1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * drivers/net/phy/micrel.c
4 *
5 * Driver for Micrel PHYs
6 *
7 * Author: David J. Choi
8 *
9 * Copyright (c) 2010-2013 Micrel, Inc.
10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11 *
12 * Support : Micrel Phys:
13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15 * ksz8021, ksz8031, ksz8051,
16 * ksz8081, ksz8091,
17 * ksz8061,
18 * Switch : ksz8873, ksz886x
19 * ksz9477, lan8804
20 */
21
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36
37 /* Operation Mode Strap Override */
38 #define MII_KSZPHY_OMSO 0x16
39 #define KSZPHY_OMSO_FACTORY_TEST BIT(15)
40 #define KSZPHY_OMSO_B_CAST_OFF BIT(9)
41 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5)
42 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1)
43 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0)
44
45 /* general Interrupt control/status reg in vendor specific block. */
46 #define MII_KSZPHY_INTCS 0x1B
47 #define KSZPHY_INTCS_JABBER BIT(15)
48 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14)
49 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13)
50 #define KSZPHY_INTCS_PARELLEL BIT(12)
51 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11)
52 #define KSZPHY_INTCS_LINK_DOWN BIT(10)
53 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9)
54 #define KSZPHY_INTCS_LINK_UP BIT(8)
55 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\
56 KSZPHY_INTCS_LINK_DOWN)
57 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2)
58 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0)
59 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\
60 KSZPHY_INTCS_LINK_UP_STATUS)
61
62 /* LinkMD Control/Status */
63 #define KSZ8081_LMD 0x1d
64 #define KSZ8081_LMD_ENABLE_TEST BIT(15)
65 #define KSZ8081_LMD_STAT_NORMAL 0
66 #define KSZ8081_LMD_STAT_OPEN 1
67 #define KSZ8081_LMD_STAT_SHORT 2
68 #define KSZ8081_LMD_STAT_FAIL 3
69 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13)
70 /* Short cable (<10 meter) has been detected by LinkMD */
71 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12)
72 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0)
73
74 #define KSZ9x31_LMD 0x12
75 #define KSZ9x31_LMD_VCT_EN BIT(15)
76 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14)
77 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12)
78 #define KSZ9x31_LMD_VCT_SEL_RESULT 0
79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10)
80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11)
81 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10)
82 #define KSZ9x31_LMD_VCT_ST_NORMAL 0
83 #define KSZ9x31_LMD_VCT_ST_OPEN 1
84 #define KSZ9x31_LMD_VCT_ST_SHORT 2
85 #define KSZ9x31_LMD_VCT_ST_FAIL 3
86 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8)
87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7)
88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6)
89 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5)
90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4)
91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2)
92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0)
93 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0)
94
95 #define KSZPHY_WIRE_PAIR_MASK 0x3
96
97 #define LAN8814_CABLE_DIAG 0x12
98 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8)
99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0)
100 #define LAN8814_PAIR_BIT_SHIFT 12
101
102 #define LAN8814_WIRE_PAIR_MASK 0xF
103
104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
105 #define LAN8814_INTC 0x18
106 #define LAN8814_INTS 0x1B
107
108 #define LAN8814_INT_LINK_DOWN BIT(2)
109 #define LAN8814_INT_LINK_UP BIT(0)
110 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\
111 LAN8814_INT_LINK_DOWN)
112
113 #define LAN8814_INTR_CTRL_REG 0x34
114 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1)
115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0)
116
117 /* Represents 1ppm adjustment in 2^32 format with
118 * each nsec contains 4 clock cycles.
119 * The value is calculated as following: (1/1000000)/((2^-32)/4)
120 */
121 #define LAN8814_1PPM_FORMAT 17179
122
123 #define PTP_RX_VERSION 0x0248
124 #define PTP_TX_VERSION 0x0288
125 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8)
126 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0))
127
128 #define PTP_RX_MOD 0x024F
129 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
130 #define PTP_RX_TIMESTAMP_EN 0x024D
131 #define PTP_TX_TIMESTAMP_EN 0x028D
132
133 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0)
134 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1)
135 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2)
136 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3)
137
138 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284
139 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244
140
141 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285
142 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245
143 #define LTC_HARD_RESET 0x023F
144 #define LTC_HARD_RESET_ BIT(0)
145
146 #define TSU_HARD_RESET 0x02C1
147 #define TSU_HARD_RESET_ BIT(0)
148
149 #define PTP_CMD_CTL 0x0200
150 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0)
151 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1)
152 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3)
153 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4)
154 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5)
155 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6)
156
157 #define PTP_CLOCK_SET_SEC_MID 0x0206
158 #define PTP_CLOCK_SET_SEC_LO 0x0207
159 #define PTP_CLOCK_SET_NS_HI 0x0208
160 #define PTP_CLOCK_SET_NS_LO 0x0209
161
162 #define PTP_CLOCK_READ_SEC_MID 0x022A
163 #define PTP_CLOCK_READ_SEC_LO 0x022B
164 #define PTP_CLOCK_READ_NS_HI 0x022C
165 #define PTP_CLOCK_READ_NS_LO 0x022D
166
167 #define PTP_OPERATING_MODE 0x0241
168 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0)
169
170 #define PTP_TX_MOD 0x028F
171 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12)
172 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
173
174 #define PTP_RX_PARSE_CONFIG 0x0242
175 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
176 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1)
177 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2)
178
179 #define PTP_TX_PARSE_CONFIG 0x0282
180 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
181 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1)
182 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2)
183
184 #define PTP_CLOCK_RATE_ADJ_HI 0x020C
185 #define PTP_CLOCK_RATE_ADJ_LO 0x020D
186 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15)
187
188 #define PTP_LTC_STEP_ADJ_HI 0x0212
189 #define PTP_LTC_STEP_ADJ_LO 0x0213
190 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15)
191
192 #define LAN8814_INTR_STS_REG 0x0033
193 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0)
194 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1)
195 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2)
196 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3)
197
198 #define PTP_CAP_INFO 0x022A
199 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8)
200 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f)
201
202 #define PTP_TX_EGRESS_SEC_HI 0x0296
203 #define PTP_TX_EGRESS_SEC_LO 0x0297
204 #define PTP_TX_EGRESS_NS_HI 0x0294
205 #define PTP_TX_EGRESS_NS_LO 0x0295
206 #define PTP_TX_MSG_HEADER2 0x0299
207
208 #define PTP_RX_INGRESS_SEC_HI 0x0256
209 #define PTP_RX_INGRESS_SEC_LO 0x0257
210 #define PTP_RX_INGRESS_NS_HI 0x0254
211 #define PTP_RX_INGRESS_NS_LO 0x0255
212 #define PTP_RX_MSG_HEADER2 0x0259
213
214 #define PTP_TSU_INT_EN 0x0200
215 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3)
216 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2)
217 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1)
218 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0)
219
220 #define PTP_TSU_INT_STS 0x0201
221 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3)
222 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2)
223 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1)
224 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0)
225
226 #define LAN8814_LED_CTRL_1 0x0
227 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6)
228
229 /* PHY Control 1 */
230 #define MII_KSZPHY_CTRL_1 0x1e
231 #define KSZ8081_CTRL1_MDIX_STAT BIT(4)
232
233 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
234 #define MII_KSZPHY_CTRL_2 0x1f
235 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2
236 /* bitmap of PHY register to set interrupt mode */
237 #define KSZ8081_CTRL2_HP_MDIX BIT(15)
238 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14)
239 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13)
240 #define KSZ8081_CTRL2_FORCE_LINK BIT(11)
241 #define KSZ8081_CTRL2_POWER_SAVING BIT(10)
242 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9)
243 #define KSZPHY_RMII_REF_CLK_SEL BIT(7)
244
245 /* Write/read to/from extended registers */
246 #define MII_KSZPHY_EXTREG 0x0b
247 #define KSZPHY_EXTREG_WRITE 0x8000
248
249 #define MII_KSZPHY_EXTREG_WRITE 0x0c
250 #define MII_KSZPHY_EXTREG_READ 0x0d
251
252 /* Extended registers */
253 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104
254 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105
255 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106
256
257 #define PS_TO_REG 200
258 #define FIFO_SIZE 8
259
260 /* Delay used to get the second part from the LTC */
261 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC)
262
263 struct kszphy_hw_stat {
264 const char *string;
265 u8 reg;
266 u8 bits;
267 };
268
269 static struct kszphy_hw_stat kszphy_hw_stats[] = {
270 { "phy_receive_errors", 21, 16},
271 { "phy_idle_errors", 10, 8 },
272 };
273
274 struct kszphy_type {
275 u32 led_mode_reg;
276 u16 interrupt_level_mask;
277 u16 cable_diag_reg;
278 unsigned long pair_mask;
279 u16 disable_dll_tx_bit;
280 u16 disable_dll_rx_bit;
281 u16 disable_dll_mask;
282 bool has_broadcast_disable;
283 bool has_nand_tree_disable;
284 bool has_rmii_ref_clk_sel;
285 };
286
287 /* Shared structure between the PHYs of the same package. */
288 struct lan8814_shared_priv {
289 struct phy_device *phydev;
290 struct ptp_clock *ptp_clock;
291 struct ptp_clock_info ptp_clock_info;
292
293 /* Reference counter to how many ports in the package are enabling the
294 * timestamping
295 */
296 u8 ref;
297
298 /* Lock for ptp_clock and ref */
299 struct mutex shared_lock;
300 };
301
302 struct lan8814_ptp_rx_ts {
303 struct list_head list;
304 u32 seconds;
305 u32 nsec;
306 u16 seq_id;
307 };
308
309 struct kszphy_ptp_priv {
310 struct mii_timestamper mii_ts;
311 struct phy_device *phydev;
312
313 struct sk_buff_head tx_queue;
314 struct sk_buff_head rx_queue;
315
316 struct list_head rx_ts_list;
317 /* Lock for Rx ts fifo */
318 spinlock_t rx_ts_lock;
319
320 int hwts_tx_type;
321 enum hwtstamp_rx_filters rx_filter;
322 int layer;
323 int version;
324
325 struct ptp_clock *ptp_clock;
326 struct ptp_clock_info ptp_clock_info;
327 /* Lock for ptp_clock */
328 struct mutex ptp_lock;
329 struct ptp_pin_desc *pin_config;
330
331 s64 seconds;
332 /* Lock for accessing seconds */
333 spinlock_t seconds_lock;
334 };
335
336 struct kszphy_priv {
337 struct kszphy_ptp_priv ptp_priv;
338 const struct kszphy_type *type;
339 int led_mode;
340 u16 vct_ctrl1000;
341 bool rmii_ref_clk_sel;
342 bool rmii_ref_clk_sel_val;
343 u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
344 };
345
346 static const struct kszphy_type lan8814_type = {
347 .led_mode_reg = ~LAN8814_LED_CTRL_1,
348 .cable_diag_reg = LAN8814_CABLE_DIAG,
349 .pair_mask = LAN8814_WIRE_PAIR_MASK,
350 };
351
352 static const struct kszphy_type ksz886x_type = {
353 .cable_diag_reg = KSZ8081_LMD,
354 .pair_mask = KSZPHY_WIRE_PAIR_MASK,
355 };
356
357 static const struct kszphy_type ksz8021_type = {
358 .led_mode_reg = MII_KSZPHY_CTRL_2,
359 .has_broadcast_disable = true,
360 .has_nand_tree_disable = true,
361 .has_rmii_ref_clk_sel = true,
362 };
363
364 static const struct kszphy_type ksz8041_type = {
365 .led_mode_reg = MII_KSZPHY_CTRL_1,
366 };
367
368 static const struct kszphy_type ksz8051_type = {
369 .led_mode_reg = MII_KSZPHY_CTRL_2,
370 .has_nand_tree_disable = true,
371 };
372
373 static const struct kszphy_type ksz8081_type = {
374 .led_mode_reg = MII_KSZPHY_CTRL_2,
375 .has_broadcast_disable = true,
376 .has_nand_tree_disable = true,
377 .has_rmii_ref_clk_sel = true,
378 };
379
380 static const struct kszphy_type ks8737_type = {
381 .interrupt_level_mask = BIT(14),
382 };
383
384 static const struct kszphy_type ksz9021_type = {
385 .interrupt_level_mask = BIT(14),
386 };
387
388 static const struct kszphy_type ksz9131_type = {
389 .interrupt_level_mask = BIT(14),
390 .disable_dll_tx_bit = BIT(12),
391 .disable_dll_rx_bit = BIT(12),
392 .disable_dll_mask = BIT_MASK(12),
393 };
394
395 static const struct kszphy_type lan8841_type = {
396 .disable_dll_tx_bit = BIT(14),
397 .disable_dll_rx_bit = BIT(14),
398 .disable_dll_mask = BIT_MASK(14),
399 .cable_diag_reg = LAN8814_CABLE_DIAG,
400 .pair_mask = LAN8814_WIRE_PAIR_MASK,
401 };
402
kszphy_extended_write(struct phy_device * phydev,u32 regnum,u16 val)403 static int kszphy_extended_write(struct phy_device *phydev,
404 u32 regnum, u16 val)
405 {
406 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
407 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
408 }
409
kszphy_extended_read(struct phy_device * phydev,u32 regnum)410 static int kszphy_extended_read(struct phy_device *phydev,
411 u32 regnum)
412 {
413 phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
414 return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
415 }
416
kszphy_ack_interrupt(struct phy_device * phydev)417 static int kszphy_ack_interrupt(struct phy_device *phydev)
418 {
419 /* bit[7..0] int status, which is a read and clear register. */
420 int rc;
421
422 rc = phy_read(phydev, MII_KSZPHY_INTCS);
423
424 return (rc < 0) ? rc : 0;
425 }
426
kszphy_config_intr(struct phy_device * phydev)427 static int kszphy_config_intr(struct phy_device *phydev)
428 {
429 const struct kszphy_type *type = phydev->drv->driver_data;
430 int temp, err;
431 u16 mask;
432
433 if (type && type->interrupt_level_mask)
434 mask = type->interrupt_level_mask;
435 else
436 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
437
438 /* set the interrupt pin active low */
439 temp = phy_read(phydev, MII_KSZPHY_CTRL);
440 if (temp < 0)
441 return temp;
442 temp &= ~mask;
443 phy_write(phydev, MII_KSZPHY_CTRL, temp);
444
445 /* enable / disable interrupts */
446 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
447 err = kszphy_ack_interrupt(phydev);
448 if (err)
449 return err;
450
451 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
452 } else {
453 err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
454 if (err)
455 return err;
456
457 err = kszphy_ack_interrupt(phydev);
458 }
459
460 return err;
461 }
462
kszphy_handle_interrupt(struct phy_device * phydev)463 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
464 {
465 int irq_status;
466
467 irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
468 if (irq_status < 0) {
469 phy_error(phydev);
470 return IRQ_NONE;
471 }
472
473 if (!(irq_status & KSZPHY_INTCS_STATUS))
474 return IRQ_NONE;
475
476 phy_trigger_machine(phydev);
477
478 return IRQ_HANDLED;
479 }
480
kszphy_rmii_clk_sel(struct phy_device * phydev,bool val)481 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
482 {
483 int ctrl;
484
485 ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
486 if (ctrl < 0)
487 return ctrl;
488
489 if (val)
490 ctrl |= KSZPHY_RMII_REF_CLK_SEL;
491 else
492 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
493
494 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
495 }
496
kszphy_setup_led(struct phy_device * phydev,u32 reg,int val)497 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
498 {
499 int rc, temp, shift;
500
501 switch (reg) {
502 case MII_KSZPHY_CTRL_1:
503 shift = 14;
504 break;
505 case MII_KSZPHY_CTRL_2:
506 shift = 4;
507 break;
508 default:
509 return -EINVAL;
510 }
511
512 temp = phy_read(phydev, reg);
513 if (temp < 0) {
514 rc = temp;
515 goto out;
516 }
517
518 temp &= ~(3 << shift);
519 temp |= val << shift;
520 rc = phy_write(phydev, reg, temp);
521 out:
522 if (rc < 0)
523 phydev_err(phydev, "failed to set led mode\n");
524
525 return rc;
526 }
527
528 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
529 * unique (non-broadcast) address on a shared bus.
