116 		ptp_priv->version = PTP_CLASS_V2;
2117 		break;
2118 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2119 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2120 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2121 		ptp_priv->layer = PTP_CLASS_L2;
2122 		ptp_priv->version = PTP_CLASS_V2;
2123 		break;
2124 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2125 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2126 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2127 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2128 		ptp_priv->version = PTP_CLASS_V2;
2129 		break;
2130 	default:
2131 		return -ERANGE;
2132 	}
2133 
2134 	if (ptp_priv->layer & PTP_CLASS_L2) {
2135 		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2136 		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2137 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
2138 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2139 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2140 	}
2141 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2142 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2143 
2144 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2145 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2146 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2147 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2148 
2149 	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC)
2150 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2151 				      PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2152 
2153 	if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2154 		lan8814_config_ts_intr(ptp_priv->phydev, true);
2155 	else
2156 		lan8814_config_ts_intr(ptp_priv->phydev, false);
2157 
2158 	mutex_lock(&shared->shared_lock);
2159 	if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2160 		shared->ref++;
2161 	else
2162 		shared->ref--;
2163 
2164 	if (shared->ref)
2165 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2166 				      PTP_CMD_CTL_PTP_ENABLE_);
2167 	else
2168 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2169 				      PTP_CMD_CTL_PTP_DISABLE_);
2170 	mutex_unlock(&shared->shared_lock);
2171 
2172 	/* In case of multiple starts and stops, these needs to be cleared */
2173 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2174 		list_del(&rx_ts->list);
2175 		kfree(rx_ts);
2176 	}
2177 	skb_queue_purge(&ptp_priv->rx_queue);
2178 	skb_queue_purge(&ptp_priv->tx_queue);
2179 
2180 	lan8814_flush_fifo(ptp_priv->phydev, false);
2181 	lan8814_flush_fifo(ptp_priv->phydev, true);
2182 
2183 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
2184 }
2185 
2186 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2187 			     struct sk_buff *skb, int type)
2188 {
2189 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2190 
2191 	switch (ptp_priv->hwts_tx_type) {
2192 	case HWTSTAMP_TX_ONESTEP_SYNC:
2193 		if (ptp_msg_is_sync(skb, type)) {
2194 			kfree_skb(skb);
2195 			return;
2196 		}
2197 		fallthrough;
2198 	case HWTSTAMP_TX_ON:
2199 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2200 		skb_queue_tail(&ptp_priv->tx_queue, skb);
2201 		break;
2202 	case HWTSTAMP_TX_OFF:
2203 	default:
2204 		kfree_skb(skb);
2205 		break;
2206 	}
2207 }
2208 
2209 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2210 {
2211 	struct ptp_header *ptp_header;
2212 	u32 type;
2213 
2214 	skb_push(skb, ETH_HLEN);
2215 	type = ptp_classify_raw(skb);
2216 	ptp_header = ptp_parse_header(skb, type);
2217 	skb_pull_inline(skb, ETH_HLEN);
2218 
2219 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2220 }
2221 
2222 static bool lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
2223 				struct sk_buff *skb)
2224 {
2225 	struct skb_shared_hwtstamps *shhwtstamps;
2226 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2227 	unsigned long flags;
2228 	bool ret = false;
2229 	u16 skb_sig;
2230 
2231 	lan8814_get_sig_rx(skb, &skb_sig);
2232 
2233 	/* Iterate over all RX timestamps and match it with the received skbs */
2234 	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2235 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2236 		/* Check if we found the signature we were looking for. */
2237 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2238 			continue;
2239 
2240 		shhwtstamps = skb_hwtstamps(skb);
2241 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2242 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2243 						  rx_ts->nsec);
2244 		list_del(&rx_ts->list);
2245 		kfree(rx_ts);
2246 
2247 		ret = true;
2248 		break;
2249 	}
2250 	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2251 
2252 	if (ret)
2253 		netif_rx(skb);
2254 	return ret;
2255 }
2256 
2257 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2258 {
2259 	struct kszphy_ptp_priv *ptp_priv =
2260 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2261 
2262 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2263 	    type == PTP_CLASS_NONE)
2264 		return false;
2265 
2266 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2267 		return false;
2268 
2269 	/* If we failed to match then add it to the queue for when the timestamp
2270 	 * will come
2271 	 */
2272 	if (!lan8814_match_rx_ts(ptp_priv, skb))
2273 		skb_queue_tail(&ptp_priv->rx_queue, skb);
2274 
2275 	return true;
2276 }
2277 
2278 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2279 				  u32 seconds, u32 nano_seconds)
2280 {
2281 	u32 sec_low, sec_high, nsec_low, nsec_high;
2282 
