xref: /openbmc/linux/drivers/net/phy/micrel.c (revision 1edd0337)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/net/phy/micrel.c
4  *
5  * Driver for Micrel PHYs
6  *
7  * Author: David J. Choi
8  *
9  * Copyright (c) 2010-2013 Micrel, Inc.
10  * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11  *
12  * Support : Micrel Phys:
13  *		Giga phys: ksz9021, ksz9031, ksz9131
14  *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15  *			   ksz8021, ksz8031, ksz8051,
16  *			   ksz8081, ksz8091,
17  *			   ksz8061,
18  *		Switch : ksz8873, ksz886x
19  *			 ksz9477
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36 
37 /* Operation Mode Strap Override */
38 #define MII_KSZPHY_OMSO				0x16
39 #define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
40 #define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
41 #define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
42 #define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
43 #define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
44 
45 /* general Interrupt control/status reg in vendor specific block. */
46 #define MII_KSZPHY_INTCS			0x1B
47 #define KSZPHY_INTCS_JABBER			BIT(15)
48 #define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
49 #define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
50 #define KSZPHY_INTCS_PARELLEL			BIT(12)
51 #define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
52 #define KSZPHY_INTCS_LINK_DOWN			BIT(10)
53 #define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
54 #define KSZPHY_INTCS_LINK_UP			BIT(8)
55 #define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
56 						KSZPHY_INTCS_LINK_DOWN)
57 #define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
58 #define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
59 #define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
60 						 KSZPHY_INTCS_LINK_UP_STATUS)
61 
62 /* LinkMD Control/Status */
63 #define KSZ8081_LMD				0x1d
64 #define KSZ8081_LMD_ENABLE_TEST			BIT(15)
65 #define KSZ8081_LMD_STAT_NORMAL			0
66 #define KSZ8081_LMD_STAT_OPEN			1
67 #define KSZ8081_LMD_STAT_SHORT			2
68 #define KSZ8081_LMD_STAT_FAIL			3
69 #define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
70 /* Short cable (<10 meter) has been detected by LinkMD */
71 #define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
72 #define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
73 
74 #define KSZ9x31_LMD				0x12
75 #define KSZ9x31_LMD_VCT_EN			BIT(15)
76 #define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
77 #define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
78 #define KSZ9x31_LMD_VCT_SEL_RESULT		0
79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
81 #define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
82 #define KSZ9x31_LMD_VCT_ST_NORMAL		0
83 #define KSZ9x31_LMD_VCT_ST_OPEN			1
84 #define KSZ9x31_LMD_VCT_ST_SHORT		2
85 #define KSZ9x31_LMD_VCT_ST_FAIL			3
86 #define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
89 #define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
93 #define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
94 
95 #define KSZPHY_WIRE_PAIR_MASK			0x3
96 
97 #define LAN8814_CABLE_DIAG			0x12
98 #define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
100 #define LAN8814_PAIR_BIT_SHIFT			12
101 
102 #define LAN8814_WIRE_PAIR_MASK			0xF
103 
104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
105 #define LAN8814_INTC				0x18
106 #define LAN8814_INTS				0x1B
107 
108 #define LAN8814_INT_LINK_DOWN			BIT(2)
109 #define LAN8814_INT_LINK_UP			BIT(0)
110 #define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
111 						 LAN8814_INT_LINK_DOWN)
112 
113 #define LAN8814_INTR_CTRL_REG			0x34
114 #define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
116 
117 /* Represents 1ppm adjustment in 2^32 format with
118  * each nsec contains 4 clock cycles.
119  * The value is calculated as following: (1/1000000)/((2^-32)/4)
120  */
121 #define LAN8814_1PPM_FORMAT			17179
122 
123 #define PTP_RX_MOD				0x024F
124 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
125 #define PTP_RX_TIMESTAMP_EN			0x024D
126 #define PTP_TX_TIMESTAMP_EN			0x028D
127 
128 #define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
129 #define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
130 #define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
131 #define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
132 
133 #define PTP_TX_PARSE_L2_ADDR_EN			0x0284
134 #define PTP_RX_PARSE_L2_ADDR_EN			0x0244
135 
136 #define PTP_TX_PARSE_IP_ADDR_EN			0x0285
137 #define PTP_RX_PARSE_IP_ADDR_EN			0x0245
138 #define LTC_HARD_RESET				0x023F
139 #define LTC_HARD_RESET_				BIT(0)
140 
141 #define TSU_HARD_RESET				0x02C1
142 #define TSU_HARD_RESET_				BIT(0)
143 
144 #define PTP_CMD_CTL				0x0200
145 #define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
146 #define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
147 #define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
148 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
149 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
150 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
151 
152 #define PTP_CLOCK_SET_SEC_MID			0x0206
153 #define PTP_CLOCK_SET_SEC_LO			0x0207
154 #define PTP_CLOCK_SET_NS_HI			0x0208
155 #define PTP_CLOCK_SET_NS_LO			0x0209
156 
157 #define PTP_CLOCK_READ_SEC_MID			0x022A
158 #define PTP_CLOCK_READ_SEC_LO			0x022B
159 #define PTP_CLOCK_READ_NS_HI			0x022C
160 #define PTP_CLOCK_READ_NS_LO			0x022D
161 
162 #define PTP_OPERATING_MODE			0x0241
163 #define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
164 
165 #define PTP_TX_MOD				0x028F
166 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
167 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
168 
169 #define PTP_RX_PARSE_CONFIG			0x0242
170 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
171 #define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
172 #define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
173 
174 #define PTP_TX_PARSE_CONFIG			0x0282
175 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
176 #define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
177 #define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
178 
179 #define PTP_CLOCK_RATE_ADJ_HI			0x020C
180 #define PTP_CLOCK_RATE_ADJ_LO			0x020D
181 #define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
182 
183 #define PTP_LTC_STEP_ADJ_HI			0x0212
184 #define PTP_LTC_STEP_ADJ_LO			0x0213
185 #define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
186 
187 #define LAN8814_INTR_STS_REG			0x0033
188 #define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
189 #define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
190 #define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
191 #define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
192 
193 #define PTP_CAP_INFO				0x022A
194 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
195 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
196 
197 #define PTP_TX_EGRESS_SEC_HI			0x0296
198 #define PTP_TX_EGRESS_SEC_LO			0x0297
199 #define PTP_TX_EGRESS_NS_HI			0x0294
200 #define PTP_TX_EGRESS_NS_LO			0x0295
201 #define PTP_TX_MSG_HEADER2			0x0299
202 
203 #define PTP_RX_INGRESS_SEC_HI			0x0256
204 #define PTP_RX_INGRESS_SEC_LO			0x0257
205 #define PTP_RX_INGRESS_NS_HI			0x0254
206 #define PTP_RX_INGRESS_NS_LO			0x0255
207 #define PTP_RX_MSG_HEADER2			0x0259
208 
209 #define PTP_TSU_INT_EN				0x0200
210 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
211 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
212 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
213 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
214 
215 #define PTP_TSU_INT_STS				0x0201
216 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
217 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
218 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
219 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
220 
221 #define LAN8814_LED_CTRL_1			0x0
222 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
223 
224 /* PHY Control 1 */
225 #define MII_KSZPHY_CTRL_1			0x1e
226 #define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
227 
228 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
229 #define MII_KSZPHY_CTRL_2			0x1f
230 #define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
231 /* bitmap of PHY register to set interrupt mode */
232 #define KSZ8081_CTRL2_HP_MDIX			BIT(15)
233 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
234 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
235 #define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
236 #define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
237 #define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
238 #define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
239 
240 /* Write/read to/from extended registers */
241 #define MII_KSZPHY_EXTREG			0x0b
242 #define KSZPHY_EXTREG_WRITE			0x8000
243 
244 #define MII_KSZPHY_EXTREG_WRITE			0x0c
245 #define MII_KSZPHY_EXTREG_READ			0x0d
246 
247 /* Extended registers */
248 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
249 #define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
250 #define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
251 
252 #define PS_TO_REG				200
253 #define FIFO_SIZE				8
254 
255 struct kszphy_hw_stat {
256 	const char *string;
257 	u8 reg;
258 	u8 bits;
259 };
260 
261 static struct kszphy_hw_stat kszphy_hw_stats[] = {
262 	{ "phy_receive_errors", 21, 16},
263 	{ "phy_idle_errors", 10, 8 },
264 };
265 
266 struct kszphy_type {
267 	u32 led_mode_reg;
268 	u16 interrupt_level_mask;
269 	u16 cable_diag_reg;
270 	unsigned long pair_mask;
271 	u16 disable_dll_tx_bit;
272 	u16 disable_dll_rx_bit;
273 	u16 disable_dll_mask;
274 	bool has_broadcast_disable;
275 	bool has_nand_tree_disable;
276 	bool has_rmii_ref_clk_sel;
277 };
278 
279 /* Shared structure between the PHYs of the same package. */
280 struct lan8814_shared_priv {
281 	struct phy_device *phydev;
282 	struct ptp_clock *ptp_clock;
283 	struct ptp_clock_info ptp_clock_info;
284 
285 	/* Reference counter to how many ports in the package are enabling the
286 	 * timestamping
287 	 */
288 	u8 ref;
289 
290 	/* Lock for ptp_clock and ref */
291 	struct mutex shared_lock;
292 };
293 
294 struct lan8814_ptp_rx_ts {
295 	struct list_head list;
296 	u32 seconds;
297 	u32 nsec;
298 	u16 seq_id;
299 };
300 
301 struct kszphy_ptp_priv {
302 	struct mii_timestamper mii_ts;
303 	struct phy_device *phydev;
304 
305 	struct sk_buff_head tx_queue;
306 	struct sk_buff_head rx_queue;
307 
308 	struct list_head rx_ts_list;
309 	/* Lock for Rx ts fifo */
310 	spinlock_t rx_ts_lock;
311 
312 	int hwts_tx_type;
313 	enum hwtstamp_rx_filters rx_filter;
314 	int layer;
315 	int version;
316 
317 	struct ptp_clock *ptp_clock;
318 	struct ptp_clock_info ptp_clock_info;
319 	/* Lock for ptp_clock */
320 	struct mutex ptp_lock;
321 };
322 
323 struct kszphy_priv {
324 	struct kszphy_ptp_priv ptp_priv;
325 	const struct kszphy_type *type;
326 	int led_mode;
327 	u16 vct_ctrl1000;
328 	bool rmii_ref_clk_sel;
329 	bool rmii_ref_clk_sel_val;
330 	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
331 };
332 
333 static const struct kszphy_type lan8814_type = {
334 	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
335 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
336 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
337 };
338 
339 static const struct kszphy_type ksz886x_type = {
340 	.cable_diag_reg		= KSZ8081_LMD,
341 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
342 };
343 
344 static const struct kszphy_type ksz8021_type = {
345 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
346 	.has_broadcast_disable	= true,
347 	.has_nand_tree_disable	= true,
348 	.has_rmii_ref_clk_sel	= true,
349 };
350 
351 static const struct kszphy_type ksz8041_type = {
352 	.led_mode_reg		= MII_KSZPHY_CTRL_1,
353 };
354 
355 static const struct kszphy_type ksz8051_type = {
356 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
357 	.has_nand_tree_disable	= true,
358 };
359 
360 static const struct kszphy_type ksz8081_type = {
361 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
362 	.has_broadcast_disable	= true,
363 	.has_nand_tree_disable	= true,
364 	.has_rmii_ref_clk_sel	= true,
365 };
366 
367 static const struct kszphy_type ks8737_type = {
368 	.interrupt_level_mask	= BIT(14),
369 };
370 
371 static const struct kszphy_type ksz9021_type = {
372 	.interrupt_level_mask	= BIT(14),
373 };
374 
375 static const struct kszphy_type ksz9131_type = {
376 	.interrupt_level_mask	= BIT(14),
377 	.disable_dll_tx_bit	= BIT(12),
378 	.disable_dll_rx_bit	= BIT(12),
379 	.disable_dll_mask	= BIT_MASK(12),
380 };
381 
382 static const struct kszphy_type lan8841_type = {
383 	.disable_dll_tx_bit	= BIT(14),
384 	.disable_dll_rx_bit	= BIT(14),
385 	.disable_dll_mask	= BIT_MASK(14),
386 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
387 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
388 };
389 
390 static int kszphy_extended_write(struct phy_device *phydev,
391 				u32 regnum, u16 val)
392 {
393 	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
394 	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
395 }
396 
397 static int kszphy_extended_read(struct phy_device *phydev,
398 				u32 regnum)
399 {
400 	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
401 	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
402 }
403 
404 static int kszphy_ack_interrupt(struct phy_device *phydev)
405 {
406 	/* bit[7..0] int status, which is a read and clear register. */
407 	int rc;
408 
409 	rc = phy_read(phydev, MII_KSZPHY_INTCS);
410 
411 	return (rc < 0) ? rc : 0;
412 }
413 
414 static int kszphy_config_intr(struct phy_device *phydev)
415 {
416 	const struct kszphy_type *type = phydev->drv->driver_data;
417 	int temp, err;
418 	u16 mask;
419 
420 	if (type && type->interrupt_level_mask)
421 		mask = type->interrupt_level_mask;
422 	else
423 		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
424 
425 	/* set the interrupt pin active low */
426 	temp = phy_read(phydev, MII_KSZPHY_CTRL);
427 	if (temp < 0)
428 		return temp;
429 	temp &= ~mask;
430 	phy_write(phydev, MII_KSZPHY_CTRL, temp);
431 
432 	/* enable / disable interrupts */
433 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
434 		err = kszphy_ack_interrupt(phydev);
435 		if (err)
436 			return err;
437 
438 		temp = KSZPHY_INTCS_ALL;
439 		err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
440 	} else {
441 		temp = 0;
442 		err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
443 		if (err)
444 			return err;
445 
446 		err = kszphy_ack_interrupt(phydev);
447 	}
448 
449 	return err;
450 }
451 
452 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
453 {
454 	int irq_status;
455 
456 	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
457 	if (irq_status < 0) {
458 		phy_error(phydev);
459 		return IRQ_NONE;
460 	}
461 
462 	if (!(irq_status & KSZPHY_INTCS_STATUS))
463 		return IRQ_NONE;
464 
465 	phy_trigger_machine(phydev);
466 
467 	return IRQ_HANDLED;
468 }
469 
470 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
471 {
472 	int ctrl;
473 
474 	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
475 	if (ctrl < 0)
476 		return ctrl;
477 
478 	if (val)
479 		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
480 	else
481 		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
482 
483 	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
484 }
485 
486 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
487 {
488 	int rc, temp, shift;
489 
490 	switch (reg) {
491 	case MII_KSZPHY_CTRL_1:
492 		shift = 14;
493 		break;
494 	case MII_KSZPHY_CTRL_2:
495 		shift = 4;
496 		break;
497 	default:
498 		return -EINVAL;
499 	}
500 
501 	temp = phy_read(phydev, reg);
502 	if (temp < 0) {
503 		rc = temp;
504 		goto out;
505 	}
506 
507 	temp &= ~(3 << shift);
508 	temp |= val << shift;
509 	rc = phy_write(phydev, reg, temp);
510 out:
511 	if (rc < 0)
512 		phydev_err(phydev, "failed to set led mode\n");
513 
514 	return rc;
515 }
516 
517 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
518  * unique (non-broadcast) address on a shared bus.
