xref: /openbmc/linux/drivers/net/phy/micrel.c (revision 2ad10c2aadb762b3625f57380d2d084f69e815ab)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/net/phy/micrel.c
4  *
5  * Driver for Micrel PHYs
6  *
7  * Author: David J. Choi
8  *
9  * Copyright (c) 2010-2013 Micrel, Inc.
10  * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11  *
12  * Support : Micrel Phys:
13  *		Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14  *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15  *			   ksz8021, ksz8031, ksz8051,
16  *			   ksz8081, ksz8091,
17  *			   ksz8061,
18  *		Switch : ksz8873, ksz886x
19  *			 ksz9477, lan8804
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36 
37 /* Operation Mode Strap Override */
38 #define MII_KSZPHY_OMSO				0x16
39 #define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
40 #define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
41 #define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
42 #define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
43 #define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
44 
45 /* general Interrupt control/status reg in vendor specific block. */
46 #define MII_KSZPHY_INTCS			0x1B
47 #define KSZPHY_INTCS_JABBER			BIT(15)
48 #define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
49 #define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
50 #define KSZPHY_INTCS_PARELLEL			BIT(12)
51 #define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
52 #define KSZPHY_INTCS_LINK_DOWN			BIT(10)
53 #define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
54 #define KSZPHY_INTCS_LINK_UP			BIT(8)
55 #define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
56 						KSZPHY_INTCS_LINK_DOWN)
57 #define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
58 #define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
59 #define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
60 						 KSZPHY_INTCS_LINK_UP_STATUS)
61 
62 /* LinkMD Control/Status */
63 #define KSZ8081_LMD				0x1d
64 #define KSZ8081_LMD_ENABLE_TEST			BIT(15)
65 #define KSZ8081_LMD_STAT_NORMAL			0
66 #define KSZ8081_LMD_STAT_OPEN			1
67 #define KSZ8081_LMD_STAT_SHORT			2
68 #define KSZ8081_LMD_STAT_FAIL			3
69 #define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
70 /* Short cable (<10 meter) has been detected by LinkMD */
71 #define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
72 #define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
73 
74 #define KSZ9x31_LMD				0x12
75 #define KSZ9x31_LMD_VCT_EN			BIT(15)
76 #define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
77 #define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
78 #define KSZ9x31_LMD_VCT_SEL_RESULT		0
79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
81 #define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
82 #define KSZ9x31_LMD_VCT_ST_NORMAL		0
83 #define KSZ9x31_LMD_VCT_ST_OPEN			1
84 #define KSZ9x31_LMD_VCT_ST_SHORT		2
85 #define KSZ9x31_LMD_VCT_ST_FAIL			3
86 #define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
89 #define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
93 #define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
94 
95 #define KSZPHY_WIRE_PAIR_MASK			0x3
96 
97 #define LAN8814_CABLE_DIAG			0x12
98 #define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
100 #define LAN8814_PAIR_BIT_SHIFT			12
101 
102 #define LAN8814_WIRE_PAIR_MASK			0xF
103 
104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
105 #define LAN8814_INTC				0x18
106 #define LAN8814_INTS				0x1B
107 
108 #define LAN8814_INT_LINK_DOWN			BIT(2)
109 #define LAN8814_INT_LINK_UP			BIT(0)
110 #define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
111 						 LAN8814_INT_LINK_DOWN)
112 
113 #define LAN8814_INTR_CTRL_REG			0x34
114 #define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
116 
117 /* Represents 1ppm adjustment in 2^32 format with
118  * each nsec contains 4 clock cycles.
119  * The value is calculated as following: (1/1000000)/((2^-32)/4)
120  */
121 #define LAN8814_1PPM_FORMAT			17179
122 
123 #define PTP_RX_VERSION				0x0248
124 #define PTP_TX_VERSION				0x0288
125 #define PTP_MAX_VERSION(x)			(((x) & GENMASK(7, 0)) << 8)
126 #define PTP_MIN_VERSION(x)			((x) & GENMASK(7, 0))
127 
128 #define PTP_RX_MOD				0x024F
129 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
130 #define PTP_RX_TIMESTAMP_EN			0x024D
131 #define PTP_TX_TIMESTAMP_EN			0x028D
132 
133 #define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
134 #define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
135 #define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
136 #define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
137 
138 #define PTP_TX_PARSE_L2_ADDR_EN			0x0284
139 #define PTP_RX_PARSE_L2_ADDR_EN			0x0244
140 
141 #define PTP_TX_PARSE_IP_ADDR_EN			0x0285
142 #define PTP_RX_PARSE_IP_ADDR_EN			0x0245
143 #define LTC_HARD_RESET				0x023F
144 #define LTC_HARD_RESET_				BIT(0)
145 
146 #define TSU_HARD_RESET				0x02C1
147 #define TSU_HARD_RESET_				BIT(0)
148 
149 #define PTP_CMD_CTL				0x0200
150 #define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
151 #define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
152 #define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
153 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
154 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
155 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
156 
157 #define PTP_CLOCK_SET_SEC_MID			0x0206
158 #define PTP_CLOCK_SET_SEC_LO			0x0207
159 #define PTP_CLOCK_SET_NS_HI			0x0208
160 #define PTP_CLOCK_SET_NS_LO			0x0209
161 
162 #define PTP_CLOCK_READ_SEC_MID			0x022A
163 #define PTP_CLOCK_READ_SEC_LO			0x022B
164 #define PTP_CLOCK_READ_NS_HI			0x022C
165 #define PTP_CLOCK_READ_NS_LO			0x022D
166 
167 #define PTP_OPERATING_MODE			0x0241
168 #define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
169 
170 #define PTP_TX_MOD				0x028F
171 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
172 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
173 
174 #define PTP_RX_PARSE_CONFIG			0x0242
175 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
176 #define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
177 #define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
178 
179 #define PTP_TX_PARSE_CONFIG			0x0282
180 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
181 #define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
182 #define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
183 
184 #define PTP_CLOCK_RATE_ADJ_HI			0x020C
185 #define PTP_CLOCK_RATE_ADJ_LO			0x020D
186 #define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
187 
188 #define PTP_LTC_STEP_ADJ_HI			0x0212
189 #define PTP_LTC_STEP_ADJ_LO			0x0213
190 #define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
191 
192 #define LAN8814_INTR_STS_REG			0x0033
193 #define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
194 #define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
195 #define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
196 #define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
197 
198 #define PTP_CAP_INFO				0x022A
199 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
200 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
201 
202 #define PTP_TX_EGRESS_SEC_HI			0x0296
203 #define PTP_TX_EGRESS_SEC_LO			0x0297
204 #define PTP_TX_EGRESS_NS_HI			0x0294
205 #define PTP_TX_EGRESS_NS_LO			0x0295
206 #define PTP_TX_MSG_HEADER2			0x0299
207 
208 #define PTP_RX_INGRESS_SEC_HI			0x0256
209 #define PTP_RX_INGRESS_SEC_LO			0x0257
210 #define PTP_RX_INGRESS_NS_HI			0x0254
211 #define PTP_RX_INGRESS_NS_LO			0x0255
212 #define PTP_RX_MSG_HEADER2			0x0259
213 
214 #define PTP_TSU_INT_EN				0x0200
215 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
216 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
217 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
218 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
219 
220 #define PTP_TSU_INT_STS				0x0201
221 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
222 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
223 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
224 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
225 
226 #define LAN8814_LED_CTRL_1			0x0
227 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
228 
229 /* PHY Control 1 */
230 #define MII_KSZPHY_CTRL_1			0x1e
231 #define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
232 
233 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
234 #define MII_KSZPHY_CTRL_2			0x1f
235 #define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
236 /* bitmap of PHY register to set interrupt mode */
237 #define KSZ8081_CTRL2_HP_MDIX			BIT(15)
238 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
239 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
240 #define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
241 #define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
242 #define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
243 #define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
244 
245 /* Write/read to/from extended registers */
246 #define MII_KSZPHY_EXTREG			0x0b
247 #define KSZPHY_EXTREG_WRITE			0x8000
248 
249 #define MII_KSZPHY_EXTREG_WRITE			0x0c
250 #define MII_KSZPHY_EXTREG_READ			0x0d
251 
252 /* Extended registers */
253 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
254 #define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
255 #define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
256 
257 #define PS_TO_REG				200
258 #define FIFO_SIZE				8
259 
260 /* Delay used to get the second part from the LTC */
261 #define LAN8841_GET_SEC_LTC_DELAY		(500 * NSEC_PER_MSEC)
262 
263 struct kszphy_hw_stat {
264 	const char *string;
265 	u8 reg;
266 	u8 bits;
267 };
268 
269 static struct kszphy_hw_stat kszphy_hw_stats[] = {
270 	{ "phy_receive_errors", 21, 16},
271 	{ "phy_idle_errors", 10, 8 },
272 };
273 
274 struct kszphy_type {
275 	u32 led_mode_reg;
276 	u16 interrupt_level_mask;
277 	u16 cable_diag_reg;
278 	unsigned long pair_mask;
279 	u16 disable_dll_tx_bit;
280 	u16 disable_dll_rx_bit;
281 	u16 disable_dll_mask;
282 	bool has_broadcast_disable;
283 	bool has_nand_tree_disable;
284 	bool has_rmii_ref_clk_sel;
285 };
286 
287 /* Shared structure between the PHYs of the same package. */
288 struct lan8814_shared_priv {
289 	struct phy_device *phydev;
290 	struct ptp_clock *ptp_clock;
291 	struct ptp_clock_info ptp_clock_info;
292 
293 	/* Reference counter to how many ports in the package are enabling the
294 	 * timestamping
295 	 */
296 	u8 ref;
297 
298 	/* Lock for ptp_clock and ref */
299 	struct mutex shared_lock;
300 };
301 
302 struct lan8814_ptp_rx_ts {
303 	struct list_head list;
304 	u32 seconds;
305 	u32 nsec;
306 	u16 seq_id;
307 };
308 
309 struct kszphy_ptp_priv {
310 	struct mii_timestamper mii_ts;
311 	struct phy_device *phydev;
312 
313 	struct sk_buff_head tx_queue;
314 	struct sk_buff_head rx_queue;
315 
316 	struct list_head rx_ts_list;
317 	/* Lock for Rx ts fifo */
318 	spinlock_t rx_ts_lock;
319 
320 	int hwts_tx_type;
321 	enum hwtstamp_rx_filters rx_filter;
322 	int layer;
323 	int version;
324 
325 	struct ptp_clock *ptp_clock;
326 	struct ptp_clock_info ptp_clock_info;
327 	/* Lock for ptp_clock */
328 	struct mutex ptp_lock;
329 	struct ptp_pin_desc *pin_config;
330 
331 	s64 seconds;
332 	/* Lock for accessing seconds */
333 	spinlock_t seconds_lock;
334 };
335 
336 struct kszphy_priv {
337 	struct kszphy_ptp_priv ptp_priv;
338 	const struct kszphy_type *type;
339 	int led_mode;
340 	u16 vct_ctrl1000;
341 	bool rmii_ref_clk_sel;
342 	bool rmii_ref_clk_sel_val;
343 	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
344 };
345 
346 static const struct kszphy_type lan8814_type = {
347 	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
348 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
349 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
350 };
351 
352 static const struct kszphy_type ksz886x_type = {
353 	.cable_diag_reg		= KSZ8081_LMD,
354 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
355 };
356 
357 static const struct kszphy_type ksz8021_type = {
358 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
359 	.has_broadcast_disable	= true,
360 	.has_nand_tree_disable	= true,
361 	.has_rmii_ref_clk_sel	= true,
362 };
363 
364 static const struct kszphy_type ksz8041_type = {
365 	.led_mode_reg		= MII_KSZPHY_CTRL_1,
366 };
367 
368 static const struct kszphy_type ksz8051_type = {
369 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
370 	.has_nand_tree_disable	= true,
371 };
372 
373 static const struct kszphy_type ksz8081_type = {
374 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
375 	.has_broadcast_disable	= true,
376 	.has_nand_tree_disable	= true,
377 	.has_rmii_ref_clk_sel	= true,
378 };
379 
380 static const struct kszphy_type ks8737_type = {
381 	.interrupt_level_mask	= BIT(14),
382 };
383 
384 static const struct kszphy_type ksz9021_type = {
385 	.interrupt_level_mask	= BIT(14),
386 };
387 
388 static const struct kszphy_type ksz9131_type = {
389 	.interrupt_level_mask	= BIT(14),
390 	.disable_dll_tx_bit	= BIT(12),
391 	.disable_dll_rx_bit	= BIT(12),
392 	.disable_dll_mask	= BIT_MASK(12),
393 };
394 
395 static const struct kszphy_type lan8841_type = {
396 	.disable_dll_tx_bit	= BIT(14),
397 	.disable_dll_rx_bit	= BIT(14),
398 	.disable_dll_mask	= BIT_MASK(14),
399 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
400 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
401 };
402 
403 static int kszphy_extended_write(struct phy_device *phydev,
404 				u32 regnum, u16 val)
405 {
406 	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
407 	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
408 }
409 
410 static int kszphy_extended_read(struct phy_device *phydev,
411 				u32 regnum)
412 {
413 	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
414 	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
415 }
416 
417 static int kszphy_ack_interrupt(struct phy_device *phydev)
418 {
419 	/* bit[7..0] int status, which is a read and clear register. */
420 	int rc;
421 
422 	rc = phy_read(phydev, MII_KSZPHY_INTCS);
423 
424 	return (rc < 0) ? rc : 0;
425 }
426 
427 static int kszphy_config_intr(struct phy_device *phydev)
428 {
429 	const struct kszphy_type *type = phydev->drv->driver_data;
430 	int temp, err;
431 	u16 mask;
432 
433 	if (type && type->interrupt_level_mask)
434 		mask = type->interrupt_level_mask;
435 	else
436 		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
437 
438 	/* set the interrupt pin active low */
439 	temp = phy_read(phydev, MII_KSZPHY_CTRL);
440 	if (temp < 0)
441 		return temp;
442 	temp &= ~mask;
443 	phy_write(phydev, MII_KSZPHY_CTRL, temp);
444 
445 	/* enable / disable interrupts */
446 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
447 		err = kszphy_ack_interrupt(phydev);
448 		if (err)
449 			return err;
450 
451 		err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
452 	} else {
453 		err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
454 		if (err)
455 			return err;
456 
457 		err = kszphy_ack_interrupt(phydev);
458 	}
459 
460 	return err;
461 }
462 
463 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
464 {
465 	int irq_status;
466 
467 	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
468 	if (irq_status < 0) {
469 		phy_error(phydev);
470 		return IRQ_NONE;
471 	}
472 
473 	if (!(irq_status & KSZPHY_INTCS_STATUS))
474 		return IRQ_NONE;
475 
476 	phy_trigger_machine(phydev);
477 
478 	return IRQ_HANDLED;
479 }
480 
481 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
482 {
483 	int ctrl;
484 
485 	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
486 	if (ctrl < 0)
487 		return ctrl;
488 
489 	if (val)
490 		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
491 	else
492 		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
493 
494 	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
495 }
496 
497 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
498 {
499 	int rc, temp, shift;
500 
501 	switch (reg) {
502 	case MII_KSZPHY_CTRL_1:
503 		shift = 14;
504 		break;
505 	case MII_KSZPHY_CTRL_2:
506 		shift = 4;
507 		break;
508 	default:
509 		return -EINVAL;
510 	}
511 
512 	temp = phy_read(phydev, reg);
513 	if (temp < 0) {
514 		rc = temp;
515 		goto out;
516 	}
517 
518 	temp &= ~(3 << shift);
519 	temp |= val << shift;
520 	rc = phy_write(phydev, reg, temp);
521 out:
522 	if (rc < 0)
523 		phydev_err(phydev, "failed to set led mode\n");
524 
525 	return rc;
526 }
527 
528 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
529  * unique (non-broadcast) address on a shared bus.
530  */
531 static int kszphy_broadcast_disable(struct phy_device *phydev)
532 {
533 	int ret;
534 
535 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
536 	if (ret < 0)
537 		goto out;
538 
539 	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
540 out:
541 	if (ret)
542 		phydev_err(phydev, "failed to disable broadcast address\n");
543 
544 	return ret;
545 }
546 
547 static int kszphy_nand_tree_disable(struct phy_device *phydev)
548 {
549 	int ret;
550 
551 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
552 	if (ret < 0)
553 		goto out;
554 
555 	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
556 		return 0;
557 
558 	ret = phy_write(phydev, MII_KSZPHY_OMSO,
559 			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
560 out:
561 	if (ret)
562 		phydev_err(phydev, "failed to disable NAND tree mode\n");
563 
564 	return ret;
565 }
566 
567 /* Some config bits need to be set again on resume, handle them here. */
568 static int kszphy_config_reset(struct phy_device *phydev)
569 {
570 	struct kszphy_priv *priv = phydev->priv;
571 	int ret;
572 
573 	if (priv->rmii_ref_clk_sel) {
574 		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
575 		if (ret) {
576 			phydev_err(phydev,
577 				   "failed to set rmii reference clock\n");
578 			return ret;
579 		}
580 	}
581 
582 	if (priv->type && priv->led_mode >= 0)
583 		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
584 
585 	return 0;
586 }
587 
588 static int kszphy_config_init(struct phy_device *phydev)
589 {
590 	struct kszphy_priv *priv = phydev->priv;
591 	const struct kszphy_type *type;
592 
593 	if (!priv)
594 		return 0;
595 
596 	type = priv->type;
597 
598 	if (type && type->has_broadcast_disable)
599 		kszphy_broadcast_disable(phydev);
600 
601 	if (type && type->has_nand_tree_disable)
602 		kszphy_nand_tree_disable(phydev);
603 
604 	return kszphy_config_reset(phydev);
605 }
606 
607 static int ksz8041_fiber_mode(struct phy_device *phydev)
608 {
609 	struct device_node *of_node = phydev->mdio.dev.of_node;
610 
611 	return of_property_read_bool(of_node, "micrel,fiber-mode");
612 }
613 
614 static int ksz8041_config_init(struct phy_device *phydev)
615 {
616 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
617 
618 	/* Limit supported and advertised modes in fiber mode */
619 	if (ksz8041_fiber_mode(phydev)) {
620 		phydev->dev_flags |= MICREL_PHY_FXEN;
621 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
622 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
623 
624 		linkmode_and(phydev->supported, phydev->supported, mask);
625 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
626 				 phydev->supported);
627 		linkmode_and(phydev->advertising, phydev->advertising, mask);
628 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
629 				 phydev->advertising);
630 		phydev->autoneg = AUTONEG_DISABLE;
631 	}
632 
633 	return kszphy_config_init(phydev);
634 }
635 
636 static int ksz8041_config_aneg(struct phy_device *phydev)
637 {
638 	/* Skip auto-negotiation in fiber mode */
639 	if (phydev->dev_flags & MICREL_PHY_FXEN) {
640 		phydev->speed = SPEED_100;
641 		return 0;
642 	}
643 
644 	return genphy_config_aneg(phydev);
645 }
646 
647 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
648 					    const bool ksz_8051)
649 {
650 	int ret;
651 
652 	if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
653 		return 0;
654 
655 	ret = phy_read(phydev, MII_BMSR);
656 	if (ret < 0)
657 		return ret;
658 
659 	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
660 	 * exact PHY ID. However, they can be told apart by the extended
661 	 * capability registers presence. The KSZ8051 PHY has them while
662 	 * the switch does not.