2283 	sec_low = seconds & 0xffff;
2284 	sec_high = (seconds >> 16) & 0xffff;
2285 	nsec_low = nano_seconds & 0xffff;
2286 	nsec_high = (nano_seconds >> 16) & 0x3fff;
2287 
2288 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low);
2289 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high);
2290 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low);
2291 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high);
2292 
2293 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2294 }
2295 
2296 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2297 				  u32 *seconds, u32 *nano_seconds)
2298 {
2299 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2300 
2301 	*seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2302 	*seconds = (*seconds << 16) |
2303 		   lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2304 
2305 	*nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2306 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2307 			lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2308 }
2309 
2310 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2311 				   struct timespec64 *ts)
2312 {
2313 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2314 							  ptp_clock_info);
2315 	struct phy_device *phydev = shared->phydev;
2316 	u32 nano_seconds;
2317 	u32 seconds;
2318 
2319 	mutex_lock(&shared->shared_lock);
2320 	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2321 	mutex_unlock(&shared->shared_lock);
2322 	ts->tv_sec = seconds;
2323 	ts->tv_nsec = nano_seconds;
2324 
2325 	return 0;
2326 }
2327 
2328 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2329 				   const struct timespec64 *ts)
2330 {
2331 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2332 							  ptp_clock_info);
2333 	struct phy_device *phydev = shared->phydev;
2334 
2335 	mutex_lock(&shared->shared_lock);
2336 	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2337 	mutex_unlock(&shared->shared_lock);
2338 
2339 	return 0;
2340 }
2341 
2342 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2343 				   s64 time_step_ns)
2344 {
2345 	u32 nano_seconds_step;
2346 	u64 abs_time_step_ns;
2347 	u32 unsigned_seconds;
2348 	u32 nano_seconds;
2349 	u32 remainder;
2350 	s32 seconds;
2351 
2352 	if (time_step_ns >  15000000000LL) {
2353 		/* convert to clock set */
2354 		lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2355 		unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2356 						&remainder);
2357 		nano_seconds += remainder;
2358 		if (nano_seconds >= 1000000000) {
2359 			unsigned_seconds++;
2360 			nano_seconds -= 1000000000;
2361 		}
2362 		lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds);
2363 		return;
2364 	} else if (time_step_ns < -15000000000LL) {
2365 		/* convert to clock set */
2366 		time_step_ns = -time_step_ns;
2367 
2368 		lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2369 		unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2370 						&remainder);
2371 		nano_seconds_step = remainder;
2372 		if (nano_seconds < nano_seconds_step) {
2373 			unsigned_seconds--;
2374 			nano_seconds += 1000000000;
2375 		}
2376 		nano_seconds -= nano_seconds_step;
2377 		lan8814_ptp_clock_set(phydev, unsigned_seconds,
2378 				      nano_seconds);
2379 		return;
2380 	}
2381 
2382 	/* do clock step */
2383 	if (time_step_ns >= 0) {
2384 		abs_time_step_ns = (u64)time_step_ns;
2385 		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2386 					   &remainder);
2387 		nano_seconds = remainder;
2388 	} else {
2389 		abs_time_step_ns = (u64)(-time_step_ns);
2390 		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2391 			    &remainder));
2392 		nano_seconds = remainder;
2393 		if (nano_seconds > 0) {
2394 			/* subtracting nano seconds is not allowed
2395 			 * convert to subtracting from seconds,
2396 			 * and adding to nanoseconds
2397 			 */
2398 			seconds--;
2399 			nano_seconds = (1000000000 - nano_seconds);
2400 		}
2401 	}
2402 
2403 	if (nano_seconds > 0) {
2404 		/* add 8 ns to cover the likely normal increment */
2405 		nano_seconds += 8;
2406 	}
2407 
2408 	if (nano_seconds >= 1000000000) {
2409 		/* carry into seconds */
2410 		seconds++;
2411 		nano_seconds -= 1000000000;
2412 	}
2413 
2414 	while (seconds) {
2415 		if (seconds > 0) {
2416 			u32 adjustment_value = (u32)seconds;
2417 			u16 adjustment_value_lo, adjustment_value_hi;
2418 
2419 			if (adjustment_value > 0xF)
2420 				adjustment_value = 0xF;
2421 
2422 			adjustment_value_lo = adjustment_value & 0xffff;
2423 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2424 
2425 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2426 					      adjustment_value_lo);
2427 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2428 					      PTP_LTC_STEP_ADJ_DIR_ |
2429 					      adjustment_value_hi);
2430 			seconds -= ((s32)adjustment_value);
2431 		} else {
2432 			u32 adjustment_value = (u32)(-seconds);
2433 			u16 adjustment_value_lo, adjustment_value_hi;
2434 
2435 			if (adjustment_value > 0xF)
2436 				adjustment_value = 0xF;
2437 
2438 			adjustment_value_lo = adjustment_value & 0xffff;
2439 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2440 
2441 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2442 					      adjustment_value_lo);
2443 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2444 					      adjustment_value_hi);
2445 			seconds += ((s32)adjustment_value);
2446 		}
2447 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2448 				      PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2449 	}