530 */
kszphy_broadcast_disable(struct phy_device * phydev)531 static int kszphy_broadcast_disable(struct phy_device *phydev)
532 {
533 int ret;
534
535 ret = phy_read(phydev, MII_KSZPHY_OMSO);
536 if (ret < 0)
537 goto out;
538
539 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
540 out:
541 if (ret)
542 phydev_err(phydev, "failed to disable broadcast address\n");
543
544 return ret;
545 }
546
kszphy_nand_tree_disable(struct phy_device * phydev)547 static int kszphy_nand_tree_disable(struct phy_device *phydev)
548 {
549 int ret;
550
551 ret = phy_read(phydev, MII_KSZPHY_OMSO);
552 if (ret < 0)
553 goto out;
554
555 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
556 return 0;
557
558 ret = phy_write(phydev, MII_KSZPHY_OMSO,
559 ret & ~KSZPHY_OMSO_NAND_TREE_ON);
560 out:
561 if (ret)
562 phydev_err(phydev, "failed to disable NAND tree mode\n");
563
564 return ret;
565 }
566
567 /* Some config bits need to be set again on resume, handle them here. */
kszphy_config_reset(struct phy_device * phydev)568 static int kszphy_config_reset(struct phy_device *phydev)
569 {
570 struct kszphy_priv *priv = phydev->priv;
571 int ret;
572
573 if (priv->rmii_ref_clk_sel) {
574 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
575 if (ret) {
576 phydev_err(phydev,
577 "failed to set rmii reference clock\n");
578 return ret;
579 }
580 }
581
582 if (priv->type && priv->led_mode >= 0)
583 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
584
585 return 0;
586 }
587
kszphy_config_init(struct phy_device * phydev)588 static int kszphy_config_init(struct phy_device *phydev)
589 {
590 struct kszphy_priv *priv = phydev->priv;
591 const struct kszphy_type *type;
592
593 if (!priv)
594 return 0;
595
596 type = priv->type;
597
598 if (type && type->has_broadcast_disable)
599 kszphy_broadcast_disable(phydev);
600
601 if (type && type->has_nand_tree_disable)
602 kszphy_nand_tree_disable(phydev);
603
604 return kszphy_config_reset(phydev);
605 }
606
ksz8041_fiber_mode(struct phy_device * phydev)607 static int ksz8041_fiber_mode(struct phy_device *phydev)
608 {
609 struct device_node *of_node = phydev->mdio.dev.of_node;
610
611 return of_property_read_bool(of_node, "micrel,fiber-mode");
612 }
613
ksz8041_config_init(struct phy_device * phydev)614 static int ksz8041_config_init(struct phy_device *phydev)
615 {
616 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
617
618 /* Limit supported and advertised modes in fiber mode */
619 if (ksz8041_fiber_mode(phydev)) {
620 phydev->dev_flags |= MICREL_PHY_FXEN;
621 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
622 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
623
624 linkmode_and(phydev->supported, phydev->supported, mask);
625 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
626 phydev->supported);
627 linkmode_and(phydev->advertising, phydev->advertising, mask);
628 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
629 phydev->advertising);
630 phydev->autoneg = AUTONEG_DISABLE;
631 }
632
633 return kszphy_config_init(phydev);
634 }
635
ksz8041_config_aneg(struct phy_device * phydev)636 static int ksz8041_config_aneg(struct phy_device *phydev)
637 {
638 /* Skip auto-negotiation in fiber mode */
639 if (phydev->dev_flags & MICREL_PHY_FXEN) {
640 phydev->speed = SPEED_100;
641 return 0;
642 }
643
644 return genphy_config_aneg(phydev);
645 }
646
ksz8051_ksz8795_match_phy_device(struct phy_device * phydev,const bool ksz_8051)647 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
648 const bool ksz_8051)
649 {
650 int ret;
651
652 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
653 return 0;
654
655 ret = phy_read(phydev, MII_BMSR);
656 if (ret < 0)
657 return ret;
658
659 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
660 * exact PHY ID. However, they can be told apart by the extended
661 * capability registers presence. The KSZ8051 PHY has them while
662 * the switch does not.
663 */
664 ret &= BMSR_ERCAP;
665 if (ksz_8051)
666 return ret;
667 else
668 return !ret;
669 }
670
ksz8051_match_phy_device(struct phy_device * phydev)671 static int ksz8051_match_phy_device(struct phy_device *phydev)
672 {
673 return ksz8051_ksz8795_match_phy_device(phydev, true);
674 }
675
ksz8081_config_init(struct phy_device * phydev)676 static int ksz8081_config_init(struct phy_device *phydev)
677 {
678 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
679 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
680 * pull-down is missing, the factory test mode should be cleared by
681 * manually writing a 0.
682 */
683 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
684
685 return kszphy_config_init(phydev);
686 }
687
ksz8081_config_mdix(struct phy_device * phydev,u8 ctrl)688 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
689 {
690 u16 val;
691
692 switch (ctrl) {
693 case ETH_TP_MDI:
694 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
695 break;
696 case ETH_TP_MDI_X:
697 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
698 KSZ8081_CTRL2_MDI_MDI_X_SELECT;
699 break;
700 case ETH_TP_MDI_AUTO:
701 val = 0;
702 break;
703 default:
704 return 0;
705 }
706
707 return phy_modify(phydev, MII_KSZPHY_CTRL_2,
708 KSZ8081_CTRL2_HP_MDIX |
709 KSZ8081_CTRL2_MDI_MDI_X_SELECT |
710 KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
711 KSZ8081_CTRL2_HP_MDIX | val);
712 }
713
ksz8081_config_aneg(struct phy_device * phydev)714 static int ksz8081_config_aneg(struct phy_device *phydev)
715 {
716 int ret;
717
718 ret = genphy_config_aneg(phydev);
719 if (ret)
720 return ret;
721
722 /* The MDI-X configuration is automatically changed by the PHY after
723 * switching from autoneg off to on. So, take MDI-X configuration under
724 * own control and set it after autoneg configuration was done.
725 */
726 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
727 }
728
ksz8081_mdix_update(struct phy_device * phydev)729 static int ksz8081_mdix_update(struct phy_device *phydev)
730 {
731 int ret;
732
733 ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
734 if (ret < 0)
735 return ret;
736
737 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
738 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
739 phydev->mdix_ctrl = ETH_TP_MDI_X;
740 else
741 phydev->mdix_ctrl = ETH_TP_MDI;
742 } else {
743 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
744 }
745
746 ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
747 if (ret < 0)
748 return ret;
749
750 if (ret & KSZ8081_CTRL1_MDIX_STAT)
751 phydev->mdix = ETH_TP_MDI;
752 else
753 phydev->mdix = ETH_TP_MDI_X;
754
755 return 0;
756 }
757
ksz8081_read_status(struct phy_device * phydev)758 static int ksz8081_read_status(struct phy_device *phydev)
759 {
760 int ret;
761
762 ret = ksz8081_mdix_update(phydev);
763 if (ret < 0)
764 return ret;
765
766 return genphy_read_status(phydev);
767 }
768
ksz8061_config_init(struct phy_device * phydev)769 static int ksz8061_config_init(struct phy_device *phydev)
770 {
771 int ret;
772
773 /* Chip can be powered down by the bootstrap code. */
774 ret = phy_read(phydev, MII_BMCR);
775 if (ret < 0)
776 return ret;
777 if (ret & BMCR_PDOWN) {
778 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN);
779 if (ret < 0)
780 return ret;
781 usleep_range(1000, 2000);
782 }
783
784 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
785 if (ret)
786 return ret;
787
788 return kszphy_config_init(phydev);
789 }
790
ksz8795_match_phy_device(struct phy_device * phydev)791 static int ksz8795_match_phy_device(struct phy_device *phydev)
792 {
793 return ksz8051_ksz8795_match_phy_device(phydev, false);
794 }
795
ksz9021_load_values_from_of(struct phy_device * phydev,const struct device_node * of_node,u16 reg,const char * field1,const char * field2,const char * field3,const char * field4)796 static int ksz9021_load_values_from_of(struct phy_device *phydev,
797 const struct device_node *of_node,
798 u16 reg,
799 const char *field1, const char *field2,
800 const char *field3, const char *field4)
801 {
802 int val1 = -1;
803 int val2 = -2;
804 int val3 = -3;
805 int val4 = -4;
806 int newval;
807 int matches = 0;
808
809 if (!of_property_read_u32(of_node, field1, &val1))
810 matches++;
811
812 if (!of_property_read_u32(of_node, field2, &val2))
813 matches++;
814
815 if (!of_property_read_u32(of_node, field3, &val3))
816 matches++;
817
818 if (!of_property_read_u32(of_node, field4, &val4))
819 matches++;
820
821 if (!matches)
822 return 0;
823
824 if (matches < 4)
825 newval = kszphy_extended_read(phydev, reg);
826 else
827 newval = 0;
828
829 if (val1 != -1)
830 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
831
832 if (val2 != -2)
833 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
834
835 if (val3 != -3)
836 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
837
838 if (val4 != -4)
839 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
840
841 return kszphy_extended_write(phydev, reg, newval);
842 }
843
ksz9021_config_init(struct phy_device * phydev)844 static int ksz9021_config_init(struct phy_device *phydev)
845 {
846 const struct device_node *of_node;
847 const struct device *dev_walker;
848
849 /* The Micrel driver has a deprecated option to place phy OF
850 * properties in the MAC node. Walk up the tree of devices to
851 * find a device with an OF node.
852 */
853 dev_walker = &phydev->mdio.dev;
854 do {
855 of_node = dev_walker->of_node;
856 dev_walker = dev_walker->parent;
857
858 } while (!of_node && dev_walker);
859
860 if (of_node) {
861 ksz9021_load_values_from_of(phydev, of_node,
862 MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
863 "txen-skew-ps", "txc-skew-ps",
864 "rxdv-skew-ps", "rxc-skew-ps");
865 ksz9021_load_values_from_of(phydev, of_node,
866 MII_KSZPHY_RX_DATA_PAD_SKEW,
867 "rxd0-skew-ps", "rxd1-skew-ps",
868 "rxd2-skew-ps", "rxd3-skew-ps");
869 ksz9021_load_values_from_of(phydev, of_node,
870 MII_KSZPHY_TX_DATA_PAD_SKEW,
871 "txd0-skew-ps", "txd1-skew-ps",
872 "txd2-skew-ps", "txd3-skew-ps");
873 }
874 return 0;
875 }
876
877 #define KSZ9031_PS_TO_REG 60
878
879 /* Extended registers */
880 /* MMD Address 0x0 */
881 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3
882 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4
883
884 /* MMD Address 0x2 */
885 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4
886 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4)
887 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0)
888
889 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5
890 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12)
891 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8)
892 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4)
893 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0)
894
895 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6
896 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12)
897 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8)
898 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4)
899 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0)
900
901 #define MII_KSZ9031RN_CLK_PAD_SKEW 8
902 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5)
903 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0)
904
905 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
906 * provide different RGMII options we need to configure delay offset
907 * for each pad relative to build in delay.
908 */
909 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
910 * 1.80ns
911 */
912 #define RX_ID 0x7
913 #define RX_CLK_ID 0x19
914
915 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
916 * internal 1.2ns delay.
917 */
918 #define RX_ND 0xc
919 #define RX_CLK_ND 0x0
920
921 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
922 #define TX_ID 0x0
923 #define TX_CLK_ID 0x1f
924
925 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
926 * dealy
927 */
928 #define TX_ND 0x7
929 #define TX_CLK_ND 0xf
930
931 /* MMD Address 0x1C */
932 #define MII_KSZ9031RN_EDPD 0x23
933 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0)
934
ksz9031_of_load_skew_values(struct phy_device * phydev,const struct device_node * of_node,u16 reg,size_t field_sz,const char * field[],u8 numfields,bool * update)935 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
936 const struct device_node *of_node,
937 u16 reg, size_t field_sz,
938 const char *field[], u8 numfields,
939 bool *update)
940 {
941 int val[4] = {-1, -2, -3, -4};
942 int matches = 0;
943 u16 mask;
944 u16 maxval;
945 u16 newval;
946 int i;
947
948 for (i = 0; i < numfields; i++)
949 if (!of_property_read_u32(of_node, field[i], val + i))
950 matches++;
951
952 if (!matches)
953 return 0;
954
955 *update |= true;
956
957 if (matches < numfields)
958 newval = phy_read_mmd(phydev, 2, reg);
959 else
960 newval = 0;
961
962 maxval = (field_sz == 4) ? 0xf : 0x1f;
963 for (i = 0; i < numfields; i++)
964 if (val[i] != -(i + 1)) {
965 mask = 0xffff;
966 mask ^= maxval << (field_sz * i);
967 newval = (newval & mask) |
968 (((val[i] / KSZ9031_PS_TO_REG) & maxval)
969 << (field_sz * i));
970 }
971
972 return phy_write_mmd(phydev, 2, reg, newval);
973 }
974
975 /* Center KSZ9031RNX FLP timing at 16ms. */
ksz9031_center_flp_timing(struct phy_device * phydev)976 static int ksz9031_center_flp_timing(struct phy_device *phydev)
977 {
978 int result;
979
980 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
981 0x0006);
982 if (result)
983 return result;
984
985 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
986 0x1A80);
987 if (result)
988 return result;
989
990 return genphy_restart_aneg(phydev);
991 }
992
993 /* Enable energy-detect power-down mode */
ksz9031_enable_edpd(struct phy_device * phydev)994 static int ksz9031_enable_edpd(struct phy_device *phydev)
995 {
996 int reg;
997
998 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
999 if (reg < 0)
1000 return reg;
1001 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
1002 reg | MII_KSZ9031RN_EDPD_ENABLE);
1003 }
1004
ksz9031_config_rgmii_delay(struct phy_device * phydev)1005 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
1006 {
1007 u16 rx, tx, rx_clk, tx_clk;
1008 int ret;
1009
1010 switch (phydev->interface) {
1011 case PHY_INTERFACE_MODE_RGMII:
1012 tx = TX_ND;
1013 tx_clk = TX_CLK_ND;
1014 rx = RX_ND;
1015 rx_clk = RX_CLK_ND;
1016 break;
1017 case PHY_INTERFACE_MODE_RGMII_ID:
1018 tx = TX_ID;
1019 tx_clk = TX_CLK_ID;
1020 rx = RX_ID;
1021 rx_clk = RX_CLK_ID;
1022 break;
1023 case PHY_INTERFACE_MODE_RGMII_RXID:
1024 tx = TX_ND;
1025 tx_clk = TX_CLK_ND;
1026 rx = RX_ID;
1027 rx_clk = RX_CLK_ID;
1028 break;
1029 case PHY_INTERFACE_MODE_RGMII_TXID:
1030 tx = TX_ID;
1031 tx_clk = TX_CLK_ID;
1032 rx = RX_ND;
1033 rx_clk = RX_CLK_ND;
1034 break;
1035 default:
1036 return 0;
1037 }
1038
1039 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1040 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1041 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1042 if (ret < 0)
1043 return ret;
1044
1045 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1046 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1047 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1048 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1049 FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1050 if (ret < 0)
1051 return ret;
1052
1053 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1054 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1055 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1056 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1057 FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1058 if (ret < 0)
1059 return ret;
1060
1061 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1062 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1063 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1064 }
1065
ksz9031_config_init(struct phy_device * phydev)1066 static int ksz9031_config_init(struct phy_device *phydev)
1067 {
1068 const struct device_node *of_node;
1069 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1070 static const char *rx_data_skews[4] = {
1071 "rxd0-skew-ps", "rxd1-skew-ps",
1072 "rxd2-skew-ps", "rxd3-skew-ps"
1073 };
1074 static const char *tx_data_skews[4] = {
1075 "txd0-skew-ps", "txd1-skew-ps",
1076 "txd2-skew-ps", "txd3-skew-ps"
1077 };
1078 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1079 const struct device *dev_walker;
1080 int result;
1081
1082 result = ksz9031_enable_edpd(phydev);
1083 if (result < 0)
1084 return result;
1085
1086 /* The Micrel driver has a deprecated option to place phy OF
1087 * properties in the MAC node. Walk up the tree of devices to
1088 * find a device with an OF node.
1089 */
1090 dev_walker = &phydev->mdio.dev;
1091 do {
1092 of_node = dev_walker->of_node;
1093 dev_walker = dev_walker->parent;
1094 } while (!of_node && dev_walker);
1095
1096 if (of_node) {
1097 bool update = false;
1098
1099 if (phy_interface_is_rgmii(phydev)) {
1100 result = ksz9031_config_rgmii_delay(phydev);
1101 if (result < 0)
1102 return result;
1103 }
1104
1105 ksz9031_of_load_skew_values(phydev, of_node,
1106 MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1107 clk_skews, 2, &update);
1108
1109 ksz9031_of_load_skew_values(phydev, of_node,
1110 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1111 control_skews, 2, &update);
1112
1113 ksz9031_of_load_skew_values(phydev, of_node,
1114 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1115 rx_data_skews, 4, &update);
1116
1117 ksz9031_of_load_skew_values(phydev, of_node,
1118 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1119 tx_data_skews, 4, &update);
1120
1121 if (update && !phy_interface_is_rgmii(phydev))
1122 phydev_warn(phydev,
1123 "*-skew-ps values should be used only with RGMII PHY modes\n");
1124
1125 /* Silicon Errata Sheet (DS80000691D or DS80000692D):
1126 * When the device links in the 1000BASE-T slave mode only,
1127 * the optional 125MHz reference output clock (CLK125_NDO)
1128 * has wide duty cycle variation.