519  */
520 static int kszphy_broadcast_disable(struct phy_device *phydev)
521 {
522 	int ret;
523 
524 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
525 	if (ret < 0)
526 		goto out;
527 
528 	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
529 out:
530 	if (ret)
531 		phydev_err(phydev, "failed to disable broadcast address\n");
532 
533 	return ret;
534 }
535 
536 static int kszphy_nand_tree_disable(struct phy_device *phydev)
537 {
538 	int ret;
539 
540 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
541 	if (ret < 0)
542 		goto out;
543 
544 	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
545 		return 0;
546 
547 	ret = phy_write(phydev, MII_KSZPHY_OMSO,
548 			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
549 out:
550 	if (ret)
551 		phydev_err(phydev, "failed to disable NAND tree mode\n");
552 
553 	return ret;
554 }
555 
556 /* Some config bits need to be set again on resume, handle them here. */
557 static int kszphy_config_reset(struct phy_device *phydev)
558 {
559 	struct kszphy_priv *priv = phydev->priv;
560 	int ret;
561 
562 	if (priv->rmii_ref_clk_sel) {
563 		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
564 		if (ret) {
565 			phydev_err(phydev,
566 				   "failed to set rmii reference clock\n");
567 			return ret;
568 		}
569 	}
570 
571 	if (priv->type && priv->led_mode >= 0)
572 		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
573 
574 	return 0;
575 }
576 
577 static int kszphy_config_init(struct phy_device *phydev)
578 {
579 	struct kszphy_priv *priv = phydev->priv;
580 	const struct kszphy_type *type;
581 
582 	if (!priv)
583 		return 0;
584 
585 	type = priv->type;
586 
587 	if (type && type->has_broadcast_disable)
588 		kszphy_broadcast_disable(phydev);
589 
590 	if (type && type->has_nand_tree_disable)
591 		kszphy_nand_tree_disable(phydev);
592 
593 	return kszphy_config_reset(phydev);
594 }
595 
596 static int ksz8041_fiber_mode(struct phy_device *phydev)
597 {
598 	struct device_node *of_node = phydev->mdio.dev.of_node;
599 
600 	return of_property_read_bool(of_node, "micrel,fiber-mode");
601 }
602 
603 static int ksz8041_config_init(struct phy_device *phydev)
604 {
605 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
606 
607 	/* Limit supported and advertised modes in fiber mode */
608 	if (ksz8041_fiber_mode(phydev)) {
609 		phydev->dev_flags |= MICREL_PHY_FXEN;
610 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
611 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
612 
613 		linkmode_and(phydev->supported, phydev->supported, mask);
614 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
615 				 phydev->supported);
616 		linkmode_and(phydev->advertising, phydev->advertising, mask);
617 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
618 				 phydev->advertising);
619 		phydev->autoneg = AUTONEG_DISABLE;
620 	}
621 
622 	return kszphy_config_init(phydev);
623 }
624 
625 static int ksz8041_config_aneg(struct phy_device *phydev)
626 {
627 	/* Skip auto-negotiation in fiber mode */
628 	if (phydev->dev_flags & MICREL_PHY_FXEN) {
629 		phydev->speed = SPEED_100;
630 		return 0;
631 	}
632 
633 	return genphy_config_aneg(phydev);
634 }
635 
636 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
637 					    const bool ksz_8051)
638 {
639 	int ret;
640 
641 	if ((phydev->phy_id & MICREL_PHY_ID_MASK) != PHY_ID_KSZ8051)
642 		return 0;
643 
644 	ret = phy_read(phydev, MII_BMSR);
645 	if (ret < 0)
646 		return ret;
647 
648 	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
649 	 * exact PHY ID. However, they can be told apart by the extended
650 	 * capability registers presence. The KSZ8051 PHY has them while
651 	 * the switch does not.
652 	 */
653 	ret &= BMSR_ERCAP;
654 	if (ksz_8051)
655 		return ret;
656 	else
657 		return !ret;
658 }
659 
660 static int ksz8051_match_phy_device(struct phy_device *phydev)
661 {
662 	return ksz8051_ksz8795_match_phy_device(phydev, true);
663 }
664 
665 static int ksz8081_config_init(struct phy_device *phydev)
666 {
667 	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
668 	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
669 	 * pull-down is missing, the factory test mode should be cleared by
670 	 * manually writing a 0.
671 	 */
672 	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
673 
674 	return kszphy_config_init(phydev);
675 }
676 
677 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
678 {
679 	u16 val;
680 
681 	switch (ctrl) {
682 	case ETH_TP_MDI:
683 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
684 		break;
685 	case ETH_TP_MDI_X:
686 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
687 			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
688 		break;
689 	case ETH_TP_MDI_AUTO:
690 		val = 0;
691 		break;
692 	default:
693 		return 0;
694 	}
695 
696 	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
697 			  KSZ8081_CTRL2_HP_MDIX |
698 			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
699 			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
700 			  KSZ8081_CTRL2_HP_MDIX | val);
701 }
702 
703 static int ksz8081_config_aneg(struct phy_device *phydev)
704 {
705 	int ret;
706 
707 	ret = genphy_config_aneg(phydev);
708 	if (ret)
709 		return ret;
710 
711 	/* The MDI-X configuration is automatically changed by the PHY after
712 	 * switching from autoneg off to on. So, take MDI-X configuration under
713 	 * own control and set it after autoneg configuration was done.
714 	 */
715 	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
716 }
717 
718 static int ksz8081_mdix_update(struct phy_device *phydev)
719 {
720 	int ret;
721 
722 	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
723 	if (ret < 0)
724 		return ret;
725 
726 	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
727 		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
728 			phydev->mdix_ctrl = ETH_TP_MDI_X;
729 		else
730 			phydev->mdix_ctrl = ETH_TP_MDI;
731 	} else {
732 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
733 	}
734 
735 	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
736 	if (ret < 0)
737 		return ret;
738 
739 	if (ret & KSZ8081_CTRL1_MDIX_STAT)
740 		phydev->mdix = ETH_TP_MDI;
741 	else
742 		phydev->mdix = ETH_TP_MDI_X;
743 
744 	return 0;
745 }
746 
747 static int ksz8081_read_status(struct phy_device *phydev)
748 {
749 	int ret;
750 
751 	ret = ksz8081_mdix_update(phydev);
752 	if (ret < 0)
753 		return ret;
754 
755 	return genphy_read_status(phydev);
756 }
757 
758 static int ksz8061_config_init(struct phy_device *phydev)
759 {
760 	int ret;
761 
762 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
763 	if (ret)
764 		return ret;
765 
766 	return kszphy_config_init(phydev);
767 }
768 
769 static int ksz8795_match_phy_device(struct phy_device *phydev)
770 {
771 	return ksz8051_ksz8795_match_phy_device(phydev, false);
772 }
773 
774 static int ksz9021_load_values_from_of(struct phy_device *phydev,
775 				       const struct device_node *of_node,
776 				       u16 reg,
777 				       const char *field1, const char *field2,
778 				       const char *field3, const char *field4)
779 {
780 	int val1 = -1;
781 	int val2 = -2;
782 	int val3 = -3;
783 	int val4 = -4;
784 	int newval;
785 	int matches = 0;
786 
787 	if (!of_property_read_u32(of_node, field1, &val1))
788 		matches++;
789 
790 	if (!of_property_read_u32(of_node, field2, &val2))
791 		matches++;
792 
793 	if (!of_property_read_u32(of_node, field3, &val3))
794 		matches++;
795 
796 	if (!of_property_read_u32(of_node, field4, &val4))
797 		matches++;
798 
799 	if (!matches)
800 		return 0;
801 
802 	if (matches < 4)
803 		newval = kszphy_extended_read(phydev, reg);
804 	else
805 		newval = 0;
806 
807 	if (val1 != -1)
808 		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
809 
810 	if (val2 != -2)
811 		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
812 
813 	if (val3 != -3)
814 		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
815 
816 	if (val4 != -4)
817 		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
818 
819 	return kszphy_extended_write(phydev, reg, newval);
820 }
821 
822 static int ksz9021_config_init(struct phy_device *phydev)
823 {
824 	const struct device_node *of_node;
825 	const struct device *dev_walker;
826 
827 	/* The Micrel driver has a deprecated option to place phy OF
828 	 * properties in the MAC node. Walk up the tree of devices to
829 	 * find a device with an OF node.
830 	 */
831 	dev_walker = &phydev->mdio.dev;
832 	do {
833 		of_node = dev_walker->of_node;
834 		dev_walker = dev_walker->parent;
835 
836 	} while (!of_node && dev_walker);
837 
838 	if (of_node) {
839 		ksz9021_load_values_from_of(phydev, of_node,
840 				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
841 				    "txen-skew-ps", "txc-skew-ps",
842 				    "rxdv-skew-ps", "rxc-skew-ps");
843 		ksz9021_load_values_from_of(phydev, of_node,
844 				    MII_KSZPHY_RX_DATA_PAD_SKEW,
845 				    "rxd0-skew-ps", "rxd1-skew-ps",
846 				    "rxd2-skew-ps", "rxd3-skew-ps");
847 		ksz9021_load_values_from_of(phydev, of_node,
848 				    MII_KSZPHY_TX_DATA_PAD_SKEW,
849 				    "txd0-skew-ps", "txd1-skew-ps",
850 				    "txd2-skew-ps", "txd3-skew-ps");
851 	}
852 	return 0;
853 }
854 
855 #define KSZ9031_PS_TO_REG		60
856 
857 /* Extended registers */
858 /* MMD Address 0x0 */
859 #define MII_KSZ9031RN_FLP_BURST_TX_LO	3
860 #define MII_KSZ9031RN_FLP_BURST_TX_HI	4
861 
862 /* MMD Address 0x2 */
863 #define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
864 #define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
865 #define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
866 
867 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
868 #define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
869 #define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
870 #define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
871 #define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
872 
873 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
874 #define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
875 #define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
876 #define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
877 #define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
878 
879 #define MII_KSZ9031RN_CLK_PAD_SKEW	8
880 #define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
881 #define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
882 
883 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
884  * provide different RGMII options we need to configure delay offset
885  * for each pad relative to build in delay.
886  */
887 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
888  * 1.80ns
889  */
890 #define RX_ID				0x7
891 #define RX_CLK_ID			0x19
892 
893 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
894  * internal 1.2ns delay.
895  */
896 #define RX_ND				0xc
897 #define RX_CLK_ND			0x0
898 
899 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
900 #define TX_ID				0x0
901 #define TX_CLK_ID			0x1f
902 
903 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
904  * dealy
905  */
906 #define TX_ND				0x7
907 #define TX_CLK_ND			0xf
908 
909 /* MMD Address 0x1C */
910 #define MII_KSZ9031RN_EDPD		0x23
911 #define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
912 
913 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
914 				       const struct device_node *of_node,
915 				       u16 reg, size_t field_sz,
916 				       const char *field[], u8 numfields,
917 				       bool *update)
918 {
919 	int val[4] = {-1, -2, -3, -4};
920 	int matches = 0;
921 	u16 mask;
922 	u16 maxval;
923 	u16 newval;
924 	int i;
925 
926 	for (i = 0; i < numfields; i++)
927 		if (!of_property_read_u32(of_node, field[i], val + i))
928 			matches++;
929 
930 	if (!matches)
931 		return 0;
932 
933 	*update |= true;
934 
935 	if (matches < numfields)
936 		newval = phy_read_mmd(phydev, 2, reg);
937 	else
938 		newval = 0;
939 
940 	maxval = (field_sz == 4) ? 0xf : 0x1f;
941 	for (i = 0; i < numfields; i++)
942 		if (val[i] != -(i + 1)) {
943 			mask = 0xffff;
944 			mask ^= maxval << (field_sz * i);
945 			newval = (newval & mask) |
946 				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
947 					<< (field_sz * i));
948 		}
949 
950 	return phy_write_mmd(phydev, 2, reg, newval);
951 }
952 
953 /* Center KSZ9031RNX FLP timing at 16ms. */
954 static int ksz9031_center_flp_timing(struct phy_device *phydev)
955 {
956 	int result;
957 
958 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
959 			       0x0006);
960 	if (result)
961 		return result;
962 
963 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
964 			       0x1A80);
965 	if (result)
966 		return result;
967 
968 	return genphy_restart_aneg(phydev);
969 }
970 
971 /* Enable energy-detect power-down mode */
972 static int ksz9031_enable_edpd(struct phy_device *phydev)
973 {
974 	int reg;
975 
976 	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
977 	if (reg < 0)
978 		return reg;
979 	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
980 			     reg | MII_KSZ9031RN_EDPD_ENABLE);
981 }
982 
983 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
984 {
985 	u16 rx, tx, rx_clk, tx_clk;
986 	int ret;
987 
988 	switch (phydev->interface) {
989 	case PHY_INTERFACE_MODE_RGMII:
990 		tx = TX_ND;
991 		tx_clk = TX_CLK_ND;
992 		rx = RX_ND;
993 		rx_clk = RX_CLK_ND;
994 		break;
995 	case PHY_INTERFACE_MODE_RGMII_ID:
996 		tx = TX_ID;
997 		tx_clk = TX_CLK_ID;
998 		rx = RX_ID;
999 		rx_clk = RX_CLK_ID;
1000 		break;
1001 	case PHY_INTERFACE_MODE_RGMII_RXID:
1002 		tx = TX_ND;
1003 		tx_clk = TX_CLK_ND;
1004 		rx = RX_ID;
1005 		rx_clk = RX_CLK_ID;
1006 		break;
1007 	case PHY_INTERFACE_MODE_RGMII_TXID:
1008 		tx = TX_ID;
1009 		tx_clk = TX_CLK_ID;
1010 		rx = RX_ND;
1011 		rx_clk = RX_CLK_ND;
1012 		break;
1013 	default:
1014 		return 0;
1015 	}
1016 
1017 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1018 			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1019 			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1020 	if (ret < 0)
1021 		return ret;
1022 
1023 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1024 			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1025 			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1026 			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1027 			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1028 	if (ret < 0)
1029 		return ret;
1030 
1031 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1032 			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1033 			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1034 			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1035 			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1036 	if (ret < 0)
1037 		return ret;
1038 
1039 	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1040 			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1041 			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1042 }
1043 
1044 static int ksz9031_config_init(struct phy_device *phydev)
1045 {
1046 	const struct device_node *of_node;
1047 	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1048 	static const char *rx_data_skews[4] = {
1049 		"rxd0-skew-ps", "rxd1-skew-ps",
1050 		"rxd2-skew-ps", "rxd3-skew-ps"
1051 	};
1052 	static const char *tx_data_skews[4] = {
1053 		"txd0-skew-ps", "txd1-skew-ps",
1054 		"txd2-skew-ps", "txd3-skew-ps"
1055 	};
1056 	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1057 	const struct device *dev_walker;
1058 	int result;
1059 
1060 	result = ksz9031_enable_edpd(phydev);
1061 	if (result < 0)
1062 		return result;
1063 
1064 	/* The Micrel driver has a deprecated option to place phy OF
1065 	 * properties in the MAC node. Walk up the tree of devices to
1066 	 * find a device with an OF node.
1067 	 */
1068 	dev_walker = &phydev->mdio.dev;
1069 	do {
1070 		of_node = dev_walker->of_node;
1071 		dev_walker = dev_walker->parent;
1072 	} while (!of_node && dev_walker);
1073 
1074 	if (of_node) {
1075 		bool update = false;
1076 
1077 		if (phy_interface_is_rgmii(phydev)) {
1078 			result = ksz9031_config_rgmii_delay(phydev);
1079 			if (result < 0)
1080 				return result;
1081 		}
1082 
1083 		ksz9031_of_load_skew_values(phydev, of_node,
1084 				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1085 				clk_skews, 2, &update);
1086 
1087 		ksz9031_of_load_skew_values(phydev, of_node,
1088 				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1089 				control_skews, 2, &update);
1090 
1091 		ksz9031_of_load_skew_values(phydev, of_node,
1092 				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1093 				rx_data_skews, 4, &update);
1094 
1095 		ksz9031_of_load_skew_values(phydev, of_node,
1096 				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1097 				tx_data_skews, 4, &update);
1098 
1099 		if (update && !phy_interface_is_rgmii(phydev))
1100 			phydev_warn(phydev,
1101 				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1102 
1103 		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1104 		 * When the device links in the 1000BASE-T slave mode only,
1105 		 * the optional 125MHz reference output clock (CLK125_NDO)
1106 		 * has wide duty cycle variation.
1107 		 *
1108 		 * The optional CLK125_NDO clock does not meet the RGMII
1109 		 * 45/55 percent (min/max) duty cycle requirement and therefore
1110 		 * cannot be used directly by the MAC side for clocking
1111 		 * applications that have setup/hold time requirements on
1112 		 * rising and falling clock edges.
1113 		 *
1114 		 * Workaround:
1115 		 * Force the phy to be the master to receive a stable clock
1116 		 * which meets the duty cycle requirement.