2450 	if (nano_seconds) {
2451 		u16 nano_seconds_lo;
2452 		u16 nano_seconds_hi;
2453 
2454 		nano_seconds_lo = nano_seconds & 0xffff;
2455 		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2456 
2457 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2458 				      nano_seconds_lo);
2459 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2460 				      PTP_LTC_STEP_ADJ_DIR_ |
2461 				      nano_seconds_hi);
2462 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2463 				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2464 	}
2465 }
2466 
2467 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2468 {
2469 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2470 							  ptp_clock_info);
2471 	struct phy_device *phydev = shared->phydev;
2472 
2473 	mutex_lock(&shared->shared_lock);
2474 	lan8814_ptp_clock_step(phydev, delta);
2475 	mutex_unlock(&shared->shared_lock);
2476 
2477 	return 0;
2478 }
2479 
2480 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
2481 {
2482 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2483 							  ptp_clock_info);
2484 	struct phy_device *phydev = shared->phydev;
2485 	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
2486 	bool positive = true;
2487 	u32 kszphy_rate_adj;
2488 
2489 	if (scaled_ppm < 0) {
2490 		scaled_ppm = -scaled_ppm;
2491 		positive = false;
2492 	}
2493 
2494 	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
2495 	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
2496 
2497 	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
2498 	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
2499 
2500 	if (positive)
2501 		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
2502 
2503 	mutex_lock(&shared->shared_lock);
2504 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
2505 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
2506 	mutex_unlock(&shared->shared_lock);
2507 
2508 	return 0;
2509 }
2510 
2511 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
2512 {
2513 	struct ptp_header *ptp_header;
2514 	u32 type;
2515 
2516 	type = ptp_classify_raw(skb);
2517 	ptp_header = ptp_parse_header(skb, type);
2518 
2519 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2520 }
2521 
2522 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
2523 {
2524 	struct phy_device *phydev = ptp_priv->phydev;
2525 	struct skb_shared_hwtstamps shhwtstamps;
2526 	struct sk_buff *skb, *skb_tmp;
2527 	unsigned long flags;
2528 	u32 seconds, nsec;
2529 	bool ret = false;
2530 	u16 skb_sig;
2531 	u16 seq_id;
2532 
2533 	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
2534 
2535 	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
2536 	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
2537 		lan8814_get_sig_tx(skb, &skb_sig);
2538 
2539 		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
2540 			continue;
2541 
2542 		__skb_unlink(skb, &ptp_priv->tx_queue);
2543 		ret = true;
2544 		break;
2545 	}
2546 	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
2547 
2548 	if (ret) {
2549 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2550 		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
2551 		skb_complete_tx_timestamp(skb, &shhwtstamps);
2552 	}
2553 }
2554 
2555 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
2556 {
2557 	struct phy_device *phydev = ptp_priv->phydev;
2558 	u32 reg;
2559 
2560 	do {
2561 		lan8814_dequeue_tx_skb(ptp_priv);
2562 
2563 		/* If other timestamps are available in the FIFO,
2564 		 * process them.
2565 		 */
2566 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2567 	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
2568 }
2569 
2570 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
2571 			      struct lan8814_ptp_rx_ts *rx_ts)
2572 {
2573 	struct skb_shared_hwtstamps *shhwtstamps;
2574 	struct sk_buff *skb, *skb_tmp;
2575 	unsigned long flags;
2576 	bool ret = false;
2577 	u16 skb_sig;
2578 
2579 	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
2580 	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
2581 		lan8814_get_sig_rx(skb, &skb_sig);
2582 
2583 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2584 			continue;
2585 
2586 		__skb_unlink(skb, &ptp_priv->rx_queue);
2587 
2588 		ret = true;
2589 		break;
2590 	}
2591 	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
2592 
2593 	if (ret) {
2594 		shhwtstamps = skb_hwtstamps(skb);
2595 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2596 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
2597 		netif_rx(skb);
2598 	}
2599 
2600 	return ret;
2601 }
2602 
2603 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
2604 {
2605 	struct phy_device *phydev = ptp_priv->phydev;
2606 	struct lan8814_ptp_rx_ts *rx_ts;
2607 	unsigned long flags;
2608 	u32 reg;
2609 
2610 	do {
2611 		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
2612 		if (!rx_ts)
2613 			return;
2614 
2615 		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
2616 				      &rx_ts->seq_id);
2617 
2618 		/* If we failed to match the skb add it to the queue for when
2619 		 * the frame will come
2620 		 */
2621 		if (!lan8814_match_skb(ptp_priv, rx_ts)) {
2622 			spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2623 			list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
2624 			spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2625 		} else {
2626 			kfree(rx_ts);
2627 		}
2628 
2629 		/* If other timestamps are available in the FIFO,
2630 		 * process them.