1129 *
1130 * The optional CLK125_NDO clock does not meet the RGMII
1131 * 45/55 percent (min/max) duty cycle requirement and therefore
1132 * cannot be used directly by the MAC side for clocking
1133 * applications that have setup/hold time requirements on
1134 * rising and falling clock edges.
1135 *
1136 * Workaround:
1137 * Force the phy to be the master to receive a stable clock
1138 * which meets the duty cycle requirement.
1139 */
1140 if (of_property_read_bool(of_node, "micrel,force-master")) {
1141 result = phy_read(phydev, MII_CTRL1000);
1142 if (result < 0)
1143 goto err_force_master;
1144
1145 /* enable master mode, config & prefer master */
1146 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1147 result = phy_write(phydev, MII_CTRL1000, result);
1148 if (result < 0)
1149 goto err_force_master;
1150 }
1151 }
1152
1153 return ksz9031_center_flp_timing(phydev);
1154
1155 err_force_master:
1156 phydev_err(phydev, "failed to force the phy to master mode\n");
1157 return result;
1158 }
1159
1160 #define KSZ9131_SKEW_5BIT_MAX 2400
1161 #define KSZ9131_SKEW_4BIT_MAX 800
1162 #define KSZ9131_OFFSET 700
1163 #define KSZ9131_STEP 100
1164
ksz9131_of_load_skew_values(struct phy_device * phydev,struct device_node * of_node,u16 reg,size_t field_sz,char * field[],u8 numfields)1165 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1166 struct device_node *of_node,
1167 u16 reg, size_t field_sz,
1168 char *field[], u8 numfields)
1169 {
1170 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1171 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1172 int skewval, skewmax = 0;
1173 int matches = 0;
1174 u16 maxval;
1175 u16 newval;
1176 u16 mask;
1177 int i;
1178
1179 /* psec properties in dts should mean x pico seconds */
1180 if (field_sz == 5)
1181 skewmax = KSZ9131_SKEW_5BIT_MAX;
1182 else
1183 skewmax = KSZ9131_SKEW_4BIT_MAX;
1184
1185 for (i = 0; i < numfields; i++)
1186 if (!of_property_read_s32(of_node, field[i], &skewval)) {
1187 if (skewval < -KSZ9131_OFFSET)
1188 skewval = -KSZ9131_OFFSET;
1189 else if (skewval > skewmax)
1190 skewval = skewmax;
1191
1192 val[i] = skewval + KSZ9131_OFFSET;
1193 matches++;
1194 }
1195
1196 if (!matches)
1197 return 0;
1198
1199 if (matches < numfields)
1200 newval = phy_read_mmd(phydev, 2, reg);
1201 else
1202 newval = 0;
1203
1204 maxval = (field_sz == 4) ? 0xf : 0x1f;
1205 for (i = 0; i < numfields; i++)
1206 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1207 mask = 0xffff;
1208 mask ^= maxval << (field_sz * i);
1209 newval = (newval & mask) |
1210 (((val[i] / KSZ9131_STEP) & maxval)
1211 << (field_sz * i));
1212 }
1213
1214 return phy_write_mmd(phydev, 2, reg, newval);
1215 }
1216
1217 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2
1218 #define KSZ9131RN_RXC_DLL_CTRL 76
1219 #define KSZ9131RN_TXC_DLL_CTRL 77
1220 #define KSZ9131RN_DLL_ENABLE_DELAY 0
1221
ksz9131_config_rgmii_delay(struct phy_device * phydev)1222 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1223 {
1224 const struct kszphy_type *type = phydev->drv->driver_data;
1225 u16 rxcdll_val, txcdll_val;
1226 int ret;
1227
1228 switch (phydev->interface) {
1229 case PHY_INTERFACE_MODE_RGMII:
1230 rxcdll_val = type->disable_dll_rx_bit;
1231 txcdll_val = type->disable_dll_tx_bit;
1232 break;
1233 case PHY_INTERFACE_MODE_RGMII_ID:
1234 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1235 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1236 break;
1237 case PHY_INTERFACE_MODE_RGMII_RXID:
1238 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1239 txcdll_val = type->disable_dll_tx_bit;
1240 break;
1241 case PHY_INTERFACE_MODE_RGMII_TXID:
1242 rxcdll_val = type->disable_dll_rx_bit;
1243 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1244 break;
1245 default:
1246 return 0;
1247 }
1248
1249 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1250 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1251 rxcdll_val);
1252 if (ret < 0)
1253 return ret;
1254
1255 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1256 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1257 txcdll_val);
1258 }
1259
1260 /* Silicon Errata DS80000693B
1261 *
1262 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1263 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1264 * according to the datasheet (off if there is no link).
1265 */
ksz9131_led_errata(struct phy_device * phydev)1266 static int ksz9131_led_errata(struct phy_device *phydev)
1267 {
1268 int reg;
1269
1270 reg = phy_read_mmd(phydev, 2, 0);
1271 if (reg < 0)
1272 return reg;
1273
1274 if (!(reg & BIT(4)))
1275 return 0;
1276
1277 return phy_set_bits(phydev, 0x1e, BIT(9));
1278 }
1279
ksz9131_config_init(struct phy_device * phydev)1280 static int ksz9131_config_init(struct phy_device *phydev)
1281 {
1282 struct device_node *of_node;
1283 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1284 char *rx_data_skews[4] = {
1285 "rxd0-skew-psec", "rxd1-skew-psec",
1286 "rxd2-skew-psec", "rxd3-skew-psec"
1287 };
1288 char *tx_data_skews[4] = {
1289 "txd0-skew-psec", "txd1-skew-psec",
1290 "txd2-skew-psec", "txd3-skew-psec"
1291 };
1292 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1293 const struct device *dev_walker;
1294 int ret;
1295
1296 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1297
1298 dev_walker = &phydev->mdio.dev;
1299 do {
1300 of_node = dev_walker->of_node;
1301 dev_walker = dev_walker->parent;
1302 } while (!of_node && dev_walker);
1303
1304 if (!of_node)
1305 return 0;
1306
1307 if (phy_interface_is_rgmii(phydev)) {
1308 ret = ksz9131_config_rgmii_delay(phydev);
1309 if (ret < 0)
1310 return ret;
1311 }
1312
1313 ret = ksz9131_of_load_skew_values(phydev, of_node,
1314 MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1315 clk_skews, 2);
1316 if (ret < 0)
1317 return ret;
1318
1319 ret = ksz9131_of_load_skew_values(phydev, of_node,
1320 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1321 control_skews, 2);
1322 if (ret < 0)
1323 return ret;
1324
1325 ret = ksz9131_of_load_skew_values(phydev, of_node,
1326 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1327 rx_data_skews, 4);
1328 if (ret < 0)
1329 return ret;
1330
1331 ret = ksz9131_of_load_skew_values(phydev, of_node,
1332 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1333 tx_data_skews, 4);
1334 if (ret < 0)
1335 return ret;
1336
1337 ret = ksz9131_led_errata(phydev);
1338 if (ret < 0)
1339 return ret;
1340
1341 return 0;
1342 }
1343
1344 #define MII_KSZ9131_AUTO_MDIX 0x1C
1345 #define MII_KSZ9131_AUTO_MDI_SET BIT(7)
1346 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6)
1347 #define MII_KSZ9131_DIG_AXAN_STS 0x14
1348 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14)
1349 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12)
1350
ksz9131_mdix_update(struct phy_device * phydev)1351 static int ksz9131_mdix_update(struct phy_device *phydev)
1352 {
1353 int ret;
1354
1355 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) {
1356 phydev->mdix = phydev->mdix_ctrl;
1357 } else {
1358 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS);
1359 if (ret < 0)
1360 return ret;
1361
1362 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) {
1363 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT)
1364 phydev->mdix = ETH_TP_MDI;
1365 else
1366 phydev->mdix = ETH_TP_MDI_X;
1367 } else {
1368 phydev->mdix = ETH_TP_MDI_INVALID;
1369 }
1370 }
1371
1372 return 0;
1373 }
1374
ksz9131_config_mdix(struct phy_device * phydev,u8 ctrl)1375 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1376 {
1377 u16 val;
1378
1379 switch (ctrl) {
1380 case ETH_TP_MDI:
1381 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1382 MII_KSZ9131_AUTO_MDI_SET;
1383 break;
1384 case ETH_TP_MDI_X:
1385 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1386 break;
1387 case ETH_TP_MDI_AUTO:
1388 val = 0;
1389 break;
1390 default:
1391 return 0;
1392 }
1393
1394 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1395 MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1396 MII_KSZ9131_AUTO_MDI_SET, val);
1397 }
1398
ksz9131_read_status(struct phy_device * phydev)1399 static int ksz9131_read_status(struct phy_device *phydev)
1400 {
1401 int ret;
1402
1403 ret = ksz9131_mdix_update(phydev);
1404 if (ret < 0)
1405 return ret;
1406
1407 return genphy_read_status(phydev);
1408 }
1409
ksz9131_config_aneg(struct phy_device * phydev)1410 static int ksz9131_config_aneg(struct phy_device *phydev)
1411 {
1412 int ret;
1413
1414 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1415 if (ret)
1416 return ret;
1417
1418 return genphy_config_aneg(phydev);
1419 }
1420
ksz9477_get_features(struct phy_device * phydev)1421 static int ksz9477_get_features(struct phy_device *phydev)
1422 {
1423 int ret;
1424
1425 ret = genphy_read_abilities(phydev);
1426 if (ret)
1427 return ret;
1428
1429 /* The "EEE control and capability 1" (Register 3.20) seems to be
1430 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1431 * on the 7.60 will affect 3.20. So, we need to construct our own list
1432 * of caps.
1433 * KSZ8563R should have 100BaseTX/Full only.
1434 */
1435 linkmode_and(phydev->supported_eee, phydev->supported,
1436 PHY_EEE_CAP1_FEATURES);
1437
1438 return 0;
1439 }
1440
1441 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06
1442 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6)
1443 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4)
ksz8873mll_read_status(struct phy_device * phydev)1444 static int ksz8873mll_read_status(struct phy_device *phydev)
1445 {
1446 int regval;
1447
1448 /* dummy read */
1449 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1450
1451 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1452
1453 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1454 phydev->duplex = DUPLEX_HALF;
1455 else
1456 phydev->duplex = DUPLEX_FULL;
1457
1458 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1459 phydev->speed = SPEED_10;
1460 else
1461 phydev->speed = SPEED_100;
1462
1463 phydev->link = 1;
1464 phydev->pause = phydev->asym_pause = 0;
1465
1466 return 0;
1467 }
1468
ksz9031_get_features(struct phy_device * phydev)1469 static int ksz9031_get_features(struct phy_device *phydev)
1470 {
1471 int ret;
1472
1473 ret = genphy_read_abilities(phydev);
1474 if (ret < 0)
1475 return ret;
1476
1477 /* Silicon Errata Sheet (DS80000691D or DS80000692D):
1478 * Whenever the device's Asymmetric Pause capability is set to 1,
1479 * link-up may fail after a link-up to link-down transition.
1480 *
1481 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1482 *
1483 * Workaround:
1484 * Do not enable the Asymmetric Pause capability bit.
1485 */
1486 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1487
1488 /* We force setting the Pause capability as the core will force the
1489 * Asymmetric Pause capability to 1 otherwise.
1490 */
1491 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1492
1493 return 0;
1494 }
1495
ksz9031_read_status(struct phy_device * phydev)1496 static int ksz9031_read_status(struct phy_device *phydev)
1497 {
1498 int err;
1499 int regval;
1500
1501 err = genphy_read_status(phydev);
1502 if (err)
1503 return err;
1504
1505 /* Make sure the PHY is not broken. Read idle error count,
1506 * and reset the PHY if it is maxed out.
1507 */
1508 regval = phy_read(phydev, MII_STAT1000);
1509 if ((regval & 0xFF) == 0xFF) {
1510 phy_init_hw(phydev);
1511 phydev->link = 0;
1512 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1513 phydev->drv->config_intr(phydev);
1514 return genphy_config_aneg(phydev);
1515 }
1516
1517 return 0;
1518 }
1519
ksz9x31_cable_test_start(struct phy_device * phydev)1520 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1521 {
1522 struct kszphy_priv *priv = phydev->priv;
1523 int ret;
1524
1525 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1526 * Prior to running the cable diagnostics, Auto-negotiation should
1527 * be disabled, full duplex set and the link speed set to 1000Mbps
1528 * via the Basic Control Register.
1529 */
1530 ret = phy_modify(phydev, MII_BMCR,
1531 BMCR_SPEED1000 | BMCR_FULLDPLX |
1532 BMCR_ANENABLE | BMCR_SPEED100,
1533 BMCR_SPEED1000 | BMCR_FULLDPLX);
1534 if (ret)
1535 return ret;
1536
1537 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1538 * The Master-Slave configuration should be set to Slave by writing
1539 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1540 * Register.
1541 */
1542 ret = phy_read(phydev, MII_CTRL1000);
1543 if (ret < 0)
1544 return ret;
1545
1546 /* Cache these bits, they need to be restored once LinkMD finishes. */
1547 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1548 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1549 ret |= CTL1000_ENABLE_MASTER;
1550
1551 return phy_write(phydev, MII_CTRL1000, ret);
1552 }
1553
ksz9x31_cable_test_result_trans(u16 status)1554 static int ksz9x31_cable_test_result_trans(u16 status)
1555 {
1556 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1557 case KSZ9x31_LMD_VCT_ST_NORMAL:
1558 return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1559 case KSZ9x31_LMD_VCT_ST_OPEN:
1560 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1561 case KSZ9x31_LMD_VCT_ST_SHORT:
1562 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1563 case KSZ9x31_LMD_VCT_ST_FAIL:
1564 fallthrough;
1565 default:
1566 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1567 }
1568 }
1569
ksz9x31_cable_test_failed(u16 status)1570 static bool ksz9x31_cable_test_failed(u16 status)
1571 {
1572 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1573
1574 return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1575 }
1576
ksz9x31_cable_test_fault_length_valid(u16 status)1577 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1578 {
1579 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1580 case KSZ9x31_LMD_VCT_ST_OPEN:
1581 fallthrough;
1582 case KSZ9x31_LMD_VCT_ST_SHORT:
1583 return true;
1584 }
1585 return false;
1586 }
1587
ksz9x31_cable_test_fault_length(struct phy_device * phydev,u16 stat)1588 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1589 {
1590 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1591
1592 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1593 *
1594 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1595 */
1596 if (phydev_id_compare(phydev, PHY_ID_KSZ9131))
1597 dt = clamp(dt - 22, 0, 255);
1598
1599 return (dt * 400) / 10;
1600 }
1601
ksz9x31_cable_test_wait_for_completion(struct phy_device * phydev)1602 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1603 {
1604 int val, ret;
1605
1606 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1607 !(val & KSZ9x31_LMD_VCT_EN),
1608 30000, 100000, true);
1609
1610 return ret < 0 ? ret : 0;
1611 }
1612
ksz9x31_cable_test_get_pair(int pair)1613 static int ksz9x31_cable_test_get_pair(int pair)
1614 {
1615 static const int ethtool_pair[] = {
1616 ETHTOOL_A_CABLE_PAIR_A,
1617 ETHTOOL_A_CABLE_PAIR_B,
1618 ETHTOOL_A_CABLE_PAIR_C,
1619 ETHTOOL_A_CABLE_PAIR_D,
1620 };
1621
1622 return ethtool_pair[pair];
1623 }
1624
ksz9x31_cable_test_one_pair(struct phy_device * phydev,int pair)1625 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1626 {
1627 int ret, val;
1628
1629 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1630 * To test each individual cable pair, set the cable pair in the Cable
1631 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1632 * Diagnostic Register, along with setting the Cable Diagnostics Test
1633 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1634 * will self clear when the test is concluded.