1117 		 */
1118 		if (of_property_read_bool(of_node, "micrel,force-master")) {
1119 			result = phy_read(phydev, MII_CTRL1000);
1120 			if (result < 0)
1121 				goto err_force_master;
1122 
1123 			/* enable master mode, config & prefer master */
1124 			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1125 			result = phy_write(phydev, MII_CTRL1000, result);
1126 			if (result < 0)
1127 				goto err_force_master;
1128 		}
1129 	}
1130 
1131 	return ksz9031_center_flp_timing(phydev);
1132 
1133 err_force_master:
1134 	phydev_err(phydev, "failed to force the phy to master mode\n");
1135 	return result;
1136 }
1137 
1138 #define KSZ9131_SKEW_5BIT_MAX	2400
1139 #define KSZ9131_SKEW_4BIT_MAX	800
1140 #define KSZ9131_OFFSET		700
1141 #define KSZ9131_STEP		100
1142 
1143 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1144 				       struct device_node *of_node,
1145 				       u16 reg, size_t field_sz,
1146 				       char *field[], u8 numfields)
1147 {
1148 	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1149 		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1150 	int skewval, skewmax = 0;
1151 	int matches = 0;
1152 	u16 maxval;
1153 	u16 newval;
1154 	u16 mask;
1155 	int i;
1156 
1157 	/* psec properties in dts should mean x pico seconds */
1158 	if (field_sz == 5)
1159 		skewmax = KSZ9131_SKEW_5BIT_MAX;
1160 	else
1161 		skewmax = KSZ9131_SKEW_4BIT_MAX;
1162 
1163 	for (i = 0; i < numfields; i++)
1164 		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1165 			if (skewval < -KSZ9131_OFFSET)
1166 				skewval = -KSZ9131_OFFSET;
1167 			else if (skewval > skewmax)
1168 				skewval = skewmax;
1169 
1170 			val[i] = skewval + KSZ9131_OFFSET;
1171 			matches++;
1172 		}
1173 
1174 	if (!matches)
1175 		return 0;
1176 
1177 	if (matches < numfields)
1178 		newval = phy_read_mmd(phydev, 2, reg);
1179 	else
1180 		newval = 0;
1181 
1182 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1183 	for (i = 0; i < numfields; i++)
1184 		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1185 			mask = 0xffff;
1186 			mask ^= maxval << (field_sz * i);
1187 			newval = (newval & mask) |
1188 				(((val[i] / KSZ9131_STEP) & maxval)
1189 					<< (field_sz * i));
1190 		}
1191 
1192 	return phy_write_mmd(phydev, 2, reg, newval);
1193 }
1194 
1195 #define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1196 #define KSZ9131RN_RXC_DLL_CTRL		76
1197 #define KSZ9131RN_TXC_DLL_CTRL		77
1198 #define KSZ9131RN_DLL_ENABLE_DELAY	0
1199 
1200 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1201 {
1202 	const struct kszphy_type *type = phydev->drv->driver_data;
1203 	u16 rxcdll_val, txcdll_val;
1204 	int ret;
1205 
1206 	switch (phydev->interface) {
1207 	case PHY_INTERFACE_MODE_RGMII:
1208 		rxcdll_val = type->disable_dll_rx_bit;
1209 		txcdll_val = type->disable_dll_tx_bit;
1210 		break;
1211 	case PHY_INTERFACE_MODE_RGMII_ID:
1212 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1213 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1214 		break;
1215 	case PHY_INTERFACE_MODE_RGMII_RXID:
1216 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1217 		txcdll_val = type->disable_dll_tx_bit;
1218 		break;
1219 	case PHY_INTERFACE_MODE_RGMII_TXID:
1220 		rxcdll_val = type->disable_dll_rx_bit;
1221 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1222 		break;
1223 	default:
1224 		return 0;
1225 	}
1226 
1227 	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1228 			     KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1229 			     rxcdll_val);
1230 	if (ret < 0)
1231 		return ret;
1232 
1233 	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1234 			      KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1235 			      txcdll_val);
1236 }
1237 
1238 /* Silicon Errata DS80000693B
1239  *
1240  * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1241  * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1242  * according to the datasheet (off if there is no link).
1243  */
1244 static int ksz9131_led_errata(struct phy_device *phydev)
1245 {
1246 	int reg;
1247 
1248 	reg = phy_read_mmd(phydev, 2, 0);
1249 	if (reg < 0)
1250 		return reg;
1251 
1252 	if (!(reg & BIT(4)))
1253 		return 0;
1254 
1255 	return phy_set_bits(phydev, 0x1e, BIT(9));
1256 }
1257 
1258 static int ksz9131_config_init(struct phy_device *phydev)
1259 {
1260 	struct device_node *of_node;
1261 	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1262 	char *rx_data_skews[4] = {
1263 		"rxd0-skew-psec", "rxd1-skew-psec",
1264 		"rxd2-skew-psec", "rxd3-skew-psec"
1265 	};
1266 	char *tx_data_skews[4] = {
1267 		"txd0-skew-psec", "txd1-skew-psec",
1268 		"txd2-skew-psec", "txd3-skew-psec"
1269 	};
1270 	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1271 	const struct device *dev_walker;
1272 	int ret;
1273 
1274 	dev_walker = &phydev->mdio.dev;
1275 	do {
1276 		of_node = dev_walker->of_node;
1277 		dev_walker = dev_walker->parent;
1278 	} while (!of_node && dev_walker);
1279 
1280 	if (!of_node)
1281 		return 0;
1282 
1283 	if (phy_interface_is_rgmii(phydev)) {
1284 		ret = ksz9131_config_rgmii_delay(phydev);
1285 		if (ret < 0)
1286 			return ret;
1287 	}
1288 
1289 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1290 					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1291 					  clk_skews, 2);
1292 	if (ret < 0)
1293 		return ret;
1294 
1295 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1296 					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1297 					  control_skews, 2);
1298 	if (ret < 0)
1299 		return ret;
1300 
1301 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1302 					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1303 					  rx_data_skews, 4);
1304 	if (ret < 0)
1305 		return ret;
1306 
1307 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1308 					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1309 					  tx_data_skews, 4);
1310 	if (ret < 0)
1311 		return ret;
1312 
1313 	ret = ksz9131_led_errata(phydev);
1314 	if (ret < 0)
1315 		return ret;
1316 
1317 	return 0;
1318 }
1319 
1320 #define MII_KSZ9131_AUTO_MDIX		0x1C
1321 #define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1322 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1323 
1324 static int ksz9131_mdix_update(struct phy_device *phydev)
1325 {
1326 	int ret;
1327 
1328 	ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX);
1329 	if (ret < 0)
1330 		return ret;
1331 
1332 	if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) {
1333 		if (ret & MII_KSZ9131_AUTO_MDI_SET)
1334 			phydev->mdix_ctrl = ETH_TP_MDI;
1335 		else
1336 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1337 	} else {
1338 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1339 	}
1340 
1341 	if (ret & MII_KSZ9131_AUTO_MDI_SET)
1342 		phydev->mdix = ETH_TP_MDI;
1343 	else
1344 		phydev->mdix = ETH_TP_MDI_X;
1345 
1346 	return 0;
1347 }
1348 
1349 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1350 {
1351 	u16 val;
1352 
1353 	switch (ctrl) {
1354 	case ETH_TP_MDI:
1355 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1356 		      MII_KSZ9131_AUTO_MDI_SET;
1357 		break;
1358 	case ETH_TP_MDI_X:
1359 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1360 		break;
1361 	case ETH_TP_MDI_AUTO:
1362 		val = 0;
1363 		break;
1364 	default:
1365 		return 0;
1366 	}
1367 
1368 	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1369 			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1370 			  MII_KSZ9131_AUTO_MDI_SET, val);
1371 }
1372 
1373 static int ksz9131_read_status(struct phy_device *phydev)
1374 {
1375 	int ret;
1376 
1377 	ret = ksz9131_mdix_update(phydev);
1378 	if (ret < 0)
1379 		return ret;
1380 
1381 	return genphy_read_status(phydev);
1382 }
1383 
1384 static int ksz9131_config_aneg(struct phy_device *phydev)
1385 {
1386 	int ret;
1387 
1388 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1389 	if (ret)
1390 		return ret;
1391 
1392 	return genphy_config_aneg(phydev);
1393 }
1394 
1395 static int ksz9477_get_features(struct phy_device *phydev)
1396 {
1397 	int ret;
1398 
1399 	ret = genphy_read_abilities(phydev);
1400 	if (ret)
1401 		return ret;
1402 
1403 	/* The "EEE control and capability 1" (Register 3.20) seems to be
1404 	 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1405 	 * on the 7.60 will affect 3.20. So, we need to construct our own list
1406 	 * of caps.
1407 	 * KSZ8563R should have 100BaseTX/Full only.
1408 	 */
1409 	linkmode_and(phydev->supported_eee, phydev->supported,
1410 		     PHY_EEE_CAP1_FEATURES);
1411 
1412 	return 0;
1413 }
1414 
1415 #define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1416 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1417 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1418 static int ksz8873mll_read_status(struct phy_device *phydev)
1419 {
1420 	int regval;
1421 
1422 	/* dummy read */
1423 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1424 
1425 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1426 
1427 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1428 		phydev->duplex = DUPLEX_HALF;
1429 	else
1430 		phydev->duplex = DUPLEX_FULL;
1431 
1432 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1433 		phydev->speed = SPEED_10;
1434 	else
1435 		phydev->speed = SPEED_100;
1436 
1437 	phydev->link = 1;
1438 	phydev->pause = phydev->asym_pause = 0;
1439 
1440 	return 0;
1441 }
1442 
1443 static int ksz9031_get_features(struct phy_device *phydev)
1444 {
1445 	int ret;
1446 
1447 	ret = genphy_read_abilities(phydev);
1448 	if (ret < 0)
1449 		return ret;
1450 
1451 	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1452 	 * Whenever the device's Asymmetric Pause capability is set to 1,
1453 	 * link-up may fail after a link-up to link-down transition.
1454 	 *
1455 	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1456 	 *
1457 	 * Workaround:
1458 	 * Do not enable the Asymmetric Pause capability bit.
1459 	 */
1460 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1461 
1462 	/* We force setting the Pause capability as the core will force the
1463 	 * Asymmetric Pause capability to 1 otherwise.
1464 	 */
1465 	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1466 
1467 	return 0;
1468 }
1469 
1470 static int ksz9031_read_status(struct phy_device *phydev)
1471 {
1472 	int err;
1473 	int regval;
1474 
1475 	err = genphy_read_status(phydev);
1476 	if (err)
1477 		return err;
1478 
1479 	/* Make sure the PHY is not broken. Read idle error count,
1480 	 * and reset the PHY if it is maxed out.
1481 	 */
1482 	regval = phy_read(phydev, MII_STAT1000);
1483 	if ((regval & 0xFF) == 0xFF) {
1484 		phy_init_hw(phydev);
1485 		phydev->link = 0;
1486 		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1487 			phydev->drv->config_intr(phydev);
1488 		return genphy_config_aneg(phydev);
1489 	}
1490 
1491 	return 0;
1492 }
1493 
1494 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1495 {
1496 	struct kszphy_priv *priv = phydev->priv;
1497 	int ret;
1498 
1499 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1500 	 * Prior to running the cable diagnostics, Auto-negotiation should
1501 	 * be disabled, full duplex set and the link speed set to 1000Mbps
1502 	 * via the Basic Control Register.
1503 	 */
1504 	ret = phy_modify(phydev, MII_BMCR,
1505 			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1506 			 BMCR_ANENABLE | BMCR_SPEED100,
1507 			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1508 	if (ret)
1509 		return ret;
1510 
1511 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1512 	 * The Master-Slave configuration should be set to Slave by writing
1513 	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1514 	 * Register.
1515 	 */
1516 	ret = phy_read(phydev, MII_CTRL1000);
1517 	if (ret < 0)
1518 		return ret;
1519 
1520 	/* Cache these bits, they need to be restored once LinkMD finishes. */
1521 	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1522 	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1523 	ret |= CTL1000_ENABLE_MASTER;
1524 
1525 	return phy_write(phydev, MII_CTRL1000, ret);
1526 }
1527 
1528 static int ksz9x31_cable_test_result_trans(u16 status)
1529 {
1530 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1531 	case KSZ9x31_LMD_VCT_ST_NORMAL:
1532 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1533 	case KSZ9x31_LMD_VCT_ST_OPEN:
1534 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1535 	case KSZ9x31_LMD_VCT_ST_SHORT:
1536 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1537 	case KSZ9x31_LMD_VCT_ST_FAIL:
1538 		fallthrough;
1539 	default:
1540 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1541 	}
1542 }
1543 
1544 static bool ksz9x31_cable_test_failed(u16 status)
1545 {
1546 	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1547 
1548 	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1549 }
1550 
1551 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1552 {
1553 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1554 	case KSZ9x31_LMD_VCT_ST_OPEN:
1555 		fallthrough;
1556 	case KSZ9x31_LMD_VCT_ST_SHORT:
1557 		return true;
1558 	}
1559 	return false;
1560 }
1561 
1562 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1563 {
1564 	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1565 
1566 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1567 	 *
1568 	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1569 	 */
1570 	if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_KSZ9131)
1571 		dt = clamp(dt - 22, 0, 255);
1572 
1573 	return (dt * 400) / 10;
1574 }
1575 
1576 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1577 {
1578 	int val, ret;
1579 
1580 	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1581 				    !(val & KSZ9x31_LMD_VCT_EN),
1582 				    30000, 100000, true);
1583 
1584 	return ret < 0 ? ret : 0;
1585 }
1586 
1587 static int ksz9x31_cable_test_get_pair(int pair)
1588 {
1589 	static const int ethtool_pair[] = {
1590 		ETHTOOL_A_CABLE_PAIR_A,
1591 		ETHTOOL_A_CABLE_PAIR_B,
1592 		ETHTOOL_A_CABLE_PAIR_C,
1593 		ETHTOOL_A_CABLE_PAIR_D,
1594 	};
1595 
1596 	return ethtool_pair[pair];
1597 }
1598 
1599 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1600 {
1601 	int ret, val;
1602 
1603 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1604 	 * To test each individual cable pair, set the cable pair in the Cable
1605 	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1606 	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1607 	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1608 	 * will self clear when the test is concluded.
1609 	 */
1610 	ret = phy_write(phydev, KSZ9x31_LMD,
1611 			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1612 	if (ret)
1613 		return ret;
1614 
1615 	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1616 	if (ret)
1617 		return ret;
1618 
1619 	val = phy_read(phydev, KSZ9x31_LMD);
1620 	if (val < 0)
1621 		return val;
1622 
1623 	if (ksz9x31_cable_test_failed(val))
1624 		return -EAGAIN;
1625 
1626 	ret = ethnl_cable_test_result(phydev,
1627 				      ksz9x31_cable_test_get_pair(pair),
1628 				      ksz9x31_cable_test_result_trans(val));
1629 	if (ret)
1630 		return ret;
1631 
1632 	if (!ksz9x31_cable_test_fault_length_valid(val))
1633 		return 0;
1634 
1635 	return ethnl_cable_test_fault_length(phydev,
1636 					     ksz9x31_cable_test_get_pair(pair),
1637 					     ksz9x31_cable_test_fault_length(phydev, val));
1638 }
1639 
1640 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1641 					 bool *finished)
1642 {
1643 	struct kszphy_priv *priv = phydev->priv;
1644 	unsigned long pair_mask = 0xf;
1645 	int retries = 20;
1646 	int pair, ret, rv;
1647 
1648 	*finished = false;
1649 
1650 	/* Try harder if link partner is active */
1651 	while (pair_mask && retries--) {
1652 		for_each_set_bit(pair, &pair_mask, 4) {
1653 			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1654 			if (ret == -EAGAIN)
1655 				continue;
1656 			if (ret < 0)
1657 				return ret;
1658 			clear_bit(pair, &pair_mask);
1659 		}
1660 		/* If link partner is in autonegotiation mode it will send 2ms
1661 		 * of FLPs with at least 6ms of silence.
1662 		 * Add 2ms sleep to have better chances to hit this silence.