2631 		 */
2632 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2633 	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
2634 }
2635 
2636 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev)
2637 {
2638 	struct kszphy_priv *priv = phydev->priv;
2639 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2640 	u16 status;
2641 
2642 	status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2643 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
2644 		lan8814_get_tx_ts(ptp_priv);
2645 
2646 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
2647 		lan8814_get_rx_ts(ptp_priv);
2648 
2649 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
2650 		lan8814_flush_fifo(phydev, true);
2651 		skb_queue_purge(&ptp_priv->tx_queue);
2652 	}
2653 
2654 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
2655 		lan8814_flush_fifo(phydev, false);
2656 		skb_queue_purge(&ptp_priv->rx_queue);
2657 	}
2658 }
2659 
2660 static int lan8804_config_init(struct phy_device *phydev)
2661 {
2662 	int val;
2663 
2664 	/* MDI-X setting for swap A,B transmit */
2665 	val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
2666 	val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
2667 	val |= LAN8804_ALIGN_TX_A_B_SWAP;
2668 	lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
2669 
2670 	/* Make sure that the PHY will not stop generating the clock when the
2671 	 * link partner goes down
2672 	 */
2673 	lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
2674 	lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
2675 
2676 	return 0;
2677 }
2678 
2679 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
2680 {
2681 	int irq_status, tsu_irq_status;
2682 
2683 	irq_status = phy_read(phydev, LAN8814_INTS);
2684 	if (irq_status > 0 && (irq_status & LAN8814_INT_LINK))
2685 		phy_trigger_machine(phydev);
2686 
2687 	if (irq_status < 0) {
2688 		phy_error(phydev);
2689 		return IRQ_NONE;
2690 	}
2691 
2692 	while (1) {
2693 		tsu_irq_status = lanphy_read_page_reg(phydev, 4,
2694 						      LAN8814_INTR_STS_REG);
2695 
2696 		if (tsu_irq_status > 0 &&
2697 		    (tsu_irq_status & (LAN8814_INTR_STS_REG_1588_TSU0_ |
2698 				       LAN8814_INTR_STS_REG_1588_TSU1_ |
2699 				       LAN8814_INTR_STS_REG_1588_TSU2_ |
2700 				       LAN8814_INTR_STS_REG_1588_TSU3_)))
2701 			lan8814_handle_ptp_interrupt(phydev);
2702 		else
2703 			break;
2704 	}
2705 	return IRQ_HANDLED;
2706 }
2707 
2708 static int lan8814_ack_interrupt(struct phy_device *phydev)
2709 {
2710 	/* bit[12..0] int status, which is a read and clear register. */
2711 	int rc;
2712 
2713 	rc = phy_read(phydev, LAN8814_INTS);
2714 
2715 	return (rc < 0) ? rc : 0;
2716 }
2717 
2718 static int lan8814_config_intr(struct phy_device *phydev)
2719 {
2720 	int err;
2721 
2722 	lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
2723 			      LAN8814_INTR_CTRL_REG_POLARITY |
2724 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
2725 
2726 	/* enable / disable interrupts */
2727 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
2728 		err = lan8814_ack_interrupt(phydev);
2729 		if (err)
2730 			return err;
2731 
2732 		err =  phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
2733 	} else {
2734 		err =  phy_write(phydev, LAN8814_INTC, 0);
2735 		if (err)
2736 			return err;
2737 
2738 		err = lan8814_ack_interrupt(phydev);
2739 	}
2740 
2741 	return err;
2742 }
2743 
2744 static void lan8814_ptp_init(struct phy_device *phydev)
2745 {
2746 	struct kszphy_priv *priv = phydev->priv;
2747 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2748 	u32 temp;
2749 
2750 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
2751 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
2752 		return;
2753 
2754 	lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
2755 
2756 	temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
2757 	temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
2758 	lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
2759 
2760 	temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
2761 	temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