1635 */
1636 ret = phy_write(phydev, KSZ9x31_LMD,
1637 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1638 if (ret)
1639 return ret;
1640
1641 ret = ksz9x31_cable_test_wait_for_completion(phydev);
1642 if (ret)
1643 return ret;
1644
1645 val = phy_read(phydev, KSZ9x31_LMD);
1646 if (val < 0)
1647 return val;
1648
1649 if (ksz9x31_cable_test_failed(val))
1650 return -EAGAIN;
1651
1652 ret = ethnl_cable_test_result(phydev,
1653 ksz9x31_cable_test_get_pair(pair),
1654 ksz9x31_cable_test_result_trans(val));
1655 if (ret)
1656 return ret;
1657
1658 if (!ksz9x31_cable_test_fault_length_valid(val))
1659 return 0;
1660
1661 return ethnl_cable_test_fault_length(phydev,
1662 ksz9x31_cable_test_get_pair(pair),
1663 ksz9x31_cable_test_fault_length(phydev, val));
1664 }
1665
ksz9x31_cable_test_get_status(struct phy_device * phydev,bool * finished)1666 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1667 bool *finished)
1668 {
1669 struct kszphy_priv *priv = phydev->priv;
1670 unsigned long pair_mask = 0xf;
1671 int retries = 20;
1672 int pair, ret, rv;
1673
1674 *finished = false;
1675
1676 /* Try harder if link partner is active */
1677 while (pair_mask && retries--) {
1678 for_each_set_bit(pair, &pair_mask, 4) {
1679 ret = ksz9x31_cable_test_one_pair(phydev, pair);
1680 if (ret == -EAGAIN)
1681 continue;
1682 if (ret < 0)
1683 return ret;
1684 clear_bit(pair, &pair_mask);
1685 }
1686 /* If link partner is in autonegotiation mode it will send 2ms
1687 * of FLPs with at least 6ms of silence.
1688 * Add 2ms sleep to have better chances to hit this silence.
1689 */
1690 if (pair_mask)
1691 usleep_range(2000, 3000);
1692 }
1693
1694 /* Report remaining unfinished pair result as unknown. */
1695 for_each_set_bit(pair, &pair_mask, 4) {
1696 ret = ethnl_cable_test_result(phydev,
1697 ksz9x31_cable_test_get_pair(pair),
1698 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1699 }
1700
1701 *finished = true;
1702
1703 /* Restore cached bits from before LinkMD got started. */
1704 rv = phy_modify(phydev, MII_CTRL1000,
1705 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1706 priv->vct_ctrl1000);
1707 if (rv)
1708 return rv;
1709
1710 return ret;
1711 }
1712
ksz8873mll_config_aneg(struct phy_device * phydev)1713 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1714 {
1715 return 0;
1716 }
1717
ksz886x_config_mdix(struct phy_device * phydev,u8 ctrl)1718 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1719 {
1720 u16 val;
1721
1722 switch (ctrl) {
1723 case ETH_TP_MDI:
1724 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1725 break;
1726 case ETH_TP_MDI_X:
1727 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1728 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1729 * sheet seems to be missing:
1730 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1731 * 0 = Normal operation (transmit on TX+/TX- pins)
1732 */
1733 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1734 break;
1735 case ETH_TP_MDI_AUTO:
1736 val = 0;
1737 break;
1738 default:
1739 return 0;
1740 }
1741
1742 return phy_modify(phydev, MII_BMCR,
1743 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1744 KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1745 KSZ886X_BMCR_HP_MDIX | val);
1746 }
1747
ksz886x_config_aneg(struct phy_device * phydev)1748 static int ksz886x_config_aneg(struct phy_device *phydev)
1749 {
1750 int ret;
1751
1752 ret = genphy_config_aneg(phydev);
1753 if (ret)
1754 return ret;
1755
1756 /* The MDI-X configuration is automatically changed by the PHY after
1757 * switching from autoneg off to on. So, take MDI-X configuration under
1758 * own control and set it after autoneg configuration was done.
1759 */
1760 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1761 }
1762
ksz886x_mdix_update(struct phy_device * phydev)1763 static int ksz886x_mdix_update(struct phy_device *phydev)
1764 {
1765 int ret;
1766
1767 ret = phy_read(phydev, MII_BMCR);
1768 if (ret < 0)
1769 return ret;
1770
1771 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1772 if (ret & KSZ886X_BMCR_FORCE_MDI)
1773 phydev->mdix_ctrl = ETH_TP_MDI_X;
1774 else
1775 phydev->mdix_ctrl = ETH_TP_MDI;
1776 } else {
1777 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1778 }
1779
1780 ret = phy_read(phydev, MII_KSZPHY_CTRL);
1781 if (ret < 0)
1782 return ret;
1783
1784 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1785 if (ret & KSZ886X_CTRL_MDIX_STAT)
1786 phydev->mdix = ETH_TP_MDI_X;
1787 else
1788 phydev->mdix = ETH_TP_MDI;
1789
1790 return 0;
1791 }
1792
ksz886x_read_status(struct phy_device * phydev)1793 static int ksz886x_read_status(struct phy_device *phydev)
1794 {
1795 int ret;
1796
1797 ret = ksz886x_mdix_update(phydev);
1798 if (ret < 0)
1799 return ret;
1800
1801 return genphy_read_status(phydev);
1802 }
1803
1804 struct ksz9477_errata_write {
1805 u8 dev_addr;
1806 u8 reg_addr;
1807 u16 val;
1808 };
1809
1810 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
1811 /* Register settings are needed to improve PHY receive performance */
1812 {0x01, 0x6f, 0xdd0b},
1813 {0x01, 0x8f, 0x6032},
1814 {0x01, 0x9d, 0x248c},
1815 {0x01, 0x75, 0x0060},
1816 {0x01, 0xd3, 0x7777},
1817 {0x1c, 0x06, 0x3008},
1818 {0x1c, 0x08, 0x2000},
1819
1820 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
1821 {0x1c, 0x04, 0x00d0},
1822
1823 /* Register settings are required to meet data sheet supply current specifications */
1824 {0x1c, 0x13, 0x6eff},
1825 {0x1c, 0x14, 0xe6ff},
1826 {0x1c, 0x15, 0x6eff},
1827 {0x1c, 0x16, 0xe6ff},
1828 {0x1c, 0x17, 0x00ff},
1829 {0x1c, 0x18, 0x43ff},
1830 {0x1c, 0x19, 0xc3ff},
1831 {0x1c, 0x1a, 0x6fff},
1832 {0x1c, 0x1b, 0x07ff},
1833 {0x1c, 0x1c, 0x0fff},
1834 {0x1c, 0x1d, 0xe7ff},
1835 {0x1c, 0x1e, 0xefff},
1836 {0x1c, 0x20, 0xeeee},
1837 };
1838
ksz9477_phy_errata(struct phy_device * phydev)1839 static int ksz9477_phy_errata(struct phy_device *phydev)
1840 {
1841 int err;
1842 int i;
1843
1844 /* Apply PHY settings to address errata listed in
1845 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1846 * Silicon Errata and Data Sheet Clarification documents.
1847 *
1848 * Document notes: Before configuring the PHY MMD registers, it is
1849 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
1850 * disabled by writing to register 0xN100-0xN101. After writing the
1851 * MMD registers, and after all errata workarounds that involve PHY
1852 * register settings, write register 0xN100-0xN101 again to enable
1853 * and restart auto-negotiation.
1854 */
1855 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
1856 if (err)
1857 return err;
1858
1859 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
1860 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
1861
1862 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
1863 if (err)
1864 return err;
1865 }
1866
1867 err = genphy_restart_aneg(phydev);
1868 if (err)
1869 return err;
1870
1871 return err;
1872 }
1873
ksz9477_config_init(struct phy_device * phydev)1874 static int ksz9477_config_init(struct phy_device *phydev)
1875 {
1876 int err;
1877
1878 /* Only KSZ9897 family of switches needs this fix. */
1879 if ((phydev->phy_id & 0xf) == 1) {
1880 err = ksz9477_phy_errata(phydev);
1881 if (err)
1882 return err;
1883 }
1884
1885 /* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes
1886 * in this switch shall be regarded as broken.
1887 */
1888 if (phydev->dev_flags & MICREL_NO_EEE)
1889 phydev->eee_broken_modes = -1;
1890
1891 return kszphy_config_init(phydev);
1892 }
1893
kszphy_get_sset_count(struct phy_device * phydev)1894 static int kszphy_get_sset_count(struct phy_device *phydev)
1895 {
1896 return ARRAY_SIZE(kszphy_hw_stats);
1897 }
1898
kszphy_get_strings(struct phy_device * phydev,u8 * data)1899 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
1900 {
1901 int i;
1902
1903 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
1904 strscpy(data + i * ETH_GSTRING_LEN,
1905 kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
1906 }
1907 }
1908
kszphy_get_stat(struct phy_device * phydev,int i)1909 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
1910 {
1911 struct kszphy_hw_stat stat = kszphy_hw_stats[i];
1912 struct kszphy_priv *priv = phydev->priv;
1913 int val;
1914 u64 ret;
1915
1916 val = phy_read(phydev, stat.reg);
1917 if (val < 0) {
1918 ret = U64_MAX;
1919 } else {
1920 val = val & ((1 << stat.bits) - 1);
1921 priv->stats[i] += val;
1922 ret = priv->stats[i];
1923 }
1924
1925 return ret;
1926 }
1927
kszphy_get_stats(struct phy_device * phydev,struct ethtool_stats * stats,u64 * data)1928 static void kszphy_get_stats(struct phy_device *phydev,
1929 struct ethtool_stats *stats, u64 *data)
1930 {
1931 int i;
1932
1933 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
1934 data[i] = kszphy_get_stat(phydev, i);
1935 }
1936
kszphy_suspend(struct phy_device * phydev)1937 static int kszphy_suspend(struct phy_device *phydev)
1938 {
1939 /* Disable PHY Interrupts */
1940 if (phy_interrupt_is_valid(phydev)) {
1941 phydev->interrupts = PHY_INTERRUPT_DISABLED;
1942 if (phydev->drv->config_intr)
1943 phydev->drv->config_intr(phydev);
1944 }
1945
1946 return genphy_suspend(phydev);
1947 }
1948
kszphy_parse_led_mode(struct phy_device * phydev)1949 static void kszphy_parse_led_mode(struct phy_device *phydev)
1950 {
1951 const struct kszphy_type *type = phydev->drv->driver_data;
1952 const struct device_node *np = phydev->mdio.dev.of_node;
1953 struct kszphy_priv *priv = phydev->priv;
1954 int ret;
1955
1956 if (type && type->led_mode_reg) {
1957 ret = of_property_read_u32(np, "micrel,led-mode",
1958 &priv->led_mode);
1959
1960 if (ret)
1961 priv->led_mode = -1;
1962
1963 if (priv->led_mode > 3) {
1964 phydev_err(phydev, "invalid led mode: 0x%02x\n",
1965 priv->led_mode);
1966 priv->led_mode = -1;
1967 }
1968 } else {
1969 priv->led_mode = -1;
1970 }
1971 }
1972
kszphy_resume(struct phy_device * phydev)1973 static int kszphy_resume(struct phy_device *phydev)
1974 {
1975 int ret;
1976
1977 genphy_resume(phydev);
1978
1979 /* After switching from power-down to normal mode, an internal global
1980 * reset is automatically generated. Wait a minimum of 1 ms before
1981 * read/write access to the PHY registers.
1982 */
1983 usleep_range(1000, 2000);
1984
1985 ret = kszphy_config_reset(phydev);
1986 if (ret)
1987 return ret;
1988
1989 /* Enable PHY Interrupts */
1990 if (phy_interrupt_is_valid(phydev)) {
1991 phydev->interrupts = PHY_INTERRUPT_ENABLED;
1992 if (phydev->drv->config_intr)
1993 phydev->drv->config_intr(phydev);
1994 }
1995
1996 return 0;
1997 }
1998
ksz9477_resume(struct phy_device * phydev)1999 static int ksz9477_resume(struct phy_device *phydev)
2000 {
2001 int ret;
2002
2003 /* No need to initialize registers if not powered down. */
2004 ret = phy_read(phydev, MII_BMCR);
2005 if (ret < 0)
2006 return ret;
2007 if (!(ret & BMCR_PDOWN))
2008 return 0;
2009
2010 genphy_resume(phydev);
2011
2012 /* After switching from power-down to normal mode, an internal global
2013 * reset is automatically generated. Wait a minimum of 1 ms before
2014 * read/write access to the PHY registers.
2015 */
2016 usleep_range(1000, 2000);
2017
2018 /* Only KSZ9897 family of switches needs this fix. */
2019 if ((phydev->phy_id & 0xf) == 1) {
2020 ret = ksz9477_phy_errata(phydev);
2021 if (ret)
2022 return ret;
2023 }
2024
2025 /* Enable PHY Interrupts */
2026 if (phy_interrupt_is_valid(phydev)) {
2027 phydev->interrupts = PHY_INTERRUPT_ENABLED;
2028 if (phydev->drv->config_intr)
2029 phydev->drv->config_intr(phydev);
2030 }
2031
2032 return 0;
2033 }
2034
ksz8061_resume(struct phy_device * phydev)2035 static int ksz8061_resume(struct phy_device *phydev)
2036 {
2037 int ret;
2038
2039 /* This function can be called twice when the Ethernet device is on. */
2040 ret = phy_read(phydev, MII_BMCR);
2041 if (ret < 0)
2042 return ret;
2043 if (!(ret & BMCR_PDOWN))
2044 return 0;
2045
2046 genphy_resume(phydev);
2047 usleep_range(1000, 2000);
2048
2049 /* Re-program the value after chip is reset. */
2050 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
2051 if (ret)
2052 return ret;
2053
2054 /* Enable PHY Interrupts */
2055 if (phy_interrupt_is_valid(phydev)) {
2056 phydev->interrupts = PHY_INTERRUPT_ENABLED;
2057 if (phydev->drv->config_intr)
2058 phydev->drv->config_intr(phydev);
2059 }
2060
2061 return 0;
2062 }
2063
kszphy_probe(struct phy_device * phydev)2064 static int kszphy_probe(struct phy_device *phydev)
2065 {
2066 const struct kszphy_type *type = phydev->drv->driver_data;
2067 const struct device_node *np = phydev->mdio.dev.of_node;
2068 struct kszphy_priv *priv;
2069 struct clk *clk;
2070
2071 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2072 if (!priv)
2073 return -ENOMEM;
2074
2075 phydev->priv = priv;
2076
2077 priv->type = type;
2078
2079 kszphy_parse_led_mode(phydev);
2080
2081 clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref");
2082 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2083 if (!IS_ERR_OR_NULL(clk)) {
2084 unsigned long rate = clk_get_rate(clk);
2085 bool rmii_ref_clk_sel_25_mhz;
2086
2087 if (type)
2088 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2089 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2090 "micrel,rmii-reference-clock-select-25-mhz");
2091
2092 if (rate > 24500000 && rate < 25500000) {
2093 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2094 } else if (rate > 49500000 && rate < 50500000) {
2095 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2096 } else {
2097 phydev_err(phydev, "Clock rate out of range: %ld\n",
2098 rate);
2099 return -EINVAL;
2100 }
2101 }
2102
2103 if (ksz8041_fiber_mode(phydev))
2104 phydev->port = PORT_FIBRE;
2105
2106 /* Support legacy board-file configuration */
2107 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2108 priv->rmii_ref_clk_sel = true;
2109 priv->rmii_ref_clk_sel_val = true;
2110 }
2111
2112 return 0;
2113 }
2114
lan8814_cable_test_start(struct phy_device * phydev)2115 static int lan8814_cable_test_start(struct phy_device *phydev)
2116 {
2117 /* If autoneg is enabled, we won't be able to test cross pair
2118 * short. In this case, the PHY will "detect" a link and
2119 * confuse the internal state machine - disable auto neg here.
2120 * Set the speed to 1000mbit and full duplex.
2121 */
2122 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2123 BMCR_SPEED1000 | BMCR_FULLDPLX);
2124 }
2125
ksz886x_cable_test_start(struct phy_device * phydev)2126 static int ksz886x_cable_test_start(struct phy_device *phydev)
2127 {
2128 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2129 return -EOPNOTSUPP;
2130
2131 /* If autoneg is enabled, we won't be able to test cross pair
2132 * short. In this case, the PHY will "detect" a link and
2133 * confuse the internal state machine - disable auto neg here.
2134 * If autoneg is disabled, we should set the speed to 10mbit.