663 	 */
664 	ret &= BMSR_ERCAP;
665 	if (ksz_8051)
666 		return ret;
667 	else
668 		return !ret;
669 }
670 
671 static int ksz8051_match_phy_device(struct phy_device *phydev)
672 {
673 	return ksz8051_ksz8795_match_phy_device(phydev, true);
674 }
675 
676 static int ksz8081_config_init(struct phy_device *phydev)
677 {
678 	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
679 	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
680 	 * pull-down is missing, the factory test mode should be cleared by
681 	 * manually writing a 0.
682 	 */
683 	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
684 
685 	return kszphy_config_init(phydev);
686 }
687 
688 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
689 {
690 	u16 val;
691 
692 	switch (ctrl) {
693 	case ETH_TP_MDI:
694 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
695 		break;
696 	case ETH_TP_MDI_X:
697 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
698 			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
699 		break;
700 	case ETH_TP_MDI_AUTO:
701 		val = 0;
702 		break;
703 	default:
704 		return 0;
705 	}
706 
707 	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
708 			  KSZ8081_CTRL2_HP_MDIX |
709 			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
710 			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
711 			  KSZ8081_CTRL2_HP_MDIX | val);
712 }
713 
714 static int ksz8081_config_aneg(struct phy_device *phydev)
715 {
716 	int ret;
717 
718 	ret = genphy_config_aneg(phydev);
719 	if (ret)
720 		return ret;
721 
722 	/* The MDI-X configuration is automatically changed by the PHY after
723 	 * switching from autoneg off to on. So, take MDI-X configuration under
724 	 * own control and set it after autoneg configuration was done.
725 	 */
726 	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
727 }
728 
729 static int ksz8081_mdix_update(struct phy_device *phydev)
730 {
731 	int ret;
732 
733 	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
734 	if (ret < 0)
735 		return ret;
736 
737 	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
738 		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
739 			phydev->mdix_ctrl = ETH_TP_MDI_X;
740 		else
741 			phydev->mdix_ctrl = ETH_TP_MDI;
742 	} else {
743 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
744 	}
745 
746 	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
747 	if (ret < 0)
748 		return ret;
749 
750 	if (ret & KSZ8081_CTRL1_MDIX_STAT)
751 		phydev->mdix = ETH_TP_MDI;
752 	else
753 		phydev->mdix = ETH_TP_MDI_X;
754 
755 	return 0;
756 }
757 
758 static int ksz8081_read_status(struct phy_device *phydev)
759 {
760 	int ret;
761 
762 	ret = ksz8081_mdix_update(phydev);
763 	if (ret < 0)
764 		return ret;
765 
766 	return genphy_read_status(phydev);
767 }
768 
769 static int ksz8061_config_init(struct phy_device *phydev)
770 {
771 	int ret;
772 
773 	/* Chip can be powered down by the bootstrap code. */
774 	ret = phy_read(phydev, MII_BMCR);
775 	if (ret < 0)
776 		return ret;
777 	if (ret & BMCR_PDOWN) {
778 		ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN);
779 		if (ret < 0)
780 			return ret;
781 		usleep_range(1000, 2000);
782 	}
783 
784 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
785 	if (ret)
786 		return ret;
787 
788 	return kszphy_config_init(phydev);
789 }
790 
791 static int ksz8795_match_phy_device(struct phy_device *phydev)
792 {
793 	return ksz8051_ksz8795_match_phy_device(phydev, false);
794 }
795 
796 static int ksz9021_load_values_from_of(struct phy_device *phydev,
797 				       const struct device_node *of_node,
798 				       u16 reg,
799 				       const char *field1, const char *field2,
800 				       const char *field3, const char *field4)
801 {
802 	int val1 = -1;
803 	int val2 = -2;
804 	int val3 = -3;
805 	int val4 = -4;
806 	int newval;
807 	int matches = 0;
808 
809 	if (!of_property_read_u32(of_node, field1, &val1))
810 		matches++;
811 
812 	if (!of_property_read_u32(of_node, field2, &val2))
813 		matches++;
814 
815 	if (!of_property_read_u32(of_node, field3, &val3))
816 		matches++;
817 
818 	if (!of_property_read_u32(of_node, field4, &val4))
819 		matches++;
820 
821 	if (!matches)
822 		return 0;
823 
824 	if (matches < 4)
825 		newval = kszphy_extended_read(phydev, reg);
826 	else
827 		newval = 0;
828 
829 	if (val1 != -1)
830 		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
831 
832 	if (val2 != -2)
833 		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
834 
835 	if (val3 != -3)
836 		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
837 
838 	if (val4 != -4)
839 		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
840 
841 	return kszphy_extended_write(phydev, reg, newval);
842 }
843 
844 static int ksz9021_config_init(struct phy_device *phydev)
845 {
846 	const struct device_node *of_node;
847 	const struct device *dev_walker;
848 
849 	/* The Micrel driver has a deprecated option to place phy OF
850 	 * properties in the MAC node. Walk up the tree of devices to
851 	 * find a device with an OF node.
852 	 */
853 	dev_walker = &phydev->mdio.dev;
854 	do {
855 		of_node = dev_walker->of_node;
856 		dev_walker = dev_walker->parent;
857 
858 	} while (!of_node && dev_walker);
859 
860 	if (of_node) {
861 		ksz9021_load_values_from_of(phydev, of_node,
862 				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
863 				    "txen-skew-ps", "txc-skew-ps",
864 				    "rxdv-skew-ps", "rxc-skew-ps");
865 		ksz9021_load_values_from_of(phydev, of_node,
866 				    MII_KSZPHY_RX_DATA_PAD_SKEW,
867 				    "rxd0-skew-ps", "rxd1-skew-ps",
868 				    "rxd2-skew-ps", "rxd3-skew-ps");
869 		ksz9021_load_values_from_of(phydev, of_node,
870 				    MII_KSZPHY_TX_DATA_PAD_SKEW,
871 				    "txd0-skew-ps", "txd1-skew-ps",
872 				    "txd2-skew-ps", "txd3-skew-ps");
873 	}
874 	return 0;
875 }
876 
877 #define KSZ9031_PS_TO_REG		60
878 
879 /* Extended registers */
880 /* MMD Address 0x0 */
881 #define MII_KSZ9031RN_FLP_BURST_TX_LO	3
882 #define MII_KSZ9031RN_FLP_BURST_TX_HI	4
883 
884 /* MMD Address 0x2 */
885 #define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
886 #define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
887 #define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
888 
889 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
890 #define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
891 #define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
892 #define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
893 #define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
894 
895 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
896 #define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
897 #define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
898 #define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
899 #define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
900 
901 #define MII_KSZ9031RN_CLK_PAD_SKEW	8
902 #define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
903 #define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
904 
905 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
906  * provide different RGMII options we need to configure delay offset
907  * for each pad relative to build in delay.
908  */
909 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
910  * 1.80ns
911  */
912 #define RX_ID				0x7
913 #define RX_CLK_ID			0x19
914 
915 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
916  * internal 1.2ns delay.
917  */
918 #define RX_ND				0xc
919 #define RX_CLK_ND			0x0
920 
921 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
922 #define TX_ID				0x0
923 #define TX_CLK_ID			0x1f
924 
925 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
926  * dealy
927  */
928 #define TX_ND				0x7
929 #define TX_CLK_ND			0xf
930 
931 /* MMD Address 0x1C */
932 #define MII_KSZ9031RN_EDPD		0x23
933 #define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
934 
935 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
936 				       const struct device_node *of_node,
937 				       u16 reg, size_t field_sz,
938 				       const char *field[], u8 numfields,
939 				       bool *update)
940 {
941 	int val[4] = {-1, -2, -3, -4};
942 	int matches = 0;
943 	u16 mask;
944 	u16 maxval;
945 	u16 newval;
946 	int i;
947 
948 	for (i = 0; i < numfields; i++)
949 		if (!of_property_read_u32(of_node, field[i], val + i))
950 			matches++;
951 
952 	if (!matches)
953 		return 0;
954 
955 	*update |= true;
956 
957 	if (matches < numfields)
958 		newval = phy_read_mmd(phydev, 2, reg);
959 	else
960 		newval = 0;
961 
962 	maxval = (field_sz == 4) ? 0xf : 0x1f;
963 	for (i = 0; i < numfields; i++)
964 		if (val[i] != -(i + 1)) {
965 			mask = 0xffff;
966 			mask ^= maxval << (field_sz * i);
967 			newval = (newval & mask) |
968 				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
969 					<< (field_sz * i));
970 		}
971 
972 	return phy_write_mmd(phydev, 2, reg, newval);
973 }
974 
975 /* Center KSZ9031RNX FLP timing at 16ms. */
976 static int ksz9031_center_flp_timing(struct phy_device *phydev)
977 {
978 	int result;
979 
980 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
981 			       0x0006);
982 	if (result)
983 		return result;
984 
985 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
986 			       0x1A80);
987 	if (result)
988 		return result;
989 
990 	return genphy_restart_aneg(phydev);
991 }
992 
993 /* Enable energy-detect power-down mode */
994 static int ksz9031_enable_edpd(struct phy_device *phydev)
995 {
996 	int reg;
997 
998 	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
999 	if (reg < 0)
1000 		return reg;
1001 	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
1002 			     reg | MII_KSZ9031RN_EDPD_ENABLE);
1003 }
1004 
1005 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
1006 {
1007 	u16 rx, tx, rx_clk, tx_clk;
1008 	int ret;
1009 
1010 	switch (phydev->interface) {
1011 	case PHY_INTERFACE_MODE_RGMII:
1012 		tx = TX_ND;
1013 		tx_clk = TX_CLK_ND;
1014 		rx = RX_ND;
1015 		rx_clk = RX_CLK_ND;
1016 		break;
1017 	case PHY_INTERFACE_MODE_RGMII_ID:
1018 		tx = TX_ID;
1019 		tx_clk = TX_CLK_ID;
1020 		rx = RX_ID;
1021 		rx_clk = RX_CLK_ID;
1022 		break;
1023 	case PHY_INTERFACE_MODE_RGMII_RXID:
1024 		tx = TX_ND;
1025 		tx_clk = TX_CLK_ND;
1026 		rx = RX_ID;
1027 		rx_clk = RX_CLK_ID;
1028 		break;
1029 	case PHY_INTERFACE_MODE_RGMII_TXID:
1030 		tx = TX_ID;
1031 		tx_clk = TX_CLK_ID;
1032 		rx = RX_ND;
1033 		rx_clk = RX_CLK_ND;
1034 		break;
1035 	default:
1036 		return 0;
1037 	}
1038 
1039 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1040 			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1041 			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1042 	if (ret < 0)
1043 		return ret;
1044 
1045 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1046 			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1047 			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1048 			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1049 			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1050 	if (ret < 0)
1051 		return ret;
1052 
1053 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1054 			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1055 			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1056 			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1057 			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1058 	if (ret < 0)
1059 		return ret;
1060 
1061 	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1062 			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1063 			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1064 }
1065 
1066 static int ksz9031_config_init(struct phy_device *phydev)
1067 {
1068 	const struct device_node *of_node;
1069 	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1070 	static const char *rx_data_skews[4] = {
1071 		"rxd0-skew-ps", "rxd1-skew-ps",
1072 		"rxd2-skew-ps", "rxd3-skew-ps"
1073 	};
1074 	static const char *tx_data_skews[4] = {
1075 		"txd0-skew-ps", "txd1-skew-ps",
1076 		"txd2-skew-ps", "txd3-skew-ps"
1077 	};
1078 	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1079 	const struct device *dev_walker;
1080 	int result;
1081 
1082 	result = ksz9031_enable_edpd(phydev);
1083 	if (result < 0)
1084 		return result;
1085 
1086 	/* The Micrel driver has a deprecated option to place phy OF
1087 	 * properties in the MAC node. Walk up the tree of devices to
1088 	 * find a device with an OF node.
1089 	 */
1090 	dev_walker = &phydev->mdio.dev;
1091 	do {
1092 		of_node = dev_walker->of_node;
1093 		dev_walker = dev_walker->parent;
1094 	} while (!of_node && dev_walker);
1095 
1096 	if (of_node) {
1097 		bool update = false;
1098 
1099 		if (phy_interface_is_rgmii(phydev)) {
1100 			result = ksz9031_config_rgmii_delay(phydev);
1101 			if (result < 0)
1102 				return result;
1103 		}
1104 
1105 		ksz9031_of_load_skew_values(phydev, of_node,
1106 				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1107 				clk_skews, 2, &update);
1108 
1109 		ksz9031_of_load_skew_values(phydev, of_node,
1110 				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1111 				control_skews, 2, &update);
1112 
1113 		ksz9031_of_load_skew_values(phydev, of_node,
1114 				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1115 				rx_data_skews, 4, &update);
1116 
1117 		ksz9031_of_load_skew_values(phydev, of_node,
1118 				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1119 				tx_data_skews, 4, &update);
1120 
1121 		if (update && !phy_interface_is_rgmii(phydev))
1122 			phydev_warn(phydev,
1123 				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1124 
1125 		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1126 		 * When the device links in the 1000BASE-T slave mode only,
1127 		 * the optional 125MHz reference output clock (CLK125_NDO)
1128 		 * has wide duty cycle variation.
1129 		 *
1130 		 * The optional CLK125_NDO clock does not meet the RGMII
1131 		 * 45/55 percent (min/max) duty cycle requirement and therefore
1132 		 * cannot be used directly by the MAC side for clocking
1133 		 * applications that have setup/hold time requirements on
1134 		 * rising and falling clock edges.
1135 		 *
1136 		 * Workaround:
1137 		 * Force the phy to be the master to receive a stable clock
1138 		 * which meets the duty cycle requirement.
1139 		 */
1140 		if (of_property_read_bool(of_node, "micrel,force-master")) {
1141 			result = phy_read(phydev, MII_CTRL1000);
1142 			if (result < 0)
1143 				goto err_force_master;
1144 
1145 			/* enable master mode, config & prefer master */
1146 			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1147 			result = phy_write(phydev, MII_CTRL1000, result);
1148 			if (result < 0)
1149 				goto err_force_master;
1150 		}
1151 	}
1152 
1153 	return ksz9031_center_flp_timing(phydev);
1154 
1155 err_force_master:
1156 	phydev_err(phydev, "failed to force the phy to master mode\n");
1157 	return result;
1158 }
1159 
1160 #define KSZ9131_SKEW_5BIT_MAX	2400
1161 #define KSZ9131_SKEW_4BIT_MAX	800
1162 #define KSZ9131_OFFSET		700
1163 #define KSZ9131_STEP		100
1164 
1165 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1166 				       struct device_node *of_node,
1167 				       u16 reg, size_t field_sz,
1168 				       char *field[], u8 numfields)
1169 {
1170 	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1171 		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1172 	int skewval, skewmax = 0;
1173 	int matches = 0;
1174 	u16 maxval;
1175 	u16 newval;
1176 	u16 mask;
1177 	int i;
1178 
1179 	/* psec properties in dts should mean x pico seconds */
1180 	if (field_sz == 5)
1181 		skewmax = KSZ9131_SKEW_5BIT_MAX;
1182 	else
1183 		skewmax = KSZ9131_SKEW_4BIT_MAX;
1184 
1185 	for (i = 0; i < numfields; i++)
1186 		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1187 			if (skewval < -KSZ9131_OFFSET)
1188 				skewval = -KSZ9131_OFFSET;
1189 			else if (skewval > skewmax)
1190 				skewval = skewmax;
1191 
1192 			val[i] = skewval + KSZ9131_OFFSET;
1193 			matches++;
1194 		}
1195 
1196 	if (!matches)
1197 		return 0;
1198 
1199 	if (matches < numfields)
1200 		newval = phy_read_mmd(phydev, 2, reg);
1201 	else
1202 		newval = 0;
1203 
1204 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1205 	for (i = 0; i < numfields; i++)
1206 		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1207 			mask = 0xffff;
1208 			mask ^= maxval << (field_sz * i);
1209 			newval = (newval & mask) |
1210 				(((val[i] / KSZ9131_STEP) & maxval)
1211 					<< (field_sz * i));
1212 		}
1213 
1214 	return phy_write_mmd(phydev, 2, reg, newval);
1215 }
1216 
1217 #define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1218 #define KSZ9131RN_RXC_DLL_CTRL		76
1219 #define KSZ9131RN_TXC_DLL_CTRL		77
1220 #define KSZ9131RN_DLL_ENABLE_DELAY	0
1221 
1222 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1223 {
1224 	const struct kszphy_type *type = phydev->drv->driver_data;
1225 	u16 rxcdll_val, txcdll_val;
1226 	int ret;
1227 
1228 	switch (phydev->interface) {
1229 	case PHY_INTERFACE_MODE_RGMII:
1230 		rxcdll_val = type->disable_dll_rx_bit;
1231 		txcdll_val = type->disable_dll_tx_bit;
1232 		break;
1233 	case PHY_INTERFACE_MODE_RGMII_ID:
1234 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1235 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1236 		break;
1237 	case PHY_INTERFACE_MODE_RGMII_RXID:
1238 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1239 		txcdll_val = type->disable_dll_tx_bit;
1240 		break;
1241 	case PHY_INTERFACE_MODE_RGMII_TXID:
1242 		rxcdll_val = type->disable_dll_rx_bit;
1243 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1244 		break;
1245 	default:
1246 		return 0;
1247 	}
1248 
1249 	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1250 			     KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1251 			     rxcdll_val);
1252 	if (ret < 0)
1253 		return ret;
1254 
1255 	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1256 			      KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1257 			      txcdll_val);
1258 }
1259 
1260 /* Silicon Errata DS80000693B
1261  *
1262  * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1263  * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1264  * according to the datasheet (off if there is no link).