2762 	lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
2763 
2764 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
2765 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
2766 
2767 	/* Removing default registers configs related to L2 and IP */
2768 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
2769 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
2770 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
2771 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
2772 
2773 	skb_queue_head_init(&ptp_priv->tx_queue);
2774 	skb_queue_head_init(&ptp_priv->rx_queue);
2775 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
2776 	spin_lock_init(&ptp_priv->rx_ts_lock);
2777 
2778 	ptp_priv->phydev = phydev;
2779 
2780 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
2781 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
2782 	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
2783 	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
2784 
2785 	phydev->mii_ts = &ptp_priv->mii_ts;
2786 }
2787 
2788 static int lan8814_ptp_probe_once(struct phy_device *phydev)
2789 {
2790 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2791 
2792 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
2793 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
2794 		return 0;
2795 
2796 	/* Initialise shared lock for clock*/
2797 	mutex_init(&shared->shared_lock);
2798 
2799 	shared->ptp_clock_info.owner = THIS_MODULE;
2800 	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
2801 	shared->ptp_clock_info.max_adj = 31249999;
2802 	shared->ptp_clock_info.n_alarm = 0;
2803 	shared->ptp_clock_info.n_ext_ts = 0;
2804 	shared->ptp_clock_info.n_pins = 0;
2805 	shared->ptp_clock_info.pps = 0;
2806 	shared->ptp_clock_info.pin_config = NULL;
2807 	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
2808 	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
2809 	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
2810 	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
2811 	shared->ptp_clock_info.getcrosststamp = NULL;
2812 
2813 	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
2814 					       &phydev->mdio.dev);
2815 	if (IS_ERR_OR_NULL(shared->ptp_clock)) {
2816 		phydev_err(phydev, "ptp_clock_register failed %lu\n",
2817 			   PTR_ERR(shared->ptp_clock));
2818 		return -EINVAL;
2819 	}
2820 
2821 	phydev_dbg(phydev, "successfully registered ptp clock\n");
2822 
2823 	shared->phydev = phydev;
2824 
2825 	/* The EP.4 is shared between all the PHYs in the package and also it
2826 	 * can be accessed by any of the PHYs
2827 	 */
2828 	lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
2829 	lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
2830 			      PTP_OPERATING_MODE_STANDALONE_);
2831 
2832 	return 0;
2833 }
2834 
2835 static void lan8814_setup_led(struct phy_device *phydev, int val)
2836 {
2837 	int temp;
2838 
2839 	temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
2840 
2841 	if (val)
2842 		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
2843 	else
2844 		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
2845 
2846 	lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
2847 }
2848 
2849 static int lan8814_config_init(struct phy_device *phydev)
2850 {
2851 	struct kszphy_priv *lan8814 = phydev->priv;
2852 	int val;
2853 
2854 	/* Reset the PHY */
2855 	val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
2856 	val |= LAN8814_QSGMII_SOFT_RESET_BIT;
2857 	lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
2858 
2859 	/* Disable ANEG with QSGMII PCS Host side */
2860 	val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
2861 	val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
2862 	lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
2863 
2864 	/* MDI-X setting for swap A,B transmit */
2865 	val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
2866 	val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
2867 	val |= LAN8814_ALIGN_TX_A_B_SWAP;
2868 	lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
2869 
2870 	if (lan8814->led_mode >= 0)
2871 		lan8814_setup_led(phydev, lan8814->led_mode);