1663 		 */
1664 		if (pair_mask)
1665 			usleep_range(2000, 3000);
1666 	}
1667 
1668 	/* Report remaining unfinished pair result as unknown. */
1669 	for_each_set_bit(pair, &pair_mask, 4) {
1670 		ret = ethnl_cable_test_result(phydev,
1671 					      ksz9x31_cable_test_get_pair(pair),
1672 					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1673 	}
1674 
1675 	*finished = true;
1676 
1677 	/* Restore cached bits from before LinkMD got started. */
1678 	rv = phy_modify(phydev, MII_CTRL1000,
1679 			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1680 			priv->vct_ctrl1000);
1681 	if (rv)
1682 		return rv;
1683 
1684 	return ret;
1685 }
1686 
1687 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1688 {
1689 	return 0;
1690 }
1691 
1692 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1693 {
1694 	u16 val;
1695 
1696 	switch (ctrl) {
1697 	case ETH_TP_MDI:
1698 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1699 		break;
1700 	case ETH_TP_MDI_X:
1701 		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1702 		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1703 		 * sheet seems to be missing:
1704 		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1705 		 * 0 = Normal operation (transmit on TX+/TX- pins)
1706 		 */
1707 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1708 		break;
1709 	case ETH_TP_MDI_AUTO:
1710 		val = 0;
1711 		break;
1712 	default:
1713 		return 0;
1714 	}
1715 
1716 	return phy_modify(phydev, MII_BMCR,
1717 			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1718 			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1719 			  KSZ886X_BMCR_HP_MDIX | val);
1720 }
1721 
1722 static int ksz886x_config_aneg(struct phy_device *phydev)
1723 {
1724 	int ret;
1725 
1726 	ret = genphy_config_aneg(phydev);
1727 	if (ret)
1728 		return ret;
1729 
1730 	/* The MDI-X configuration is automatically changed by the PHY after
1731 	 * switching from autoneg off to on. So, take MDI-X configuration under
1732 	 * own control and set it after autoneg configuration was done.
1733 	 */
1734 	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1735 }
1736 
1737 static int ksz886x_mdix_update(struct phy_device *phydev)
1738 {
1739 	int ret;
1740 
1741 	ret = phy_read(phydev, MII_BMCR);
1742 	if (ret < 0)
1743 		return ret;
1744 
1745 	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1746 		if (ret & KSZ886X_BMCR_FORCE_MDI)
1747 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1748 		else
1749 			phydev->mdix_ctrl = ETH_TP_MDI;
1750 	} else {
1751 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1752 	}
1753 
1754 	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1755 	if (ret < 0)
1756 		return ret;
1757 
1758 	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1759 	if (ret & KSZ886X_CTRL_MDIX_STAT)
1760 		phydev->mdix = ETH_TP_MDI_X;
1761 	else
1762 		phydev->mdix = ETH_TP_MDI;
1763 
1764 	return 0;
1765 }
1766 
1767 static int ksz886x_read_status(struct phy_device *phydev)
1768 {
1769 	int ret;
1770 
1771 	ret = ksz886x_mdix_update(phydev);
1772 	if (ret < 0)
1773 		return ret;
1774 
1775 	return genphy_read_status(phydev);
1776 }
1777 
1778 static int kszphy_get_sset_count(struct phy_device *phydev)
1779 {
1780 	return ARRAY_SIZE(kszphy_hw_stats);
1781 }
1782 
1783 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
1784 {
1785 	int i;
1786 
1787 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
1788 		strscpy(data + i * ETH_GSTRING_LEN,
1789 			kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
1790 	}
1791 }
1792 
1793 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
1794 {
1795 	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
1796 	struct kszphy_priv *priv = phydev->priv;
1797 	int val;
1798 	u64 ret;
1799 
1800 	val = phy_read(phydev, stat.reg);
1801 	if (val < 0) {
1802 		ret = U64_MAX;
1803 	} else {
1804 		val = val & ((1 << stat.bits) - 1);
1805 		priv->stats[i] += val;
1806 		ret = priv->stats[i];
1807 	}
1808 
1809 	return ret;
1810 }
1811 
1812 static void kszphy_get_stats(struct phy_device *phydev,
1813 			     struct ethtool_stats *stats, u64 *data)
1814 {
1815 	int i;
1816 
1817 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
1818 		data[i] = kszphy_get_stat(phydev, i);
1819 }
1820 
1821 static int kszphy_suspend(struct phy_device *phydev)
1822 {
1823 	/* Disable PHY Interrupts */
1824 	if (phy_interrupt_is_valid(phydev)) {
1825 		phydev->interrupts = PHY_INTERRUPT_DISABLED;
1826 		if (phydev->drv->config_intr)
1827 			phydev->drv->config_intr(phydev);
1828 	}
1829 
1830 	return genphy_suspend(phydev);
1831 }
1832 
1833 static void kszphy_parse_led_mode(struct phy_device *phydev)
1834 {
1835 	const struct kszphy_type *type = phydev->drv->driver_data;
1836 	const struct device_node *np = phydev->mdio.dev.of_node;
1837 	struct kszphy_priv *priv = phydev->priv;
1838 	int ret;
1839 
1840 	if (type && type->led_mode_reg) {
1841 		ret = of_property_read_u32(np, "micrel,led-mode",
1842 					   &priv->led_mode);
1843 
1844 		if (ret)
1845 			priv->led_mode = -1;
1846 
1847 		if (priv->led_mode > 3) {
1848 			phydev_err(phydev, "invalid led mode: 0x%02x\n",
1849 				   priv->led_mode);
1850 			priv->led_mode = -1;
1851 		}
1852 	} else {
1853 		priv->led_mode = -1;
1854 	}
1855 }
1856 
1857 static int kszphy_resume(struct phy_device *phydev)
1858 {
1859 	int ret;
1860 
1861 	genphy_resume(phydev);
1862 
1863 	/* After switching from power-down to normal mode, an internal global
1864 	 * reset is automatically generated. Wait a minimum of 1 ms before
1865 	 * read/write access to the PHY registers.
1866 	 */
1867 	usleep_range(1000, 2000);
1868 
1869 	ret = kszphy_config_reset(phydev);
1870 	if (ret)
1871 		return ret;
1872 
1873 	/* Enable PHY Interrupts */
1874 	if (phy_interrupt_is_valid(phydev)) {
1875 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
1876 		if (phydev->drv->config_intr)
1877 			phydev->drv->config_intr(phydev);
1878 	}
1879 
1880 	return 0;
1881 }
1882 
1883 static int kszphy_probe(struct phy_device *phydev)
1884 {
1885 	const struct kszphy_type *type = phydev->drv->driver_data;
1886 	const struct device_node *np = phydev->mdio.dev.of_node;
1887 	struct kszphy_priv *priv;
1888 	struct clk *clk;
1889 
1890 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
1891 	if (!priv)
1892 		return -ENOMEM;
1893 
1894 	phydev->priv = priv;
1895 
1896 	priv->type = type;
1897 
1898 	kszphy_parse_led_mode(phydev);
1899 
1900 	clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref");
1901 	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
1902 	if (!IS_ERR_OR_NULL(clk)) {
1903 		unsigned long rate = clk_get_rate(clk);
1904 		bool rmii_ref_clk_sel_25_mhz;
1905 
1906 		if (type)
1907 			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
1908 		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
1909 				"micrel,rmii-reference-clock-select-25-mhz");
1910 
1911 		if (rate > 24500000 && rate < 25500000) {
1912 			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
1913 		} else if (rate > 49500000 && rate < 50500000) {
1914 			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
1915 		} else {
1916 			phydev_err(phydev, "Clock rate out of range: %ld\n",
1917 				   rate);
1918 			return -EINVAL;
1919 		}
1920 	}
1921 
1922 	if (ksz8041_fiber_mode(phydev))
1923 		phydev->port = PORT_FIBRE;
1924 
1925 	/* Support legacy board-file configuration */
1926 	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
1927 		priv->rmii_ref_clk_sel = true;
1928 		priv->rmii_ref_clk_sel_val = true;
1929 	}
1930 
1931 	return 0;
1932 }
1933 
1934 static int lan8814_cable_test_start(struct phy_device *phydev)
1935 {
1936 	/* If autoneg is enabled, we won't be able to test cross pair
1937 	 * short. In this case, the PHY will "detect" a link and
1938 	 * confuse the internal state machine - disable auto neg here.
1939 	 * Set the speed to 1000mbit and full duplex.
1940 	 */
1941 	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
1942 			  BMCR_SPEED1000 | BMCR_FULLDPLX);
1943 }
1944 
1945 static int ksz886x_cable_test_start(struct phy_device *phydev)
1946 {
1947 	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
1948 		return -EOPNOTSUPP;
1949 
1950 	/* If autoneg is enabled, we won't be able to test cross pair
1951 	 * short. In this case, the PHY will "detect" a link and
1952 	 * confuse the internal state machine - disable auto neg here.
1953 	 * If autoneg is disabled, we should set the speed to 10mbit.
1954 	 */
1955 	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
1956 }
1957 
1958 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
1959 {
1960 	switch (FIELD_GET(mask, status)) {
1961 	case KSZ8081_LMD_STAT_NORMAL:
1962 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1963 	case KSZ8081_LMD_STAT_SHORT:
1964 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1965 	case KSZ8081_LMD_STAT_OPEN:
1966 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1967 	case KSZ8081_LMD_STAT_FAIL:
1968 		fallthrough;
1969 	default:
1970 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1971 	}
1972 }
1973 
1974 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
1975 {
1976 	return FIELD_GET(mask, status) ==
1977 		KSZ8081_LMD_STAT_FAIL;
1978 }
1979 
1980 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
1981 {
1982 	switch (FIELD_GET(mask, status)) {
1983 	case KSZ8081_LMD_STAT_OPEN:
1984 		fallthrough;
1985 	case KSZ8081_LMD_STAT_SHORT:
1986 		return true;
1987 	}
1988 	return false;
1989 }
1990 
1991 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
1992 							   u16 status, u16 data_mask)
1993 {
1994 	int dt;
1995 
1996 	/* According to the data sheet the distance to the fault is
1997 	 * DELTA_TIME * 0.4 meters for ksz phys.
1998 	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
1999 	 */
2000 	dt = FIELD_GET(data_mask, status);
2001 
2002 	if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_LAN8814)
2003 		return ((dt - 22) * 800) / 10;
2004 	else
2005 		return (dt * 400) / 10;
2006 }
2007 
2008 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2009 {
2010 	const struct kszphy_type *type = phydev->drv->driver_data;
2011 	int val, ret;
2012 
2013 	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2014 				    !(val & KSZ8081_LMD_ENABLE_TEST),
2015 				    30000, 100000, true);
2016 
2017 	return ret < 0 ? ret : 0;
2018 }
2019 
2020 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2021 {
2022 	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2023 					    ETHTOOL_A_CABLE_PAIR_B,
2024 					    ETHTOOL_A_CABLE_PAIR_C,
2025 					    ETHTOOL_A_CABLE_PAIR_D,
2026 					  };
2027 	u32 fault_length;
2028 	int ret;
2029 	int val;
2030 
2031 	val = KSZ8081_LMD_ENABLE_TEST;
2032 	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2033 
2034 	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2035 	if (ret < 0)
2036 		return ret;
2037 
2038 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2039 	if (ret)
2040 		return ret;
2041 
2042 	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2043 	if (val < 0)
2044 		return val;
2045 
2046 	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2047 		return -EAGAIN;
2048 
2049 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2050 				      ksz886x_cable_test_result_trans(val,
2051 								      LAN8814_CABLE_DIAG_STAT_MASK
2052 								      ));
2053 	if (ret)
2054 		return ret;
2055 
2056 	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2057 		return 0;
2058 
2059 	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2060 						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2061 
2062 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2063 }
2064 
2065 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2066 {
2067 	static const int ethtool_pair[] = {
2068 		ETHTOOL_A_CABLE_PAIR_A,
2069 		ETHTOOL_A_CABLE_PAIR_B,
2070 	};
2071 	int ret, val, mdix;
2072 	u32 fault_length;
2073 
2074 	/* There is no way to choice the pair, like we do one ksz9031.
2075 	 * We can workaround this limitation by using the MDI-X functionality.
2076 	 */
2077 	if (pair == 0)
2078 		mdix = ETH_TP_MDI;
2079 	else
2080 		mdix = ETH_TP_MDI_X;
2081 
2082 	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2083 	case PHY_ID_KSZ8081:
2084 		ret = ksz8081_config_mdix(phydev, mdix);
2085 		break;
2086 	case PHY_ID_KSZ886X:
2087 		ret = ksz886x_config_mdix(phydev, mdix);
2088 		break;
2089 	default:
2090 		ret = -ENODEV;
2091 	}
2092 
2093 	if (ret)
2094 		return ret;
2095 
2096 	/* Now we are ready to fire. This command will send a 100ns pulse
2097 	 * to the pair.
2098 	 */
2099 	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2100 	if (ret)
2101 		return ret;
2102 
2103 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2104 	if (ret)
2105 		return ret;
2106 
2107 	val = phy_read(phydev, KSZ8081_LMD);
2108 	if (val < 0)
2109 		return val;
2110 
2111 	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2112 		return -EAGAIN;
2113 
2114 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2115 				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2116 	if (ret)
2117 		return ret;
2118 
2119 	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2120 		return 0;
2121 
2122 	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2123 
2124 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2125 }
2126 
2127 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2128 					 bool *finished)
2129 {
2130 	const struct kszphy_type *type = phydev->drv->driver_data;
2131 	unsigned long pair_mask = type->pair_mask;
2132 	int retries = 20;
2133 	int ret = 0;
2134 	int pair;
2135 
2136 	*finished = false;
2137 
2138 	/* Try harder if link partner is active */
2139 	while (pair_mask && retries--) {
2140 		for_each_set_bit(pair, &pair_mask, 4) {
2141 			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2142 				ret = lan8814_cable_test_one_pair(phydev, pair);
2143 			else
2144 				ret = ksz886x_cable_test_one_pair(phydev, pair);
2145 			if (ret == -EAGAIN)
2146 				continue;
2147 			if (ret < 0)
2148 				return ret;
2149 			clear_bit(pair, &pair_mask);
2150 		}
2151 		/* If link partner is in autonegotiation mode it will send 2ms
2152 		 * of FLPs with at least 6ms of silence.
2153 		 * Add 2ms sleep to have better chances to hit this silence.