1265  */
1266 static int ksz9131_led_errata(struct phy_device *phydev)
1267 {
1268 	int reg;
1269 
1270 	reg = phy_read_mmd(phydev, 2, 0);
1271 	if (reg < 0)
1272 		return reg;
1273 
1274 	if (!(reg & BIT(4)))
1275 		return 0;
1276 
1277 	return phy_set_bits(phydev, 0x1e, BIT(9));
1278 }
1279 
1280 static int ksz9131_config_init(struct phy_device *phydev)
1281 {
1282 	struct device_node *of_node;
1283 	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1284 	char *rx_data_skews[4] = {
1285 		"rxd0-skew-psec", "rxd1-skew-psec",
1286 		"rxd2-skew-psec", "rxd3-skew-psec"
1287 	};
1288 	char *tx_data_skews[4] = {
1289 		"txd0-skew-psec", "txd1-skew-psec",
1290 		"txd2-skew-psec", "txd3-skew-psec"
1291 	};
1292 	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1293 	const struct device *dev_walker;
1294 	int ret;
1295 
1296 	dev_walker = &phydev->mdio.dev;
1297 	do {
1298 		of_node = dev_walker->of_node;
1299 		dev_walker = dev_walker->parent;
1300 	} while (!of_node && dev_walker);
1301 
1302 	if (!of_node)
1303 		return 0;
1304 
1305 	if (phy_interface_is_rgmii(phydev)) {
1306 		ret = ksz9131_config_rgmii_delay(phydev);
1307 		if (ret < 0)
1308 			return ret;
1309 	}
1310 
1311 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1312 					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1313 					  clk_skews, 2);
1314 	if (ret < 0)
1315 		return ret;
1316 
1317 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1318 					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1319 					  control_skews, 2);
1320 	if (ret < 0)
1321 		return ret;
1322 
1323 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1324 					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1325 					  rx_data_skews, 4);
1326 	if (ret < 0)
1327 		return ret;
1328 
1329 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1330 					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1331 					  tx_data_skews, 4);
1332 	if (ret < 0)
1333 		return ret;
1334 
1335 	ret = ksz9131_led_errata(phydev);
1336 	if (ret < 0)
1337 		return ret;
1338 
1339 	return 0;
1340 }
1341 
1342 #define MII_KSZ9131_AUTO_MDIX		0x1C
1343 #define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1344 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1345 
1346 static int ksz9131_mdix_update(struct phy_device *phydev)
1347 {
1348 	int ret;
1349 
1350 	ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX);
1351 	if (ret < 0)
1352 		return ret;
1353 
1354 	if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) {
1355 		if (ret & MII_KSZ9131_AUTO_MDI_SET)
1356 			phydev->mdix_ctrl = ETH_TP_MDI;
1357 		else
1358 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1359 	} else {
1360 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1361 	}
1362 
1363 	if (ret & MII_KSZ9131_AUTO_MDI_SET)
1364 		phydev->mdix = ETH_TP_MDI;
1365 	else
1366 		phydev->mdix = ETH_TP_MDI_X;
1367 
1368 	return 0;
1369 }
1370 
1371 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1372 {
1373 	u16 val;
1374 
1375 	switch (ctrl) {
1376 	case ETH_TP_MDI:
1377 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1378 		      MII_KSZ9131_AUTO_MDI_SET;
1379 		break;
1380 	case ETH_TP_MDI_X:
1381 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1382 		break;
1383 	case ETH_TP_MDI_AUTO:
1384 		val = 0;
1385 		break;
1386 	default:
1387 		return 0;
1388 	}
1389 
1390 	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1391 			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1392 			  MII_KSZ9131_AUTO_MDI_SET, val);
1393 }
1394 
1395 static int ksz9131_read_status(struct phy_device *phydev)
1396 {
1397 	int ret;
1398 
1399 	ret = ksz9131_mdix_update(phydev);
1400 	if (ret < 0)
1401 		return ret;
1402 
1403 	return genphy_read_status(phydev);
1404 }
1405 
1406 static int ksz9131_config_aneg(struct phy_device *phydev)
1407 {
1408 	int ret;
1409 
1410 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1411 	if (ret)
1412 		return ret;
1413 
1414 	return genphy_config_aneg(phydev);
1415 }
1416 
1417 static int ksz9477_get_features(struct phy_device *phydev)
1418 {
1419 	int ret;
1420 
1421 	ret = genphy_read_abilities(phydev);
1422 	if (ret)
1423 		return ret;
1424 
1425 	/* The "EEE control and capability 1" (Register 3.20) seems to be
1426 	 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1427 	 * on the 7.60 will affect 3.20. So, we need to construct our own list
1428 	 * of caps.
1429 	 * KSZ8563R should have 100BaseTX/Full only.
1430 	 */
1431 	linkmode_and(phydev->supported_eee, phydev->supported,
1432 		     PHY_EEE_CAP1_FEATURES);
1433 
1434 	return 0;
1435 }
1436 
1437 #define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1438 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1439 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1440 static int ksz8873mll_read_status(struct phy_device *phydev)
1441 {
1442 	int regval;
1443 
1444 	/* dummy read */
1445 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1446 
1447 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1448 
1449 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1450 		phydev->duplex = DUPLEX_HALF;
1451 	else
1452 		phydev->duplex = DUPLEX_FULL;
1453 
1454 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1455 		phydev->speed = SPEED_10;
1456 	else
1457 		phydev->speed = SPEED_100;
1458 
1459 	phydev->link = 1;
1460 	phydev->pause = phydev->asym_pause = 0;
1461 
1462 	return 0;
1463 }
1464 
1465 static int ksz9031_get_features(struct phy_device *phydev)
1466 {
1467 	int ret;
1468 
1469 	ret = genphy_read_abilities(phydev);
1470 	if (ret < 0)
1471 		return ret;
1472 
1473 	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1474 	 * Whenever the device's Asymmetric Pause capability is set to 1,
1475 	 * link-up may fail after a link-up to link-down transition.
1476 	 *
1477 	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1478 	 *
1479 	 * Workaround:
1480 	 * Do not enable the Asymmetric Pause capability bit.
1481 	 */
1482 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1483 
1484 	/* We force setting the Pause capability as the core will force the
1485 	 * Asymmetric Pause capability to 1 otherwise.
1486 	 */
1487 	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1488 
1489 	return 0;
1490 }
1491 
1492 static int ksz9031_read_status(struct phy_device *phydev)
1493 {
1494 	int err;
1495 	int regval;
1496 
1497 	err = genphy_read_status(phydev);
1498 	if (err)
1499 		return err;
1500 
1501 	/* Make sure the PHY is not broken. Read idle error count,
1502 	 * and reset the PHY if it is maxed out.
1503 	 */
1504 	regval = phy_read(phydev, MII_STAT1000);
1505 	if ((regval & 0xFF) == 0xFF) {
1506 		phy_init_hw(phydev);
1507 		phydev->link = 0;
1508 		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1509 			phydev->drv->config_intr(phydev);
1510 		return genphy_config_aneg(phydev);
1511 	}
1512 
1513 	return 0;
1514 }
1515 
1516 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1517 {
1518 	struct kszphy_priv *priv = phydev->priv;
1519 	int ret;
1520 
1521 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1522 	 * Prior to running the cable diagnostics, Auto-negotiation should
1523 	 * be disabled, full duplex set and the link speed set to 1000Mbps
1524 	 * via the Basic Control Register.
1525 	 */
1526 	ret = phy_modify(phydev, MII_BMCR,
1527 			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1528 			 BMCR_ANENABLE | BMCR_SPEED100,
1529 			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1530 	if (ret)
1531 		return ret;
1532 
1533 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1534 	 * The Master-Slave configuration should be set to Slave by writing
1535 	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1536 	 * Register.
1537 	 */
1538 	ret = phy_read(phydev, MII_CTRL1000);
1539 	if (ret < 0)
1540 		return ret;
1541 
1542 	/* Cache these bits, they need to be restored once LinkMD finishes. */
1543 	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1544 	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1545 	ret |= CTL1000_ENABLE_MASTER;
1546 
1547 	return phy_write(phydev, MII_CTRL1000, ret);
1548 }
1549 
1550 static int ksz9x31_cable_test_result_trans(u16 status)
1551 {
1552 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1553 	case KSZ9x31_LMD_VCT_ST_NORMAL:
1554 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1555 	case KSZ9x31_LMD_VCT_ST_OPEN:
1556 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1557 	case KSZ9x31_LMD_VCT_ST_SHORT:
1558 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1559 	case KSZ9x31_LMD_VCT_ST_FAIL:
1560 		fallthrough;
1561 	default:
1562 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1563 	}
1564 }
1565 
1566 static bool ksz9x31_cable_test_failed(u16 status)
1567 {
1568 	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1569 
1570 	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1571 }
1572 
1573 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1574 {
1575 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1576 	case KSZ9x31_LMD_VCT_ST_OPEN:
1577 		fallthrough;
1578 	case KSZ9x31_LMD_VCT_ST_SHORT:
1579 		return true;
1580 	}
1581 	return false;
1582 }
1583 
1584 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1585 {
1586 	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1587 
1588 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1589 	 *
1590 	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1591 	 */
1592 	if (phydev_id_compare(phydev, PHY_ID_KSZ9131))
1593 		dt = clamp(dt - 22, 0, 255);
1594 
1595 	return (dt * 400) / 10;
1596 }
1597 
1598 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1599 {
1600 	int val, ret;
1601 
1602 	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1603 				    !(val & KSZ9x31_LMD_VCT_EN),
1604 				    30000, 100000, true);
1605 
1606 	return ret < 0 ? ret : 0;
1607 }
1608 
1609 static int ksz9x31_cable_test_get_pair(int pair)
1610 {
1611 	static const int ethtool_pair[] = {
1612 		ETHTOOL_A_CABLE_PAIR_A,
1613 		ETHTOOL_A_CABLE_PAIR_B,
1614 		ETHTOOL_A_CABLE_PAIR_C,
1615 		ETHTOOL_A_CABLE_PAIR_D,
1616 	};
1617 
1618 	return ethtool_pair[pair];
1619 }
1620 
1621 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1622 {
1623 	int ret, val;
1624 
1625 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1626 	 * To test each individual cable pair, set the cable pair in the Cable
1627 	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1628 	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1629 	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1630 	 * will self clear when the test is concluded.
1631 	 */
1632 	ret = phy_write(phydev, KSZ9x31_LMD,
1633 			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1634 	if (ret)
1635 		return ret;
1636 
1637 	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1638 	if (ret)
1639 		return ret;
1640 
1641 	val = phy_read(phydev, KSZ9x31_LMD);
1642 	if (val < 0)
1643 		return val;
1644 
1645 	if (ksz9x31_cable_test_failed(val))
1646 		return -EAGAIN;
1647 
1648 	ret = ethnl_cable_test_result(phydev,
1649 				      ksz9x31_cable_test_get_pair(pair),
1650 				      ksz9x31_cable_test_result_trans(val));
1651 	if (ret)
1652 		return ret;
1653 
1654 	if (!ksz9x31_cable_test_fault_length_valid(val))
1655 		return 0;
1656 
1657 	return ethnl_cable_test_fault_length(phydev,
1658 					     ksz9x31_cable_test_get_pair(pair),
1659 					     ksz9x31_cable_test_fault_length(phydev, val));
1660 }
1661 
1662 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1663 					 bool *finished)
1664 {
1665 	struct kszphy_priv *priv = phydev->priv;
1666 	unsigned long pair_mask = 0xf;
1667 	int retries = 20;
1668 	int pair, ret, rv;
1669 
1670 	*finished = false;
1671 
1672 	/* Try harder if link partner is active */
1673 	while (pair_mask && retries--) {
1674 		for_each_set_bit(pair, &pair_mask, 4) {
1675 			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1676 			if (ret == -EAGAIN)
1677 				continue;
1678 			if (ret < 0)
1679 				return ret;
1680 			clear_bit(pair, &pair_mask);
1681 		}
1682 		/* If link partner is in autonegotiation mode it will send 2ms
1683 		 * of FLPs with at least 6ms of silence.
1684 		 * Add 2ms sleep to have better chances to hit this silence.
1685 		 */
1686 		if (pair_mask)
1687 			usleep_range(2000, 3000);
1688 	}
1689 
1690 	/* Report remaining unfinished pair result as unknown. */
1691 	for_each_set_bit(pair, &pair_mask, 4) {
1692 		ret = ethnl_cable_test_result(phydev,
1693 					      ksz9x31_cable_test_get_pair(pair),
1694 					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1695 	}
1696 
1697 	*finished = true;
1698 
1699 	/* Restore cached bits from before LinkMD got started. */
1700 	rv = phy_modify(phydev, MII_CTRL1000,
1701 			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1702 			priv->vct_ctrl1000);
1703 	if (rv)
1704 		return rv;
1705 
1706 	return ret;
1707 }
1708 
1709 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1710 {
1711 	return 0;
1712 }
1713 
1714 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1715 {
1716 	u16 val;
1717 
1718 	switch (ctrl) {
1719 	case ETH_TP_MDI:
1720 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1721 		break;
1722 	case ETH_TP_MDI_X:
1723 		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1724 		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1725 		 * sheet seems to be missing:
1726 		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1727 		 * 0 = Normal operation (transmit on TX+/TX- pins)
1728 		 */
1729 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1730 		break;
1731 	case ETH_TP_MDI_AUTO:
1732 		val = 0;
1733 		break;
1734 	default:
1735 		return 0;
1736 	}
1737 
1738 	return phy_modify(phydev, MII_BMCR,
1739 			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1740 			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1741 			  KSZ886X_BMCR_HP_MDIX | val);
1742 }
1743 
1744 static int ksz886x_config_aneg(struct phy_device *phydev)
1745 {
1746 	int ret;
1747 
1748 	ret = genphy_config_aneg(phydev);
1749 	if (ret)
1750 		return ret;
1751 
1752 	/* The MDI-X configuration is automatically changed by the PHY after
1753 	 * switching from autoneg off to on. So, take MDI-X configuration under
1754 	 * own control and set it after autoneg configuration was done.
1755 	 */
1756 	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1757 }
1758 
1759 static int ksz886x_mdix_update(struct phy_device *phydev)
1760 {
1761 	int ret;
1762 
1763 	ret = phy_read(phydev, MII_BMCR);
1764 	if (ret < 0)
1765 		return ret;
1766 
1767 	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1768 		if (ret & KSZ886X_BMCR_FORCE_MDI)
1769 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1770 		else
1771 			phydev->mdix_ctrl = ETH_TP_MDI;
1772 	} else {
1773 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1774 	}
1775 
1776 	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1777 	if (ret < 0)
1778 		return ret;
1779 
1780 	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1781 	if (ret & KSZ886X_CTRL_MDIX_STAT)
1782 		phydev->mdix = ETH_TP_MDI_X;
1783 	else
1784 		phydev->mdix = ETH_TP_MDI;
1785 
1786 	return 0;
1787 }
1788 
1789 static int ksz886x_read_status(struct phy_device *phydev)
1790 {
1791 	int ret;
1792 
1793 	ret = ksz886x_mdix_update(phydev);
1794 	if (ret < 0)
1795 		return ret;
1796 
1797 	return genphy_read_status(phydev);
1798 }
1799 
1800 struct ksz9477_errata_write {
1801 	u8 dev_addr;
1802 	u8 reg_addr;
1803 	u16 val;
1804 };
1805 
1806 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
1807 	 /* Register settings are needed to improve PHY receive performance */
1808 	{0x01, 0x6f, 0xdd0b},
1809 	{0x01, 0x8f, 0x6032},
1810 	{0x01, 0x9d, 0x248c},
1811 	{0x01, 0x75, 0x0060},
1812 	{0x01, 0xd3, 0x7777},
1813 	{0x1c, 0x06, 0x3008},
1814 	{0x1c, 0x08, 0x2000},
1815 
1816 	/* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
1817 	{0x1c, 0x04, 0x00d0},
1818 
1819 	/* Register settings are required to meet data sheet supply current specifications */
1820 	{0x1c, 0x13, 0x6eff},
1821 	{0x1c, 0x14, 0xe6ff},
1822 	{0x1c, 0x15, 0x6eff},
1823 	{0x1c, 0x16, 0xe6ff},
1824 	{0x1c, 0x17, 0x00ff},
1825 	{0x1c, 0x18, 0x43ff},
1826 	{0x1c, 0x19, 0xc3ff},
1827 	{0x1c, 0x1a, 0x6fff},
1828 	{0x1c, 0x1b, 0x07ff},
1829 	{0x1c, 0x1c, 0x0fff},
1830 	{0x1c, 0x1d, 0xe7ff},
1831 	{0x1c, 0x1e, 0xefff},
1832 	{0x1c, 0x20, 0xeeee},
1833 };
1834 
1835 static int ksz9477_phy_errata(struct phy_device *phydev)
1836 {
1837 	int err;
1838 	int i;
1839 
1840 	/* Apply PHY settings to address errata listed in
1841 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1842 	 * Silicon Errata and Data Sheet Clarification documents.
1843 	 *
1844 	 * Document notes: Before configuring the PHY MMD registers, it is
1845 	 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
1846 	 * disabled by writing to register 0xN100-0xN101. After writing the
1847 	 * MMD registers, and after all errata workarounds that involve PHY
1848 	 * register settings, write register 0xN100-0xN101 again to enable
1849 	 * and restart auto-negotiation.
1850 	 */
1851 	err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
1852 	if (err)
1853 		return err;
1854 
1855 	for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
1856 		const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
1857 
1858 		err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
1859 		if (err)
1860 			return err;
1861 	}
1862 
1863 	err = genphy_restart_aneg(phydev);
1864 	if (err)
1865 		return err;
1866 
1867 	return err;
1868 }
1869 
1870 static int ksz9477_config_init(struct phy_device *phydev)
1871 {
1872 	int err;
1873 
1874 	/* Only KSZ9897 family of switches needs this fix. */
1875 	if ((phydev->phy_id & 0xf) == 1) {
1876 		err = ksz9477_phy_errata(phydev);
1877 		if (err)
1878 			return err;
1879 	}
1880 
1881 	/* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes
1882 	 * in this switch shall be regarded as broken.