2135 */
2136 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2137 }
2138
ksz886x_cable_test_result_trans(u16 status,u16 mask)2139 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2140 {
2141 switch (FIELD_GET(mask, status)) {
2142 case KSZ8081_LMD_STAT_NORMAL:
2143 return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2144 case KSZ8081_LMD_STAT_SHORT:
2145 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2146 case KSZ8081_LMD_STAT_OPEN:
2147 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2148 case KSZ8081_LMD_STAT_FAIL:
2149 fallthrough;
2150 default:
2151 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2152 }
2153 }
2154
ksz886x_cable_test_failed(u16 status,u16 mask)2155 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2156 {
2157 return FIELD_GET(mask, status) ==
2158 KSZ8081_LMD_STAT_FAIL;
2159 }
2160
ksz886x_cable_test_fault_length_valid(u16 status,u16 mask)2161 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2162 {
2163 switch (FIELD_GET(mask, status)) {
2164 case KSZ8081_LMD_STAT_OPEN:
2165 fallthrough;
2166 case KSZ8081_LMD_STAT_SHORT:
2167 return true;
2168 }
2169 return false;
2170 }
2171
ksz886x_cable_test_fault_length(struct phy_device * phydev,u16 status,u16 data_mask)2172 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2173 u16 status, u16 data_mask)
2174 {
2175 int dt;
2176
2177 /* According to the data sheet the distance to the fault is
2178 * DELTA_TIME * 0.4 meters for ksz phys.
2179 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2180 */
2181 dt = FIELD_GET(data_mask, status);
2182
2183 if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2184 return ((dt - 22) * 800) / 10;
2185 else
2186 return (dt * 400) / 10;
2187 }
2188
ksz886x_cable_test_wait_for_completion(struct phy_device * phydev)2189 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2190 {
2191 const struct kszphy_type *type = phydev->drv->driver_data;
2192 int val, ret;
2193
2194 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2195 !(val & KSZ8081_LMD_ENABLE_TEST),
2196 30000, 100000, true);
2197
2198 return ret < 0 ? ret : 0;
2199 }
2200
lan8814_cable_test_one_pair(struct phy_device * phydev,int pair)2201 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2202 {
2203 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2204 ETHTOOL_A_CABLE_PAIR_B,
2205 ETHTOOL_A_CABLE_PAIR_C,
2206 ETHTOOL_A_CABLE_PAIR_D,
2207 };
2208 u32 fault_length;
2209 int ret;
2210 int val;
2211
2212 val = KSZ8081_LMD_ENABLE_TEST;
2213 val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2214
2215 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2216 if (ret < 0)
2217 return ret;
2218
2219 ret = ksz886x_cable_test_wait_for_completion(phydev);
2220 if (ret)
2221 return ret;
2222
2223 val = phy_read(phydev, LAN8814_CABLE_DIAG);
2224 if (val < 0)
2225 return val;
2226
2227 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2228 return -EAGAIN;
2229
2230 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2231 ksz886x_cable_test_result_trans(val,
2232 LAN8814_CABLE_DIAG_STAT_MASK
2233 ));
2234 if (ret)
2235 return ret;
2236
2237 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2238 return 0;
2239
2240 fault_length = ksz886x_cable_test_fault_length(phydev, val,
2241 LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2242
2243 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2244 }
2245
ksz886x_cable_test_one_pair(struct phy_device * phydev,int pair)2246 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2247 {
2248 static const int ethtool_pair[] = {
2249 ETHTOOL_A_CABLE_PAIR_A,
2250 ETHTOOL_A_CABLE_PAIR_B,
2251 };
2252 int ret, val, mdix;
2253 u32 fault_length;
2254
2255 /* There is no way to choice the pair, like we do one ksz9031.
2256 * We can workaround this limitation by using the MDI-X functionality.
2257 */
2258 if (pair == 0)
2259 mdix = ETH_TP_MDI;
2260 else
2261 mdix = ETH_TP_MDI_X;
2262
2263 switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2264 case PHY_ID_KSZ8081:
2265 ret = ksz8081_config_mdix(phydev, mdix);
2266 break;
2267 case PHY_ID_KSZ886X:
2268 ret = ksz886x_config_mdix(phydev, mdix);
2269 break;
2270 default:
2271 ret = -ENODEV;
2272 }
2273
2274 if (ret)
2275 return ret;
2276
2277 /* Now we are ready to fire. This command will send a 100ns pulse
2278 * to the pair.
2279 */
2280 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2281 if (ret)
2282 return ret;
2283
2284 ret = ksz886x_cable_test_wait_for_completion(phydev);
2285 if (ret)
2286 return ret;
2287
2288 val = phy_read(phydev, KSZ8081_LMD);
2289 if (val < 0)
2290 return val;
2291
2292 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2293 return -EAGAIN;
2294
2295 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2296 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2297 if (ret)
2298 return ret;
2299
2300 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2301 return 0;
2302
2303 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2304
2305 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2306 }
2307
ksz886x_cable_test_get_status(struct phy_device * phydev,bool * finished)2308 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2309 bool *finished)
2310 {
2311 const struct kszphy_type *type = phydev->drv->driver_data;
2312 unsigned long pair_mask = type->pair_mask;
2313 int retries = 20;
2314 int ret = 0;
2315 int pair;
2316
2317 *finished = false;
2318
2319 /* Try harder if link partner is active */
2320 while (pair_mask && retries--) {
2321 for_each_set_bit(pair, &pair_mask, 4) {
2322 if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2323 ret = lan8814_cable_test_one_pair(phydev, pair);
2324 else
2325 ret = ksz886x_cable_test_one_pair(phydev, pair);
2326 if (ret == -EAGAIN)
2327 continue;
2328 if (ret < 0)
2329 return ret;
2330 clear_bit(pair, &pair_mask);
2331 }
2332 /* If link partner is in autonegotiation mode it will send 2ms
2333 * of FLPs with at least 6ms of silence.
2334 * Add 2ms sleep to have better chances to hit this silence.
2335 */
2336 if (pair_mask)
2337 msleep(2);
2338 }
2339
2340 *finished = true;
2341
2342 return ret;
2343 }
2344
2345 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16
2346 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17
2347 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000
2348
2349 #define LAN8814_QSGMII_SOFT_RESET 0x43
2350 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0)
2351 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13
2352 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3)
2353 #define LAN8814_ALIGN_SWAP 0x4a
2354 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1
2355 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
2356
2357 #define LAN8804_ALIGN_SWAP 0x4a
2358 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1
2359 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
2360 #define LAN8814_CLOCK_MANAGEMENT 0xd
2361 #define LAN8814_LINK_QUALITY 0x8e
2362
lanphy_read_page_reg(struct phy_device * phydev,int page,u32 addr)2363 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2364 {
2365 int data;
2366
2367 phy_lock_mdio_bus(phydev);
2368 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2369 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2370 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2371 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2372 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2373 phy_unlock_mdio_bus(phydev);
2374
2375 return data;
2376 }
2377
lanphy_write_page_reg(struct phy_device * phydev,int page,u16 addr,u16 val)2378 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2379 u16 val)
2380 {
2381 phy_lock_mdio_bus(phydev);
2382 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2383 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2384 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2385 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2386
2387 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2388 if (val != 0)
2389 phydev_err(phydev, "Error: phy_write has returned error %d\n",
2390 val);
2391 phy_unlock_mdio_bus(phydev);
2392 return val;
2393 }
2394
lan8814_config_ts_intr(struct phy_device * phydev,bool enable)2395 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2396 {
2397 u16 val = 0;
2398
2399 if (enable)
2400 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2401 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2402 PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2403 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2404
2405 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2406 }
2407
lan8814_ptp_rx_ts_get(struct phy_device * phydev,u32 * seconds,u32 * nano_seconds,u16 * seq_id)2408 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2409 u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2410 {
2411 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2412 *seconds = (*seconds << 16) |
2413 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2414
2415 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2416 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2417 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2418
2419 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2420 }
2421
lan8814_ptp_tx_ts_get(struct phy_device * phydev,u32 * seconds,u32 * nano_seconds,u16 * seq_id)2422 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2423 u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2424 {
2425 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2426 *seconds = *seconds << 16 |
2427 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2428
2429 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2430 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2431 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2432
2433 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2434 }
2435
lan8814_ts_info(struct mii_timestamper * mii_ts,struct ethtool_ts_info * info)2436 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
2437 {
2438 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2439 struct phy_device *phydev = ptp_priv->phydev;
2440 struct lan8814_shared_priv *shared = phydev->shared->priv;
2441
2442 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2443 SOF_TIMESTAMPING_RX_HARDWARE |
2444 SOF_TIMESTAMPING_RAW_HARDWARE;
2445
2446 info->phc_index = ptp_clock_index(shared->ptp_clock);
2447
2448 info->tx_types =
2449 (1 << HWTSTAMP_TX_OFF) |
2450 (1 << HWTSTAMP_TX_ON) |
2451 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
2452
2453 info->rx_filters =
2454 (1 << HWTSTAMP_FILTER_NONE) |
2455 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2456 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2457 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2458 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2459
2460 return 0;
2461 }
2462
lan8814_flush_fifo(struct phy_device * phydev,bool egress)2463 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2464 {
2465 int i;
2466
2467 for (i = 0; i < FIFO_SIZE; ++i)
2468 lanphy_read_page_reg(phydev, 5,
2469 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2470
2471 /* Read to clear overflow status bit */
2472 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2473 }
2474
lan8814_hwtstamp(struct mii_timestamper * mii_ts,struct ifreq * ifr)2475 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
2476 {
2477 struct kszphy_ptp_priv *ptp_priv =
2478 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2479 struct phy_device *phydev = ptp_priv->phydev;
2480 struct lan8814_shared_priv *shared = phydev->shared->priv;
2481 struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2482 struct hwtstamp_config config;
2483 int txcfg = 0, rxcfg = 0;
2484 int pkt_ts_enable;
2485 int tx_mod;
2486
2487 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2488 return -EFAULT;
2489
2490 ptp_priv->hwts_tx_type = config.tx_type;
2491 ptp_priv->rx_filter = config.rx_filter;
2492
2493 switch (config.rx_filter) {
2494 case HWTSTAMP_FILTER_NONE:
2495 ptp_priv->layer = 0;
2496 ptp_priv->version = 0;
2497 break;
2498 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2499 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2500 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2501 ptp_priv->layer = PTP_CLASS_L4;
2502 ptp_priv->version = PTP_CLASS_V2;
2503 break;
2504 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2505 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2506 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2507 ptp_priv->layer = PTP_CLASS_L2;
2508 ptp_priv->version = PTP_CLASS_V2;
2509 break;
2510 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2511 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2512 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2513 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2514 ptp_priv->version = PTP_CLASS_V2;
2515 break;
2516 default:
2517 return -ERANGE;
2518 }
2519
2520 if (ptp_priv->layer & PTP_CLASS_L2) {
2521 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2522 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2523 } else if (ptp_priv->layer & PTP_CLASS_L4) {
2524 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2525 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2526 }
2527 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2528 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2529
2530 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2531 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2532 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2533 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2534
2535 tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD);
2536 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) {
2537 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2538 tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2539 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) {
2540 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2541 tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2542 }
2543
2544 if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2545 lan8814_config_ts_intr(ptp_priv->phydev, true);
2546 else
2547 lan8814_config_ts_intr(ptp_priv->phydev, false);
2548
2549 mutex_lock(&shared->shared_lock);
2550 if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2551 shared->ref++;
2552 else
2553 shared->ref--;
2554
2555 if (shared->ref)
2556 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2557 PTP_CMD_CTL_PTP_ENABLE_);
2558 else
2559 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2560 PTP_CMD_CTL_PTP_DISABLE_);
2561 mutex_unlock(&shared->shared_lock);
2562
2563 /* In case of multiple starts and stops, these needs to be cleared */
2564 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2565 list_del(&rx_ts->list);
2566 kfree(rx_ts);
2567 }
2568 skb_queue_purge(&ptp_priv->rx_queue);
2569 skb_queue_purge(&ptp_priv->tx_queue);
2570
2571 lan8814_flush_fifo(ptp_priv->phydev, false);
2572 lan8814_flush_fifo(ptp_priv->phydev, true);
2573
2574 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
2575 }
2576
lan8814_txtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)2577 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2578 struct sk_buff *skb, int type)
2579 {
2580 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2581
2582 switch (ptp_priv->hwts_tx_type) {
2583 case HWTSTAMP_TX_ONESTEP_SYNC:
2584 if (ptp_msg_is_sync(skb, type)) {
2585 kfree_skb(skb);
2586 return;
2587 }
2588 fallthrough;
2589 case HWTSTAMP_TX_ON:
2590 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2591 skb_queue_tail(&ptp_priv->tx_queue, skb);
2592 break;
2593 case HWTSTAMP_TX_OFF:
2594 default:
2595 kfree_skb(skb);
2596 break;
2597 }
2598 }
2599
lan8814_get_sig_rx(struct sk_buff * skb,u16 * sig)2600 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2601 {
2602 struct ptp_header *ptp_header;
2603 u32 type;
2604
2605 skb_push(skb, ETH_HLEN);
2606 type = ptp_classify_raw(skb);
2607 ptp_header = ptp_parse_header(skb, type);
2608 skb_pull_inline(skb, ETH_HLEN);
2609
2610 if (!ptp_header)
2611 return false;
2612
2613 *sig = (__force u16)(ntohs(ptp_header->sequence_id));
2614 return true;
2615 }
2616
lan8814_match_rx_skb(struct kszphy_ptp_priv * ptp_priv,struct sk_buff * skb)2617 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
2618 struct sk_buff *skb)
2619 {
2620 struct skb_shared_hwtstamps *shhwtstamps;
2621 struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2622 unsigned long flags;
2623 bool ret = false;
2624 u16 skb_sig;
2625
2626 if (!lan8814_get_sig_rx(skb, &skb_sig))
2627 return ret;
2628
2629 /* Iterate over all RX timestamps and match it with the received skbs */
2630 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2631 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2632 /* Check if we found the signature we were looking for. */
2633 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2634 continue;
2635
2636 shhwtstamps = skb_hwtstamps(skb);
2637 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2638 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2639 rx_ts->nsec);
2640 list_del(&rx_ts->list);
2641 kfree(rx_ts);
2642
2643 ret = true;
2644 break;
2645 }
2646 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2647
2648 if (ret)
2649 netif_rx(skb);
2650 return ret;
2651 }
2652
lan8814_rxtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)2653 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2654 {
2655 struct kszphy_ptp_priv *ptp_priv =
2656 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2657
2658 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2659 type == PTP_CLASS_NONE)
2660 return false;
2661
2662 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2663 return false;
2664
2665 /* If we failed to match then add it to the queue for when the timestamp
2666 * will come
2667 */
2668 if (!lan8814_match_rx_skb(ptp_priv, skb))
2669 skb_queue_tail(&ptp_priv->rx_queue, skb);
2670
2671 return true;
2672 }
2673
lan8814_ptp_clock_set(struct phy_device * phydev,u32 seconds,u32 nano_seconds)2674 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2675 u32 seconds, u32 nano_seconds)
2676 {
2677 u32 sec_low, sec_high, nsec_low, nsec_high;
2678
2679 sec_low = seconds & 0xffff;
2680 sec_high = (seconds >> 16) & 0xffff;
2681 nsec_low = nano_seconds & 0xffff;
2682 nsec_high = (nano_seconds >> 16) & 0x3fff;
2683
2684 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low);
2685 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high);
2686 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low);
2687 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high);
2688
2689 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2690 }
2691
lan8814_ptp_clock_get(struct phy_device * phydev,u32 * seconds,u32 * nano_seconds)2692 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2693 u32 *seconds, u32 *nano_seconds)
2694 {
2695 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2696
2697 *seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2698 *seconds = (*seconds << 16) |
2699 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2700
2701 *nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2702 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2703 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2704 }
2705
lan8814_ptpci_gettime64(struct ptp_clock_info * ptpci,struct timespec64 * ts)2706 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2707 struct timespec64 *ts)
2708 {
2709 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2710 ptp_clock_info);
2711 struct phy_device *phydev = shared->phydev;
2712 u32 nano_seconds;
2713 u32 seconds;
2714
2715 mutex_lock(&shared->shared_lock);
2716 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2717 mutex_unlock(&shared->shared_lock);
2718 ts->tv_sec = seconds;
2719 ts->tv_nsec = nano_seconds;
2720
2721 return 0;
2722 }
2723
lan8814_ptpci_settime64(struct ptp_clock_info * ptpci,const struct timespec64 * ts)2724 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2725 const struct timespec64 *ts)
2726 {
2727 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2728 ptp_clock_info);
2729 struct phy_device *phydev = shared->phydev;