2154 		 */
2155 		if (pair_mask)
2156 			msleep(2);
2157 	}
2158 
2159 	*finished = true;
2160 
2161 	return ret;
2162 }
2163 
2164 #define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2165 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2166 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2167 
2168 #define LAN8814_QSGMII_SOFT_RESET			0x43
2169 #define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2170 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2171 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2172 #define LAN8814_ALIGN_SWAP				0x4a
2173 #define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2174 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2175 
2176 #define LAN8804_ALIGN_SWAP				0x4a
2177 #define LAN8804_ALIGN_TX_A_B_SWAP			0x1
2178 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2179 #define LAN8814_CLOCK_MANAGEMENT			0xd
2180 #define LAN8814_LINK_QUALITY				0x8e
2181 
2182 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2183 {
2184 	int data;
2185 
2186 	phy_lock_mdio_bus(phydev);
2187 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2188 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2189 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2190 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2191 	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2192 	phy_unlock_mdio_bus(phydev);
2193 
2194 	return data;
2195 }
2196 
2197 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2198 				 u16 val)
2199 {
2200 	phy_lock_mdio_bus(phydev);
2201 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2202 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2203 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2204 		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2205 
2206 	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2207 	if (val != 0)
2208 		phydev_err(phydev, "Error: phy_write has returned error %d\n",
2209 			   val);
2210 	phy_unlock_mdio_bus(phydev);
2211 	return val;
2212 }
2213 
2214 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2215 {
2216 	u16 val = 0;
2217 
2218 	if (enable)
2219 		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2220 		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2221 		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2222 		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2223 
2224 	return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2225 }
2226 
2227 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2228 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2229 {
2230 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2231 	*seconds = (*seconds << 16) |
2232 		   lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2233 
2234 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2235 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2236 			lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2237 
2238 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2239 }
2240 
2241 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2242 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2243 {
2244 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2245 	*seconds = *seconds << 16 |
2246 		   lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2247 
2248 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2249 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2250 			lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2251 
2252 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2253 }
2254 
2255 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
2256 {
2257 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2258 	struct phy_device *phydev = ptp_priv->phydev;
2259 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2260 
2261 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2262 				SOF_TIMESTAMPING_RX_HARDWARE |
2263 				SOF_TIMESTAMPING_RAW_HARDWARE;
2264 
2265 	info->phc_index = ptp_clock_index(shared->ptp_clock);
2266 
2267 	info->tx_types =
2268 		(1 << HWTSTAMP_TX_OFF) |
2269 		(1 << HWTSTAMP_TX_ON) |
2270 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
2271 
2272 	info->rx_filters =
2273 		(1 << HWTSTAMP_FILTER_NONE) |
2274 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2275 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2276 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2277 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2278 
2279 	return 0;
2280 }
2281 
2282 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2283 {
2284 	int i;
2285 
2286 	for (i = 0; i < FIFO_SIZE; ++i)
2287 		lanphy_read_page_reg(phydev, 5,
2288 				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2289 
2290 	/* Read to clear overflow status bit */
2291 	lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2292 }
2293 
2294 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
2295 {
2296 	struct kszphy_ptp_priv *ptp_priv =
2297 			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2298 	struct phy_device *phydev = ptp_priv->phydev;
2299 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2300 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2301 	struct hwtstamp_config config;
2302 	int txcfg = 0, rxcfg = 0;
2303 	int pkt_ts_enable;
2304 
2305 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2306 		return -EFAULT;
2307 
2308 	ptp_priv->hwts_tx_type = config.tx_type;
2309 	ptp_priv->rx_filter = config.rx_filter;
2310 
2311 	switch (config.rx_filter) {
2312 	case HWTSTAMP_FILTER_NONE:
2313 		ptp_priv->layer = 0;
2314 		ptp_priv->version = 0;
2315 		break;
2316 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2317 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2318 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2319 		ptp_priv->layer = PTP_CLASS_L4;
2320 		ptp_priv->version = PTP_CLASS_V2;
2321 		break;
2322 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2323 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2324 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2325 		ptp_priv->layer = PTP_CLASS_L2;
2326 		ptp_priv->version = PTP_CLASS_V2;
2327 		break;
2328 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2329 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2330 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2331 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2332 		ptp_priv->version = PTP_CLASS_V2;
2333 		break;
2334 	default:
2335 		return -ERANGE;
2336 	}
2337 
2338 	if (ptp_priv->layer & PTP_CLASS_L2) {
2339 		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2340 		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2341 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
2342 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2343 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2344 	}
2345 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2346 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2347 
2348 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2349 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2350 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2351 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2352 
2353 	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC)
2354 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2355 				      PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2356 
2357 	if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2358 		lan8814_config_ts_intr(ptp_priv->phydev, true);
2359 	else
2360 		lan8814_config_ts_intr(ptp_priv->phydev, false);
2361 
2362 	mutex_lock(&shared->shared_lock);
2363 	if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2364 		shared->ref++;
2365 	else
2366 		shared->ref--;
2367 
2368 	if (shared->ref)
2369 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2370 				      PTP_CMD_CTL_PTP_ENABLE_);
2371 	else
2372 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2373 				      PTP_CMD_CTL_PTP_DISABLE_);
2374 	mutex_unlock(&shared->shared_lock);
2375 
2376 	/* In case of multiple starts and stops, these needs to be cleared */
2377 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2378 		list_del(&rx_ts->list);
2379 		kfree(rx_ts);
2380 	}
2381 	skb_queue_purge(&ptp_priv->rx_queue);
2382 	skb_queue_purge(&ptp_priv->tx_queue);
2383 
2384 	lan8814_flush_fifo(ptp_priv->phydev, false);
2385 	lan8814_flush_fifo(ptp_priv->phydev, true);
2386 
2387 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
2388 }
2389 
2390 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2391 			     struct sk_buff *skb, int type)
2392 {
2393 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2394 
2395 	switch (ptp_priv->hwts_tx_type) {
2396 	case HWTSTAMP_TX_ONESTEP_SYNC:
2397 		if (ptp_msg_is_sync(skb, type)) {
2398 			kfree_skb(skb);
2399 			return;
2400 		}
2401 		fallthrough;
2402 	case HWTSTAMP_TX_ON:
2403 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2404 		skb_queue_tail(&ptp_priv->tx_queue, skb);
2405 		break;
2406 	case HWTSTAMP_TX_OFF:
2407 	default:
2408 		kfree_skb(skb);
2409 		break;
2410 	}
2411 }
2412 
2413 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2414 {
2415 	struct ptp_header *ptp_header;
2416 	u32 type;
2417 
2418 	skb_push(skb, ETH_HLEN);
2419 	type = ptp_classify_raw(skb);
2420 	ptp_header = ptp_parse_header(skb, type);
2421 	skb_pull_inline(skb, ETH_HLEN);
2422 
2423 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2424 }
2425 
2426 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
2427 				 struct sk_buff *skb)
2428 {
2429 	struct skb_shared_hwtstamps *shhwtstamps;
2430 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2431 	unsigned long flags;
2432 	bool ret = false;
2433 	u16 skb_sig;
2434 
2435 	lan8814_get_sig_rx(skb, &skb_sig);
2436 
2437 	/* Iterate over all RX timestamps and match it with the received skbs */
2438 	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2439 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2440 		/* Check if we found the signature we were looking for. */
2441 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2442 			continue;
2443 
2444 		shhwtstamps = skb_hwtstamps(skb);
2445 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2446 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2447 						  rx_ts->nsec);
2448 		list_del(&rx_ts->list);
2449 		kfree(rx_ts);
2450 
2451 		ret = true;
2452 		break;
2453 	}
2454 	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2455 
2456 	if (ret)
2457 		netif_rx(skb);
2458 	return ret;
2459 }
2460 
2461 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2462 {
2463 	struct kszphy_ptp_priv *ptp_priv =
2464 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2465 
2466 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2467 	    type == PTP_CLASS_NONE)
2468 		return false;
2469 
2470 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2471 		return false;
2472 
2473 	/* If we failed to match then add it to the queue for when the timestamp
2474 	 * will come
2475 	 */
2476 	if (!lan8814_match_rx_skb(ptp_priv, skb))
2477 		skb_queue_tail(&ptp_priv->rx_queue, skb);
2478 
2479 	return true;
2480 }
2481 
2482 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2483 				  u32 seconds, u32 nano_seconds)
2484 {
2485 	u32 sec_low, sec_high, nsec_low, nsec_high;
2486 
2487 	sec_low = seconds & 0xffff;
2488 	sec_high = (seconds >> 16) & 0xffff;
2489 	nsec_low = nano_seconds & 0xffff;
2490 	nsec_high = (nano_seconds >> 16) & 0x3fff;
2491 
2492 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low);
2493 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high);
2494 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low);
2495 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high);
2496 
2497 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2498 }
2499 
2500 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2501 				  u32 *seconds, u32 *nano_seconds)
2502 {
2503 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2504 
2505 	*seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2506 	*seconds = (*seconds << 16) |
2507 		   lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2508 
2509 	*nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2510 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2511 			lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2512 }
2513 
2514 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2515 				   struct timespec64 *ts)
2516 {
2517 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2518 							  ptp_clock_info);
2519 	struct phy_device *phydev = shared->phydev;
2520 	u32 nano_seconds;
2521 	u32 seconds;
2522 
2523 	mutex_lock(&shared->shared_lock);
2524 	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2525 	mutex_unlock(&shared->shared_lock);
2526 	ts->tv_sec = seconds;
2527 	ts->tv_nsec = nano_seconds;
2528 
2529 	return 0;
2530 }
2531 
2532 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2533 				   const struct timespec64 *ts)
2534 {
2535 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2536 							  ptp_clock_info);
2537 	struct phy_device *phydev = shared->phydev;
2538 
2539 	mutex_lock(&shared->shared_lock);
2540 	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2541 	mutex_unlock(&shared->shared_lock);
2542 
2543 	return 0;
2544 }
2545 
2546 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2547 				   s64 time_step_ns)
2548 {
2549 	u32 nano_seconds_step;
2550 	u64 abs_time_step_ns;
2551 	u32 unsigned_seconds;
2552 	u32 nano_seconds;
2553 	u32 remainder;
2554 	s32 seconds;
2555 
2556 	if (time_step_ns >  15000000000LL) {
2557 		/* convert to clock set */
2558 		lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2559 		unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2560 						&remainder);
2561 		nano_seconds += remainder;
2562 		if (nano_seconds >= 1000000000) {
2563 			unsigned_seconds++;
2564 			nano_seconds -= 1000000000;
2565 		}
2566 		lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds);
2567 		return;
2568 	} else if (time_step_ns < -15000000000LL) {
2569 		/* convert to clock set */
2570 		time_step_ns = -time_step_ns;
2571 
2572 		lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2573 		unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2574 						&remainder);
2575 		nano_seconds_step = remainder;
2576 		if (nano_seconds < nano_seconds_step) {
2577 			unsigned_seconds--;
2578 			nano_seconds += 1000000000;
2579 		}
2580 		nano_seconds -= nano_seconds_step;
2581 		lan8814_ptp_clock_set(phydev, unsigned_seconds,
2582 				      nano_seconds);
2583 		return;
2584 	}
2585 
2586 	/* do clock step */
2587 	if (time_step_ns >= 0) {
2588 		abs_time_step_ns = (u64)time_step_ns;
2589 		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2590 					   &remainder);
2591 		nano_seconds = remainder;
2592 	} else {
2593 		abs_time_step_ns = (u64)(-time_step_ns);
2594 		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2595 			    &remainder));
2596 		nano_seconds = remainder;
2597 		if (nano_seconds > 0) {
2598 			/* subtracting nano seconds is not allowed
2599 			 * convert to subtracting from seconds,
2600 			 * and adding to nanoseconds
2601 			 */
2602 			seconds--;
2603 			nano_seconds = (1000000000 - nano_seconds);
2604 		}
2605 	}
2606 
2607 	if (nano_seconds > 0) {
2608 		/* add 8 ns to cover the likely normal increment */
2609 		nano_seconds += 8;
2610 	}
2611 
2612 	if (nano_seconds >= 1000000000) {
2613 		/* carry into seconds */
2614 		seconds++;
2615 		nano_seconds -= 1000000000;
2616 	}
2617 
2618 	while (seconds) {
2619 		if (seconds > 0) {
2620 			u32 adjustment_value = (u32)seconds;
2621 			u16 adjustment_value_lo, adjustment_value_hi;
2622 
2623 			if (adjustment_value > 0xF)
2624 				adjustment_value = 0xF;
2625 
2626 			adjustment_value_lo = adjustment_value & 0xffff;
2627 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2628 
2629 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2630 					      adjustment_value_lo);
2631 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2632 					      PTP_LTC_STEP_ADJ_DIR_ |
2633 					      adjustment_value_hi);
2634 			seconds -= ((s32)adjustment_value);
2635 		} else {
2636 			u32 adjustment_value = (u32)(-seconds);
2637 			u16 adjustment_value_lo, adjustment_value_hi;
2638 
2639 			if (adjustment_value > 0xF)
2640 				adjustment_value = 0xF;
2641 
2642 			adjustment_value_lo = adjustment_value & 0xffff;
2643 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2644 
2645 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2646 					      adjustment_value_lo);
2647 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2648 					      adjustment_value_hi);
2649 			seconds += ((s32)adjustment_value);
2650 		}
2651 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2652 				      PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2653 	}
2654 	if (nano_seconds) {
2655 		u16 nano_seconds_lo;
2656 		u16 nano_seconds_hi;
2657 
2658 		nano_seconds_lo = nano_seconds & 0xffff;
2659 		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2660 
2661 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2662 				      nano_seconds_lo);
2663 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2664 				      PTP_LTC_STEP_ADJ_DIR_ |
2665 				      nano_seconds_hi);
2666 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2667 				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2668 	}
2669 }
2670 
2671 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2672 {
2673 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2674 							  ptp_clock_info);
2675 	struct phy_device *phydev = shared->phydev;
2676 
2677 	mutex_lock(&shared->shared_lock);
2678 	lan8814_ptp_clock_step(phydev, delta);
2679 	mutex_unlock(&shared->shared_lock);
2680 
2681 	return 0;
2682 }
2683 
2684 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
2685 {
2686 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2687 							  ptp_clock_info);
2688 	struct phy_device *phydev = shared->phydev;
2689 	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
2690 	bool positive = true;
2691 	u32 kszphy_rate_adj;
2692 
2693 	if (scaled_ppm < 0) {
2694 		scaled_ppm = -scaled_ppm;
2695 		positive = false;
2696 	}
2697 
2698 	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
2699 	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
2700 
2701 	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
2702 	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
2703 
2704 	if (positive)
2705 		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
2706 
2707 	mutex_lock(&shared->shared_lock);
2708 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
2709 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
2710 	mutex_unlock(&shared->shared_lock);
2711 
2712 	return 0;
2713 }
2714 
2715 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
2716 {
2717 	struct ptp_header *ptp_header;
2718 	u32 type;
2719 
2720 	type = ptp_classify_raw(skb);
2721 	ptp_header = ptp_parse_header(skb, type);
2722 
2723 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2724 }
2725 
2726 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
2727 				 u32 seconds, u32 nsec, u16 seq_id)
2728 {
2729 	struct skb_shared_hwtstamps shhwtstamps;
2730 	struct sk_buff *skb, *skb_tmp;
2731 	unsigned long flags;
2732 	bool ret = false;
2733 	u16 skb_sig;
2734 
2735 	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
2736 	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
2737 		lan8814_get_sig_tx(skb, &skb_sig);
2738 
2739 		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
2740 			continue;
2741 
2742 		__skb_unlink(skb, &ptp_priv->tx_queue);
2743 		ret = true;
2744 		break;
2745 	}
2746 	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
2747 
2748 	if (ret) {
2749 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2750 		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
2751 		skb_complete_tx_timestamp(skb, &shhwtstamps);
2752 	}
2753 }
2754 
2755 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
2756 {
2757 	struct phy_device *phydev = ptp_priv->phydev;
2758 	u32 seconds, nsec;
2759 	u16 seq_id;
2760 
2761 	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
2762 	lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
2763 }
2764 
2765 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
2766 {
2767 	struct phy_device *phydev = ptp_priv->phydev;
2768 	u32 reg;
2769 
2770 	do {
2771 		lan8814_dequeue_tx_skb(ptp_priv);
2772 
2773 		/* If other timestamps are available in the FIFO,
2774 		 * process them.
2775 		 */
2776 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2777 	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
2778 }
2779 
2780 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
2781 			      struct lan8814_ptp_rx_ts *rx_ts)
2782 {
2783 	struct skb_shared_hwtstamps *shhwtstamps;
2784 	struct sk_buff *skb, *skb_tmp;
2785 	unsigned long flags;
2786 	bool ret = false;
2787 	u16 skb_sig;
2788 
2789 	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
2790 	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
2791 		lan8814_get_sig_rx(skb, &skb_sig);
2792 
2793 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2794 			continue;
2795 
2796 		__skb_unlink(skb, &ptp_priv->rx_queue);
2797 
2798 		ret = true;
2799 		break;
2800 	}
2801 	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
2802 
2803 	if (ret) {
2804 		shhwtstamps = skb_hwtstamps(skb);
2805 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2806 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
2807 		netif_rx(skb);
2808 	}
2809 
2810 	return ret;
2811 }
2812 
2813 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
2814 				struct lan8814_ptp_rx_ts *rx_ts)
2815 {
2816 	unsigned long flags;
2817 
2818 	/* If we failed to match the skb add it to the queue for when
2819 	 * the frame will come
2820 	 */
2821 	if (!lan8814_match_skb(ptp_priv, rx_ts)) {
2822 		spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2823 		list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
2824 		spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2825 	} else {
2826 		kfree(rx_ts);
2827 	}
2828 }
2829 
2830 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
2831 {
2832 	struct phy_device *phydev = ptp_priv->phydev;
2833 	struct lan8814_ptp_rx_ts *rx_ts;
2834 	u32 reg;
2835 
2836 	do {
2837 		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
2838 		if (!rx_ts)
2839 			return;
2840 
2841 		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
2842 				      &rx_ts->seq_id);
2843 		lan8814_match_rx_ts(ptp_priv, rx_ts);
2844 
2845 		/* If other timestamps are available in the FIFO,
2846 		 * process them.