1883 	 */
1884 	if (phydev->dev_flags & MICREL_NO_EEE)
1885 		phydev->eee_broken_modes = -1;
1886 
1887 	return kszphy_config_init(phydev);
1888 }
1889 
1890 static int kszphy_get_sset_count(struct phy_device *phydev)
1891 {
1892 	return ARRAY_SIZE(kszphy_hw_stats);
1893 }
1894 
1895 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
1896 {
1897 	int i;
1898 
1899 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
1900 		strscpy(data + i * ETH_GSTRING_LEN,
1901 			kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
1902 	}
1903 }
1904 
1905 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
1906 {
1907 	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
1908 	struct kszphy_priv *priv = phydev->priv;
1909 	int val;
1910 	u64 ret;
1911 
1912 	val = phy_read(phydev, stat.reg);
1913 	if (val < 0) {
1914 		ret = U64_MAX;
1915 	} else {
1916 		val = val & ((1 << stat.bits) - 1);
1917 		priv->stats[i] += val;
1918 		ret = priv->stats[i];
1919 	}
1920 
1921 	return ret;
1922 }
1923 
1924 static void kszphy_get_stats(struct phy_device *phydev,
1925 			     struct ethtool_stats *stats, u64 *data)
1926 {
1927 	int i;
1928 
1929 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
1930 		data[i] = kszphy_get_stat(phydev, i);
1931 }
1932 
1933 static int kszphy_suspend(struct phy_device *phydev)
1934 {
1935 	/* Disable PHY Interrupts */
1936 	if (phy_interrupt_is_valid(phydev)) {
1937 		phydev->interrupts = PHY_INTERRUPT_DISABLED;
1938 		if (phydev->drv->config_intr)
1939 			phydev->drv->config_intr(phydev);
1940 	}
1941 
1942 	return genphy_suspend(phydev);
1943 }
1944 
1945 static void kszphy_parse_led_mode(struct phy_device *phydev)
1946 {
1947 	const struct kszphy_type *type = phydev->drv->driver_data;
1948 	const struct device_node *np = phydev->mdio.dev.of_node;
1949 	struct kszphy_priv *priv = phydev->priv;
1950 	int ret;
1951 
1952 	if (type && type->led_mode_reg) {
1953 		ret = of_property_read_u32(np, "micrel,led-mode",
1954 					   &priv->led_mode);
1955 
1956 		if (ret)
1957 			priv->led_mode = -1;
1958 
1959 		if (priv->led_mode > 3) {
1960 			phydev_err(phydev, "invalid led mode: 0x%02x\n",
1961 				   priv->led_mode);
1962 			priv->led_mode = -1;
1963 		}
1964 	} else {
1965 		priv->led_mode = -1;
1966 	}
1967 }
1968 
1969 static int kszphy_resume(struct phy_device *phydev)
1970 {
1971 	int ret;
1972 
1973 	genphy_resume(phydev);
1974 
1975 	/* After switching from power-down to normal mode, an internal global
1976 	 * reset is automatically generated. Wait a minimum of 1 ms before
1977 	 * read/write access to the PHY registers.
1978 	 */
1979 	usleep_range(1000, 2000);
1980 
1981 	ret = kszphy_config_reset(phydev);
1982 	if (ret)
1983 		return ret;
1984 
1985 	/* Enable PHY Interrupts */
1986 	if (phy_interrupt_is_valid(phydev)) {
1987 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
1988 		if (phydev->drv->config_intr)
1989 			phydev->drv->config_intr(phydev);
1990 	}
1991 
1992 	return 0;
1993 }
1994 
1995 static int ksz9477_resume(struct phy_device *phydev)
1996 {
1997 	int ret;
1998 
1999 	/* No need to initialize registers if not powered down. */
2000 	ret = phy_read(phydev, MII_BMCR);
2001 	if (ret < 0)
2002 		return ret;
2003 	if (!(ret & BMCR_PDOWN))
2004 		return 0;
2005 
2006 	genphy_resume(phydev);
2007 
2008 	/* After switching from power-down to normal mode, an internal global
2009 	 * reset is automatically generated. Wait a minimum of 1 ms before
2010 	 * read/write access to the PHY registers.
2011 	 */
2012 	usleep_range(1000, 2000);
2013 
2014 	/* Only KSZ9897 family of switches needs this fix. */
2015 	if ((phydev->phy_id & 0xf) == 1) {
2016 		ret = ksz9477_phy_errata(phydev);
2017 		if (ret)
2018 			return ret;
2019 	}
2020 
2021 	/* Enable PHY Interrupts */
2022 	if (phy_interrupt_is_valid(phydev)) {
2023 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2024 		if (phydev->drv->config_intr)
2025 			phydev->drv->config_intr(phydev);
2026 	}
2027 
2028 	return 0;
2029 }
2030 
2031 static int ksz8061_resume(struct phy_device *phydev)
2032 {
2033 	int ret;
2034 
2035 	/* This function can be called twice when the Ethernet device is on. */
2036 	ret = phy_read(phydev, MII_BMCR);
2037 	if (ret < 0)
2038 		return ret;
2039 	if (!(ret & BMCR_PDOWN))
2040 		return 0;
2041 
2042 	genphy_resume(phydev);
2043 	usleep_range(1000, 2000);
2044 
2045 	/* Re-program the value after chip is reset. */
2046 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
2047 	if (ret)
2048 		return ret;
2049 
2050 	/* Enable PHY Interrupts */
2051 	if (phy_interrupt_is_valid(phydev)) {
2052 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2053 		if (phydev->drv->config_intr)
2054 			phydev->drv->config_intr(phydev);
2055 	}
2056 
2057 	return 0;
2058 }
2059 
2060 static int kszphy_probe(struct phy_device *phydev)
2061 {
2062 	const struct kszphy_type *type = phydev->drv->driver_data;
2063 	const struct device_node *np = phydev->mdio.dev.of_node;
2064 	struct kszphy_priv *priv;
2065 	struct clk *clk;
2066 
2067 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2068 	if (!priv)
2069 		return -ENOMEM;
2070 
2071 	phydev->priv = priv;
2072 
2073 	priv->type = type;
2074 
2075 	kszphy_parse_led_mode(phydev);
2076 
2077 	clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref");
2078 	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2079 	if (!IS_ERR_OR_NULL(clk)) {
2080 		unsigned long rate = clk_get_rate(clk);
2081 		bool rmii_ref_clk_sel_25_mhz;
2082 
2083 		if (type)
2084 			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2085 		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2086 				"micrel,rmii-reference-clock-select-25-mhz");
2087 
2088 		if (rate > 24500000 && rate < 25500000) {
2089 			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2090 		} else if (rate > 49500000 && rate < 50500000) {
2091 			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2092 		} else {
2093 			phydev_err(phydev, "Clock rate out of range: %ld\n",
2094 				   rate);
2095 			return -EINVAL;
2096 		}
2097 	}
2098 
2099 	if (ksz8041_fiber_mode(phydev))
2100 		phydev->port = PORT_FIBRE;
2101 
2102 	/* Support legacy board-file configuration */
2103 	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2104 		priv->rmii_ref_clk_sel = true;
2105 		priv->rmii_ref_clk_sel_val = true;
2106 	}
2107 
2108 	return 0;
2109 }
2110 
2111 static int lan8814_cable_test_start(struct phy_device *phydev)
2112 {
2113 	/* If autoneg is enabled, we won't be able to test cross pair
2114 	 * short. In this case, the PHY will "detect" a link and
2115 	 * confuse the internal state machine - disable auto neg here.
2116 	 * Set the speed to 1000mbit and full duplex.
2117 	 */
2118 	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2119 			  BMCR_SPEED1000 | BMCR_FULLDPLX);
2120 }
2121 
2122 static int ksz886x_cable_test_start(struct phy_device *phydev)
2123 {
2124 	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2125 		return -EOPNOTSUPP;
2126 
2127 	/* If autoneg is enabled, we won't be able to test cross pair
2128 	 * short. In this case, the PHY will "detect" a link and
2129 	 * confuse the internal state machine - disable auto neg here.
2130 	 * If autoneg is disabled, we should set the speed to 10mbit.
2131 	 */
2132 	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2133 }
2134 
2135 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2136 {
2137 	switch (FIELD_GET(mask, status)) {
2138 	case KSZ8081_LMD_STAT_NORMAL:
2139 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2140 	case KSZ8081_LMD_STAT_SHORT:
2141 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2142 	case KSZ8081_LMD_STAT_OPEN:
2143 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2144 	case KSZ8081_LMD_STAT_FAIL:
2145 		fallthrough;
2146 	default:
2147 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2148 	}
2149 }
2150 
2151 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2152 {
2153 	return FIELD_GET(mask, status) ==
2154 		KSZ8081_LMD_STAT_FAIL;
2155 }
2156 
2157 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2158 {
2159 	switch (FIELD_GET(mask, status)) {
2160 	case KSZ8081_LMD_STAT_OPEN:
2161 		fallthrough;
2162 	case KSZ8081_LMD_STAT_SHORT:
2163 		return true;
2164 	}
2165 	return false;
2166 }
2167 
2168 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2169 							   u16 status, u16 data_mask)
2170 {
2171 	int dt;
2172 
2173 	/* According to the data sheet the distance to the fault is
2174 	 * DELTA_TIME * 0.4 meters for ksz phys.
2175 	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2176 	 */
2177 	dt = FIELD_GET(data_mask, status);
2178 
2179 	if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2180 		return ((dt - 22) * 800) / 10;
2181 	else
2182 		return (dt * 400) / 10;
2183 }
2184 
2185 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2186 {
2187 	const struct kszphy_type *type = phydev->drv->driver_data;
2188 	int val, ret;
2189 
2190 	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2191 				    !(val & KSZ8081_LMD_ENABLE_TEST),
2192 				    30000, 100000, true);
2193 
2194 	return ret < 0 ? ret : 0;
2195 }
2196 
2197 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2198 {
2199 	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2200 					    ETHTOOL_A_CABLE_PAIR_B,
2201 					    ETHTOOL_A_CABLE_PAIR_C,
2202 					    ETHTOOL_A_CABLE_PAIR_D,
2203 					  };
2204 	u32 fault_length;
2205 	int ret;
2206 	int val;
2207 
2208 	val = KSZ8081_LMD_ENABLE_TEST;
2209 	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2210 
2211 	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2212 	if (ret < 0)
2213 		return ret;
2214 
2215 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2216 	if (ret)
2217 		return ret;
2218 
2219 	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2220 	if (val < 0)
2221 		return val;
2222 
2223 	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2224 		return -EAGAIN;
2225 
2226 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2227 				      ksz886x_cable_test_result_trans(val,
2228 								      LAN8814_CABLE_DIAG_STAT_MASK
2229 								      ));
2230 	if (ret)
2231 		return ret;
2232 
2233 	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2234 		return 0;
2235 
2236 	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2237 						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2238 
2239 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2240 }
2241 
2242 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2243 {
2244 	static const int ethtool_pair[] = {
2245 		ETHTOOL_A_CABLE_PAIR_A,
2246 		ETHTOOL_A_CABLE_PAIR_B,
2247 	};
2248 	int ret, val, mdix;
2249 	u32 fault_length;
2250 
2251 	/* There is no way to choice the pair, like we do one ksz9031.
2252 	 * We can workaround this limitation by using the MDI-X functionality.
2253 	 */
2254 	if (pair == 0)
2255 		mdix = ETH_TP_MDI;
2256 	else
2257 		mdix = ETH_TP_MDI_X;
2258 
2259 	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2260 	case PHY_ID_KSZ8081:
2261 		ret = ksz8081_config_mdix(phydev, mdix);
2262 		break;
2263 	case PHY_ID_KSZ886X:
2264 		ret = ksz886x_config_mdix(phydev, mdix);
2265 		break;
2266 	default:
2267 		ret = -ENODEV;
2268 	}
2269 
2270 	if (ret)
2271 		return ret;
2272 
2273 	/* Now we are ready to fire. This command will send a 100ns pulse
2274 	 * to the pair.
2275 	 */
2276 	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2277 	if (ret)
2278 		return ret;
2279 
2280 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2281 	if (ret)
2282 		return ret;
2283 
2284 	val = phy_read(phydev, KSZ8081_LMD);
2285 	if (val < 0)
2286 		return val;
2287 
2288 	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2289 		return -EAGAIN;
2290 
2291 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2292 				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2293 	if (ret)
2294 		return ret;
2295 
2296 	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2297 		return 0;
2298 
2299 	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2300 
2301 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2302 }
2303 
2304 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2305 					 bool *finished)
2306 {
2307 	const struct kszphy_type *type = phydev->drv->driver_data;
2308 	unsigned long pair_mask = type->pair_mask;
2309 	int retries = 20;
2310 	int ret = 0;
2311 	int pair;
2312 
2313 	*finished = false;
2314 
2315 	/* Try harder if link partner is active */
2316 	while (pair_mask && retries--) {
2317 		for_each_set_bit(pair, &pair_mask, 4) {
2318 			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2319 				ret = lan8814_cable_test_one_pair(phydev, pair);
2320 			else
2321 				ret = ksz886x_cable_test_one_pair(phydev, pair);
2322 			if (ret == -EAGAIN)
2323 				continue;
2324 			if (ret < 0)
2325 				return ret;
2326 			clear_bit(pair, &pair_mask);
2327 		}
2328 		/* If link partner is in autonegotiation mode it will send 2ms
2329 		 * of FLPs with at least 6ms of silence.
2330 		 * Add 2ms sleep to have better chances to hit this silence.
2331 		 */
2332 		if (pair_mask)
2333 			msleep(2);
2334 	}
2335 
2336 	*finished = true;
2337 
2338 	return ret;
2339 }
2340 
2341 #define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2342 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2343 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2344 
2345 #define LAN8814_QSGMII_SOFT_RESET			0x43
2346 #define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2347 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2348 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2349 #define LAN8814_ALIGN_SWAP				0x4a
2350 #define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2351 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2352 
2353 #define LAN8804_ALIGN_SWAP				0x4a
2354 #define LAN8804_ALIGN_TX_A_B_SWAP			0x1
2355 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2356 #define LAN8814_CLOCK_MANAGEMENT			0xd
2357 #define LAN8814_LINK_QUALITY				0x8e
2358 
2359 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2360 {
2361 	int data;
2362 
2363 	phy_lock_mdio_bus(phydev);
2364 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2365 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2366 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2367 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2368 	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2369 	phy_unlock_mdio_bus(phydev);
2370 
2371 	return data;
2372 }
2373 
2374 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2375 				 u16 val)
2376 {
2377 	phy_lock_mdio_bus(phydev);
2378 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2379 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2380 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2381 		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2382 
2383 	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2384 	if (val != 0)
2385 		phydev_err(phydev, "Error: phy_write has returned error %d\n",
2386 			   val);
2387 	phy_unlock_mdio_bus(phydev);
2388 	return val;
2389 }
2390 
2391 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2392 {
2393 	u16 val = 0;
2394 
2395 	if (enable)
2396 		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2397 		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2398 		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2399 		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2400 
2401 	return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2402 }
2403 
2404 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2405 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2406 {
2407 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2408 	*seconds = (*seconds << 16) |
2409 		   lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2410 
2411 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2412 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2413 			lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2414 
2415 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2416 }
2417 
2418 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2419 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2420 {
2421 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2422 	*seconds = *seconds << 16 |
2423 		   lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2424 
2425 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2426 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2427 			lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2428 
2429 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2430 }
2431 
2432 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
2433 {
2434 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2435 	struct phy_device *phydev = ptp_priv->phydev;
2436 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2437 
2438 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2439 				SOF_TIMESTAMPING_RX_HARDWARE |
2440 				SOF_TIMESTAMPING_RAW_HARDWARE;
2441 
2442 	info->phc_index = ptp_clock_index(shared->ptp_clock);
2443 
2444 	info->tx_types =
2445 		(1 << HWTSTAMP_TX_OFF) |
2446 		(1 << HWTSTAMP_TX_ON) |
2447 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
2448 
2449 	info->rx_filters =
2450 		(1 << HWTSTAMP_FILTER_NONE) |
2451 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2452 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2453 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2454 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2455 
2456 	return 0;
2457 }
2458 
2459 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2460 {
2461 	int i;
2462 
2463 	for (i = 0; i < FIFO_SIZE; ++i)
2464 		lanphy_read_page_reg(phydev, 5,
2465 				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2466 
2467 	/* Read to clear overflow status bit */
2468 	lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2469 }
2470 
2471 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
2472 {
2473 	struct kszphy_ptp_priv *ptp_priv =
2474 			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2475 	struct phy_device *phydev = ptp_priv->phydev;
2476 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2477 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2478 	struct hwtstamp_config config;
2479 	int txcfg = 0, rxcfg = 0;
2480 	int pkt_ts_enable;
2481 	int tx_mod;
2482 
2483 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2484 		return -EFAULT;
2485 
2486 	ptp_priv->hwts_tx_type = config.tx_type;
2487 	ptp_priv->rx_filter = config.rx_filter;
2488 
2489 	switch (config.rx_filter) {
2490 	case HWTSTAMP_FILTER_NONE:
2491 		ptp_priv->layer = 0;
2492 		ptp_priv->version = 0;
2493 		break;
2494 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2495 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2496 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2497 		ptp_priv->layer = PTP_CLASS_L4;
2498 		ptp_priv->version = PTP_CLASS_V2;
2499 		break;
2500 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2501 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2502 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2503 		ptp_priv->layer = PTP_CLASS_L2;
2504 		ptp_priv->version = PTP_CLASS_V2;
2505 		break;
2506 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2507 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2508 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2509 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2510 		ptp_priv->version = PTP_CLASS_V2;
2511 		break;
2512 	default:
2513 		return -ERANGE;
2514 	}
2515 
2516 	if (ptp_priv->layer & PTP_CLASS_L2) {
2517 		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2518 		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2519 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
2520 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2521 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2522 	}
2523 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2524 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2525 
2526 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2527 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2528 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2529 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2530 
2531 	tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD);
2532 	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) {
2533 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2534 				      tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2535 	} else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) {
2536 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2537 				      tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2538 	}
2539 
2540 	if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2541 		lan8814_config_ts_intr(ptp_priv->phydev, true);
2542 	else
2543 		lan8814_config_ts_intr(ptp_priv->phydev, false);
2544 
2545 	mutex_lock(&shared->shared_lock);
2546 	if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2547 		shared->ref++;
2548 	else
2549 		shared->ref--;
2550 
2551 	if (shared->ref)
2552 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2553 				      PTP_CMD_CTL_PTP_ENABLE_);
2554 	else
2555 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2556 				      PTP_CMD_CTL_PTP_DISABLE_);
2557 	mutex_unlock(&shared->shared_lock);
2558 
2559 	/* In case of multiple starts and stops, these needs to be cleared */
2560 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2561 		list_del(&rx_ts->list);
2562 		kfree(rx_ts);
2563 	}
2564 	skb_queue_purge(&ptp_priv->rx_queue);
2565 	skb_queue_purge(&ptp_priv->tx_queue);
2566 
2567 	lan8814_flush_fifo(ptp_priv->phydev, false);
2568 	lan8814_flush_fifo(ptp_priv->phydev, true);
2569 
2570 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
2571 }
2572 
2573 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2574 			     struct sk_buff *skb, int type)
2575 {
2576 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2577 
2578 	switch (ptp_priv->hwts_tx_type) {
2579 	case HWTSTAMP_TX_ONESTEP_SYNC:
2580 		if (ptp_msg_is_sync(skb, type)) {
2581 			kfree_skb(skb);
2582 			return;
2583 		}
2584 		fallthrough;
2585 	case HWTSTAMP_TX_ON:
2586 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2587 		skb_queue_tail(&ptp_priv->tx_queue, skb);
2588 		break;
2589 	case HWTSTAMP_TX_OFF:
2590 	default:
2591 		kfree_skb(skb);
2592 		break;
2593 	}
2594 }
2595 
2596 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2597 {
2598 	struct ptp_header *ptp_header;
2599 	u32 type;
2600 
2601 	skb_push(skb, ETH_HLEN);
2602 	type = ptp_classify_raw(skb);
2603 	ptp_header = ptp_parse_header(skb, type);
2604 	skb_pull_inline(skb, ETH_HLEN);
2605 
2606 	if (!ptp_header)
2607 		return false;
2608 
2609 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2610 	return true;
2611 }
2612 
2613 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
2614 				 struct sk_buff *skb)
2615 {
2616 	struct skb_shared_hwtstamps *shhwtstamps;
2617 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2618 	unsigned long flags;
2619 	bool ret = false;
2620 	u16 skb_sig;
2621 
2622 	if (!lan8814_get_sig_rx(skb, &skb_sig))
2623 		return ret;
2624 
2625 	/* Iterate over all RX timestamps and match it with the received skbs */