2730
2731 mutex_lock(&shared->shared_lock);
2732 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2733 mutex_unlock(&shared->shared_lock);
2734
2735 return 0;
2736 }
2737
lan8814_ptp_clock_step(struct phy_device * phydev,s64 time_step_ns)2738 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2739 s64 time_step_ns)
2740 {
2741 u32 nano_seconds_step;
2742 u64 abs_time_step_ns;
2743 u32 unsigned_seconds;
2744 u32 nano_seconds;
2745 u32 remainder;
2746 s32 seconds;
2747
2748 if (time_step_ns > 15000000000LL) {
2749 /* convert to clock set */
2750 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2751 unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2752 &remainder);
2753 nano_seconds += remainder;
2754 if (nano_seconds >= 1000000000) {
2755 unsigned_seconds++;
2756 nano_seconds -= 1000000000;
2757 }
2758 lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds);
2759 return;
2760 } else if (time_step_ns < -15000000000LL) {
2761 /* convert to clock set */
2762 time_step_ns = -time_step_ns;
2763
2764 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2765 unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2766 &remainder);
2767 nano_seconds_step = remainder;
2768 if (nano_seconds < nano_seconds_step) {
2769 unsigned_seconds--;
2770 nano_seconds += 1000000000;
2771 }
2772 nano_seconds -= nano_seconds_step;
2773 lan8814_ptp_clock_set(phydev, unsigned_seconds,
2774 nano_seconds);
2775 return;
2776 }
2777
2778 /* do clock step */
2779 if (time_step_ns >= 0) {
2780 abs_time_step_ns = (u64)time_step_ns;
2781 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2782 &remainder);
2783 nano_seconds = remainder;
2784 } else {
2785 abs_time_step_ns = (u64)(-time_step_ns);
2786 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2787 &remainder));
2788 nano_seconds = remainder;
2789 if (nano_seconds > 0) {
2790 /* subtracting nano seconds is not allowed
2791 * convert to subtracting from seconds,
2792 * and adding to nanoseconds
2793 */
2794 seconds--;
2795 nano_seconds = (1000000000 - nano_seconds);
2796 }
2797 }
2798
2799 if (nano_seconds > 0) {
2800 /* add 8 ns to cover the likely normal increment */
2801 nano_seconds += 8;
2802 }
2803
2804 if (nano_seconds >= 1000000000) {
2805 /* carry into seconds */
2806 seconds++;
2807 nano_seconds -= 1000000000;
2808 }
2809
2810 while (seconds) {
2811 if (seconds > 0) {
2812 u32 adjustment_value = (u32)seconds;
2813 u16 adjustment_value_lo, adjustment_value_hi;
2814
2815 if (adjustment_value > 0xF)
2816 adjustment_value = 0xF;
2817
2818 adjustment_value_lo = adjustment_value & 0xffff;
2819 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2820
2821 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2822 adjustment_value_lo);
2823 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2824 PTP_LTC_STEP_ADJ_DIR_ |
2825 adjustment_value_hi);
2826 seconds -= ((s32)adjustment_value);
2827 } else {
2828 u32 adjustment_value = (u32)(-seconds);
2829 u16 adjustment_value_lo, adjustment_value_hi;
2830
2831 if (adjustment_value > 0xF)
2832 adjustment_value = 0xF;
2833
2834 adjustment_value_lo = adjustment_value & 0xffff;
2835 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2836
2837 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2838 adjustment_value_lo);
2839 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2840 adjustment_value_hi);
2841 seconds += ((s32)adjustment_value);
2842 }
2843 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2844 PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2845 }
2846 if (nano_seconds) {
2847 u16 nano_seconds_lo;
2848 u16 nano_seconds_hi;
2849
2850 nano_seconds_lo = nano_seconds & 0xffff;
2851 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2852
2853 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2854 nano_seconds_lo);
2855 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2856 PTP_LTC_STEP_ADJ_DIR_ |
2857 nano_seconds_hi);
2858 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2859 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2860 }
2861 }
2862
lan8814_ptpci_adjtime(struct ptp_clock_info * ptpci,s64 delta)2863 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2864 {
2865 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2866 ptp_clock_info);
2867 struct phy_device *phydev = shared->phydev;
2868
2869 mutex_lock(&shared->shared_lock);
2870 lan8814_ptp_clock_step(phydev, delta);
2871 mutex_unlock(&shared->shared_lock);
2872
2873 return 0;
2874 }
2875
lan8814_ptpci_adjfine(struct ptp_clock_info * ptpci,long scaled_ppm)2876 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
2877 {
2878 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2879 ptp_clock_info);
2880 struct phy_device *phydev = shared->phydev;
2881 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
2882 bool positive = true;
2883 u32 kszphy_rate_adj;
2884
2885 if (scaled_ppm < 0) {
2886 scaled_ppm = -scaled_ppm;
2887 positive = false;
2888 }
2889
2890 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
2891 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
2892
2893 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
2894 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
2895
2896 if (positive)
2897 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
2898
2899 mutex_lock(&shared->shared_lock);
2900 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
2901 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
2902 mutex_unlock(&shared->shared_lock);
2903
2904 return 0;
2905 }
2906
lan8814_get_sig_tx(struct sk_buff * skb,u16 * sig)2907 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
2908 {
2909 struct ptp_header *ptp_header;
2910 u32 type;
2911
2912 type = ptp_classify_raw(skb);
2913 ptp_header = ptp_parse_header(skb, type);
2914
2915 if (!ptp_header)
2916 return false;
2917
2918 *sig = (__force u16)(ntohs(ptp_header->sequence_id));
2919 return true;
2920 }
2921
lan8814_match_tx_skb(struct kszphy_ptp_priv * ptp_priv,u32 seconds,u32 nsec,u16 seq_id)2922 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
2923 u32 seconds, u32 nsec, u16 seq_id)
2924 {
2925 struct skb_shared_hwtstamps shhwtstamps;
2926 struct sk_buff *skb, *skb_tmp;
2927 unsigned long flags;
2928 bool ret = false;
2929 u16 skb_sig;
2930
2931 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
2932 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
2933 if (!lan8814_get_sig_tx(skb, &skb_sig))
2934 continue;
2935
2936 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
2937 continue;
2938
2939 __skb_unlink(skb, &ptp_priv->tx_queue);
2940 ret = true;
2941 break;
2942 }
2943 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
2944
2945 if (ret) {
2946 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2947 shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
2948 skb_complete_tx_timestamp(skb, &shhwtstamps);
2949 }
2950 }
2951
lan8814_dequeue_tx_skb(struct kszphy_ptp_priv * ptp_priv)2952 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
2953 {
2954 struct phy_device *phydev = ptp_priv->phydev;
2955 u32 seconds, nsec;
2956 u16 seq_id;
2957
2958 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
2959 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
2960 }
2961
lan8814_get_tx_ts(struct kszphy_ptp_priv * ptp_priv)2962 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
2963 {
2964 struct phy_device *phydev = ptp_priv->phydev;
2965 u32 reg;
2966
2967 do {
2968 lan8814_dequeue_tx_skb(ptp_priv);
2969
2970 /* If other timestamps are available in the FIFO,
2971 * process them.
2972 */
2973 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2974 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
2975 }
2976
lan8814_match_skb(struct kszphy_ptp_priv * ptp_priv,struct lan8814_ptp_rx_ts * rx_ts)2977 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
2978 struct lan8814_ptp_rx_ts *rx_ts)
2979 {
2980 struct skb_shared_hwtstamps *shhwtstamps;
2981 struct sk_buff *skb, *skb_tmp;
2982 unsigned long flags;
2983 bool ret = false;
2984 u16 skb_sig;
2985
2986 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
2987 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
2988 if (!lan8814_get_sig_rx(skb, &skb_sig))
2989 continue;
2990
2991 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2992 continue;
2993
2994 __skb_unlink(skb, &ptp_priv->rx_queue);
2995
2996 ret = true;
2997 break;
2998 }
2999 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
3000
3001 if (ret) {
3002 shhwtstamps = skb_hwtstamps(skb);
3003 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3004 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
3005 netif_rx(skb);
3006 }
3007
3008 return ret;
3009 }
3010
lan8814_match_rx_ts(struct kszphy_ptp_priv * ptp_priv,struct lan8814_ptp_rx_ts * rx_ts)3011 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
3012 struct lan8814_ptp_rx_ts *rx_ts)
3013 {
3014 unsigned long flags;
3015
3016 /* If we failed to match the skb add it to the queue for when
3017 * the frame will come
3018 */
3019 if (!lan8814_match_skb(ptp_priv, rx_ts)) {
3020 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
3021 list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
3022 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
3023 } else {
3024 kfree(rx_ts);
3025 }
3026 }
3027
lan8814_get_rx_ts(struct kszphy_ptp_priv * ptp_priv)3028 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
3029 {
3030 struct phy_device *phydev = ptp_priv->phydev;
3031 struct lan8814_ptp_rx_ts *rx_ts;
3032 u32 reg;
3033
3034 do {
3035 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
3036 if (!rx_ts)
3037 return;
3038
3039 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
3040 &rx_ts->seq_id);
3041 lan8814_match_rx_ts(ptp_priv, rx_ts);
3042
3043 /* If other timestamps are available in the FIFO,
3044 * process them.
3045 */
3046 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3047 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
3048 }
3049
lan8814_handle_ptp_interrupt(struct phy_device * phydev,u16 status)3050 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
3051 {
3052 struct kszphy_priv *priv = phydev->priv;
3053 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3054
3055 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
3056 lan8814_get_tx_ts(ptp_priv);
3057
3058 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
3059 lan8814_get_rx_ts(ptp_priv);
3060
3061 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
3062 lan8814_flush_fifo(phydev, true);
3063 skb_queue_purge(&ptp_priv->tx_queue);
3064 }
3065
3066 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
3067 lan8814_flush_fifo(phydev, false);
3068 skb_queue_purge(&ptp_priv->rx_queue);
3069 }
3070 }
3071
lan8804_config_init(struct phy_device * phydev)3072 static int lan8804_config_init(struct phy_device *phydev)
3073 {
3074 int val;
3075
3076 /* MDI-X setting for swap A,B transmit */
3077 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
3078 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
3079 val |= LAN8804_ALIGN_TX_A_B_SWAP;
3080 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
3081
3082 /* Make sure that the PHY will not stop generating the clock when the
3083 * link partner goes down
3084 */
3085 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
3086 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
3087
3088 return 0;
3089 }
3090
lan8804_handle_interrupt(struct phy_device * phydev)3091 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
3092 {
3093 int status;
3094
3095 status = phy_read(phydev, LAN8814_INTS);
3096 if (status < 0) {
3097 phy_error(phydev);
3098 return IRQ_NONE;
3099 }
3100
3101 if (status > 0)
3102 phy_trigger_machine(phydev);
3103
3104 return IRQ_HANDLED;
3105 }
3106
3107 #define LAN8804_OUTPUT_CONTROL 25
3108 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14)
3109 #define LAN8804_CONTROL 31
3110 #define LAN8804_CONTROL_INTR_POLARITY BIT(14)
3111
lan8804_config_intr(struct phy_device * phydev)3112 static int lan8804_config_intr(struct phy_device *phydev)
3113 {
3114 int err;
3115
3116 /* This is an internal PHY of lan966x and is not possible to change the
3117 * polarity on the GIC found in lan966x, therefore change the polarity
3118 * of the interrupt in the PHY from being active low instead of active
3119 * high.
3120 */
3121 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
3122
3123 /* By default interrupt buffer is open-drain in which case the interrupt
3124 * can be active only low. Therefore change the interrupt buffer to be
3125 * push-pull to be able to change interrupt polarity
3126 */
3127 phy_write(phydev, LAN8804_OUTPUT_CONTROL,
3128 LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
3129
3130 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3131 err = phy_read(phydev, LAN8814_INTS);
3132 if (err < 0)
3133 return err;
3134
3135 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3136 if (err)
3137 return err;
3138 } else {
3139 err = phy_write(phydev, LAN8814_INTC, 0);
3140 if (err)
3141 return err;
3142
3143 err = phy_read(phydev, LAN8814_INTS);
3144 if (err < 0)
3145 return err;
3146 }
3147
3148 return 0;
3149 }
3150
lan8814_handle_interrupt(struct phy_device * phydev)3151 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
3152 {
3153 int ret = IRQ_NONE;
3154 int irq_status;
3155
3156 irq_status = phy_read(phydev, LAN8814_INTS);
3157 if (irq_status < 0) {
3158 phy_error(phydev);
3159 return IRQ_NONE;
3160 }
3161
3162 if (irq_status & LAN8814_INT_LINK) {
3163 phy_trigger_machine(phydev);
3164 ret = IRQ_HANDLED;
3165 }
3166
3167 while (true) {
3168 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
3169 if (!irq_status)
3170 break;
3171
3172 lan8814_handle_ptp_interrupt(phydev, irq_status);
3173 ret = IRQ_HANDLED;
3174 }
3175
3176 return ret;
3177 }
3178
lan8814_ack_interrupt(struct phy_device * phydev)3179 static int lan8814_ack_interrupt(struct phy_device *phydev)
3180 {
3181 /* bit[12..0] int status, which is a read and clear register. */
3182 int rc;
3183
3184 rc = phy_read(phydev, LAN8814_INTS);
3185
3186 return (rc < 0) ? rc : 0;
3187 }
3188
lan8814_config_intr(struct phy_device * phydev)3189 static int lan8814_config_intr(struct phy_device *phydev)
3190 {
3191 int err;
3192
3193 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
3194 LAN8814_INTR_CTRL_REG_POLARITY |
3195 LAN8814_INTR_CTRL_REG_INTR_ENABLE);
3196
3197 /* enable / disable interrupts */
3198 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3199 err = lan8814_ack_interrupt(phydev);
3200 if (err)
3201 return err;
3202
3203 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3204 } else {
3205 err = phy_write(phydev, LAN8814_INTC, 0);
3206 if (err)
3207 return err;
3208
3209 err = lan8814_ack_interrupt(phydev);
3210 }
3211
3212 return err;
3213 }
3214
lan8814_ptp_init(struct phy_device * phydev)3215 static void lan8814_ptp_init(struct phy_device *phydev)
3216 {
3217 struct kszphy_priv *priv = phydev->priv;
3218 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3219 u32 temp;
3220
3221 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3222 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3223 return;
3224
3225 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
3226
3227 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
3228 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3229 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
3230
3231 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
3232 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3233 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
3234
3235 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3236 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3237
3238 /* Removing default registers configs related to L2 and IP */
3239 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3240 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3241 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3242 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3243
3244 /* Disable checking for minorVersionPTP field */
3245 lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION,
3246 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3247 lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION,
3248 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3249
3250 skb_queue_head_init(&ptp_priv->tx_queue);
3251 skb_queue_head_init(&ptp_priv->rx_queue);
3252 INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3253 spin_lock_init(&ptp_priv->rx_ts_lock);
3254
3255 ptp_priv->phydev = phydev;
3256
3257 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3258 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3259 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3260 ptp_priv->mii_ts.ts_info = lan8814_ts_info;
3261
3262 phydev->mii_ts = &ptp_priv->mii_ts;
3263 }
3264
lan8814_ptp_probe_once(struct phy_device * phydev)3265 static int lan8814_ptp_probe_once(struct phy_device *phydev)
3266 {
3267 struct lan8814_shared_priv *shared = phydev->shared->priv;
3268
3269 /* Initialise shared lock for clock*/
3270 mutex_init(&shared->shared_lock);
3271
3272 shared->ptp_clock_info.owner = THIS_MODULE;
3273 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3274 shared->ptp_clock_info.max_adj = 31249999;
3275 shared->ptp_clock_info.n_alarm = 0;
3276 shared->ptp_clock_info.n_ext_ts = 0;
3277 shared->ptp_clock_info.n_pins = 0;
3278 shared->ptp_clock_info.pps = 0;
3279 shared->ptp_clock_info.pin_config = NULL;
3280 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3281 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3282 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3283 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3284 shared->ptp_clock_info.getcrosststamp = NULL;
3285
3286 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3287 &phydev->mdio.dev);
3288 if (IS_ERR(shared->ptp_clock)) {
3289 phydev_err(phydev, "ptp_clock_register failed %lu\n",
3290 PTR_ERR(shared->ptp_clock));
3291 return -EINVAL;
3292 }
3293
3294 /* Check if PHC support is missing at the configuration level */
3295 if (!shared->ptp_clock)
3296 return 0;
3297
3298 phydev_dbg(phydev, "successfully registered ptp clock\n");
3299
3300 shared->phydev = phydev;
3301
3302 /* The EP.4 is shared between all the PHYs in the package and also it
3303 * can be accessed by any of the PHYs
3304 */
3305 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3306 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3307 PTP_OPERATING_MODE_STANDALONE_);
3308
3309 return 0;
3310 }
3311
lan8814_setup_led(struct phy_device * phydev,int val)3312 static void lan8814_setup_led(struct phy_device *phydev, int val)
3313 {
3314 int temp;
3315
3316 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3317
3318 if (val)
3319 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3320 else
3321 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3322
3323 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3324 }
3325
lan8814_config_init(struct phy_device * phydev)3326 static int lan8814_config_init(struct phy_device *phydev)
3327 {
3328 struct kszphy_priv *lan8814 = phydev->priv;
3329 int val;
3330
3331 /* Reset the PHY */
3332 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3333 val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3334 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3335
3336 /* Disable ANEG with QSGMII PCS Host side */
3337 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3338 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3339 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3340
3341 /* MDI-X setting for swap A,B transmit */
3342 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3343 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3344 val |= LAN8814_ALIGN_TX_A_B_SWAP;
3345 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3346
3347 if (lan8814->led_mode >= 0)
3348 lan8814_setup_led(phydev, lan8814->led_mode);
3349
3350 return 0;
3351 }
3352
3353 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3354 * function called in suspend. Because the GPIO line can be shared, so if one of
3355 * the phys goes back in coma mode, then all the other PHYs will go, which is
3356 * wrong.