2872 
2873 	return 0;
2874 }
2875 
2876 static int lan8814_release_coma_mode(struct phy_device *phydev)
2877 {
2878 	struct gpio_desc *gpiod;
2879 
2880 	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
2881 					GPIOD_OUT_HIGH_OPEN_DRAIN);
2882 	if (IS_ERR(gpiod))
2883 		return PTR_ERR(gpiod);
2884 
2885 	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
2886 	gpiod_set_value_cansleep(gpiod, 0);
2887 
2888 	return 0;
2889 }
2890 
2891 static int lan8814_probe(struct phy_device *phydev)
2892 {
2893 	const struct kszphy_type *type = phydev->drv->driver_data;
2894 	struct kszphy_priv *priv;
2895 	u16 addr;
2896 	int err;
2897 
2898 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2899 	if (!priv)
2900 		return -ENOMEM;
2901 
2902 	phydev->priv = priv;
2903 
2904 	priv->type = type;
2905 
2906 	kszphy_parse_led_mode(phydev);
2907 
2908 	/* Strap-in value for PHY address, below register read gives starting
2909 	 * phy address value
2910 	 */
2911 	addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
2912 	devm_phy_package_join(&phydev->mdio.dev, phydev,
2913 			      addr, sizeof(struct lan8814_shared_priv));
2914 
2915 	if (phy_package_init_once(phydev)) {
2916 		err = lan8814_release_coma_mode(phydev);
2917 		if (err)
2918 			return err;
2919 
2920 		err = lan8814_ptp_probe_once(phydev);
2921 		if (err)
2922 			return err;
2923 	}
2924 
2925 	lan8814_ptp_init(phydev);
2926 
2927 	return 0;
2928 }
2929 
2930 static struct phy_driver ksphy_driver[] = {
2931 {
2932 	.phy_id		= PHY_ID_KS8737,
2933 	.phy_id_mask	= MICREL_PHY_ID_MASK,
2934 	.name		= "Micrel KS8737",
2935 	/* PHY_BASIC_FEATURES */
2936 	.driver_data	= &ks8737_type,
2937 	.probe		= kszphy_probe,
2938 	.config_init	= kszphy_config_init,
2939 	.config_intr	= kszphy_config_intr,
2940 	.handle_interrupt = kszphy_handle_interrupt,
2941 	.suspend	= kszphy_suspend,
2942 	.resume		= kszphy_resume,
2943 }, {
2944 	.phy_id		= PHY_ID_KSZ8021,
2945 	.phy_id_mask	= 0x00ffffff,
2946 	.name		= "Micrel KSZ8021 or KSZ8031",
2947 	/* PHY_BASIC_FEATURES */
2948 	.driver_data	= &ksz8021_type,
2949 	.probe		= kszphy_probe,
2950 	.config_init	= kszphy_config_init,
2951 	.config_intr	= kszphy_config_intr,
2952 	.handle_interrupt = kszphy_handle_interrupt,
2953 	.get_sset_count = kszphy_get_sset_count,
2954 	.get_strings	= kszphy_get_strings,
2955 	.get_stats	= kszphy_get_stats,
2956 	.suspend	= kszphy_suspend,
2957 	.resume		= kszphy_resume,
2958 }, {
2959 	.phy_id		= PHY_ID_KSZ8031,
2960 	.phy_id_mask	= 0x00ffffff,
2961 	.name		= "Micrel KSZ8031",
2962 	/* PHY_BASIC_FEATURES */
2963 	.driver_data	= &ksz8021_type,
2964 	.probe		= kszphy_probe,
2965 	.config_init	= kszphy_config_init,
2966 	.config_intr	= kszphy_config_intr,
2967 	.handle_interrupt = kszphy_handle_interrupt,
2968 	.get_sset_count = kszphy_get_sset_count,
2969 	.get_strings	= kszphy_get_strings,
2970 	.get_stats	= kszphy_get_stats,
2971 	.suspend	= kszphy_suspend,
2972 	.resume		= kszphy_resume,
2973 }, {
2974 	.phy_id		= PHY_ID_KSZ8041,
2975 	.phy_id_mask	= MICREL_PHY_ID_MASK,
2976 	.name		= "Micrel KSZ8041",
2977 	/* PHY_BASIC_FEATURES */
2978 	.driver_data	= &ksz8041_type,
2979 	.probe		= kszphy_probe,
2980 	.config_init	= ksz8041_config_init,
2981 	.config_aneg	= ksz8041_config_aneg,
2982 	.config_intr	= kszphy_config_intr,
2983 	.handle_interrupt = kszphy_handle_interrupt,
2984 	.get_sset_count = kszphy_get_sset_count,
2985 	.get_strings	= kszphy_get_strings,
2986 	.get_stats	= kszphy_get_stats,
2987 	/* No suspend/resume callbacks because of errata DS80000700A,
2988 	 * receiver error following software power down.
2989 	 */
2990 }, {
2991 	.phy_id		= PHY_ID_KSZ8041RNLI,
2992 	.phy_id_mask	= MICREL_PHY_ID_MASK,
2993 	.name		= "Micrel KSZ8041RNLI",
2994 	/* PHY_BASIC_FEATURES */
2995 	.driver_data	= &ksz8041_type,
2996 	.probe		= kszphy_probe,
2997 	.config_init	= kszphy_config_init,
2998 	.config_intr	= kszphy_config_intr,
2999 	.handle_interrupt = kszphy_handle_interrupt,
3000 	.get_sset_count = kszphy_get_sset_count,
3001 	.get_strings	= kszphy_get_strings,
3002 	.get_stats	= kszphy_get_stats,
3003 	.suspend	= kszphy_suspend,