2626 	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2627 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2628 		/* Check if we found the signature we were looking for. */
2629 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2630 			continue;
2631 
2632 		shhwtstamps = skb_hwtstamps(skb);
2633 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2634 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2635 						  rx_ts->nsec);
2636 		list_del(&rx_ts->list);
2637 		kfree(rx_ts);
2638 
2639 		ret = true;
2640 		break;
2641 	}
2642 	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2643 
2644 	if (ret)
2645 		netif_rx(skb);
2646 	return ret;
2647 }
2648 
2649 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2650 {
2651 	struct kszphy_ptp_priv *ptp_priv =
2652 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2653 
2654 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2655 	    type == PTP_CLASS_NONE)
2656 		return false;
2657 
2658 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2659 		return false;
2660 
2661 	/* If we failed to match then add it to the queue for when the timestamp
2662 	 * will come
2663 	 */
2664 	if (!lan8814_match_rx_skb(ptp_priv, skb))
2665 		skb_queue_tail(&ptp_priv->rx_queue, skb);
2666 
2667 	return true;
2668 }
2669 
2670 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2671 				  u32 seconds, u32 nano_seconds)
2672 {
2673 	u32 sec_low, sec_high, nsec_low, nsec_high;
2674 
2675 	sec_low = seconds & 0xffff;
2676 	sec_high = (seconds >> 16) & 0xffff;
2677 	nsec_low = nano_seconds & 0xffff;
2678 	nsec_high = (nano_seconds >> 16) & 0x3fff;
2679 
2680 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low);
2681 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high);
2682 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low);
2683 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high);
2684 
2685 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2686 }
2687 
2688 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2689 				  u32 *seconds, u32 *nano_seconds)
2690 {
2691 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2692 
2693 	*seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2694 	*seconds = (*seconds << 16) |
2695 		   lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2696 
2697 	*nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2698 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2699 			lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2700 }
2701 
2702 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2703 				   struct timespec64 *ts)
2704 {
2705 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2706 							  ptp_clock_info);
2707 	struct phy_device *phydev = shared->phydev;
2708 	u32 nano_seconds;
2709 	u32 seconds;
2710 
2711 	mutex_lock(&shared->shared_lock);
2712 	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2713 	mutex_unlock(&shared->shared_lock);
2714 	ts->tv_sec = seconds;
2715 	ts->tv_nsec = nano_seconds;
2716 
2717 	return 0;
2718 }
2719 
2720 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2721 				   const struct timespec64 *ts)
2722 {
2723 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2724 							  ptp_clock_info);
2725 	struct phy_device *phydev = shared->phydev;
2726 
2727 	mutex_lock(&shared->shared_lock);
2728 	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2729 	mutex_unlock(&shared->shared_lock);
2730 
2731 	return 0;
2732 }
2733 
2734 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2735 				   s64 time_step_ns)
2736 {
2737 	u32 nano_seconds_step;
2738 	u64 abs_time_step_ns;
2739 	u32 unsigned_seconds;
2740 	u32 nano_seconds;
2741 	u32 remainder;
2742 	s32 seconds;
2743 
2744 	if (time_step_ns >  15000000000LL) {
2745 		/* convert to clock set */
2746 		lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2747 		unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2748 						&remainder);
2749 		nano_seconds += remainder;
2750 		if (nano_seconds >= 1000000000) {
2751 			unsigned_seconds++;
2752 			nano_seconds -= 1000000000;
2753 		}
2754 		lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds);
2755 		return;
2756 	} else if (time_step_ns < -15000000000LL) {
2757 		/* convert to clock set */
2758 		time_step_ns = -time_step_ns;
2759 
2760 		lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2761 		unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2762 						&remainder);
2763 		nano_seconds_step = remainder;
2764 		if (nano_seconds < nano_seconds_step) {
2765 			unsigned_seconds--;
2766 			nano_seconds += 1000000000;
2767 		}
2768 		nano_seconds -= nano_seconds_step;
2769 		lan8814_ptp_clock_set(phydev, unsigned_seconds,
2770 				      nano_seconds);
2771 		return;
2772 	}
2773 
2774 	/* do clock step */
2775 	if (time_step_ns >= 0) {
2776 		abs_time_step_ns = (u64)time_step_ns;
2777 		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2778 					   &remainder);
2779 		nano_seconds = remainder;
2780 	} else {
2781 		abs_time_step_ns = (u64)(-time_step_ns);
2782 		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2783 			    &remainder));
2784 		nano_seconds = remainder;
2785 		if (nano_seconds > 0) {
2786 			/* subtracting nano seconds is not allowed
2787 			 * convert to subtracting from seconds,
2788 			 * and adding to nanoseconds
2789 			 */
2790 			seconds--;
2791 			nano_seconds = (1000000000 - nano_seconds);
2792 		}
2793 	}
2794 
2795 	if (nano_seconds > 0) {
2796 		/* add 8 ns to cover the likely normal increment */
2797 		nano_seconds += 8;
2798 	}
2799 
2800 	if (nano_seconds >= 1000000000) {
2801 		/* carry into seconds */
2802 		seconds++;
2803 		nano_seconds -= 1000000000;
2804 	}
2805 
2806 	while (seconds) {
2807 		if (seconds > 0) {
2808 			u32 adjustment_value = (u32)seconds;
2809 			u16 adjustment_value_lo, adjustment_value_hi;
2810 
2811 			if (adjustment_value > 0xF)
2812 				adjustment_value = 0xF;
2813 
2814 			adjustment_value_lo = adjustment_value & 0xffff;
2815 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2816 
2817 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2818 					      adjustment_value_lo);
2819 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2820 					      PTP_LTC_STEP_ADJ_DIR_ |
2821 					      adjustment_value_hi);
2822 			seconds -= ((s32)adjustment_value);
2823 		} else {
2824 			u32 adjustment_value = (u32)(-seconds);
2825 			u16 adjustment_value_lo, adjustment_value_hi;
2826 
2827 			if (adjustment_value > 0xF)
2828 				adjustment_value = 0xF;
2829 
2830 			adjustment_value_lo = adjustment_value & 0xffff;
2831 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2832 
2833 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2834 					      adjustment_value_lo);
2835 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2836 					      adjustment_value_hi);
2837 			seconds += ((s32)adjustment_value);
2838 		}
2839 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2840 				      PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2841 	}
2842 	if (nano_seconds) {
2843 		u16 nano_seconds_lo;
2844 		u16 nano_seconds_hi;
2845 
2846 		nano_seconds_lo = nano_seconds & 0xffff;
2847 		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2848 
2849 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2850 				      nano_seconds_lo);
2851 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2852 				      PTP_LTC_STEP_ADJ_DIR_ |
2853 				      nano_seconds_hi);
2854 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2855 				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2856 	}
2857 }
2858 
2859 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2860 {
2861 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2862 							  ptp_clock_info);
2863 	struct phy_device *phydev = shared->phydev;
2864 
2865 	mutex_lock(&shared->shared_lock);
2866 	lan8814_ptp_clock_step(phydev, delta);
2867 	mutex_unlock(&shared->shared_lock);
2868 
2869 	return 0;
2870 }
2871 
2872 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
2873 {
2874 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2875 							  ptp_clock_info);
2876 	struct phy_device *phydev = shared->phydev;
2877 	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
2878 	bool positive = true;
2879 	u32 kszphy_rate_adj;
2880 
2881 	if (scaled_ppm < 0) {
2882 		scaled_ppm = -scaled_ppm;
2883 		positive = false;
2884 	}
2885 
2886 	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
2887 	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
2888 
2889 	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
2890 	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
2891 
2892 	if (positive)
2893 		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
2894 
2895 	mutex_lock(&shared->shared_lock);
2896 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
2897 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
2898 	mutex_unlock(&shared->shared_lock);
2899 
2900 	return 0;
2901 }
2902 
2903 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
2904 {
2905 	struct ptp_header *ptp_header;
2906 	u32 type;
2907 
2908 	type = ptp_classify_raw(skb);
2909 	ptp_header = ptp_parse_header(skb, type);
2910 
2911 	if (!ptp_header)
2912 		return false;
2913 
2914 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2915 	return true;
2916 }
2917 
2918 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
2919 				 u32 seconds, u32 nsec, u16 seq_id)
2920 {
2921 	struct skb_shared_hwtstamps shhwtstamps;
2922 	struct sk_buff *skb, *skb_tmp;
2923 	unsigned long flags;
2924 	bool ret = false;
2925 	u16 skb_sig;
2926 
2927 	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
2928 	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
2929 		if (!lan8814_get_sig_tx(skb, &skb_sig))
2930 			continue;
2931 
2932 		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
2933 			continue;
2934 
2935 		__skb_unlink(skb, &ptp_priv->tx_queue);
2936 		ret = true;
2937 		break;
2938 	}
2939 	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
2940 
2941 	if (ret) {
2942 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2943 		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
2944 		skb_complete_tx_timestamp(skb, &shhwtstamps);
2945 	}
2946 }
2947 
2948 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
2949 {
2950 	struct phy_device *phydev = ptp_priv->phydev;
2951 	u32 seconds, nsec;
2952 	u16 seq_id;
2953 
2954 	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
2955 	lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
2956 }
2957 
2958 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
2959 {
2960 	struct phy_device *phydev = ptp_priv->phydev;
2961 	u32 reg;
2962 
2963 	do {
2964 		lan8814_dequeue_tx_skb(ptp_priv);
2965 
2966 		/* If other timestamps are available in the FIFO,
2967 		 * process them.
2968 		 */
2969 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2970 	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
2971 }
2972 
2973 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
2974 			      struct lan8814_ptp_rx_ts *rx_ts)
2975 {
2976 	struct skb_shared_hwtstamps *shhwtstamps;
2977 	struct sk_buff *skb, *skb_tmp;
2978 	unsigned long flags;
2979 	bool ret = false;
2980 	u16 skb_sig;
2981 
2982 	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
2983 	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
2984 		if (!lan8814_get_sig_rx(skb, &skb_sig))
2985 			continue;
2986 
2987 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2988 			continue;
2989 
2990 		__skb_unlink(skb, &ptp_priv->rx_queue);
2991 
2992 		ret = true;
2993 		break;
2994 	}
2995 	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
2996 
2997 	if (ret) {
2998 		shhwtstamps = skb_hwtstamps(skb);
2999 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3000 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
3001 		netif_rx(skb);
3002 	}
3003 
3004 	return ret;
3005 }
3006 
3007 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
3008 				struct lan8814_ptp_rx_ts *rx_ts)
3009 {
3010 	unsigned long flags;
3011 
3012 	/* If we failed to match the skb add it to the queue for when
3013 	 * the frame will come
3014 	 */
3015 	if (!lan8814_match_skb(ptp_priv, rx_ts)) {
3016 		spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
3017 		list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
3018 		spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
3019 	} else {
3020 		kfree(rx_ts);
3021 	}
3022 }
3023 
3024 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
3025 {
3026 	struct phy_device *phydev = ptp_priv->phydev;
3027 	struct lan8814_ptp_rx_ts *rx_ts;
3028 	u32 reg;
3029 
3030 	do {
3031 		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
3032 		if (!rx_ts)
3033 			return;
3034 
3035 		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
3036 				      &rx_ts->seq_id);
3037 		lan8814_match_rx_ts(ptp_priv, rx_ts);
3038 
3039 		/* If other timestamps are available in the FIFO,
3040 		 * process them.
3041 		 */
3042 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3043 	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
3044 }
3045 
3046 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
3047 {
3048 	struct kszphy_priv *priv = phydev->priv;
3049 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3050 
3051 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
3052 		lan8814_get_tx_ts(ptp_priv);
3053 
3054 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
3055 		lan8814_get_rx_ts(ptp_priv);
3056 
3057 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
3058 		lan8814_flush_fifo(phydev, true);
3059 		skb_queue_purge(&ptp_priv->tx_queue);
3060 	}
3061 
3062 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
3063 		lan8814_flush_fifo(phydev, false);
3064 		skb_queue_purge(&ptp_priv->rx_queue);
3065 	}
3066 }
3067 
3068 static int lan8804_config_init(struct phy_device *phydev)
3069 {
3070 	int val;
3071 
3072 	/* MDI-X setting for swap A,B transmit */
3073 	val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
3074 	val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
3075 	val |= LAN8804_ALIGN_TX_A_B_SWAP;
3076 	lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
3077 
3078 	/* Make sure that the PHY will not stop generating the clock when the
3079 	 * link partner goes down
3080 	 */
3081 	lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
3082 	lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
3083 
3084 	return 0;
3085 }
3086 
3087 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
3088 {
3089 	int status;
3090 
3091 	status = phy_read(phydev, LAN8814_INTS);
3092 	if (status < 0) {
3093 		phy_error(phydev);
3094 		return IRQ_NONE;
3095 	}
3096 
3097 	if (status > 0)
3098 		phy_trigger_machine(phydev);
3099 
3100 	return IRQ_HANDLED;
3101 }
3102 
3103 #define LAN8804_OUTPUT_CONTROL			25
3104 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
3105 #define LAN8804_CONTROL				31
3106 #define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
3107 
3108 static int lan8804_config_intr(struct phy_device *phydev)
3109 {
3110 	int err;
3111 
3112 	/* This is an internal PHY of lan966x and is not possible to change the
3113 	 * polarity on the GIC found in lan966x, therefore change the polarity
3114 	 * of the interrupt in the PHY from being active low instead of active
3115 	 * high.
3116 	 */
3117 	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
3118 
3119 	/* By default interrupt buffer is open-drain in which case the interrupt
3120 	 * can be active only low. Therefore change the interrupt buffer to be
3121 	 * push-pull to be able to change interrupt polarity
3122 	 */
3123 	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
3124 		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
3125 
3126 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3127 		err = phy_read(phydev, LAN8814_INTS);
3128 		if (err < 0)
3129 			return err;
3130 
3131 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3132 		if (err)
3133 			return err;
3134 	} else {
3135 		err = phy_write(phydev, LAN8814_INTC, 0);
3136 		if (err)
3137 			return err;
3138 
3139 		err = phy_read(phydev, LAN8814_INTS);
3140 		if (err < 0)
3141 			return err;
3142 	}
3143 
3144 	return 0;
3145 }
3146 
3147 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
3148 {
3149 	int ret = IRQ_NONE;
3150 	int irq_status;
3151 
3152 	irq_status = phy_read(phydev, LAN8814_INTS);
3153 	if (irq_status < 0) {
3154 		phy_error(phydev);
3155 		return IRQ_NONE;
3156 	}
3157 
3158 	if (irq_status & LAN8814_INT_LINK) {
3159 		phy_trigger_machine(phydev);
3160 		ret = IRQ_HANDLED;
3161 	}
3162 
3163 	while (true) {
3164 		irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
3165 		if (!irq_status)
3166 			break;
3167 
3168 		lan8814_handle_ptp_interrupt(phydev, irq_status);
3169 		ret = IRQ_HANDLED;
3170 	}
3171 
3172 	return ret;
3173 }
3174 
3175 static int lan8814_ack_interrupt(struct phy_device *phydev)
3176 {
3177 	/* bit[12..0] int status, which is a read and clear register. */
3178 	int rc;
3179 
3180 	rc = phy_read(phydev, LAN8814_INTS);
3181 
3182 	return (rc < 0) ? rc : 0;
3183 }
3184 
3185 static int lan8814_config_intr(struct phy_device *phydev)
3186 {
3187 	int err;
3188 
3189 	lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
3190 			      LAN8814_INTR_CTRL_REG_POLARITY |
3191 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
3192 
3193 	/* enable / disable interrupts */
3194 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3195 		err = lan8814_ack_interrupt(phydev);
3196 		if (err)
3197 			return err;
3198 
3199 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3200 	} else {
3201 		err = phy_write(phydev, LAN8814_INTC, 0);
3202 		if (err)
3203 			return err;
3204 
3205 		err = lan8814_ack_interrupt(phydev);
3206 	}
3207 
3208 	return err;
3209 }
3210 
3211 static void lan8814_ptp_init(struct phy_device *phydev)
3212 {
3213 	struct kszphy_priv *priv = phydev->priv;
3214 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3215 	u32 temp;
3216 
3217 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3218 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3219 		return;
3220 
3221 	lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
3222 
3223 	temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
3224 	temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3225 	lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
3226 
3227 	temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
3228 	temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3229 	lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
3230 
3231 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3232 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3233 
3234 	/* Removing default registers configs related to L2 and IP */
3235 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3236 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3237 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3238 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3239 
3240 	/* Disable checking for minorVersionPTP field */
3241 	lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION,
3242 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3243 	lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION,
3244 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3245 
3246 	skb_queue_head_init(&ptp_priv->tx_queue);
3247 	skb_queue_head_init(&ptp_priv->rx_queue);
3248 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3249 	spin_lock_init(&ptp_priv->rx_ts_lock);
3250 
3251 	ptp_priv->phydev = phydev;
3252 
3253 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3254 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3255 	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3256 	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
3257 
3258 	phydev->mii_ts = &ptp_priv->mii_ts;
3259 }
3260 
3261 static int lan8814_ptp_probe_once(struct phy_device *phydev)
3262 {
3263 	struct lan8814_shared_priv *shared = phydev->shared->priv;
3264 
3265 	/* Initialise shared lock for clock*/
3266 	mutex_init(&shared->shared_lock);
3267 
3268 	shared->ptp_clock_info.owner = THIS_MODULE;
3269 	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3270 	shared->ptp_clock_info.max_adj = 31249999;
3271 	shared->ptp_clock_info.n_alarm = 0;
3272 	shared->ptp_clock_info.n_ext_ts = 0;
3273 	shared->ptp_clock_info.n_pins = 0;
3274 	shared->ptp_clock_info.pps = 0;
3275 	shared->ptp_clock_info.pin_config = NULL;
3276 	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3277 	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3278 	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3279 	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3280 	shared->ptp_clock_info.getcrosststamp = NULL;
3281 
3282 	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3283 					       &phydev->mdio.dev);
3284 	if (IS_ERR(shared->ptp_clock)) {
3285 		phydev_err(phydev, "ptp_clock_register failed %lu\n",
3286 			   PTR_ERR(shared->ptp_clock));
3287 		return -EINVAL;
3288 	}
3289 
3290 	/* Check if PHC support is missing at the configuration level */
3291 	if (!shared->ptp_clock)
3292 		return 0;
3293 
3294 	phydev_dbg(phydev, "successfully registered ptp clock\n");
3295 
3296 	shared->phydev = phydev;
3297 
3298 	/* The EP.4 is shared between all the PHYs in the package and also it
3299 	 * can be accessed by any of the PHYs
3300 	 */
3301 	lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3302 	lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3303 			      PTP_OPERATING_MODE_STANDALONE_);
3304 
3305 	return 0;
3306 }
3307 
3308 static void lan8814_setup_led(struct phy_device *phydev, int val)
3309 {
3310 	int temp;
3311 
3312 	temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3313 
3314 	if (val)
3315 		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3316 	else
3317 		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3318 
3319 	lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3320 }
3321 
3322 static int lan8814_config_init(struct phy_device *phydev)
3323 {
3324 	struct kszphy_priv *lan8814 = phydev->priv;
3325 	int val;
3326 
3327 	/* Reset the PHY */
3328 	val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3329 	val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3330 	lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3331 
3332 	/* Disable ANEG with QSGMII PCS Host side */
3333 	val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3334 	val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3335 	lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3336 
3337 	/* MDI-X setting for swap A,B transmit */
3338 	val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3339 	val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3340 	val |= LAN8814_ALIGN_TX_A_B_SWAP;
3341 	lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3342 
3343 	if (lan8814->led_mode >= 0)
3344 		lan8814_setup_led(phydev, lan8814->led_mode);
3345 
3346 	return 0;
3347 }
3348 
3349 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3350  * function called in suspend. Because the GPIO line can be shared, so if one of
3351  * the phys goes back in coma mode, then all the other PHYs will go, which is
3352  * wrong.