3357 */
lan8814_release_coma_mode(struct phy_device * phydev)3358 static int lan8814_release_coma_mode(struct phy_device *phydev)
3359 {
3360 struct gpio_desc *gpiod;
3361
3362 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3363 GPIOD_OUT_HIGH_OPEN_DRAIN |
3364 GPIOD_FLAGS_BIT_NONEXCLUSIVE);
3365 if (IS_ERR(gpiod))
3366 return PTR_ERR(gpiod);
3367
3368 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
3369 gpiod_set_value_cansleep(gpiod, 0);
3370
3371 return 0;
3372 }
3373
lan8814_probe(struct phy_device * phydev)3374 static int lan8814_probe(struct phy_device *phydev)
3375 {
3376 const struct kszphy_type *type = phydev->drv->driver_data;
3377 struct kszphy_priv *priv;
3378 u16 addr;
3379 int err;
3380
3381 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
3382 if (!priv)
3383 return -ENOMEM;
3384
3385 phydev->priv = priv;
3386
3387 priv->type = type;
3388
3389 kszphy_parse_led_mode(phydev);
3390
3391 /* Strap-in value for PHY address, below register read gives starting
3392 * phy address value
3393 */
3394 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
3395 devm_phy_package_join(&phydev->mdio.dev, phydev,
3396 addr, sizeof(struct lan8814_shared_priv));
3397
3398 if (phy_package_init_once(phydev)) {
3399 err = lan8814_release_coma_mode(phydev);
3400 if (err)
3401 return err;
3402
3403 err = lan8814_ptp_probe_once(phydev);
3404 if (err)
3405 return err;
3406 }
3407
3408 lan8814_ptp_init(phydev);
3409
3410 return 0;
3411 }
3412
3413 #define LAN8841_MMD_TIMER_REG 0
3414 #define LAN8841_MMD0_REGISTER_17 17
3415 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3)
3416 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3)
3417 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2
3418 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14)
3419 #define LAN8841_MMD_ANALOG_REG 28
3420 #define LAN8841_ANALOG_CONTROL_1 1
3421 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5)
3422 #define LAN8841_ANALOG_CONTROL_10 13
3423 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3)
3424 #define LAN8841_ANALOG_CONTROL_11 14
3425 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12)
3426 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69
3427 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
3428 #define LAN8841_BTRX_POWER_DOWN 70
3429 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0)
3430 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1)
3431 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2)
3432 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3)
3433 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5)
3434 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7)
3435 #define LAN8841_ADC_CHANNEL_MASK 198
3436 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370
3437 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371
3438 #define LAN8841_PTP_RX_VERSION 374
3439 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434
3440 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435
3441 #define LAN8841_PTP_TX_VERSION 438
3442 #define LAN8841_PTP_CMD_CTL 256
3443 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2)
3444 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1)
3445 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0)
3446 #define LAN8841_PTP_RX_PARSE_CONFIG 368
3447 #define LAN8841_PTP_TX_PARSE_CONFIG 432
3448 #define LAN8841_PTP_RX_MODE 381
3449 #define LAN8841_PTP_INSERT_TS_EN BIT(0)
3450 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1)
3451
lan8841_config_init(struct phy_device * phydev)3452 static int lan8841_config_init(struct phy_device *phydev)
3453 {
3454 int ret;
3455
3456 ret = ksz9131_config_init(phydev);
3457 if (ret)
3458 return ret;
3459
3460 /* Initialize the HW by resetting everything */
3461 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3462 LAN8841_PTP_CMD_CTL,
3463 LAN8841_PTP_CMD_CTL_PTP_RESET,
3464 LAN8841_PTP_CMD_CTL_PTP_RESET);
3465
3466 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3467 LAN8841_PTP_CMD_CTL,
3468 LAN8841_PTP_CMD_CTL_PTP_ENABLE,
3469 LAN8841_PTP_CMD_CTL_PTP_ENABLE);
3470
3471 /* Don't process any frames */
3472 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3473 LAN8841_PTP_RX_PARSE_CONFIG, 0);
3474 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3475 LAN8841_PTP_TX_PARSE_CONFIG, 0);
3476 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3477 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
3478 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3479 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
3480 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3481 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
3482 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3483 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
3484
3485 /* Disable checking for minorVersionPTP field */
3486 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3487 LAN8841_PTP_RX_VERSION, 0xff00);
3488 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3489 LAN8841_PTP_TX_VERSION, 0xff00);
3490
3491 /* 100BT Clause 40 improvenent errata */
3492 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3493 LAN8841_ANALOG_CONTROL_1,
3494 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
3495 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3496 LAN8841_ANALOG_CONTROL_10,
3497 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
3498
3499 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
3500 * Magnetics
3501 */
3502 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3503 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
3504 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
3505 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3506 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
3507 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
3508 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3509 LAN8841_BTRX_POWER_DOWN,
3510 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
3511 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
3512 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
3513 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
3514 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
3515 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
3516 }
3517
3518 /* LDO Adjustment errata */
3519 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3520 LAN8841_ANALOG_CONTROL_11,
3521 LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
3522
3523 /* 100BT RGMII latency tuning errata */
3524 phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
3525 LAN8841_ADC_CHANNEL_MASK, 0x0);
3526 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
3527 LAN8841_MMD0_REGISTER_17,
3528 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
3529 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
3530
3531 return 0;
3532 }
3533
3534 #define LAN8841_OUTPUT_CTRL 25
3535 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14)
3536 #define LAN8841_INT_PTP BIT(9)
3537
lan8841_config_intr(struct phy_device * phydev)3538 static int lan8841_config_intr(struct phy_device *phydev)
3539 {
3540 int err;
3541
3542 phy_modify(phydev, LAN8841_OUTPUT_CTRL,
3543 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
3544
3545 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3546 err = phy_read(phydev, LAN8814_INTS);
3547 if (err < 0)
3548 return err;
3549
3550 /* Enable / disable interrupts. It is OK to enable PTP interrupt
3551 * even if it PTP is not enabled. Because the underneath blocks
3552 * will not enable the PTP so we will never get the PTP
3553 * interrupt.
3554 */
3555 err = phy_write(phydev, LAN8814_INTC,
3556 LAN8814_INT_LINK | LAN8841_INT_PTP);
3557 } else {
3558 err = phy_write(phydev, LAN8814_INTC, 0);
3559 if (err)
3560 return err;
3561
3562 err = phy_read(phydev, LAN8814_INTS);
3563 if (err < 0)
3564 return err;
3565
3566 /* Getting a positive value doesn't mean that is an error, it
3567 * just indicates what was the status. Therefore make sure to
3568 * clear the value and say that there is no error.
3569 */
3570 err = 0;
3571 }
3572
3573 return err;
3574 }
3575
3576 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453
3577 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452
3578 #define LAN8841_PTP_TX_EGRESS_NS_LO 451
3579 #define LAN8841_PTP_TX_EGRESS_NS_HI 450
3580 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15)
3581 #define LAN8841_PTP_TX_MSG_HEADER2 455
3582
lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv * ptp_priv,u32 * sec,u32 * nsec,u16 * seq)3583 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
3584 u32 *sec, u32 *nsec, u16 *seq)
3585 {
3586 struct phy_device *phydev = ptp_priv->phydev;
3587
3588 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
3589 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
3590 return false;
3591
3592 *nsec = ((*nsec & 0x3fff) << 16);
3593 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
3594
3595 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
3596 *sec = *sec << 16;
3597 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
3598
3599 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3600
3601 return true;
3602 }
3603
lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv * ptp_priv)3604 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3605 {
3606 u32 sec, nsec;
3607 u16 seq;
3608
3609 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
3610 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
3611 }
3612
3613 #define LAN8841_PTP_INT_STS 259
3614 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13)
3615 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12)
3616 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2)
3617
lan8841_ptp_flush_fifo(struct kszphy_ptp_priv * ptp_priv)3618 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
3619 {
3620 struct phy_device *phydev = ptp_priv->phydev;
3621 int i;
3622
3623 for (i = 0; i < FIFO_SIZE; ++i)
3624 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3625
3626 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3627 }
3628
3629 #define LAN8841_PTP_GPIO_CAP_STS 506
3630 #define LAN8841_PTP_GPIO_SEL 327
3631 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8)
3632 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498
3633 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499
3634 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500
3635 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501
3636 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502
3637 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503
3638 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504
3639 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505
3640
lan8841_gpio_process_cap(struct kszphy_ptp_priv * ptp_priv)3641 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
3642 {
3643 struct phy_device *phydev = ptp_priv->phydev;
3644 struct ptp_clock_event ptp_event = {0};
3645 int pin, ret, tmp;
3646 s32 sec, nsec;
3647
3648 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
3649 if (pin == -1)
3650 return;
3651
3652 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
3653 if (tmp < 0)
3654 return;
3655
3656 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
3657 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
3658 if (ret)
3659 return;
3660
3661 mutex_lock(&ptp_priv->ptp_lock);
3662 if (tmp & BIT(pin)) {
3663 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
3664 sec <<= 16;
3665 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
3666
3667 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
3668 nsec <<= 16;
3669 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
3670 } else {
3671 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
3672 sec <<= 16;
3673 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
3674
3675 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
3676 nsec <<= 16;
3677 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
3678 }
3679 mutex_unlock(&ptp_priv->ptp_lock);
3680 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
3681 if (ret)
3682 return;
3683
3684 ptp_event.index = 0;
3685 ptp_event.timestamp = ktime_set(sec, nsec);
3686 ptp_event.type = PTP_CLOCK_EXTTS;
3687 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
3688 }
3689
lan8841_handle_ptp_interrupt(struct phy_device * phydev)3690 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
3691 {
3692 struct kszphy_priv *priv = phydev->priv;
3693 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3694 u16 status;
3695
3696 do {
3697 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3698
3699 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
3700 lan8841_ptp_process_tx_ts(ptp_priv);
3701
3702 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
3703 lan8841_gpio_process_cap(ptp_priv);
3704
3705 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
3706 lan8841_ptp_flush_fifo(ptp_priv);
3707 skb_queue_purge(&ptp_priv->tx_queue);
3708 }
3709
3710 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
3711 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
3712 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
3713 }
3714
3715 #define LAN8841_INTS_PTP BIT(9)
3716
lan8841_handle_interrupt(struct phy_device * phydev)3717 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
3718 {
3719 irqreturn_t ret = IRQ_NONE;
3720 int irq_status;
3721
3722 irq_status = phy_read(phydev, LAN8814_INTS);
3723 if (irq_status < 0) {
3724 phy_error(phydev);
3725 return IRQ_NONE;
3726 }
3727
3728 if (irq_status & LAN8814_INT_LINK) {
3729 phy_trigger_machine(phydev);
3730 ret = IRQ_HANDLED;
3731 }
3732
3733 if (irq_status & LAN8841_INTS_PTP) {
3734 lan8841_handle_ptp_interrupt(phydev);
3735 ret = IRQ_HANDLED;
3736 }
3737
3738 return ret;
3739 }
3740
lan8841_ts_info(struct mii_timestamper * mii_ts,struct ethtool_ts_info * info)3741 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
3742 struct ethtool_ts_info *info)
3743 {
3744 struct kszphy_ptp_priv *ptp_priv;
3745
3746 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3747
3748 info->phc_index = ptp_priv->ptp_clock ?