3004 	.resume		= kszphy_resume,
3005 }, {
3006 	.name		= "Micrel KSZ8051",
3007 	/* PHY_BASIC_FEATURES */
3008 	.driver_data	= &ksz8051_type,
3009 	.probe		= kszphy_probe,
3010 	.config_init	= kszphy_config_init,
3011 	.config_intr	= kszphy_config_intr,
3012 	.handle_interrupt = kszphy_handle_interrupt,
3013 	.get_sset_count = kszphy_get_sset_count,
3014 	.get_strings	= kszphy_get_strings,
3015 	.get_stats	= kszphy_get_stats,
3016 	.match_phy_device = ksz8051_match_phy_device,
3017 	.suspend	= kszphy_suspend,
3018 	.resume		= kszphy_resume,
3019 }, {
3020 	.phy_id		= PHY_ID_KSZ8001,
3021 	.name		= "Micrel KSZ8001 or KS8721",
3022 	.phy_id_mask	= 0x00fffffc,
3023 	/* PHY_BASIC_FEATURES */
3024 	.driver_data	= &ksz8041_type,
3025 	.probe		= kszphy_probe,
3026 	.config_init	= kszphy_config_init,
3027 	.config_intr	= kszphy_config_intr,
3028 	.handle_interrupt = kszphy_handle_interrupt,
3029 	.get_sset_count = kszphy_get_sset_count,
3030 	.get_strings	= kszphy_get_strings,
3031 	.get_stats	= kszphy_get_stats,
3032 	.suspend	= kszphy_suspend,
3033 	.resume		= kszphy_resume,
3034 }, {
3035 	.phy_id		= PHY_ID_KSZ8081,
3036 	.name		= "Micrel KSZ8081 or KSZ8091",
3037 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3038 	.flags		= PHY_POLL_CABLE_TEST,
3039 	/* PHY_BASIC_FEATURES */
3040 	.driver_data	= &ksz8081_type,
3041 	.probe		= kszphy_probe,
3042 	.config_init	= ksz8081_config_init,
3043 	.soft_reset	= genphy_soft_reset,
3044 	.config_aneg	= ksz8081_config_aneg,
3045 	.read_status	= ksz8081_read_status,
3046 	.config_intr	= kszphy_config_intr,
3047 	.handle_interrupt = kszphy_handle_interrupt,
3048 	.get_sset_count = kszphy_get_sset_count,
3049 	.get_strings	= kszphy_get_strings,
3050 	.get_stats	= kszphy_get_stats,
3051 	.suspend	= kszphy_suspend,
3052 	.resume		= kszphy_resume,
3053 	.cable_test_start	= ksz886x_cable_test_start,
3054 	.cable_test_get_status	= ksz886x_cable_test_get_status,
3055 }, {
3056 	.phy_id		= PHY_ID_KSZ8061,
3057 	.name		= "Micrel KSZ8061",
3058 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3059 	/* PHY_BASIC_FEATURES */
3060 	.probe		= kszphy_probe,
3061 	.config_init	= ksz8061_config_init,
3062 	.config_intr	= kszphy_config_intr,
3063 	.handle_interrupt = kszphy_handle_interrupt,
3064 	.suspend	= kszphy_suspend,
3065 	.resume		= kszphy_resume,
3066 }, {
3067 	.phy_id		= PHY_ID_KSZ9021,
3068 	.phy_id_mask	= 0x000ffffe,
3069 	.name		= "Micrel KSZ9021 Gigabit PHY",
3070 	/* PHY_GBIT_FEATURES */
3071 	.driver_data	= &ksz9021_type,
3072 	.probe		= kszphy_probe,
3073 	.get_features	= ksz9031_get_features,
3074 	.config_init	= ksz9021_config_init,
3075 	.config_intr	= kszphy_config_intr,
3076 	.handle_interrupt = kszphy_handle_interrupt,
3077 	.get_sset_count = kszphy_get_sset_count,
3078 	.get_strings	= kszphy_get_strings,
3079 	.get_stats	= kszphy_get_stats,
3080 	.suspend	= kszphy_suspend,
3081 	.resume		= kszphy_resume,
3082 	.read_mmd	= genphy_read_mmd_unsupported,
3083 	.write_mmd	= genphy_write_mmd_unsupported,
3084 }, {
3085 	.phy_id		= PHY_ID_KSZ9031,
3086 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3087 	.name		= "Micrel KSZ9031 Gigabit PHY",
3088 	.flags		= PHY_POLL_CABLE_TEST,
3089 	.driver_data	= &ksz9021_type,
3090 	.probe		= kszphy_probe,
3091 	.get_features	= ksz9031_get_features,
3092 	.config_init	= ksz9031_config_init,
3093 	.soft_reset	= genphy_soft_reset,
3094 	.read_status	= ksz9031_read_status,
3095 	.config_intr	= kszphy_config_intr,
3096 	.handle_interrupt = kszphy_handle_interrupt,
3097 	.get_sset_count = kszphy_get_sset_count,
3098 	.get_strings	= kszphy_get_strings,
3099 	.get_stats	= kszphy_get_stats,
3100 	.suspend	= kszphy_suspend,
3101 	.resume		= kszphy_resume,
3102 	.cable_test_start	= ksz9x31_cable_test_start,
3103 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
3104 }, {
3105 	.phy_id		= PHY_ID_LAN8814,
3106 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3107 	.name		= "Microchip INDY Gigabit Quad PHY",
3108 	.config_init	= lan8814_config_init,
3109 	.driver_data	= &lan8814_type,
3110 	.probe		= lan8814_probe,
3111 	.soft_reset	= genphy_soft_reset,