3353  */
3354 static int lan8814_release_coma_mode(struct phy_device *phydev)
3355 {
3356 	struct gpio_desc *gpiod;
3357 
3358 	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3359 					GPIOD_OUT_HIGH_OPEN_DRAIN |
3360 					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
3361 	if (IS_ERR(gpiod))
3362 		return PTR_ERR(gpiod);
3363 
3364 	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
3365 	gpiod_set_value_cansleep(gpiod, 0);
3366 
3367 	return 0;
3368 }
3369 
3370 static int lan8814_probe(struct phy_device *phydev)
3371 {
3372 	const struct kszphy_type *type = phydev->drv->driver_data;
3373 	struct kszphy_priv *priv;
3374 	u16 addr;
3375 	int err;
3376 
3377 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
3378 	if (!priv)
3379 		return -ENOMEM;
3380 
3381 	phydev->priv = priv;
3382 
3383 	priv->type = type;
3384 
3385 	kszphy_parse_led_mode(phydev);
3386 
3387 	/* Strap-in value for PHY address, below register read gives starting
3388 	 * phy address value
3389 	 */
3390 	addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
3391 	devm_phy_package_join(&phydev->mdio.dev, phydev,
3392 			      addr, sizeof(struct lan8814_shared_priv));
3393 
3394 	if (phy_package_init_once(phydev)) {
3395 		err = lan8814_release_coma_mode(phydev);
3396 		if (err)
3397 			return err;
3398 
3399 		err = lan8814_ptp_probe_once(phydev);
3400 		if (err)
3401 			return err;
3402 	}
3403 
3404 	lan8814_ptp_init(phydev);
3405 
3406 	return 0;
3407 }
3408 
3409 #define LAN8841_MMD_TIMER_REG			0
3410 #define LAN8841_MMD0_REGISTER_17		17
3411 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x)	((x) & 0x3)
3412 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS	BIT(3)
3413 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG	2
3414 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK	BIT(14)
3415 #define LAN8841_MMD_ANALOG_REG			28
3416 #define LAN8841_ANALOG_CONTROL_1		1
3417 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x)	(((x) & 0x3) << 5)
3418 #define LAN8841_ANALOG_CONTROL_10		13
3419 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x)	((x) & 0x3)
3420 #define LAN8841_ANALOG_CONTROL_11		14
3421 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x)	(((x) & 0x7) << 12)
3422 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT	69
3423 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
3424 #define LAN8841_BTRX_POWER_DOWN			70
3425 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A	BIT(0)
3426 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A	BIT(1)
3427 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B	BIT(2)
3428 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B	BIT(3)
3429 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C	BIT(5)
3430 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D	BIT(7)
3431 #define LAN8841_ADC_CHANNEL_MASK		198
3432 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN		370
3433 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN		371
3434 #define LAN8841_PTP_RX_VERSION			374
3435 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN		434
3436 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN		435
3437 #define LAN8841_PTP_TX_VERSION			438
3438 #define LAN8841_PTP_CMD_CTL			256
3439 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE		BIT(2)
3440 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE		BIT(1)
3441 #define LAN8841_PTP_CMD_CTL_PTP_RESET		BIT(0)
3442 #define LAN8841_PTP_RX_PARSE_CONFIG		368
3443 #define LAN8841_PTP_TX_PARSE_CONFIG		432
3444 #define LAN8841_PTP_RX_MODE			381
3445 #define LAN8841_PTP_INSERT_TS_EN		BIT(0)
3446 #define LAN8841_PTP_INSERT_TS_32BIT		BIT(1)
3447 
3448 static int lan8841_config_init(struct phy_device *phydev)
3449 {
3450 	int ret;
3451 
3452 	ret = ksz9131_config_init(phydev);
3453 	if (ret)
3454 		return ret;
3455 
3456 	/* Initialize the HW by resetting everything */
3457 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3458 		       LAN8841_PTP_CMD_CTL,
3459 		       LAN8841_PTP_CMD_CTL_PTP_RESET,
3460 		       LAN8841_PTP_CMD_CTL_PTP_RESET);
3461 
3462 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3463 		       LAN8841_PTP_CMD_CTL,
3464 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE,
3465 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE);
3466 
3467 	/* Don't process any frames */
3468 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3469 		      LAN8841_PTP_RX_PARSE_CONFIG, 0);
3470 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3471 		      LAN8841_PTP_TX_PARSE_CONFIG, 0);
3472 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3473 		      LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
3474 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3475 		      LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
3476 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3477 		      LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
3478 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3479 		      LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
3480 
3481 	/* Disable checking for minorVersionPTP field */
3482 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3483 		      LAN8841_PTP_RX_VERSION, 0xff00);
3484 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3485 		      LAN8841_PTP_TX_VERSION, 0xff00);
3486 
3487 	/* 100BT Clause 40 improvenent errata */
3488 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3489 		      LAN8841_ANALOG_CONTROL_1,
3490 		      LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
3491 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3492 		      LAN8841_ANALOG_CONTROL_10,
3493 		      LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
3494 
3495 	/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
3496 	 * Magnetics
3497 	 */
3498 	ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3499 			   LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
3500 	if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
3501 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3502 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
3503 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
3504 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3505 			      LAN8841_BTRX_POWER_DOWN,
3506 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
3507 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
3508 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
3509 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
3510 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
3511 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
3512 	}
3513 
3514 	/* LDO Adjustment errata */
3515 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3516 		      LAN8841_ANALOG_CONTROL_11,
3517 		      LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
3518 
3519 	/* 100BT RGMII latency tuning errata */
3520 	phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
3521 		      LAN8841_ADC_CHANNEL_MASK, 0x0);
3522 	phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
3523 		      LAN8841_MMD0_REGISTER_17,
3524 		      LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
3525 		      LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
3526 
3527 	return 0;
3528 }
3529 
3530 #define LAN8841_OUTPUT_CTRL			25
3531 #define LAN8841_OUTPUT_CTRL_INT_BUFFER		BIT(14)
3532 #define LAN8841_INT_PTP				BIT(9)
3533 
3534 static int lan8841_config_intr(struct phy_device *phydev)
3535 {
3536 	int err;
3537 
3538 	phy_modify(phydev, LAN8841_OUTPUT_CTRL,
3539 		   LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
3540 
3541 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3542 		err = phy_read(phydev, LAN8814_INTS);
3543 		if (err < 0)
3544 			return err;
3545 
3546 		/* Enable / disable interrupts. It is OK to enable PTP interrupt
3547 		 * even if it PTP is not enabled. Because the underneath blocks
3548 		 * will not enable the PTP so we will never get the PTP
3549 		 * interrupt.
3550 		 */
3551 		err = phy_write(phydev, LAN8814_INTC,
3552 				LAN8814_INT_LINK | LAN8841_INT_PTP);
3553 	} else {
3554 		err = phy_write(phydev, LAN8814_INTC, 0);
3555 		if (err)
3556 			return err;
3557 
3558 		err = phy_read(phydev, LAN8814_INTS);
3559 		if (err < 0)
3560 			return err;
3561 
3562 		/* Getting a positive value doesn't mean that is an error, it
3563 		 * just indicates what was the status. Therefore make sure to
3564 		 * clear the value and say that there is no error.
3565 		 */
3566 		err = 0;
3567 	}
3568 
3569 	return err;
3570 }
3571 
3572 #define LAN8841_PTP_TX_EGRESS_SEC_LO			453
3573 #define LAN8841_PTP_TX_EGRESS_SEC_HI			452
3574 #define LAN8841_PTP_TX_EGRESS_NS_LO			451
3575 #define LAN8841_PTP_TX_EGRESS_NS_HI			450
3576 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID		BIT(15)
3577 #define LAN8841_PTP_TX_MSG_HEADER2			455
3578 
3579 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
3580 				  u32 *sec, u32 *nsec, u16 *seq)
3581 {
3582 	struct phy_device *phydev = ptp_priv->phydev;
3583 
3584 	*nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
3585 	if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
3586 		return false;
3587 
3588 	*nsec = ((*nsec & 0x3fff) << 16);
3589 	*nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
3590 
3591 	*sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
3592 	*sec = *sec << 16;
3593 	*sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
3594 
3595 	*seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3596 
3597 	return true;
3598 }
3599 
3600 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3601 {
3602 	u32 sec, nsec;
3603 	u16 seq;
3604 
3605 	while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
3606 		lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
3607 }
3608 
3609 #define LAN8841_PTP_INT_STS			259
3610 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT	BIT(13)
3611 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT	BIT(12)
3612 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT	BIT(2)
3613 
3614 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
3615 {
3616 	struct phy_device *phydev = ptp_priv->phydev;
3617 	int i;
3618 
3619 	for (i = 0; i < FIFO_SIZE; ++i)
3620 		phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3621 
3622 	phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3623 }
3624 
3625 #define LAN8841_PTP_GPIO_CAP_STS			506
3626 #define LAN8841_PTP_GPIO_SEL				327
3627 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio)		((gpio) << 8)
3628 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP		498
3629 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP		499
3630 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP		500
3631 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP		501
3632 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP		502
3633 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP		503
3634 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP		504
3635 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP		505
3636 
3637 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
3638 {
3639 	struct phy_device *phydev = ptp_priv->phydev;
3640 	struct ptp_clock_event ptp_event = {0};
3641 	int pin, ret, tmp;
3642 	s32 sec, nsec;
3643 
3644 	pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
3645 	if (pin == -1)
3646 		return;
3647 
3648 	tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
3649 	if (tmp < 0)
3650 		return;
3651 
3652 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
3653 			    LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
3654 	if (ret)
3655 		return;
3656 
3657 	mutex_lock(&ptp_priv->ptp_lock);
3658 	if (tmp & BIT(pin)) {
3659 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
3660 		sec <<= 16;
3661 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
3662 
3663 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
3664 		nsec <<= 16;
3665 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
3666 	} else {
3667 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
3668 		sec <<= 16;
3669 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
3670 
3671 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
3672 		nsec <<= 16;
3673 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
3674 	}
3675 	mutex_unlock(&ptp_priv->ptp_lock);
3676 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
3677 	if (ret)
3678 		return;
3679 
3680 	ptp_event.index = 0;
3681 	ptp_event.timestamp = ktime_set(sec, nsec);
3682 	ptp_event.type = PTP_CLOCK_EXTTS;
3683 	ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
3684 }
3685 
3686 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
3687 {
3688 	struct kszphy_priv *priv = phydev->priv;
3689 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3690 	u16 status;
3691 
3692 	do {
3693 		status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3694 
3695 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
3696 			lan8841_ptp_process_tx_ts(ptp_priv);
3697 
3698 		if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
3699 			lan8841_gpio_process_cap(ptp_priv);
3700 
3701 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
3702 			lan8841_ptp_flush_fifo(ptp_priv);
3703 			skb_queue_purge(&ptp_priv->tx_queue);
3704 		}
3705 
3706 	} while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
3707 			   LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
3708 			   LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
3709 }
3710 
3711 #define LAN8841_INTS_PTP		BIT(9)
3712 
3713 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
3714 {
3715 	irqreturn_t ret = IRQ_NONE;
3716 	int irq_status;
3717 
3718 	irq_status = phy_read(phydev, LAN8814_INTS);
3719 	if (irq_status < 0) {
3720 		phy_error(phydev);
3721 		return IRQ_NONE;
3722 	}
3723 
3724 	if (irq_status & LAN8814_INT_LINK) {
3725 		phy_trigger_machine(phydev);
3726 		ret = IRQ_HANDLED;
3727 	}
3728 
3729 	if (irq_status & LAN8841_INTS_PTP) {
3730 		lan8841_handle_ptp_interrupt(phydev);
3731 		ret = IRQ_HANDLED;
3732 	}
3733 
3734 	return ret;
3735 }
3736 
3737 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
3738 			   struct ethtool_ts_info *info)
3739 {
3740 	struct kszphy_ptp_priv *ptp_priv;
3741 
3742 	ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3743 
3744 	info->phc_index = ptp_priv->ptp_clock ?