2847 		 */
2848 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2849 	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
2850 }
2851 
2852 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
2853 {
2854 	struct kszphy_priv *priv = phydev->priv;
2855 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2856 
2857 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
2858 		lan8814_get_tx_ts(ptp_priv);
2859 
2860 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
2861 		lan8814_get_rx_ts(ptp_priv);
2862 
2863 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
2864 		lan8814_flush_fifo(phydev, true);
2865 		skb_queue_purge(&ptp_priv->tx_queue);
2866 	}
2867 
2868 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
2869 		lan8814_flush_fifo(phydev, false);
2870 		skb_queue_purge(&ptp_priv->rx_queue);
2871 	}
2872 }
2873 
2874 static int lan8804_config_init(struct phy_device *phydev)
2875 {
2876 	int val;
2877 
2878 	/* MDI-X setting for swap A,B transmit */
2879 	val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
2880 	val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
2881 	val |= LAN8804_ALIGN_TX_A_B_SWAP;
2882 	lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
2883 
2884 	/* Make sure that the PHY will not stop generating the clock when the
2885 	 * link partner goes down
2886 	 */
2887 	lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
2888 	lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
2889 
2890 	return 0;
2891 }
2892 
2893 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
2894 {
2895 	int status;
2896 
2897 	status = phy_read(phydev, LAN8814_INTS);
2898 	if (status < 0) {
2899 		phy_error(phydev);
2900 		return IRQ_NONE;
2901 	}
2902 
2903 	if (status > 0)
2904 		phy_trigger_machine(phydev);
2905 
2906 	return IRQ_HANDLED;
2907 }
2908 
2909 #define LAN8804_OUTPUT_CONTROL			25
2910 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
2911 #define LAN8804_CONTROL				31
2912 #define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
2913 
2914 static int lan8804_config_intr(struct phy_device *phydev)
2915 {
2916 	int err;
2917 
2918 	/* This is an internal PHY of lan966x and is not possible to change the
2919 	 * polarity on the GIC found in lan966x, therefore change the polarity
2920 	 * of the interrupt in the PHY from being active low instead of active
2921 	 * high.
2922 	 */
2923 	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
2924 
2925 	/* By default interrupt buffer is open-drain in which case the interrupt
2926 	 * can be active only low. Therefore change the interrupt buffer to be
2927 	 * push-pull to be able to change interrupt polarity
2928 	 */
2929 	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
2930 		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
2931 
2932 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
2933 		err = phy_read(phydev, LAN8814_INTS);
2934 		if (err < 0)
2935 			return err;
2936 
2937 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
2938 		if (err)
2939 			return err;
2940 	} else {
2941 		err = phy_write(phydev, LAN8814_INTC, 0);
2942 		if (err)
2943 			return err;
2944 
2945 		err = phy_read(phydev, LAN8814_INTS);
2946 		if (err < 0)
2947 			return err;
2948 	}
2949 
2950 	return 0;
2951 }
2952 
2953 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
2954 {
2955 	int ret = IRQ_NONE;
2956 	int irq_status;
2957 
2958 	irq_status = phy_read(phydev, LAN8814_INTS);
2959 	if (irq_status < 0) {
2960 		phy_error(phydev);
2961 		return IRQ_NONE;
2962 	}
2963 
2964 	if (irq_status & LAN8814_INT_LINK) {
2965 		phy_trigger_machine(phydev);
2966 		ret = IRQ_HANDLED;
2967 	}
2968 
2969 	while (true) {
2970 		irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2971 		if (!irq_status)
2972 			break;
2973 
2974 		lan8814_handle_ptp_interrupt(phydev, irq_status);
2975 		ret = IRQ_HANDLED;
2976 	}
2977 
2978 	return ret;
2979 }
2980 
2981 static int lan8814_ack_interrupt(struct phy_device *phydev)
2982 {
2983 	/* bit[12..0] int status, which is a read and clear register. */
2984 	int rc;
2985 
2986 	rc = phy_read(phydev, LAN8814_INTS);
2987 
2988 	return (rc < 0) ? rc : 0;
2989 }
2990 
2991 static int lan8814_config_intr(struct phy_device *phydev)
2992 {
2993 	int err;
2994 
2995 	lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
2996 			      LAN8814_INTR_CTRL_REG_POLARITY |
2997 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
2998 
2999 	/* enable / disable interrupts */
3000 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3001 		err = lan8814_ack_interrupt(phydev);
3002 		if (err)
3003 			return err;
3004 
3005 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3006 	} else {
3007 		err = phy_write(phydev, LAN8814_INTC, 0);
3008 		if (err)
3009 			return err;
3010 
3011 		err = lan8814_ack_interrupt(phydev);
3012 	}
3013 
3014 	return err;
3015 }
3016 
3017 static void lan8814_ptp_init(struct phy_device *phydev)
3018 {
3019 	struct kszphy_priv *priv = phydev->priv;
3020 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3021 	u32 temp;
3022 
3023 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3024 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3025 		return;
3026 
3027 	lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
3028 
3029 	temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
3030 	temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3031 	lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
3032 
3033 	temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
3034 	temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3035 	lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
3036 
3037 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3038 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3039 
3040 	/* Removing default registers configs related to L2 and IP */
3041 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3042 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3043 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3044 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3045 
3046 	skb_queue_head_init(&ptp_priv->tx_queue);
3047 	skb_queue_head_init(&ptp_priv->rx_queue);
3048 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3049 	spin_lock_init(&ptp_priv->rx_ts_lock);
3050 
3051 	ptp_priv->phydev = phydev;
3052 
3053 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3054 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3055 	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3056 	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
3057 
3058 	phydev->mii_ts = &ptp_priv->mii_ts;
3059 }
3060 
3061 static int lan8814_ptp_probe_once(struct phy_device *phydev)
3062 {
3063 	struct lan8814_shared_priv *shared = phydev->shared->priv;
3064 
3065 	/* Initialise shared lock for clock*/
3066 	mutex_init(&shared->shared_lock);
3067 
3068 	shared->ptp_clock_info.owner = THIS_MODULE;
3069 	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3070 	shared->ptp_clock_info.max_adj = 31249999;
3071 	shared->ptp_clock_info.n_alarm = 0;
3072 	shared->ptp_clock_info.n_ext_ts = 0;
3073 	shared->ptp_clock_info.n_pins = 0;
3074 	shared->ptp_clock_info.pps = 0;
3075 	shared->ptp_clock_info.pin_config = NULL;
3076 	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3077 	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3078 	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3079 	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3080 	shared->ptp_clock_info.getcrosststamp = NULL;
3081 
3082 	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3083 					       &phydev->mdio.dev);
3084 	if (IS_ERR(shared->ptp_clock)) {
3085 		phydev_err(phydev, "ptp_clock_register failed %lu\n",
3086 			   PTR_ERR(shared->ptp_clock));
3087 		return -EINVAL;
3088 	}
3089 
3090 	/* Check if PHC support is missing at the configuration level */
3091 	if (!shared->ptp_clock)
3092 		return 0;
3093 
3094 	phydev_dbg(phydev, "successfully registered ptp clock\n");
3095 
3096 	shared->phydev = phydev;
3097 
3098 	/* The EP.4 is shared between all the PHYs in the package and also it
3099 	 * can be accessed by any of the PHYs
3100 	 */
3101 	lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3102 	lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3103 			      PTP_OPERATING_MODE_STANDALONE_);
3104 
3105 	return 0;
3106 }
3107 
3108 static void lan8814_setup_led(struct phy_device *phydev, int val)
3109 {
3110 	int temp;
3111 
3112 	temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3113 
3114 	if (val)
3115 		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3116 	else
3117 		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3118 
3119 	lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3120 }
3121 
3122 static int lan8814_config_init(struct phy_device *phydev)
3123 {
3124 	struct kszphy_priv *lan8814 = phydev->priv;
3125 	int val;
3126 
3127 	/* Reset the PHY */
3128 	val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3129 	val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3130 	lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3131 
3132 	/* Disable ANEG with QSGMII PCS Host side */
3133 	val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3134 	val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3135 	lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3136 
3137 	/* MDI-X setting for swap A,B transmit */
3138 	val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3139 	val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3140 	val |= LAN8814_ALIGN_TX_A_B_SWAP;
3141 	lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3142 
3143 	if (lan8814->led_mode >= 0)
3144 		lan8814_setup_led(phydev, lan8814->led_mode);
3145 
3146 	return 0;
3147 }
3148 
3149 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3150  * function called in suspend. Because the GPIO line can be shared, so if one of
3151  * the phys goes back in coma mode, then all the other PHYs will go, which is
3152  * wrong.
3153  */
3154 static int lan8814_release_coma_mode(struct phy_device *phydev)
3155 {
3156 	struct gpio_desc *gpiod;
3157 
3158 	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3159 					GPIOD_OUT_HIGH_OPEN_DRAIN |
3160 					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
3161 	if (IS_ERR(gpiod))
3162 		return PTR_ERR(gpiod);
3163 
3164 	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
3165 	gpiod_set_value_cansleep(gpiod, 0);
3166 
3167 	return 0;
3168 }
3169 
3170 static int lan8814_probe(struct phy_device *phydev)
3171 {
3172 	const struct kszphy_type *type = phydev->drv->driver_data;
3173 	struct kszphy_priv *priv;
3174 	u16 addr;
3175 	int err;
3176 
3177 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
3178 	if (!priv)
3179 		return -ENOMEM;
3180 
3181 	phydev->priv = priv;
3182 
3183 	priv->type = type;
3184 
3185 	kszphy_parse_led_mode(phydev);
3186 
3187 	/* Strap-in value for PHY address, below register read gives starting
3188 	 * phy address value
3189 	 */
3190 	addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
3191 	devm_phy_package_join(&phydev->mdio.dev, phydev,
3192 			      addr, sizeof(struct lan8814_shared_priv));
3193 
3194 	if (phy_package_init_once(phydev)) {
3195 		err = lan8814_release_coma_mode(phydev);
3196 		if (err)
3197 			return err;
3198 
3199 		err = lan8814_ptp_probe_once(phydev);
3200 		if (err)
3201 			return err;
3202 	}
3203 
3204 	lan8814_ptp_init(phydev);
3205 
3206 	return 0;
3207 }
3208 
3209 #define LAN8841_MMD_TIMER_REG			0
3210 #define LAN8841_MMD0_REGISTER_17		17
3211 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x)	((x) & 0x3)
3212 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS	BIT(3)
3213 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG	2
3214 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK	BIT(14)
3215 #define LAN8841_MMD_ANALOG_REG			28
3216 #define LAN8841_ANALOG_CONTROL_1		1
3217 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x)	(((x) & 0x3) << 5)
3218 #define LAN8841_ANALOG_CONTROL_10		13
3219 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x)	((x) & 0x3)
3220 #define LAN8841_ANALOG_CONTROL_11		14
3221 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x)	(((x) & 0x7) << 12)
3222 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT	69
3223 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
3224 #define LAN8841_BTRX_POWER_DOWN			70
3225 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A	BIT(0)
3226 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A	BIT(1)
3227 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B	BIT(2)
3228 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B	BIT(3)
3229 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C	BIT(5)
3230 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D	BIT(7)
3231 #define LAN8841_ADC_CHANNEL_MASK		198
3232 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN		370
3233 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN		371
3234 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN		434
3235 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN		435
3236 #define LAN8841_PTP_CMD_CTL			256
3237 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE		BIT(2)
3238 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE		BIT(1)
3239 #define LAN8841_PTP_CMD_CTL_PTP_RESET		BIT(0)
3240 #define LAN8841_PTP_RX_PARSE_CONFIG		368
3241 #define LAN8841_PTP_TX_PARSE_CONFIG		432
3242 
3243 static int lan8841_config_init(struct phy_device *phydev)
3244 {
3245 	int ret;
3246 
3247 	ret = ksz9131_config_init(phydev);
3248 	if (ret)
3249 		return ret;
3250 
3251 	/* Initialize the HW by resetting everything */
3252 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3253 		       LAN8841_PTP_CMD_CTL,
3254 		       LAN8841_PTP_CMD_CTL_PTP_RESET,
3255 		       LAN8841_PTP_CMD_CTL_PTP_RESET);
3256 
3257 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3258 		       LAN8841_PTP_CMD_CTL,
3259 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE,
3260 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE);
3261 
3262 	/* Don't process any frames */
3263 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3264 		      LAN8841_PTP_RX_PARSE_CONFIG, 0);
3265 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3266 		      LAN8841_PTP_TX_PARSE_CONFIG, 0);
3267 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3268 		      LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
3269 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3270 		      LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
3271 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3272 		      LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
3273 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3274 		      LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
3275 
3276 	/* 100BT Clause 40 improvenent errata */
3277 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3278 		      LAN8841_ANALOG_CONTROL_1,
3279 		      LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
3280 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3281 		      LAN8841_ANALOG_CONTROL_10,
3282 		      LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
3283 
3284 	/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
3285 	 * Magnetics
3286 	 */
3287 	ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3288 			   LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
3289 	if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
3290 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3291 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
3292 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
3293 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3294 			      LAN8841_BTRX_POWER_DOWN,
3295 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
3296 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
3297 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
3298 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
3299 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
3300 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
3301 	}
3302 
3303 	/* LDO Adjustment errata */
3304 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3305 		      LAN8841_ANALOG_CONTROL_11,
3306 		      LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
3307 
3308 	/* 100BT RGMII latency tuning errata */
3309 	phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
3310 		      LAN8841_ADC_CHANNEL_MASK, 0x0);
3311 	phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
3312 		      LAN8841_MMD0_REGISTER_17,
3313 		      LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
3314 		      LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
3315 
3316 	return 0;
3317 }
3318 
3319 #define LAN8841_OUTPUT_CTRL			25
3320 #define LAN8841_OUTPUT_CTRL_INT_BUFFER		BIT(14)
3321 #define LAN8841_INT_PTP				BIT(9)
3322 
3323 static int lan8841_config_intr(struct phy_device *phydev)
3324 {
3325 	int err;
3326 
3327 	phy_modify(phydev, LAN8841_OUTPUT_CTRL,
3328 		   LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
3329 
3330 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3331 		err = phy_read(phydev, LAN8814_INTS);
3332 		if (err)
3333 			return err;
3334 
3335 		/* Enable / disable interrupts. It is OK to enable PTP interrupt
3336 		 * even if it PTP is not enabled. Because the underneath blocks
3337 		 * will not enable the PTP so we will never get the PTP
3338 		 * interrupt.