3112 	.read_status	= ksz9031_read_status,
3113 	.get_sset_count	= kszphy_get_sset_count,
3114 	.get_strings	= kszphy_get_strings,
3115 	.get_stats	= kszphy_get_stats,
3116 	.suspend	= genphy_suspend,
3117 	.resume		= kszphy_resume,
3118 	.config_intr	= lan8814_config_intr,
3119 	.handle_interrupt = lan8814_handle_interrupt,
3120 }, {
3121 	.phy_id		= PHY_ID_LAN8804,
3122 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3123 	.name		= "Microchip LAN966X Gigabit PHY",
3124 	.config_init	= lan8804_config_init,
3125 	.driver_data	= &ksz9021_type,
3126 	.probe		= kszphy_probe,
3127 	.soft_reset	= genphy_soft_reset,
3128 	.read_status	= ksz9031_read_status,
3129 	.get_sset_count	= kszphy_get_sset_count,
3130 	.get_strings	= kszphy_get_strings,
3131 	.get_stats	= kszphy_get_stats,
3132 	.suspend	= genphy_suspend,
3133 	.resume		= kszphy_resume,
3134 }, {
3135 	.phy_id		= PHY_ID_KSZ9131,
3136 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3137 	.name		= "Microchip KSZ9131 Gigabit PHY",
3138 	/* PHY_GBIT_FEATURES */
3139 	.flags		= PHY_POLL_CABLE_TEST,
3140 	.driver_data	= &ksz9021_type,
3141 	.probe		= kszphy_probe,
3142 	.config_init	= ksz9131_config_init,
3143 	.config_intr	= kszphy_config_intr,
3144 	.handle_interrupt = kszphy_handle_interrupt,
3145 	.get_sset_count = kszphy_get_sset_count,
3146 	.get_strings	= kszphy_get_strings,
3147 	.get_stats	= kszphy_get_stats,
3148 	.suspend	= kszphy_suspend,
3149 	.resume		= kszphy_resume,
3150 	.cable_test_start	= ksz9x31_cable_test_start,
3151 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
3152 }, {
3153 	.phy_id		= PHY_ID_KSZ8873MLL,
3154 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3155 	.name		= "Micrel KSZ8873MLL Switch",
3156 	/* PHY_BASIC_FEATURES */
3157 	.config_init	= kszphy_config_init,
3158 	.config_aneg	= ksz8873mll_config_aneg,
3159 	.read_status	= ksz8873mll_read_status,
3160 	.suspend	= genphy_suspend,
3161 	.resume		= genphy_resume,
3162 }, {
3163 	.phy_id		= PHY_ID_KSZ886X,
3164 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3165 	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
3166 	/* PHY_BASIC_FEATURES */
3167 	.flags		= PHY_POLL_CABLE_TEST,
3168 	.config_init	= kszphy_config_init,
3169 	.config_aneg	= ksz886x_config_aneg,
3170 	.read_status	= ksz886x_read_status,
3171 	.suspend	= genphy_suspend,
3172 	.resume		= genphy_resume,
3173 	.cable_test_start	= ksz886x_cable_test_start,
3174 	.cable_test_get_status	= ksz886x_cable_test_get_status,
3175 }, {
3176 	.name		= "Micrel KSZ87XX Switch",
3177 	/* PHY_BASIC_FEATURES */
3178 	.config_init	= kszphy_config_init,
3179 	.match_phy_device = ksz8795_match_phy_device,
3180 	.suspend	= genphy_suspend,
3181 	.resume		= genphy_resume,
3182 }, {
3183 	.phy_id		= PHY_ID_KSZ9477,
3184 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3185 	.name		= "Microchip KSZ9477",
3186 	/* PHY_GBIT_FEATURES */
3187 	.config_init	= kszphy_config_init,
3188 	.suspend	= genphy_suspend,
3189 	.resume		= genphy_resume,
3190 } };
3191 
3192 module_phy_driver(ksphy_driver);
3193 
3194 MODULE_DESCRIPTION("Micrel PHY driver");
3195 MODULE_AUTHOR("David J. Choi");
3196 MODULE_LICENSE("GPL");
3197 
3198 static struct mdio_device_id __maybe_unused micrel_tbl[] = {
3199 	{ PHY_ID_KSZ9021, 0x000ffffe },
3200 	{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
3201 	{ PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
3202 	{ PHY_ID_KSZ8001, 0x00fffffc },
3203 	{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
3204 	{ PHY_ID_KSZ8021, 0x00ffffff },
3205 	{ PHY_ID_KSZ8031, 0x00ffffff },
3206 	{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
3207 	{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
3208 	{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
3209 	{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
3210 	{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
3211 	{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
3212 	{ PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
3213 	{ PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
3214 	{ }
3215 };
3216 
3217 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
3218