3745 				ptp_clock_index(ptp_priv->ptp_clock) : -1;
3746 	if (info->phc_index == -1)
3747 		return 0;
3748 
3749 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
3750 				SOF_TIMESTAMPING_RX_HARDWARE |
3751 				SOF_TIMESTAMPING_RAW_HARDWARE;
3752 
3753 	info->tx_types = (1 << HWTSTAMP_TX_OFF) |
3754 			 (1 << HWTSTAMP_TX_ON) |
3755 			 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
3756 
3757 	info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
3758 			   (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
3759 			   (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
3760 			   (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
3761 
3762 	return 0;
3763 }
3764 
3765 #define LAN8841_PTP_INT_EN			260
3766 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN	BIT(13)
3767 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN		BIT(12)
3768 
3769 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
3770 					  bool enable)
3771 {
3772 	struct phy_device *phydev = ptp_priv->phydev;
3773 
3774 	if (enable) {
3775 		/* Enable interrupts on the TX side */
3776 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3777 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3778 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
3779 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3780 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
3781 
3782 		/* Enable the modification of the frame on RX side,
3783 		 * this will add the ns and 2 bits of sec in the reserved field
3784 		 * of the PTP header
3785 		 */
3786 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3787 			       LAN8841_PTP_RX_MODE,
3788 			       LAN8841_PTP_INSERT_TS_EN |
3789 			       LAN8841_PTP_INSERT_TS_32BIT,
3790 			       LAN8841_PTP_INSERT_TS_EN |
3791 			       LAN8841_PTP_INSERT_TS_32BIT);
3792 
3793 		ptp_schedule_worker(ptp_priv->ptp_clock, 0);
3794 	} else {
3795 		/* Disable interrupts on the TX side */
3796 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3797 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3798 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
3799 
3800 		/* Disable modification of the RX frames */
3801 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3802 			       LAN8841_PTP_RX_MODE,
3803 			       LAN8841_PTP_INSERT_TS_EN |
3804 			       LAN8841_PTP_INSERT_TS_32BIT, 0);
3805 
3806 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
3807 	}
3808 }
3809 
3810 #define LAN8841_PTP_RX_TIMESTAMP_EN		379
3811 #define LAN8841_PTP_TX_TIMESTAMP_EN		443
3812 #define LAN8841_PTP_TX_MOD			445
3813 
3814 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
3815 {
3816 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3817 	struct phy_device *phydev = ptp_priv->phydev;
3818 	struct hwtstamp_config config;
3819 	int txcfg = 0, rxcfg = 0;
3820 	int pkt_ts_enable;
3821 
3822 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
3823 		return -EFAULT;
3824 
3825 	ptp_priv->hwts_tx_type = config.tx_type;
3826 	ptp_priv->rx_filter = config.rx_filter;
3827 
3828 	switch (config.rx_filter) {
3829 	case HWTSTAMP_FILTER_NONE:
3830 		ptp_priv->layer = 0;
3831 		ptp_priv->version = 0;
3832 		break;
3833 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3834 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3835 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3836 		ptp_priv->layer = PTP_CLASS_L4;
3837 		ptp_priv->version = PTP_CLASS_V2;
3838 		break;
3839 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3840 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3841 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3842 		ptp_priv->layer = PTP_CLASS_L2;
3843 		ptp_priv->version = PTP_CLASS_V2;
3844 		break;
3845 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3846 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3847 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3848 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
3849 		ptp_priv->version = PTP_CLASS_V2;
3850 		break;
3851 	default:
3852 		return -ERANGE;
3853 	}
3854 
3855 	/* Setup parsing of the frames and enable the timestamping for ptp
3856 	 * frames
3857 	 */
3858 	if (ptp_priv->layer & PTP_CLASS_L2) {
3859 		rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
3860 		txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
3861 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
3862 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
3863 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
3864 	}
3865 
3866 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
3867 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
3868 
3869 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
3870 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
3871 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
3872 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
3873 
3874 	/* Enable / disable of the TX timestamp in the SYNC frames */
3875 	phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
3876 		       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3877 		       ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
3878 				PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
3879 
3880 	/* Now enable/disable the timestamping */
3881 	lan8841_ptp_enable_processing(ptp_priv,
3882 				      config.rx_filter != HWTSTAMP_FILTER_NONE);
3883 
3884 	skb_queue_purge(&ptp_priv->tx_queue);
3885 
3886 	lan8841_ptp_flush_fifo(ptp_priv);
3887 
3888 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
3889 }
3890 
3891 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
3892 			     struct sk_buff *skb, int type)
3893 {
3894 	struct kszphy_ptp_priv *ptp_priv =
3895 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3896 	struct ptp_header *header = ptp_parse_header(skb, type);
3897 	struct skb_shared_hwtstamps *shhwtstamps;
3898 	struct timespec64 ts;
3899 	unsigned long flags;
3900 	u32 ts_header;
3901 
3902 	if (!header)
3903 		return false;
3904 
3905 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
3906 	    type == PTP_CLASS_NONE)
3907 		return false;
3908 
3909 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
3910 		return false;
3911 
3912 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
3913 	ts.tv_sec = ptp_priv->seconds;
3914 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
3915 	ts_header = __be32_to_cpu(header->reserved2);
3916 
3917 	shhwtstamps = skb_hwtstamps(skb);
3918 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3919 
3920 	/* Check for any wrap arounds for the second part */
3921 	if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
3922 		ts.tv_sec -= GENMASK(1, 0) + 1;
3923 	else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
3924 		ts.tv_sec += 1;
3925 
3926 	shhwtstamps->hwtstamp =
3927 		ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
3928 			  ts_header & GENMASK(29, 0));
3929 	header->reserved2 = 0;
3930 
3931 	netif_rx(skb);
3932 
3933 	return true;
3934 }
3935 
3936 #define LAN8841_EVENT_A		0
3937 #define LAN8841_EVENT_B		1
3938 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 278 : 288)
3939 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 279 : 289)
3940 #define LAN8841_PTP_LTC_TARGET_NS_HI(event)	((event) == LAN8841_EVENT_A ? 280 : 290)
3941 #define LAN8841_PTP_LTC_TARGET_NS_LO(event)	((event) == LAN8841_EVENT_A ? 281 : 291)
3942 
3943 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
3944 				  s64 sec, u32 nsec)
3945 {
3946 	struct phy_device *phydev = ptp_priv->phydev;
3947 	int ret;
3948 
3949 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
3950 			    upper_16_bits(sec));
3951 	if (ret)
3952 		return ret;
3953 
3954 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
3955 			    lower_16_bits(sec));
3956 	if (ret)
3957 		return ret;
3958 
3959 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
3960 			    upper_16_bits(nsec));
3961 	if (ret)
3962 		return ret;
3963 
3964 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
3965 			    lower_16_bits(nsec));
3966 }
3967 
3968 #define LAN8841_BUFFER_TIME	2
3969 
3970 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
3971 				     const struct timespec64 *ts)
3972 {
3973 	return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
3974 				      ts->tv_sec + LAN8841_BUFFER_TIME, 0);
3975 }
3976 
3977 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 282 : 292)
3978 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 283 : 293)
3979 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event)	((event) == LAN8841_EVENT_A ? 284 : 294)
3980 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event)	((event) == LAN8841_EVENT_A ? 285 : 295)
3981 
3982 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
3983 				  s64 sec, u32 nsec)
3984 {
3985 	struct phy_device *phydev = ptp_priv->phydev;
3986 	int ret;
3987 
3988 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
3989 			    upper_16_bits(sec));
3990 	if (ret)
3991 		return ret;
3992 
3993 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
3994 			    lower_16_bits(sec));
3995 	if (ret)
3996 		return ret;
3997 
3998 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
3999 			    upper_16_bits(nsec));
4000 	if (ret)
4001 		return ret;
4002 
4003 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
4004 			     lower_16_bits(nsec));
4005 }
4006 
4007 #define LAN8841_PTP_LTC_SET_SEC_HI	262
4008 #define LAN8841_PTP_LTC_SET_SEC_MID	263
4009 #define LAN8841_PTP_LTC_SET_SEC_LO	264
4010 #define LAN8841_PTP_LTC_SET_NS_HI	265
4011 #define LAN8841_PTP_LTC_SET_NS_LO	266
4012 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD	BIT(4)
4013 
4014 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
4015 				 const struct timespec64 *ts)
4016 {
4017 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4018 							ptp_clock_info);
4019 	struct phy_device *phydev = ptp_priv->phydev;
4020 	unsigned long flags;
4021 	int ret;
4022 
4023 	/* Set the value to be stored */
4024 	mutex_lock(&ptp_priv->ptp_lock);
4025 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
4026 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
4027 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
4028 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
4029 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
4030 
4031 	/* Set the command to load the LTC */
4032 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4033 		      LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
4034 	ret = lan8841_ptp_update_target(ptp_priv, ts);
4035 	mutex_unlock(&ptp_priv->ptp_lock);
4036 
4037 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4038 	ptp_priv->seconds = ts->tv_sec;
4039 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4040 
4041 	return ret;
4042 }
4043 
4044 #define LAN8841_PTP_LTC_RD_SEC_HI	358
4045 #define LAN8841_PTP_LTC_RD_SEC_MID	359
4046 #define LAN8841_PTP_LTC_RD_SEC_LO	360
4047 #define LAN8841_PTP_LTC_RD_NS_HI	361
4048 #define LAN8841_PTP_LTC_RD_NS_LO	362
4049 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ	BIT(3)
4050 
4051 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
4052 				 struct timespec64 *ts)
4053 {
4054 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4055 							ptp_clock_info);
4056 	struct phy_device *phydev = ptp_priv->phydev;
4057 	time64_t s;
4058 	s64 ns;
4059 
4060 	mutex_lock(&ptp_priv->ptp_lock);
4061 	/* Issue the command to read the LTC */
4062 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4063 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4064 
4065 	/* Read the LTC */
4066 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4067 	s <<= 16;
4068 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4069 	s <<= 16;
4070 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4071 
4072 	ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
4073 	ns <<= 16;
4074 	ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
4075 	mutex_unlock(&ptp_priv->ptp_lock);
4076 
4077 	set_normalized_timespec64(ts, s, ns);
4078 	return 0;
4079 }
4080 
4081 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
4082 				   struct timespec64 *ts)
4083 {
4084 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4085 							ptp_clock_info);
4086 	struct phy_device *phydev = ptp_priv->phydev;
4087 	time64_t s;
4088 
4089 	mutex_lock(&ptp_priv->ptp_lock);
4090 	/* Issue the command to read the LTC */
4091 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4092 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4093 
4094 	/* Read the LTC */
4095 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4096 	s <<= 16;
4097 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4098 	s <<= 16;
4099 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4100 	mutex_unlock(&ptp_priv->ptp_lock);
4101 
4102 	set_normalized_timespec64(ts, s, 0);
4103 }
4104 
4105 #define LAN8841_PTP_LTC_STEP_ADJ_LO			276
4106 #define LAN8841_PTP_LTC_STEP_ADJ_HI			275
4107 #define LAN8841_PTP_LTC_STEP_ADJ_DIR			BIT(15)
4108 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS	BIT(5)
4109 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS	BIT(6)
4110 
4111 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
4112 {
4113 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4114 							ptp_clock_info);
4115 	struct phy_device *phydev = ptp_priv->phydev;
4116 	struct timespec64 ts;
4117 	bool add = true;
4118 	u32 nsec;
4119 	s32 sec;
4120 	int ret;
4121 
4122 	/* The HW allows up to 15 sec to adjust the time, but here we limit to
4123 	 * 10 sec the adjustment. The reason is, in case the adjustment is 14
4124 	 * sec and 999999999 nsec, then we add 8ns to compansate the actual
4125 	 * increment so the value can be bigger than 15 sec. Therefore limit the
4126 	 * possible adjustments so we will not have these corner cases
4127 	 */
4128 	if (delta > 10000000000LL || delta < -10000000000LL) {
4129 		/* The timeadjustment is too big, so fall back using set time */
4130 		u64 now;
4131 
4132 		ptp->gettime64(ptp, &ts);
4133 
4134 		now = ktime_to_ns(timespec64_to_ktime(ts));
4135 		ts = ns_to_timespec64(now + delta);
4136 
4137 		ptp->settime64(ptp, &ts);
4138 		return 0;
4139 	}
4140 
4141 	sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
4142 	if (delta < 0 && nsec != 0) {
4143 		/* It is not allowed to adjust low the nsec part, therefore
4144 		 * subtract more from second part and add to nanosecond such
4145 		 * that would roll over, so the second part will increase
4146 		 */
4147 		sec--;
4148 		nsec = NSEC_PER_SEC - nsec;
4149 	}
4150 
4151 	/* Calculate the adjustments and the direction */
4152 	if (delta < 0)
4153 		add = false;
4154 
4155 	if (nsec > 0)
4156 		/* add 8 ns to cover the likely normal increment */
4157 		nsec += 8;
4158 
4159 	if (nsec >= NSEC_PER_SEC) {
4160 		/* carry into seconds */
4161 		sec++;
4162 		nsec -= NSEC_PER_SEC;
4163 	}
4164 
4165 	mutex_lock(&ptp_priv->ptp_lock);
4166 	if (sec) {
4167 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
4168 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4169 			      add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
4170 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4171 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
4172 	}
4173 
4174 	if (nsec) {
4175 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
4176 			      nsec & 0xffff);
4177 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4178 			      (nsec >> 16) & 0x3fff);
4179 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4180 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
4181 	}
4182 	mutex_unlock(&ptp_priv->ptp_lock);
4183 
4184 	/* Update the target clock */
4185 	ptp->gettime64(ptp, &ts);
4186 	mutex_lock(&ptp_priv->ptp_lock);
4187 	ret = lan8841_ptp_update_target(ptp_priv, &ts);
4188 	mutex_unlock(&ptp_priv->ptp_lock);
4189 
4190 	return ret;
4191 }
4192 
4193 #define LAN8841_PTP_LTC_RATE_ADJ_HI		269
4194 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR		BIT(15)
4195 #define LAN8841_PTP_LTC_RATE_ADJ_LO		270
4196 
4197 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
4198 {
4199 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4200 							ptp_clock_info);
4201 	struct phy_device *phydev = ptp_priv->phydev;
4202 	bool faster = true;
4203 	u32 rate;
4204 
4205 	if (!scaled_ppm)
4206 		return 0;
4207 
4208 	if (scaled_ppm < 0) {
4209 		scaled_ppm = -scaled_ppm;
4210 		faster = false;
4211 	}
4212 
4213 	rate = LAN8814_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
4214 	rate += (LAN8814_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
4215 
4216 	mutex_lock(&ptp_priv->ptp_lock);
4217 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
4218 		      faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
4219 			     : upper_16_bits(rate) & 0x3fff);
4220 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
4221 	mutex_unlock(&ptp_priv->ptp_lock);
4222 
4223 	return 0;
4224 }
4225 
4226 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
4227 			      enum ptp_pin_function func, unsigned int chan)
4228 {
4229 	switch (func) {
4230 	case PTP_PF_NONE:
4231 	case PTP_PF_PEROUT:
4232 	case PTP_PF_EXTTS:
4233 		break;
4234 	default:
4235 		return -1;
4236 	}
4237 
4238 	return 0;
4239 }
4240 
4241 #define LAN8841_PTP_GPIO_NUM	10
4242 #define LAN8841_GPIO_EN		128
4243 #define LAN8841_GPIO_DIR	129
4244 #define LAN8841_GPIO_BUF	130
4245 
4246 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4247 {
4248 	struct phy_device *phydev = ptp_priv->phydev;
4249 	int ret;
4250 
4251 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4252 	if (ret)
4253 		return ret;
4254 
4255 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4256 	if (ret)
4257 		return ret;
4258 
4259 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4260 }
4261 
4262 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
4263 {
4264 	struct phy_device *phydev = ptp_priv->phydev;
4265 	int ret;
4266 
4267 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4268 	if (ret)
4269 		return ret;
4270 
4271 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4272 	if (ret)
4273 		return ret;
4274 
4275 	return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4276 }
4277 
4278 #define LAN8841_GPIO_DATA_SEL1				131
4279 #define LAN8841_GPIO_DATA_SEL2				132
4280 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK	GENMASK(2, 0)
4281 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A	1
4282 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B	2
4283 #define LAN8841_PTP_GENERAL_CONFIG			257
4284 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A	BIT(1)
4285 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B	BIT(3)
4286 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK	GENMASK(7, 4)
4287 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK	GENMASK(11, 8)
4288 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A		4
4289 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B		7
4290 
4291 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4292 				    u8 event)
4293 {
4294 	struct phy_device *phydev = ptp_priv->phydev;
4295 	u16 tmp;
4296 	int ret;
4297 
4298 	/* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
4299 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4300 	 * depending on the pin, it requires to read a different register
4301 	 */
4302 	if (pin < 5) {
4303 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
4304 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
4305 	} else {
4306 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
4307 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
4308 	}
4309 	if (ret)
4310 		return ret;
4311 
4312 	/* Disable the event */
4313 	if (event == LAN8841_EVENT_A)
4314 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4315 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
4316 	else
4317 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4318 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
4319 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
4320 }
4321 
4322 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4323 				    u8 event, int pulse_width)
4324 {
4325 	struct phy_device *phydev = ptp_priv->phydev;
4326 	u16 tmp;
4327 	int ret;
4328 
4329 	/* Enable the event */
4330 	if (event == LAN8841_EVENT_A)
4331 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4332 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4333 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
4334 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4335 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
4336 	else
4337 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4338 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4339 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
4340 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4341 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
4342 	if (ret)
4343 		return ret;
4344 
4345 	/* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
4346 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4347 	 * depending on the pin, it requires to read a different register
4348 	 */
4349 	if (event == LAN8841_EVENT_A)
4350 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
4351 	else
4352 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
4353 
4354 	if (pin < 5)
4355 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
4356 				       tmp << (3 * pin));
4357 	else
4358 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
4359 				       tmp << (3 * (pin - 5)));
4360 
4361 	return ret;
4362 }
4363 
4364 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
4365 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
4366 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
4367 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
4368 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
4369 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
4370 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
4371 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
4372 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
4373 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
4374 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
4375 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
4376 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
4377 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
4378 
4379 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
4380 			      struct ptp_clock_request *rq, int on)
4381 {
4382 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4383 							ptp_clock_info);
4384 	struct phy_device *phydev = ptp_priv->phydev;