3339 		 */
3340 		err = phy_write(phydev, LAN8814_INTC,
3341 				LAN8814_INT_LINK | LAN8841_INT_PTP);
3342 	} else {
3343 		err = phy_write(phydev, LAN8814_INTC, 0);
3344 		if (err)
3345 			return err;
3346 
3347 		err = phy_read(phydev, LAN8814_INTS);
3348 	}
3349 
3350 	return err;
3351 }
3352 
3353 #define LAN8841_PTP_TX_EGRESS_SEC_LO			453
3354 #define LAN8841_PTP_TX_EGRESS_SEC_HI			452
3355 #define LAN8841_PTP_TX_EGRESS_NS_LO			451
3356 #define LAN8841_PTP_TX_EGRESS_NS_HI			450
3357 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID		BIT(15)
3358 #define LAN8841_PTP_TX_MSG_HEADER2			455
3359 
3360 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
3361 				  u32 *sec, u32 *nsec, u16 *seq)
3362 {
3363 	struct phy_device *phydev = ptp_priv->phydev;
3364 
3365 	*nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
3366 	if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
3367 		return false;
3368 
3369 	*nsec = ((*nsec & 0x3fff) << 16);
3370 	*nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
3371 
3372 	*sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
3373 	*sec = *sec << 16;
3374 	*sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
3375 
3376 	*seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3377 
3378 	return true;
3379 }
3380 
3381 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3382 {
3383 	u32 sec, nsec;
3384 	u16 seq;
3385 
3386 	while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
3387 		lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
3388 }
3389 
3390 #define LAN8841_PTP_RX_INGRESS_SEC_LO			389
3391 #define LAN8841_PTP_RX_INGRESS_SEC_HI			388
3392 #define LAN8841_PTP_RX_INGRESS_NS_LO			387
3393 #define LAN8841_PTP_RX_INGRESS_NS_HI			386
3394 #define LAN8841_PTP_RX_INGRESS_NSEC_HI_VALID		BIT(15)
3395 #define LAN8841_PTP_RX_MSG_HEADER2			391
3396 
3397 static struct lan8814_ptp_rx_ts *lan8841_ptp_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
3398 {
3399 	struct phy_device *phydev = ptp_priv->phydev;
3400 	struct lan8814_ptp_rx_ts *rx_ts;
3401 	u32 sec, nsec;
3402 	u16 seq;
3403 
3404 	nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_RX_INGRESS_NS_HI);
3405 	if (!(nsec & LAN8841_PTP_RX_INGRESS_NSEC_HI_VALID))
3406 		return NULL;
3407 
3408 	nsec = ((nsec & 0x3fff) << 16);
3409 	nsec = nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_RX_INGRESS_NS_LO);
3410 
3411 	sec = phy_read_mmd(phydev, 2, LAN8841_PTP_RX_INGRESS_SEC_HI);
3412 	sec = sec << 16;
3413 	sec = sec | phy_read_mmd(phydev, 2, LAN8841_PTP_RX_INGRESS_SEC_LO);
3414 
3415 	seq = phy_read_mmd(phydev, 2, LAN8841_PTP_RX_MSG_HEADER2);
3416 
3417 	rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
3418 	if (!rx_ts)
3419 		return NULL;
3420 
3421 	rx_ts->seconds = sec;
3422 	rx_ts->nsec = nsec;
3423 	rx_ts->seq_id = seq;
3424 
3425 	return rx_ts;
3426 }
3427 
3428 static void lan8841_ptp_process_rx_ts(struct kszphy_ptp_priv *ptp_priv)
3429 {
3430 	struct lan8814_ptp_rx_ts *rx_ts;
3431 
3432 	while ((rx_ts = lan8841_ptp_get_rx_ts(ptp_priv)) != NULL)
3433 		lan8814_match_rx_ts(ptp_priv, rx_ts);
3434 }
3435 
3436 #define LAN8841_PTP_INT_STS			259
3437 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT	BIT(13)
3438 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT	BIT(12)
3439 #define LAN8841_PTP_INT_STS_PTP_RX_TS_OVRFL_INT	BIT(9)
3440 #define LAN8841_PTP_INT_STS_PTP_RX_TS_INT	BIT(8)
3441 
3442 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv, bool egress)
3443 {
3444 	struct phy_device *phydev = ptp_priv->phydev;
3445 	int i;
3446 
3447 	for (i = 0; i < FIFO_SIZE; ++i)
3448 		phy_read_mmd(phydev, 2,
3449 			     egress ? LAN8841_PTP_TX_MSG_HEADER2 :
3450 				      LAN8841_PTP_RX_MSG_HEADER2);
3451 
3452 	phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3453 }
3454 
3455 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
3456 {
3457 	struct kszphy_priv *priv = phydev->priv;
3458 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3459 	u16 status;
3460 
3461 	do {
3462 		status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3463 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
3464 			lan8841_ptp_process_tx_ts(ptp_priv);
3465 
3466 		if (status & LAN8841_PTP_INT_STS_PTP_RX_TS_INT)
3467 			lan8841_ptp_process_rx_ts(ptp_priv);
3468 
3469 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
3470 			lan8841_ptp_flush_fifo(ptp_priv, true);
3471 			skb_queue_purge(&ptp_priv->tx_queue);
3472 		}
3473 
3474 		if (status & LAN8841_PTP_INT_STS_PTP_RX_TS_OVRFL_INT) {
3475 			lan8841_ptp_flush_fifo(ptp_priv, false);
3476 			skb_queue_purge(&ptp_priv->rx_queue);
3477 		}
3478 
3479 	} while (status);
3480 }
3481 
3482 #define LAN8841_INTS_PTP		BIT(9)
3483 
3484 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
3485 {
3486 	irqreturn_t ret = IRQ_NONE;
3487 	int irq_status;
3488 
3489 	irq_status = phy_read(phydev, LAN8814_INTS);
3490 	if (irq_status < 0) {
3491 		phy_error(phydev);
3492 		return IRQ_NONE;
3493 	}
3494 
3495 	if (irq_status & LAN8814_INT_LINK) {
3496 		phy_trigger_machine(phydev);
3497 		ret = IRQ_HANDLED;
3498 	}
3499 
3500 	if (irq_status & LAN8841_INTS_PTP) {
3501 		lan8841_handle_ptp_interrupt(phydev);
3502 		ret = IRQ_HANDLED;
3503 	}
3504 
3505 	return ret;
3506 }
3507 
3508 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
3509 			   struct ethtool_ts_info *info)
3510 {
3511 	struct kszphy_ptp_priv *ptp_priv;
3512 
3513 	ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3514 
3515 	info->phc_index = ptp_priv->ptp_clock ?
3516 				ptp_clock_index(ptp_priv->ptp_clock) : -1;
3517 	if (info->phc_index == -1) {
3518 		info->so_timestamping |= SOF_TIMESTAMPING_TX_SOFTWARE |
3519 					 SOF_TIMESTAMPING_RX_SOFTWARE |
3520 					 SOF_TIMESTAMPING_SOFTWARE;
3521 		return 0;
3522 	}
3523 
3524 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
3525 				SOF_TIMESTAMPING_RX_HARDWARE |
3526 				SOF_TIMESTAMPING_RAW_HARDWARE;
3527 
3528 	info->tx_types = (1 << HWTSTAMP_TX_OFF) |
3529 			 (1 << HWTSTAMP_TX_ON) |
3530 			 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
3531 
3532 	info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
3533 			   (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
3534 			   (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
3535 			   (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
3536 
3537 	return 0;
3538 }
3539 
3540 #define LAN8841_PTP_INT_EN			260
3541 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN	BIT(13)
3542 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN		BIT(12)
3543 #define LAN8841_PTP_INT_EN_PTP_RX_TS_OVRFL_EN	BIT(9)
3544 #define LAN8841_PTP_INT_EN_PTP_RX_TS_EN		BIT(8)
3545 
3546 static void lan8841_ptp_enable_int(struct kszphy_ptp_priv *ptp_priv,
3547 				   bool enable)
3548 {
3549 	struct phy_device *phydev = ptp_priv->phydev;
3550 
3551 	if (enable)
3552 		/* Enable interrupts */
3553 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3554 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3555 			       LAN8841_PTP_INT_EN_PTP_RX_TS_OVRFL_EN |
3556 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN |
3557 			       LAN8841_PTP_INT_EN_PTP_RX_TS_EN,
3558 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3559 			       LAN8841_PTP_INT_EN_PTP_RX_TS_OVRFL_EN |
3560 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN |
3561 			       LAN8841_PTP_INT_EN_PTP_RX_TS_EN);
3562 	else
3563 		/* Disable interrupts */
3564 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3565 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3566 			       LAN8841_PTP_INT_EN_PTP_RX_TS_OVRFL_EN |
3567 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN |
3568 			       LAN8841_PTP_INT_EN_PTP_RX_TS_EN, 0);
3569 }
3570 
3571 #define LAN8841_PTP_RX_TIMESTAMP_EN		379
3572 #define LAN8841_PTP_TX_TIMESTAMP_EN		443
3573 #define LAN8841_PTP_TX_MOD			445
3574 
3575 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
3576 {
3577 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3578 	struct phy_device *phydev = ptp_priv->phydev;
3579 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
3580 	struct hwtstamp_config config;
3581 	int txcfg = 0, rxcfg = 0;
3582 	int pkt_ts_enable;
3583 
3584 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
3585 		return -EFAULT;
3586 
3587 	ptp_priv->hwts_tx_type = config.tx_type;
3588 	ptp_priv->rx_filter = config.rx_filter;
3589 
3590 	switch (config.rx_filter) {
3591 	case HWTSTAMP_FILTER_NONE:
3592 		ptp_priv->layer = 0;
3593 		ptp_priv->version = 0;
3594 		break;
3595 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3596 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3597 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3598 		ptp_priv->layer = PTP_CLASS_L4;
3599 		ptp_priv->version = PTP_CLASS_V2;
3600 		break;
3601 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3602 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3603 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3604 		ptp_priv->layer = PTP_CLASS_L2;
3605 		ptp_priv->version = PTP_CLASS_V2;
3606 		break;
3607 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3608 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3609 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3610 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
3611 		ptp_priv->version = PTP_CLASS_V2;
3612 		break;
3613 	default:
3614 		return -ERANGE;
3615 	}
3616 
3617 	/* Setup parsing of the frames and enable the timestamping for ptp
3618 	 * frames
3619 	 */
3620 	if (ptp_priv->layer & PTP_CLASS_L2) {
3621 		rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
3622 		txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
3623 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
3624 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
3625 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
3626 	}
3627 
3628 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
3629 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
3630 
3631 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
3632 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
3633 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
3634 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
3635 
3636 	/* Enable / disable of the TX timestamp in the SYNC frames */
3637 	phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
3638 		       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3639 		       ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
3640 				PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
3641 
3642 	/* Now enable/disable the timestamping */
3643 	lan8841_ptp_enable_int(ptp_priv,
3644 			       config.rx_filter != HWTSTAMP_FILTER_NONE);
3645 
3646 	/* In case of multiple starts and stops, these needs to be cleared */
3647 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
3648 		list_del(&rx_ts->list);
3649 		kfree(rx_ts);
3650 	}
3651 
3652 	skb_queue_purge(&ptp_priv->rx_queue);
3653 	skb_queue_purge(&ptp_priv->tx_queue);
3654 
3655 	lan8841_ptp_flush_fifo(ptp_priv, false);
3656 	lan8841_ptp_flush_fifo(ptp_priv, true);
3657 
3658 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
3659 }
3660 
3661 #define LAN8841_PTP_LTC_SET_SEC_HI	262
3662 #define LAN8841_PTP_LTC_SET_SEC_MID	263
3663 #define LAN8841_PTP_LTC_SET_SEC_LO	264
3664 #define LAN8841_PTP_LTC_SET_NS_HI	265
3665 #define LAN8841_PTP_LTC_SET_NS_LO	266
3666 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD	BIT(4)
3667 
3668 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
3669 				 const struct timespec64 *ts)
3670 {
3671 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3672 							ptp_clock_info);
3673 	struct phy_device *phydev = ptp_priv->phydev;
3674 
3675 	/* Set the value to be stored */
3676 	mutex_lock(&ptp_priv->ptp_lock);
3677 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
3678 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
3679 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
3680 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
3681 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
3682 
3683 	/* Set the command to load the LTC */
3684 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3685 		      LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
3686 	mutex_unlock(&ptp_priv->ptp_lock);
3687 
3688 	return 0;
3689 }
3690 
3691 #define LAN8841_PTP_LTC_RD_SEC_HI	358
3692 #define LAN8841_PTP_LTC_RD_SEC_MID	359
3693 #define LAN8841_PTP_LTC_RD_SEC_LO	360
3694 #define LAN8841_PTP_LTC_RD_NS_HI	361
3695 #define LAN8841_PTP_LTC_RD_NS_LO	362
3696 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ	BIT(3)
3697 
3698 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
3699 				 struct timespec64 *ts)
3700 {
3701 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3702 							ptp_clock_info);
3703 	struct phy_device *phydev = ptp_priv->phydev;
3704 	time64_t s;
3705 	s64 ns;
3706 
3707 	mutex_lock(&ptp_priv->ptp_lock);
3708 	/* Issue the command to read the LTC */
3709 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3710 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
3711 
3712 	/* Read the LTC */
3713 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
3714 	s <<= 16;
3715 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
3716 	s <<= 16;
3717 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
3718 
3719 	ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
3720 	ns <<= 16;
3721 	ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
3722 	mutex_unlock(&ptp_priv->ptp_lock);
3723 
3724 	set_normalized_timespec64(ts, s, ns);
3725 	return 0;
3726 }
3727 
3728 #define LAN8841_PTP_LTC_STEP_ADJ_LO			276
3729 #define LAN8841_PTP_LTC_STEP_ADJ_HI			275
3730 #define LAN8841_PTP_LTC_STEP_ADJ_DIR			BIT(15)
3731 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS	BIT(5)
3732 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS	BIT(6)
3733 
3734 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
3735 {
3736 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3737 							ptp_clock_info);
3738 	struct phy_device *phydev = ptp_priv->phydev;
3739 	struct timespec64 ts;
3740 	bool add = true;
3741 	u32 nsec;
3742 	s32 sec;
3743 
3744 	/* The HW allows up to 15 sec to adjust the time, but here we limit to
3745 	 * 10 sec the adjustment. The reason is, in case the adjustment is 14
3746 	 * sec and 999999999 nsec, then we add 8ns to compansate the actual
3747 	 * increment so the value can be bigger than 15 sec. Therefore limit the
3748 	 * possible adjustments so we will not have these corner cases
3749 	 */
3750 	if (delta > 10000000000LL || delta < -10000000000LL) {
3751 		/* The timeadjustment is too big, so fall back using set time */
3752 		u64 now;
3753 
3754 		ptp->gettime64(ptp, &ts);
3755 
3756 		now = ktime_to_ns(timespec64_to_ktime(ts));
3757 		ts = ns_to_timespec64(now + delta);
3758 
3759 		ptp->settime64(ptp, &ts);
3760 		return 0;
3761 	}
3762 
3763 	sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
3764 	if (delta < 0 && nsec != 0) {
3765 		/* It is not allowed to adjust low the nsec part, therefore
3766 		 * subtract more from second part and add to nanosecond such
3767 		 * that would roll over, so the second part will increase
3768 		 */
3769 		sec--;
3770 		nsec = NSEC_PER_SEC - nsec;
3771 	}
3772 
3773 	/* Calculate the adjustments and the direction */
3774 	if (delta < 0)
3775 		add = false;
3776 
3777 	if (nsec > 0)
3778 		/* add 8 ns to cover the likely normal increment */
3779 		nsec += 8;
3780 
3781 	if (nsec >= NSEC_PER_SEC) {
3782 		/* carry into seconds */
3783 		sec++;
3784 		nsec -= NSEC_PER_SEC;
3785 	}
3786 
3787 	mutex_lock(&ptp_priv->ptp_lock);
3788 	if (sec) {
3789 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
3790 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
3791 			      add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
3792 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3793 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
3794 	}
3795 
3796 	if (nsec) {
3797 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
3798 			      nsec & 0xffff);
3799 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
3800 			      (nsec >> 16) & 0x3fff);
3801 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3802 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
3803 	}
3804 	mutex_unlock(&ptp_priv->ptp_lock);
3805 
3806 	return 0;
3807 }
3808 
3809 #define LAN8841_PTP_LTC_RATE_ADJ_HI		269
3810 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR		BIT(15)
3811 #define LAN8841_PTP_LTC_RATE_ADJ_LO		270
3812 
3813 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
3814 {
3815 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3816 							ptp_clock_info);
3817 	struct phy_device *phydev = ptp_priv->phydev;
3818 	bool faster = true;
3819 	u32 rate;
3820 
3821 	if (!scaled_ppm)
3822 		return 0;
3823 
3824 	if (scaled_ppm < 0) {
3825 		scaled_ppm = -scaled_ppm;
3826 		faster = false;
3827 	}
3828 
3829 	rate = LAN8814_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
3830 	rate += (LAN8814_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
3831 
3832 	mutex_lock(&ptp_priv->ptp_lock);
3833 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
3834 		      faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
3835 			     : upper_16_bits(rate) & 0x3fff);
3836 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
3837 	mutex_unlock(&ptp_priv->ptp_lock);
3838 
3839 	return 0;
3840 }
3841 
3842 static struct ptp_clock_info lan8841_ptp_clock_info = {
3843 	.owner		= THIS_MODULE,
3844 	.name		= "lan8841 ptp",
3845 	.max_adj	= 31249999,
3846 	.gettime64	= lan8841_ptp_gettime64,
3847 	.settime64	= lan8841_ptp_settime64,
3848 	.adjtime	= lan8841_ptp_adjtime,
3849 	.adjfine	= lan8841_ptp_adjfine,
3850 };
3851 
3852 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
3853 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
3854 
3855 static int lan8841_probe(struct phy_device *phydev)
3856 {
3857 	struct kszphy_ptp_priv *ptp_priv;
3858 	struct kszphy_priv *priv;
3859 	int err;
3860 
3861 	err = kszphy_probe(phydev);
3862 	if (err)
3863 		return err;
3864 
3865 	if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3866 			 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
3867 	    LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
3868 		phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
3869 
3870 	/* Register the clock */
3871 	if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3872 		return 0;
3873 
3874 	priv = phydev->priv;
3875 	ptp_priv = &priv->ptp_priv;
3876 
3877 	ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
3878 	ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
3879 						 &phydev->mdio.dev);
3880 	if (IS_ERR(ptp_priv->ptp_clock)) {
3881 		phydev_err(phydev, "ptp_clock_register failed: %lu\n",
3882 			   PTR_ERR(ptp_priv->ptp_clock));
3883 		return -EINVAL;
3884 	}
3885 
3886 	if (!ptp_priv->ptp_clock)
3887 		return 0;
3888 
3889 	/* Initialize the SW */
3890 	skb_queue_head_init(&ptp_priv->tx_queue);
3891 	skb_queue_head_init(&ptp_priv->rx_queue);
3892 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3893 	spin_lock_init(&ptp_priv->rx_ts_lock);
3894 	ptp_priv->phydev = phydev;
3895 	mutex_init(&ptp_priv->ptp_lock);
3896 
3897 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3898 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3899 	ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
3900 	ptp_priv->mii_ts.ts_info = lan8841_ts_info;
3901 
3902 	phydev->mii_ts = &ptp_priv->mii_ts;
3903 
3904 	return 0;
3905 }
3906 
3907 static struct phy_driver ksphy_driver[] = {
3908 {
3909 	.phy_id		= PHY_ID_KS8737,
3910 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3911 	.name		= "Micrel KS8737",
3912 	/* PHY_BASIC_FEATURES */
3913 	.driver_data	= &ks8737_type,
3914 	.probe		= kszphy_probe,
3915 	.config_init	= kszphy_config_init,
3916 	.config_intr	= kszphy_config_intr,
3917 	.handle_interrupt = kszphy_handle_interrupt,
3918 	.suspend	= kszphy_suspend,
3919 	.resume		= kszphy_resume,
3920 }, {
3921 	.phy_id		= PHY_ID_KSZ8021,
3922 	.phy_id_mask	= 0x00ffffff,
3923 	.name		= "Micrel KSZ8021 or KSZ8031",
3924 	/* PHY_BASIC_FEATURES */
3925 	.driver_data	= &ksz8021_type,
3926 	.probe		= kszphy_probe,
3927 	.config_init	= kszphy_config_init,
3928 	.config_intr	= kszphy_config_intr,
3929 	.handle_interrupt = kszphy_handle_interrupt,
3930 	.get_sset_count = kszphy_get_sset_count,
3931 	.get_strings	= kszphy_get_strings,
3932 	.get_stats	= kszphy_get_stats,
3933 	.suspend	= kszphy_suspend,
3934 	.resume		= kszphy_resume,
3935 }, {
3936 	.phy_id		= PHY_ID_KSZ8031,
3937 	.phy_id_mask	= 0x00ffffff,
3938 	.name		= "Micrel KSZ8031",
3939 	/* PHY_BASIC_FEATURES */
3940 	.driver_data	= &ksz8021_type,
3941 	.probe		= kszphy_probe,
3942 	.config_init	= kszphy_config_init,
3943 	.config_intr	= kszphy_config_intr,
3944 	.handle_interrupt = kszphy_handle_interrupt,
3945 	.get_sset_count = kszphy_get_sset_count,
3946 	.get_strings	= kszphy_get_strings,
3947 	.get_stats	= kszphy_get_stats,
3948 	.suspend	= kszphy_suspend,
3949 	.resume		= kszphy_resume,
3950 }, {
3951 	.phy_id		= PHY_ID_KSZ8041,
3952 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3953 	.name		= "Micrel KSZ8041",
3954 	/* PHY_BASIC_FEATURES */
3955 	.driver_data	= &ksz8041_type,
3956 	.probe		= kszphy_probe,
3957 	.config_init	= ksz8041_config_init,
3958 	.config_aneg	= ksz8041_config_aneg,
3959 	.config_intr	= kszphy_config_intr,
3960 	.handle_interrupt = kszphy_handle_interrupt,
3961 	.get_sset_count = kszphy_get_sset_count,
3962 	.get_strings	= kszphy_get_strings,
3963 	.get_stats	= kszphy_get_stats,
3964 	/* No suspend/resume callbacks because of errata DS80000700A,
3965 	 * receiver error following software power down.
3966 	 */
3967 }, {
3968 	.phy_id		= PHY_ID_KSZ8041RNLI,
3969 	.phy_id_mask	= MICREL_PHY_ID_MASK,
3970 	.name		= "Micrel KSZ8041RNLI",
3971 	/* PHY_BASIC_FEATURES */
3972 	.driver_data	= &ksz8041_type,
3973 	.probe		= kszphy_probe,
3974 	.config_init	= kszphy_config_init,
3975 	.config_intr	= kszphy_config_intr,
3976 	.handle_interrupt = kszphy_handle_interrupt,
3977 	.get_sset_count = kszphy_get_sset_count,
3978 	.get_strings	= kszphy_get_strings,
3979 	.get_stats	= kszphy_get_stats,
3980 	.suspend	= kszphy_suspend,
3981 	.resume		= kszphy_resume,
3982 }, {
3983 	.name		= "Micrel KSZ8051",
3984 	/* PHY_BASIC_FEATURES */
3985 	.driver_data	= &ksz8051_type,
3986 	.probe		= kszphy_probe,
3987 	.config_init	= kszphy_config_init,
3988 	.config_intr	= kszphy_config_intr,
3989 	.handle_interrupt = kszphy_handle_interrupt,
3990 	.get_sset_count = kszphy_get_sset_count,
3991 	.get_strings	= kszphy_get_strings,
3992 	.get_stats	= kszphy_get_stats,
3993 	.match_phy_device = ksz8051_match_phy_device,
3994 	.suspend	= kszphy_suspend,
3995 	.resume		= kszphy_resume,
3996 }, {
3997 	.phy_id		= PHY_ID_KSZ8001,
3998 	.name		= "Micrel KSZ8001 or KS8721",
3999 	.phy_id_mask	= 0x00fffffc,
4000 	/* PHY_BASIC_FEATURES */
4001 	.driver_data	= &ksz8041_type,
4002 	.probe		= kszphy_probe,
4003 	.config_init	= kszphy_config_init,
4004 	.config_intr	= kszphy_config_intr,
4005 	.handle_interrupt = kszphy_handle_interrupt,
4006 	.get_sset_count = kszphy_get_sset_count,
4007 	.get_strings	= kszphy_get_strings,
4008 	.get_stats	= kszphy_get_stats,
4009 	.suspend	= kszphy_suspend,
4010 	.resume		= kszphy_resume,
4011 }, {
4012 	.phy_id		= PHY_ID_KSZ8081,
4013 	.name		= "Micrel KSZ8081 or KSZ8091",
4014 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4015 	.flags		= PHY_POLL_CABLE_TEST,
4016 	/* PHY_BASIC_FEATURES */
4017 	.driver_data	= &ksz8081_type,
4018 	.probe		= kszphy_probe,
4019 	.config_init	= ksz8081_config_init,
4020 	.soft_reset	= genphy_soft_reset,
4021 	.config_aneg	= ksz8081_config_aneg,
4022 	.read_status	= ksz8081_read_status,
4023 	.config_intr	= kszphy_config_intr,
4024 	.handle_interrupt = kszphy_handle_interrupt,
4025 	.get_sset_count = kszphy_get_sset_count,
4026 	.get_strings	= kszphy_get_strings,
4027 	.get_stats	= kszphy_get_stats,
4028 	.suspend	= kszphy_suspend,
4029 	.resume		= kszphy_resume,
4030 	.cable_test_start	= ksz886x_cable_test_start,
4031 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4032 }, {
4033 	.phy_id		= PHY_ID_KSZ8061,
4034 	.name		= "Micrel KSZ8061",
4035 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4036 	/* PHY_BASIC_FEATURES */
4037 	.probe		= kszphy_probe,
4038 	.config_init	= ksz8061_config_init,
4039 	.config_intr	= kszphy_config_intr,
4040 	.handle_interrupt = kszphy_handle_interrupt,
4041 	.suspend	= kszphy_suspend,
4042 	.resume		= kszphy_resume,
4043 }, {
4044 	.phy_id		= PHY_ID_KSZ9021,
4045 	.phy_id_mask	= 0x000ffffe,
4046 	.name		= "Micrel KSZ9021 Gigabit PHY",
4047 	/* PHY_GBIT_FEATURES */
4048 	.driver_data	= &ksz9021_type,
4049 	.probe		= kszphy_probe,
4050 	.get_features	= ksz9031_get_features,
4051 	.config_init	= ksz9021_config_init,
4052 	.config_intr	= kszphy_config_intr,
4053 	.handle_interrupt = kszphy_handle_interrupt,
4054 	.get_sset_count = kszphy_get_sset_count,
4055 	.get_strings	= kszphy_get_strings,
4056 	.get_stats	= kszphy_get_stats,
4057 	.suspend	= kszphy_suspend,
4058 	.resume		= kszphy_resume,
4059 	.read_mmd	= genphy_read_mmd_unsupported,
4060 	.write_mmd	= genphy_write_mmd_unsupported,
4061 }, {
4062 	.phy_id		= PHY_ID_KSZ9031,
4063 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4064 	.name		= "Micrel KSZ9031 Gigabit PHY",
4065 	.flags		= PHY_POLL_CABLE_TEST,
4066 	.driver_data	= &ksz9021_type,
4067 	.probe		= kszphy_probe,
4068 	.get_features	= ksz9031_get_features,
4069 	.config_init	= ksz9031_config_init,
4070 	.soft_reset	= genphy_soft_reset,
4071 	.read_status	= ksz9031_read_status,
4072 	.config_intr	= kszphy_config_intr,
4073 	.handle_interrupt = kszphy_handle_interrupt,
4074 	.get_sset_count = kszphy_get_sset_count,
4075 	.get_strings	= kszphy_get_strings,
4076 	.get_stats	= kszphy_get_stats,
4077 	.suspend	= kszphy_suspend,
4078 	.resume		= kszphy_resume,
4079 	.cable_test_start	= ksz9x31_cable_test_start,
4080 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
4081 }, {
4082 	.phy_id		= PHY_ID_LAN8814,
4083 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4084 	.name		= "Microchip INDY Gigabit Quad PHY",
4085 	.flags          = PHY_POLL_CABLE_TEST,
4086 	.config_init	= lan8814_config_init,
4087 	.driver_data	= &lan8814_type,
4088 	.probe		= lan8814_probe,
4089 	.soft_reset	= genphy_soft_reset,
4090 	.read_status	= ksz9031_read_status,
4091 	.get_sset_count	= kszphy_get_sset_count,
4092 	.get_strings	= kszphy_get_strings,
4093 	.get_stats	= kszphy_get_stats,
4094 	.suspend	= genphy_suspend,
4095 	.resume		= kszphy_resume,
4096 	.config_intr	= lan8814_config_intr,
4097 	.handle_interrupt = lan8814_handle_interrupt,
4098 	.cable_test_start	= lan8814_cable_test_start,
4099 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4100 }, {
4101 	.phy_id		= PHY_ID_LAN8804,
4102 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4103 	.name		= "Microchip LAN966X Gigabit PHY",
4104 	.config_init	= lan8804_config_init,
4105 	.driver_data	= &ksz9021_type,
4106 	.probe		= kszphy_probe,
4107 	.soft_reset	= genphy_soft_reset,
4108 	.read_status	= ksz9031_read_status,
4109 	.get_sset_count	= kszphy_get_sset_count,
4110 	.get_strings	= kszphy_get_strings,
4111 	.get_stats	= kszphy_get_stats,
4112 	.suspend	= genphy_suspend,
4113 	.resume		= kszphy_resume,
4114 	.config_intr	= lan8804_config_intr,
4115 	.handle_interrupt = lan8804_handle_interrupt,
4116 }, {
4117 	.phy_id		= PHY_ID_LAN8841,
4118 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4119 	.name		= "Microchip LAN8841 Gigabit PHY",
4120 	.flags		= PHY_POLL_CABLE_TEST,
4121 	.driver_data	= &lan8841_type,
4122 	.config_init	= lan8841_config_init,
4123 	.probe		= lan8841_probe,
4124 	.soft_reset	= genphy_soft_reset,
4125 	.config_intr	= lan8841_config_intr,
4126 	.handle_interrupt = lan8841_handle_interrupt,
4127 	.get_sset_count = kszphy_get_sset_count,
4128 	.get_strings	= kszphy_get_strings,
4129 	.get_stats	= kszphy_get_stats,
4130 	.suspend	= genphy_suspend,
4131 	.resume		= genphy_resume,
4132 	.cable_test_start	= lan8814_cable_test_start,
4133 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4134 }, {
4135 	.phy_id		= PHY_ID_KSZ9131,
4136 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4137 	.name		= "Microchip KSZ9131 Gigabit PHY",
4138 	/* PHY_GBIT_FEATURES */
4139 	.flags		= PHY_POLL_CABLE_TEST,
4140 	.driver_data	= &ksz9131_type,
4141 	.probe		= kszphy_probe,
4142 	.config_init	= ksz9131_config_init,
4143 	.config_intr	= kszphy_config_intr,
4144 	.config_aneg	= ksz9131_config_aneg,
4145 	.read_status	= ksz9131_read_status,
4146 	.handle_interrupt = kszphy_handle_interrupt,
4147 	.get_sset_count = kszphy_get_sset_count,
4148 	.get_strings	= kszphy_get_strings,
4149 	.get_stats	= kszphy_get_stats,
4150 	.suspend	= kszphy_suspend,
4151 	.resume		= kszphy_resume,
4152 	.cable_test_start	= ksz9x31_cable_test_start,
4153 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
4154 	.get_features	= ksz9477_get_features,
4155 }, {
4156 	.phy_id		= PHY_ID_KSZ8873MLL,
4157 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4158 	.name		= "Micrel KSZ8873MLL Switch",
4159 	/* PHY_BASIC_FEATURES */
4160 	.config_init	= kszphy_config_init,
4161 	.config_aneg	= ksz8873mll_config_aneg,
4162 	.read_status	= ksz8873mll_read_status,
4163 	.suspend	= genphy_suspend,
4164 	.resume		= genphy_resume,
4165 }, {
4166 	.phy_id		= PHY_ID_KSZ886X,
4167 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4168 	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
4169 	.driver_data	= &ksz886x_type,
4170 	/* PHY_BASIC_FEATURES */
4171 	.flags		= PHY_POLL_CABLE_TEST,
4172 	.config_init	= kszphy_config_init,
4173 	.config_aneg	= ksz886x_config_aneg,
4174 	.read_status	= ksz886x_read_status,
4175 	.suspend	= genphy_suspend,
4176 	.resume		= genphy_resume,
4177 	.cable_test_start	= ksz886x_cable_test_start,
4178 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4179 }, {
4180 	.name		= "Micrel KSZ87XX Switch",
4181 	/* PHY_BASIC_FEATURES */
4182 	.config_init	= kszphy_config_init,
4183 	.match_phy_device = ksz8795_match_phy_device,
4184 	.suspend	= genphy_suspend,
4185 	.resume		= genphy_resume,
4186 }, {
4187 	.phy_id		= PHY_ID_KSZ9477,
4188 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4189 	.name		= "Microchip KSZ9477",
4190 	/* PHY_GBIT_FEATURES */
4191 	.config_init	= kszphy_config_init,
4192 	.config_intr	= kszphy_config_intr,
4193 	.handle_interrupt = kszphy_handle_interrupt,
4194 	.suspend	= genphy_suspend,
4195 	.resume		= genphy_resume,
4196 	.get_features	= ksz9477_get_features,
4197 } };
4198 
4199 module_phy_driver(ksphy_driver);
4200 
4201 MODULE_DESCRIPTION("Micrel PHY driver");
4202 MODULE_AUTHOR("David J. Choi");
4203 MODULE_LICENSE("GPL");
4204 
4205 static struct mdio_device_id __maybe_unused micrel_tbl[] = {
4206 	{ PHY_ID_KSZ9021, 0x000ffffe },
4207 	{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
4208 	{ PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
4209 	{ PHY_ID_KSZ8001, 0x00fffffc },
4210 	{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
4211 	{ PHY_ID_KSZ8021, 0x00ffffff },
4212 	{ PHY_ID_KSZ8031, 0x00ffffff },
4213 	{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
4214 	{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
4215 	{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
4216 	{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
4217 	{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
4218 	{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
4219 	{ PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
4220 	{ PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
4221 	{ PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
4222 	{ }
4223 };
4224 
4225 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
4226