4385 	struct timespec64 ts_on, ts_period;
4386 	s64 on_nsec, period_nsec;
4387 	int pulse_width;
4388 	int pin;
4389 	int ret;
4390 
4391 	if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
4392 		return -EOPNOTSUPP;
4393 
4394 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
4395 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4396 		return -EINVAL;
4397 
4398 	if (!on) {
4399 		ret = lan8841_ptp_perout_off(ptp_priv, pin);
4400 		if (ret)
4401 			return ret;
4402 
4403 		return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
4404 	}
4405 
4406 	ts_on.tv_sec = rq->perout.on.sec;
4407 	ts_on.tv_nsec = rq->perout.on.nsec;
4408 	on_nsec = timespec64_to_ns(&ts_on);
4409 
4410 	ts_period.tv_sec = rq->perout.period.sec;
4411 	ts_period.tv_nsec = rq->perout.period.nsec;
4412 	period_nsec = timespec64_to_ns(&ts_period);
4413 
4414 	if (period_nsec < 200) {
4415 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
4416 				    phydev_name(phydev));
4417 		return -EOPNOTSUPP;
4418 	}
4419 
4420 	if (on_nsec >= period_nsec) {
4421 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
4422 				    phydev_name(phydev));
4423 		return -EINVAL;
4424 	}
4425 
4426 	switch (on_nsec) {
4427 	case 200000000:
4428 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
4429 		break;
4430 	case 100000000:
4431 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
4432 		break;
4433 	case 50000000:
4434 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
4435 		break;
4436 	case 10000000:
4437 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
4438 		break;
4439 	case 5000000:
4440 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
4441 		break;
4442 	case 1000000:
4443 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
4444 		break;
4445 	case 500000:
4446 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
4447 		break;
4448 	case 100000:
4449 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
4450 		break;
4451 	case 50000:
4452 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
4453 		break;
4454 	case 10000:
4455 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
4456 		break;
4457 	case 5000:
4458 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
4459 		break;
4460 	case 1000:
4461 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
4462 		break;
4463 	case 500:
4464 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
4465 		break;
4466 	case 100:
4467 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4468 		break;
4469 	default:
4470 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
4471 				    phydev_name(phydev));
4472 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4473 		break;
4474 	}
4475 
4476 	mutex_lock(&ptp_priv->ptp_lock);
4477 	ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
4478 				     rq->perout.start.nsec);
4479 	mutex_unlock(&ptp_priv->ptp_lock);
4480 	if (ret)
4481 		return ret;
4482 
4483 	ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
4484 				     rq->perout.period.nsec);
4485 	if (ret)
4486 		return ret;
4487 
4488 	ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
4489 				       pulse_width);
4490 	if (ret)
4491 		return ret;
4492 
4493 	ret = lan8841_ptp_perout_on(ptp_priv, pin);
4494 	if (ret)
4495 		lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
4496 
4497 	return ret;
4498 }
4499 
4500 #define LAN8841_PTP_GPIO_CAP_EN			496
4501 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	(BIT(gpio))
4502 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
4503 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN	BIT(2)
4504 
4505 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
4506 				u32 flags)
4507 {
4508 	struct phy_device *phydev = ptp_priv->phydev;
4509 	u16 tmp = 0;
4510 	int ret;
4511 
4512 	/* Set GPIO to be intput */
4513 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4514 	if (ret)
4515 		return ret;
4516 
4517 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4518 	if (ret)
4519 		return ret;
4520 
4521 	/* Enable capture on the edges of the pin */
4522 	if (flags & PTP_RISING_EDGE)
4523 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
4524 	if (flags & PTP_FALLING_EDGE)
4525 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
4526 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
4527 	if (ret)
4528 		return ret;
4529 
4530 	/* Enable interrupt */
4531 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4532 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4533 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
4534 }
4535 
4536 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4537 {
4538 	struct phy_device *phydev = ptp_priv->phydev;
4539 	int ret;
4540 
4541 	/* Set GPIO to be output */
4542 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4543 	if (ret)
4544 		return ret;
4545 
4546 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4547 	if (ret)
4548 		return ret;
4549 
4550 	/* Disable capture on both of the edges */
4551 	ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
4552 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
4553 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
4554 			     0);
4555 	if (ret)
4556 		return ret;
4557 
4558 	/* Disable interrupt */
4559 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4560 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4561 			      0);
4562 }
4563 
4564 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
4565 			     struct ptp_clock_request *rq, int on)
4566 {
4567 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4568 							ptp_clock_info);
4569 	int pin;
4570 	int ret;
4571 
4572 	/* Reject requests with unsupported flags */
4573 	if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
4574 				PTP_EXTTS_EDGES |
4575 				PTP_STRICT_FLAGS))
4576 		return -EOPNOTSUPP;
4577 
4578 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
4579 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4580 		return -EINVAL;
4581 
4582 	mutex_lock(&ptp_priv->ptp_lock);
4583 	if (on)
4584 		ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
4585 	else
4586 		ret = lan8841_ptp_extts_off(ptp_priv, pin);
4587 	mutex_unlock(&ptp_priv->ptp_lock);
4588 
4589 	return ret;
4590 }
4591 
4592 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
4593 			      struct ptp_clock_request *rq, int on)
4594 {
4595 	switch (rq->type) {
4596 	case PTP_CLK_REQ_EXTTS:
4597 		return lan8841_ptp_extts(ptp, rq, on);
4598 	case PTP_CLK_REQ_PEROUT:
4599 		return lan8841_ptp_perout(ptp, rq, on);
4600 	default:
4601 		return -EOPNOTSUPP;
4602 	}
4603 
4604 	return 0;
4605 }
4606 
4607 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
4608 {
4609 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4610 							ptp_clock_info);
4611 	struct timespec64 ts;
4612 	unsigned long flags;
4613 
4614 	lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
4615 
4616 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4617 	ptp_priv->seconds = ts.tv_sec;
4618 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4619 
4620 	return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
4621 }
4622 
4623 static struct ptp_clock_info lan8841_ptp_clock_info = {
4624 	.owner		= THIS_MODULE,
4625 	.name		= "lan8841 ptp",
4626 	.max_adj	= 31249999,
4627 	.gettime64	= lan8841_ptp_gettime64,
4628 	.settime64	= lan8841_ptp_settime64,
4629 	.adjtime	= lan8841_ptp_adjtime,
4630 	.adjfine	= lan8841_ptp_adjfine,
4631 	.verify         = lan8841_ptp_verify,
4632 	.enable         = lan8841_ptp_enable,
4633 	.do_aux_work	= lan8841_ptp_do_aux_work,
4634 	.n_per_out      = LAN8841_PTP_GPIO_NUM,
4635 	.n_ext_ts       = LAN8841_PTP_GPIO_NUM,
4636 	.n_pins         = LAN8841_PTP_GPIO_NUM,
4637 };
4638 
4639 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
4640 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
4641 
4642 static int lan8841_probe(struct phy_device *phydev)
4643 {
4644 	struct kszphy_ptp_priv *ptp_priv;
4645 	struct kszphy_priv *priv;
4646 	int err;
4647 
4648 	err = kszphy_probe(phydev);
4649 	if (err)
4650 		return err;
4651 
4652 	if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4653 			 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
4654 	    LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
4655 		phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
4656 
4657 	/* Register the clock */
4658 	if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
4659 		return 0;
4660 
4661 	priv = phydev->priv;
4662 	ptp_priv = &priv->ptp_priv;
4663 
4664 	ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
4665 					    LAN8841_PTP_GPIO_NUM,
4666 					    sizeof(*ptp_priv->pin_config),
4667 					    GFP_KERNEL);
4668 	if (!ptp_priv->pin_config)
4669 		return -ENOMEM;
4670 
4671 	for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
4672 		struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
4673 
4674 		snprintf(p->name, sizeof(p->name), "pin%d", i);
4675 		p->index = i;
4676 		p->func = PTP_PF_NONE;
4677 	}
4678 
4679 	ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
4680 	ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
4681 	ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
4682 						 &phydev->mdio.dev);
4683 	if (IS_ERR(ptp_priv->ptp_clock)) {
4684 		phydev_err(phydev, "ptp_clock_register failed: %lu\n",
4685 			   PTR_ERR(ptp_priv->ptp_clock));
4686 		return -EINVAL;
4687 	}
4688 
4689 	if (!ptp_priv->ptp_clock)
4690 		return 0;
4691 
4692 	/* Initialize the SW */
4693 	skb_queue_head_init(&ptp_priv->tx_queue);
4694 	ptp_priv->phydev = phydev;
4695 	mutex_init(&ptp_priv->ptp_lock);
4696 	spin_lock_init(&ptp_priv->seconds_lock);
4697 
4698 	ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
4699 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
4700 	ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
4701 	ptp_priv->mii_ts.ts_info = lan8841_ts_info;
4702 
4703 	phydev->mii_ts = &ptp_priv->mii_ts;
4704 
4705 	return 0;
4706 }
4707 
4708 static int lan8841_suspend(struct phy_device *phydev)
4709 {
4710 	struct kszphy_priv *priv = phydev->priv;
4711 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4712 
4713 	if (ptp_priv->ptp_clock)
4714 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4715 
4716 	return genphy_suspend(phydev);
4717 }
4718 
4719 static struct phy_driver ksphy_driver[] = {
4720 {
4721 	.phy_id		= PHY_ID_KS8737,
4722 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4723 	.name		= "Micrel KS8737",
4724 	/* PHY_BASIC_FEATURES */
4725 	.driver_data	= &ks8737_type,
4726 	.probe		= kszphy_probe,
4727 	.config_init	= kszphy_config_init,
4728 	.config_intr	= kszphy_config_intr,
4729 	.handle_interrupt = kszphy_handle_interrupt,
4730 	.suspend	= kszphy_suspend,
4731 	.resume		= kszphy_resume,
4732 }, {
4733 	.phy_id		= PHY_ID_KSZ8021,
4734 	.phy_id_mask	= 0x00ffffff,
4735 	.name		= "Micrel KSZ8021 or KSZ8031",
4736 	/* PHY_BASIC_FEATURES */
4737 	.driver_data	= &ksz8021_type,
4738 	.probe		= kszphy_probe,
4739 	.config_init	= kszphy_config_init,
4740 	.config_intr	= kszphy_config_intr,
4741 	.handle_interrupt = kszphy_handle_interrupt,
4742 	.get_sset_count = kszphy_get_sset_count,
4743 	.get_strings	= kszphy_get_strings,
4744 	.get_stats	= kszphy_get_stats,
4745 	.suspend	= kszphy_suspend,
4746 	.resume		= kszphy_resume,
4747 }, {
4748 	.phy_id		= PHY_ID_KSZ8031,
4749 	.phy_id_mask	= 0x00ffffff,
4750 	.name		= "Micrel KSZ8031",
4751 	/* PHY_BASIC_FEATURES */
4752 	.driver_data	= &ksz8021_type,
4753 	.probe		= kszphy_probe,
4754 	.config_init	= kszphy_config_init,
4755 	.config_intr	= kszphy_config_intr,
4756 	.handle_interrupt = kszphy_handle_interrupt,
4757 	.get_sset_count = kszphy_get_sset_count,
4758 	.get_strings	= kszphy_get_strings,
4759 	.get_stats	= kszphy_get_stats,
4760 	.suspend	= kszphy_suspend,
4761 	.resume		= kszphy_resume,
4762 }, {
4763 	.phy_id		= PHY_ID_KSZ8041,
4764 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4765 	.name		= "Micrel KSZ8041",
4766 	/* PHY_BASIC_FEATURES */
4767 	.driver_data	= &ksz8041_type,
4768 	.probe		= kszphy_probe,
4769 	.config_init	= ksz8041_config_init,
4770 	.config_aneg	= ksz8041_config_aneg,
4771 	.config_intr	= kszphy_config_intr,
4772 	.handle_interrupt = kszphy_handle_interrupt,
4773 	.get_sset_count = kszphy_get_sset_count,
4774 	.get_strings	= kszphy_get_strings,
4775 	.get_stats	= kszphy_get_stats,
4776 	/* No suspend/resume callbacks because of errata DS80000700A,
4777 	 * receiver error following software power down.
4778 	 */
4779 }, {
4780 	.phy_id		= PHY_ID_KSZ8041RNLI,
4781 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4782 	.name		= "Micrel KSZ8041RNLI",
4783 	/* PHY_BASIC_FEATURES */
4784 	.driver_data	= &ksz8041_type,
4785 	.probe		= kszphy_probe,
4786 	.config_init	= kszphy_config_init,
4787 	.config_intr	= kszphy_config_intr,
4788 	.handle_interrupt = kszphy_handle_interrupt,
4789 	.get_sset_count = kszphy_get_sset_count,
4790 	.get_strings	= kszphy_get_strings,
4791 	.get_stats	= kszphy_get_stats,
4792 	.suspend	= kszphy_suspend,
4793 	.resume		= kszphy_resume,
4794 }, {
4795 	.name		= "Micrel KSZ8051",
4796 	/* PHY_BASIC_FEATURES */
4797 	.driver_data	= &ksz8051_type,
4798 	.probe		= kszphy_probe,
4799 	.config_init	= kszphy_config_init,
4800 	.config_intr	= kszphy_config_intr,
4801 	.handle_interrupt = kszphy_handle_interrupt,
4802 	.get_sset_count = kszphy_get_sset_count,
4803 	.get_strings	= kszphy_get_strings,
4804 	.get_stats	= kszphy_get_stats,
4805 	.match_phy_device = ksz8051_match_phy_device,
4806 	.suspend	= kszphy_suspend,
4807 	.resume		= kszphy_resume,
4808 }, {
4809 	.phy_id		= PHY_ID_KSZ8001,
4810 	.name		= "Micrel KSZ8001 or KS8721",
4811 	.phy_id_mask	= 0x00fffffc,
4812 	/* PHY_BASIC_FEATURES */
4813 	.driver_data	= &ksz8041_type,
4814 	.probe		= kszphy_probe,
4815 	.config_init	= kszphy_config_init,
4816 	.config_intr	= kszphy_config_intr,
4817 	.handle_interrupt = kszphy_handle_interrupt,
4818 	.get_sset_count = kszphy_get_sset_count,
4819 	.get_strings	= kszphy_get_strings,
4820 	.get_stats	= kszphy_get_stats,
4821 	.suspend	= kszphy_suspend,
4822 	.resume		= kszphy_resume,
4823 }, {
4824 	.phy_id		= PHY_ID_KSZ8081,
4825 	.name		= "Micrel KSZ8081 or KSZ8091",
4826 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4827 	.flags		= PHY_POLL_CABLE_TEST,
4828 	/* PHY_BASIC_FEATURES */
4829 	.driver_data	= &ksz8081_type,
4830 	.probe		= kszphy_probe,
4831 	.config_init	= ksz8081_config_init,
4832 	.soft_reset	= genphy_soft_reset,
4833 	.config_aneg	= ksz8081_config_aneg,
4834 	.read_status	= ksz8081_read_status,
4835 	.config_intr	= kszphy_config_intr,
4836 	.handle_interrupt = kszphy_handle_interrupt,
4837 	.get_sset_count = kszphy_get_sset_count,
4838 	.get_strings	= kszphy_get_strings,
4839 	.get_stats	= kszphy_get_stats,
4840 	.suspend	= kszphy_suspend,
4841 	.resume		= kszphy_resume,
4842 	.cable_test_start	= ksz886x_cable_test_start,
4843 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4844 }, {
4845 	.phy_id		= PHY_ID_KSZ8061,
4846 	.name		= "Micrel KSZ8061",
4847 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4848 	/* PHY_BASIC_FEATURES */
4849 	.probe		= kszphy_probe,
4850 	.config_init	= ksz8061_config_init,
4851 	.soft_reset	= genphy_soft_reset,
4852 	.config_intr	= kszphy_config_intr,
4853 	.handle_interrupt = kszphy_handle_interrupt,
4854 	.suspend	= kszphy_suspend,
4855 	.resume		= ksz8061_resume,
4856 }, {
4857 	.phy_id		= PHY_ID_KSZ9021,
4858 	.phy_id_mask	= 0x000ffffe,
4859 	.name		= "Micrel KSZ9021 Gigabit PHY",
4860 	/* PHY_GBIT_FEATURES */
4861 	.driver_data	= &ksz9021_type,
4862 	.probe		= kszphy_probe,
4863 	.get_features	= ksz9031_get_features,
4864 	.config_init	= ksz9021_config_init,
4865 	.config_intr	= kszphy_config_intr,
4866 	.handle_interrupt = kszphy_handle_interrupt,
4867 	.get_sset_count = kszphy_get_sset_count,
4868 	.get_strings	= kszphy_get_strings,
4869 	.get_stats	= kszphy_get_stats,
4870 	.suspend	= kszphy_suspend,
4871 	.resume		= kszphy_resume,
4872 	.read_mmd	= genphy_read_mmd_unsupported,
4873 	.write_mmd	= genphy_write_mmd_unsupported,
4874 }, {
4875 	.phy_id		= PHY_ID_KSZ9031,
4876 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4877 	.name		= "Micrel KSZ9031 Gigabit PHY",
4878 	.flags		= PHY_POLL_CABLE_TEST,
4879 	.driver_data	= &ksz9021_type,
4880 	.probe		= kszphy_probe,
4881 	.get_features	= ksz9031_get_features,
4882 	.config_init	= ksz9031_config_init,
4883 	.soft_reset	= genphy_soft_reset,
4884 	.read_status	= ksz9031_read_status,
4885 	.config_intr	= kszphy_config_intr,
4886 	.handle_interrupt = kszphy_handle_interrupt,
4887 	.get_sset_count = kszphy_get_sset_count,
4888 	.get_strings	= kszphy_get_strings,
4889 	.get_stats	= kszphy_get_stats,
4890 	.suspend	= kszphy_suspend,
4891 	.resume		= kszphy_resume,
4892 	.cable_test_start	= ksz9x31_cable_test_start,
4893 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
4894 }, {
4895 	.phy_id		= PHY_ID_LAN8814,
4896 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4897 	.name		= "Microchip INDY Gigabit Quad PHY",
4898 	.flags          = PHY_POLL_CABLE_TEST,
4899 	.config_init	= lan8814_config_init,
4900 	.driver_data	= &lan8814_type,
4901 	.probe		= lan8814_probe,
4902 	.soft_reset	= genphy_soft_reset,
4903 	.read_status	= ksz9031_read_status,
4904 	.get_sset_count	= kszphy_get_sset_count,
4905 	.get_strings	= kszphy_get_strings,
4906 	.get_stats	= kszphy_get_stats,
4907 	.suspend	= genphy_suspend,
4908 	.resume		= kszphy_resume,
4909 	.config_intr	= lan8814_config_intr,
4910 	.handle_interrupt = lan8814_handle_interrupt,
4911 	.cable_test_start	= lan8814_cable_test_start,
4912 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4913 }, {
4914 	.phy_id		= PHY_ID_LAN8804,
4915 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4916 	.name		= "Microchip LAN966X Gigabit PHY",
4917 	.config_init	= lan8804_config_init,
4918 	.driver_data	= &ksz9021_type,
4919 	.probe		= kszphy_probe,
4920 	.soft_reset	= genphy_soft_reset,
4921 	.read_status	= ksz9031_read_status,
4922 	.get_sset_count	= kszphy_get_sset_count,
4923 	.get_strings	= kszphy_get_strings,
4924 	.get_stats	= kszphy_get_stats,
4925 	.suspend	= genphy_suspend,
4926 	.resume		= kszphy_resume,
4927 	.config_intr	= lan8804_config_intr,
4928 	.handle_interrupt = lan8804_handle_interrupt,
4929 }, {
4930 	.phy_id		= PHY_ID_LAN8841,
4931 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4932 	.name		= "Microchip LAN8841 Gigabit PHY",
4933 	.flags		= PHY_POLL_CABLE_TEST,
4934 	.driver_data	= &lan8841_type,
4935 	.config_init	= lan8841_config_init,
4936 	.probe		= lan8841_probe,
4937 	.soft_reset	= genphy_soft_reset,
4938 	.config_intr	= lan8841_config_intr,
4939 	.handle_interrupt = lan8841_handle_interrupt,
4940 	.get_sset_count = kszphy_get_sset_count,
4941 	.get_strings	= kszphy_get_strings,
4942 	.get_stats	= kszphy_get_stats,
4943 	.suspend	= lan8841_suspend,
4944 	.resume		= genphy_resume,
4945 	.cable_test_start	= lan8814_cable_test_start,
4946 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4947 }, {
4948 	.phy_id		= PHY_ID_KSZ9131,
4949 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4950 	.name		= "Microchip KSZ9131 Gigabit PHY",
4951 	/* PHY_GBIT_FEATURES */
4952 	.flags		= PHY_POLL_CABLE_TEST,
4953 	.driver_data	= &ksz9131_type,
4954 	.probe		= kszphy_probe,
4955 	.soft_reset	= genphy_soft_reset,
4956 	.config_init	= ksz9131_config_init,
4957 	.config_intr	= kszphy_config_intr,
4958 	.config_aneg	= ksz9131_config_aneg,
4959 	.read_status	= ksz9131_read_status,
4960 	.handle_interrupt = kszphy_handle_interrupt,
4961 	.get_sset_count = kszphy_get_sset_count,
4962 	.get_strings	= kszphy_get_strings,
4963 	.get_stats	= kszphy_get_stats,
4964 	.suspend	= kszphy_suspend,
4965 	.resume		= kszphy_resume,
4966 	.cable_test_start	= ksz9x31_cable_test_start,
4967 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
4968 	.get_features	= ksz9477_get_features,
4969 }, {
4970 	.phy_id		= PHY_ID_KSZ8873MLL,
4971 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4972 	.name		= "Micrel KSZ8873MLL Switch",
4973 	/* PHY_BASIC_FEATURES */
4974 	.config_init	= kszphy_config_init,
4975 	.config_aneg	= ksz8873mll_config_aneg,
4976 	.read_status	= ksz8873mll_read_status,
4977 	.suspend	= genphy_suspend,
4978 	.resume		= genphy_resume,
4979 }, {
4980 	.phy_id		= PHY_ID_KSZ886X,
4981 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4982 	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
4983 	.driver_data	= &ksz886x_type,
4984 	/* PHY_BASIC_FEATURES */
4985 	.flags		= PHY_POLL_CABLE_TEST,
4986 	.config_init	= kszphy_config_init,
4987 	.config_aneg	= ksz886x_config_aneg,
4988 	.read_status	= ksz886x_read_status,
4989 	.suspend	= genphy_suspend,
4990 	.resume		= genphy_resume,
4991 	.cable_test_start	= ksz886x_cable_test_start,
4992 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4993 }, {
4994 	.name		= "Micrel KSZ87XX Switch",
4995 	/* PHY_BASIC_FEATURES */
4996 	.config_init	= kszphy_config_init,
4997 	.match_phy_device = ksz8795_match_phy_device,
4998 	.suspend	= genphy_suspend,
4999 	.resume		= genphy_resume,
5000 }, {
5001 	.phy_id		= PHY_ID_KSZ9477,
5002 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5003 	.name		= "Microchip KSZ9477",
5004 	/* PHY_GBIT_FEATURES */
5005 	.config_init	= ksz9477_config_init,
5006 	.config_intr	= kszphy_config_intr,
5007 	.handle_interrupt = kszphy_handle_interrupt,
5008 	.suspend	= genphy_suspend,
5009 	.resume		= ksz9477_resume,
5010 	.get_features	= ksz9477_get_features,
5011 } };
5012 
5013 module_phy_driver(ksphy_driver);
5014 
5015 MODULE_DESCRIPTION("Micrel PHY driver");
5016 MODULE_AUTHOR("David J. Choi");
5017 MODULE_LICENSE("GPL");
5018 
5019 static struct mdio_device_id __maybe_unused micrel_tbl[] = {
5020 	{ PHY_ID_KSZ9021, 0x000ffffe },
5021 	{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
5022 	{ PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
5023 	{ PHY_ID_KSZ8001, 0x00fffffc },
5024 	{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
5025 	{ PHY_ID_KSZ8021, 0x00ffffff },
5026 	{ PHY_ID_KSZ8031, 0x00ffffff },
5027 	{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
5028 	{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
5029 	{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
5030 	{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
5031 	{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
5032 	{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
5033 	{ PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
5034 	{ PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
5035 	{ PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
5036 	{ }
5037 };
5038 
5039 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
5040