3749 ptp_clock_index(ptp_priv->ptp_clock) : -1;
3750 if (info->phc_index == -1)
3751 return 0;
3752
3753 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
3754 SOF_TIMESTAMPING_RX_HARDWARE |
3755 SOF_TIMESTAMPING_RAW_HARDWARE;
3756
3757 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
3758 (1 << HWTSTAMP_TX_ON) |
3759 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
3760
3761 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
3762 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
3763 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
3764 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
3765
3766 return 0;
3767 }
3768
3769 #define LAN8841_PTP_INT_EN 260
3770 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13)
3771 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12)
3772
lan8841_ptp_enable_processing(struct kszphy_ptp_priv * ptp_priv,bool enable)3773 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
3774 bool enable)
3775 {
3776 struct phy_device *phydev = ptp_priv->phydev;
3777
3778 if (enable) {
3779 /* Enable interrupts on the TX side */
3780 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3781 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3782 LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
3783 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3784 LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
3785
3786 /* Enable the modification of the frame on RX side,
3787 * this will add the ns and 2 bits of sec in the reserved field
3788 * of the PTP header
3789 */
3790 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3791 LAN8841_PTP_RX_MODE,
3792 LAN8841_PTP_INSERT_TS_EN |
3793 LAN8841_PTP_INSERT_TS_32BIT,
3794 LAN8841_PTP_INSERT_TS_EN |
3795 LAN8841_PTP_INSERT_TS_32BIT);
3796
3797 ptp_schedule_worker(ptp_priv->ptp_clock, 0);
3798 } else {
3799 /* Disable interrupts on the TX side */
3800 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3801 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3802 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
3803
3804 /* Disable modification of the RX frames */
3805 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3806 LAN8841_PTP_RX_MODE,
3807 LAN8841_PTP_INSERT_TS_EN |
3808 LAN8841_PTP_INSERT_TS_32BIT, 0);
3809
3810 ptp_cancel_worker_sync(ptp_priv->ptp_clock);
3811 }
3812 }
3813
3814 #define LAN8841_PTP_RX_TIMESTAMP_EN 379
3815 #define LAN8841_PTP_TX_TIMESTAMP_EN 443
3816 #define LAN8841_PTP_TX_MOD 445
3817
lan8841_hwtstamp(struct mii_timestamper * mii_ts,struct ifreq * ifr)3818 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
3819 {
3820 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3821 struct phy_device *phydev = ptp_priv->phydev;
3822 struct hwtstamp_config config;
3823 int txcfg = 0, rxcfg = 0;
3824 int pkt_ts_enable;
3825
3826 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
3827 return -EFAULT;
3828
3829 ptp_priv->hwts_tx_type = config.tx_type;
3830 ptp_priv->rx_filter = config.rx_filter;
3831
3832 switch (config.rx_filter) {
3833 case HWTSTAMP_FILTER_NONE:
3834 ptp_priv->layer = 0;
3835 ptp_priv->version = 0;
3836 break;
3837 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3838 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3839 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3840 ptp_priv->layer = PTP_CLASS_L4;
3841 ptp_priv->version = PTP_CLASS_V2;
3842 break;
3843 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3844 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3845 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3846 ptp_priv->layer = PTP_CLASS_L2;
3847 ptp_priv->version = PTP_CLASS_V2;
3848 break;
3849 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3850 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3851 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3852 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
3853 ptp_priv->version = PTP_CLASS_V2;
3854 break;
3855 default:
3856 return -ERANGE;
3857 }
3858
3859 /* Setup parsing of the frames and enable the timestamping for ptp
3860 * frames
3861 */
3862 if (ptp_priv->layer & PTP_CLASS_L2) {
3863 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
3864 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
3865 } else if (ptp_priv->layer & PTP_CLASS_L4) {
3866 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
3867 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
3868 }
3869
3870 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
3871 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
3872
3873 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
3874 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
3875 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
3876 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
3877
3878 /* Enable / disable of the TX timestamp in the SYNC frames */
3879 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
3880 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3881 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
3882 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
3883
3884 /* Now enable/disable the timestamping */
3885 lan8841_ptp_enable_processing(ptp_priv,
3886 config.rx_filter != HWTSTAMP_FILTER_NONE);
3887
3888 skb_queue_purge(&ptp_priv->tx_queue);
3889
3890 lan8841_ptp_flush_fifo(ptp_priv);
3891
3892 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
3893 }
3894
lan8841_rxtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)3895 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
3896 struct sk_buff *skb, int type)
3897 {
3898 struct kszphy_ptp_priv *ptp_priv =
3899 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3900 struct ptp_header *header = ptp_parse_header(skb, type);
3901 struct skb_shared_hwtstamps *shhwtstamps;
3902 struct timespec64 ts;
3903 unsigned long flags;
3904 u32 ts_header;
3905
3906 if (!header)
3907 return false;
3908
3909 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
3910 type == PTP_CLASS_NONE)
3911 return false;
3912
3913 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
3914 return false;
3915
3916 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
3917 ts.tv_sec = ptp_priv->seconds;
3918 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
3919 ts_header = __be32_to_cpu(header->reserved2);
3920
3921 shhwtstamps = skb_hwtstamps(skb);
3922 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3923
3924 /* Check for any wrap arounds for the second part */
3925 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
3926 ts.tv_sec -= GENMASK(1, 0) + 1;
3927 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
3928 ts.tv_sec += 1;
3929
3930 shhwtstamps->hwtstamp =
3931 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
3932 ts_header & GENMASK(29, 0));
3933 header->reserved2 = 0;
3934
3935 netif_rx(skb);
3936
3937 return true;
3938 }
3939
3940 #define LAN8841_EVENT_A 0
3941 #define LAN8841_EVENT_B 1
3942 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288)
3943 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289)
3944 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290)
3945 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291)
3946
lan8841_ptp_set_target(struct kszphy_ptp_priv * ptp_priv,u8 event,s64 sec,u32 nsec)3947 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
3948 s64 sec, u32 nsec)
3949 {
3950 struct phy_device *phydev = ptp_priv->phydev;
3951 int ret;
3952
3953 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
3954 upper_16_bits(sec));
3955 if (ret)
3956 return ret;
3957
3958 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
3959 lower_16_bits(sec));
3960 if (ret)
3961 return ret;
3962
3963 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
3964 upper_16_bits(nsec));
3965 if (ret)
3966 return ret;
3967
3968 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
3969 lower_16_bits(nsec));
3970 }
3971
3972 #define LAN8841_BUFFER_TIME 2
3973
lan8841_ptp_update_target(struct kszphy_ptp_priv * ptp_priv,const struct timespec64 * ts)3974 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
3975 const struct timespec64 *ts)
3976 {
3977 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
3978 ts->tv_sec + LAN8841_BUFFER_TIME, 0);
3979 }
3980
3981 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292)
3982 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293)
3983 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294)
3984 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295)
3985
lan8841_ptp_set_reload(struct kszphy_ptp_priv * ptp_priv,u8 event,s64 sec,u32 nsec)3986 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
3987 s64 sec, u32 nsec)
3988 {
3989 struct phy_device *phydev = ptp_priv->phydev;
3990 int ret;
3991
3992 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
3993 upper_16_bits(sec));
3994 if (ret)
3995 return ret;
3996
3997 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
3998 lower_16_bits(sec));
3999 if (ret)
4000 return ret;
4001
4002 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
4003 upper_16_bits(nsec));
4004 if (ret)
4005 return ret;
4006
4007 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
4008 lower_16_bits(nsec));
4009 }
4010
4011 #define LAN8841_PTP_LTC_SET_SEC_HI 262
4012 #define LAN8841_PTP_LTC_SET_SEC_MID 263
4013 #define LAN8841_PTP_LTC_SET_SEC_LO 264
4014 #define LAN8841_PTP_LTC_SET_NS_HI 265
4015 #define LAN8841_PTP_LTC_SET_NS_LO 266
4016 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4)
4017
lan8841_ptp_settime64(struct ptp_clock_info * ptp,const struct timespec64 * ts)4018 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
4019 const struct timespec64 *ts)
4020 {
4021 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4022 ptp_clock_info);
4023 struct phy_device *phydev = ptp_priv->phydev;
4024 unsigned long flags;
4025 int ret;
4026
4027 /* Set the value to be stored */
4028 mutex_lock(&ptp_priv->ptp_lock);
4029 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
4030 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
4031 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
4032 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
4033 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
4034
4035 /* Set the command to load the LTC */
4036 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4037 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
4038 ret = lan8841_ptp_update_target(ptp_priv, ts);
4039 mutex_unlock(&ptp_priv->ptp_lock);
4040
4041 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4042 ptp_priv->seconds = ts->tv_sec;
4043 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4044
4045 return ret;
4046 }
4047
4048 #define LAN8841_PTP_LTC_RD_SEC_HI 358
4049 #define LAN8841_PTP_LTC_RD_SEC_MID 359
4050 #define LAN8841_PTP_LTC_RD_SEC_LO 360
4051 #define LAN8841_PTP_LTC_RD_NS_HI 361
4052 #define LAN8841_PTP_LTC_RD_NS_LO 362
4053 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3)
4054
lan8841_ptp_gettime64(struct ptp_clock_info * ptp,struct timespec64 * ts)4055 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
4056 struct timespec64 *ts)
4057 {
4058 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4059 ptp_clock_info);
4060 struct phy_device *phydev = ptp_priv->phydev;
4061 time64_t s;
4062 s64 ns;
4063
4064 mutex_lock(&ptp_priv->ptp_lock);
4065 /* Issue the command to read the LTC */
4066 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4067 LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4068
4069 /* Read the LTC */
4070 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4071 s <<= 16;
4072 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4073 s <<= 16;
4074 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4075
4076 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
4077 ns <<= 16;
4078 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
4079 mutex_unlock(&ptp_priv->ptp_lock);
4080
4081 set_normalized_timespec64(ts, s, ns);
4082 return 0;
4083 }
4084
lan8841_ptp_getseconds(struct ptp_clock_info * ptp,struct timespec64 * ts)4085 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
4086 struct timespec64 *ts)
4087 {
4088 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4089 ptp_clock_info);
4090 struct phy_device *phydev = ptp_priv->phydev;
4091 time64_t s;
4092
4093 mutex_lock(&ptp_priv->ptp_lock);
4094 /* Issue the command to read the LTC */
4095 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4096 LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4097
4098 /* Read the LTC */
4099 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4100 s <<= 16;
4101 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4102 s <<= 16;
4103 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4104 mutex_unlock(&ptp_priv->ptp_lock);
4105
4106 set_normalized_timespec64(ts, s, 0);
4107 }
4108
4109 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276
4110 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275
4111 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15)
4112 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5)
4113 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6)
4114
lan8841_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)4115 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
4116 {
4117 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4118 ptp_clock_info);
4119 struct phy_device *phydev = ptp_priv->phydev;
4120 struct timespec64 ts;
4121 bool add = true;
4122 u32 nsec;
4123 s32 sec;
4124 int ret;
4125
4126 /* The HW allows up to 15 sec to adjust the time, but here we limit to
4127 * 10 sec the adjustment. The reason is, in case the adjustment is 14
4128 * sec and 999999999 nsec, then we add 8ns to compansate the actual
4129 * increment so the value can be bigger than 15 sec. Therefore limit the
4130 * possible adjustments so we will not have these corner cases
4131 */
4132 if (delta > 10000000000LL || delta < -10000000000LL) {
4133 /* The timeadjustment is too big, so fall back using set time */
4134 u64 now;
4135
4136 ptp->gettime64(ptp, &ts);
4137
4138 now = ktime_to_ns(timespec64_to_ktime(ts));
4139 ts = ns_to_timespec64(now + delta);
4140
4141 ptp->settime64(ptp, &ts);
4142 return 0;
4143 }
4144
4145 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
4146 if (delta < 0 && nsec != 0) {
4147 /* It is not allowed to adjust low the nsec part, therefore
4148 * subtract more from second part and add to nanosecond such
4149 * that would roll over, so the second part will increase
4150 */
4151 sec--;
4152 nsec = NSEC_PER_SEC - nsec;
4153 }
4154
4155 /* Calculate the adjustments and the direction */
4156 if (delta < 0)
4157 add = false;
4158
4159 if (nsec > 0)
4160 /* add 8 ns to cover the likely normal increment */
4161 nsec += 8;
4162
4163 if (nsec >= NSEC_PER_SEC) {
4164 /* carry into seconds */
4165 sec++;
4166 nsec -= NSEC_PER_SEC;
4167 }
4168
4169 mutex_lock(&ptp_priv->ptp_lock);
4170 if (sec) {
4171 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
4172 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4173 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
4174 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4175 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
4176 }
4177
4178 if (nsec) {
4179 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
4180 nsec & 0xffff);
4181 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4182 (nsec >> 16) & 0x3fff);
4183 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4184 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
4185 }
4186 mutex_unlock(&ptp_priv->ptp_lock);
4187
4188 /* Update the target clock */
4189 ptp->gettime64(ptp, &ts);
4190 mutex_lock(&ptp_priv->ptp_lock);
4191 ret = lan8841_ptp_update_target(ptp_priv, &ts);
4192 mutex_unlock(&ptp_priv->ptp_lock);
4193
4194 return ret;
4195 }
4196
4197 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269
4198 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15)
4199 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270
4200
lan8841_ptp_adjfine(struct ptp_clock_info * ptp,long scaled_ppm)4201 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
4202 {
4203 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4204 ptp_clock_info);
4205 struct phy_device *phydev = ptp_priv->phydev;
4206 bool faster = true;
4207 u32 rate;
4208
4209 if (!scaled_ppm)
4210 return 0;
4211
4212 if (scaled_ppm < 0) {
4213 scaled_ppm = -scaled_ppm;
4214 faster = false;
4215 }
4216
4217 rate = LAN8814_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
4218 rate += (LAN8814_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
4219
4220 mutex_lock(&ptp_priv->ptp_lock);
4221 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
4222 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
4223 : upper_16_bits(rate) & 0x3fff);
4224 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
4225 mutex_unlock(&ptp_priv->ptp_lock);
4226
4227 return 0;
4228 }
4229
lan8841_ptp_verify(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)4230 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
4231 enum ptp_pin_function func, unsigned int chan)
4232 {
4233 switch (func) {
4234 case PTP_PF_NONE:
4235 case PTP_PF_PEROUT:
4236 case PTP_PF_EXTTS:
4237 break;
4238 default:
4239 return -1;
4240 }
4241
4242 return 0;
4243 }
4244
4245 #define LAN8841_PTP_GPIO_NUM 10
4246 #define LAN8841_GPIO_EN 128
4247 #define LAN8841_GPIO_DIR 129
4248 #define LAN8841_GPIO_BUF 130
4249
lan8841_ptp_perout_off(struct kszphy_ptp_priv * ptp_priv,int pin)4250 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4251 {
4252 struct phy_device *phydev = ptp_priv->phydev;
4253 int ret;
4254
4255 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4256 if (ret)
4257 return ret;
4258
4259 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4260 if (ret)
4261 return ret;
4262
4263 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4264 }
4265
lan8841_ptp_perout_on(struct kszphy_ptp_priv * ptp_priv,int pin)4266 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
4267 {
4268 struct phy_device *phydev = ptp_priv->phydev;
4269 int ret;
4270
4271 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4272 if (ret)
4273 return ret;
4274
4275 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4276 if (ret)
4277 return ret;
4278
4279 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4280 }
4281
4282 #define LAN8841_GPIO_DATA_SEL1 131
4283 #define LAN8841_GPIO_DATA_SEL2 132
4284 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0)
4285 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1
4286 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2
4287 #define LAN8841_PTP_GENERAL_CONFIG 257
4288 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1)
4289 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3)
4290 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4)
4291 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8)
4292 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4
4293 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7
4294
lan8841_ptp_remove_event(struct kszphy_ptp_priv * ptp_priv,int pin,u8 event)4295 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4296 u8 event)
4297 {
4298 struct phy_device *phydev = ptp_priv->phydev;
4299 u16 tmp;
4300 int ret;
4301
4302 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
4303 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4304 * depending on the pin, it requires to read a different register
4305 */
4306 if (pin < 5) {
4307 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
4308 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
4309 } else {
4310 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
4311 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
4312 }
4313 if (ret)
4314 return ret;
4315
4316 /* Disable the event */
4317 if (event == LAN8841_EVENT_A)
4318 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4319 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
4320 else
4321 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4322 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
4323 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
4324 }
4325
lan8841_ptp_enable_event(struct kszphy_ptp_priv * ptp_priv,int pin,u8 event,int pulse_width)4326 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4327 u8 event, int pulse_width)
4328 {
4329 struct phy_device *phydev = ptp_priv->phydev;
4330 u16 tmp;
4331 int ret;
4332
4333 /* Enable the event */
4334 if (event == LAN8841_EVENT_A)
4335 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4336 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4337 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
4338 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4339 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
4340 else
4341 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4342 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4343 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
4344 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4345 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
4346 if (ret)
4347 return ret;
4348
4349 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
4350 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4351 * depending on the pin, it requires to read a different register
4352 */
4353 if (event == LAN8841_EVENT_A)
4354 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
4355 else
4356 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
4357
4358 if (pin < 5)
4359 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
4360 tmp << (3 * pin));
4361 else
4362 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
4363 tmp << (3 * (pin - 5)));
4364
4365 return ret;
4366 }
4367
4368 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13
4369 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12
4370 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11
4371 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10
4372 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9
4373 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8
4374 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7
4375 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6
4376 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5
4377 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4
4378 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3
4379 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2
4380 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1
4381 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0
4382
lan8841_ptp_perout(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)4383 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
4384 struct ptp_clock_request *rq, int on)
4385 {
4386 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4387 ptp_clock_info);
4388 struct phy_device *phydev = ptp_priv->phydev;
4389 struct timespec64 ts_on, ts_period;
4390 s64 on_nsec, period_nsec;
4391 int pulse_width;
4392 int pin;
4393 int ret;
4394
4395 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
4396 return -EOPNOTSUPP;
4397
4398 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
4399 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4400 return -EINVAL;
4401
4402 if (!on) {
4403 ret = lan8841_ptp_perout_off(ptp_priv, pin);
4404 if (ret)
4405 return ret;
4406
4407 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
4408 }
4409
4410 ts_on.tv_sec = rq->perout.on.sec;
4411 ts_on.tv_nsec = rq->perout.on.nsec;
4412 on_nsec = timespec64_to_ns(&ts_on);
4413
4414 ts_period.tv_sec = rq->perout.period.sec;
4415 ts_period.tv_nsec = rq->perout.period.nsec;
4416 period_nsec = timespec64_to_ns(&ts_period);
4417
4418 if (period_nsec < 200) {
4419 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
4420 phydev_name(phydev));
4421 return -EOPNOTSUPP;
4422 }
4423
4424 if (on_nsec >= period_nsec) {
4425 pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
4426 phydev_name(phydev));
4427 return -EINVAL;
4428 }
4429
4430 switch (on_nsec) {
4431 case 200000000:
4432 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
4433 break;
4434 case 100000000:
4435 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
4436 break;
4437 case 50000000:
4438 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
4439 break;
4440 case 10000000:
4441 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
4442 break;
4443 case 5000000:
4444 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
4445 break;
4446 case 1000000:
4447 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
4448 break;
4449 case 500000:
4450 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
4451 break;
4452 case 100000:
4453 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
4454 break;
4455 case 50000:
4456 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
4457 break;
4458 case 10000:
4459 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
4460 break;
4461 case 5000:
4462 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
4463 break;
4464 case 1000:
4465 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
4466 break;
4467 case 500:
4468 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
4469 break;
4470 case 100:
4471 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4472 break;
4473 default:
4474 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
4475 phydev_name(phydev));
4476 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4477 break;
4478 }
4479
4480 mutex_lock(&ptp_priv->ptp_lock);
4481 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
4482 rq->perout.start.nsec);
4483 mutex_unlock(&ptp_priv->ptp_lock);
4484 if (ret)
4485 return ret;
4486
4487 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
4488 rq->perout.period.nsec);
4489 if (ret)
4490 return ret;
4491
4492 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
4493 pulse_width);
4494 if (ret)
4495 return ret;
4496
4497 ret = lan8841_ptp_perout_on(ptp_priv, pin);
4498 if (ret)
4499 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
4500
4501 return ret;
4502 }
4503
4504 #define LAN8841_PTP_GPIO_CAP_EN 496
4505 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio))
4506 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8)
4507 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2)
4508
lan8841_ptp_extts_on(struct kszphy_ptp_priv * ptp_priv,int pin,u32 flags)4509 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
4510 u32 flags)
4511 {
4512 struct phy_device *phydev = ptp_priv->phydev;
4513 u16 tmp = 0;
4514 int ret;
4515
4516 /* Set GPIO to be intput */
4517 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4518 if (ret)
4519 return ret;
4520
4521 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4522 if (ret)
4523 return ret;
4524
4525 /* Enable capture on the edges of the pin */
4526 if (flags & PTP_RISING_EDGE)
4527 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
4528 if (flags & PTP_FALLING_EDGE)
4529 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
4530 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
4531 if (ret)
4532 return ret;
4533
4534 /* Enable interrupt */
4535 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4536 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4537 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
4538 }
4539
lan8841_ptp_extts_off(struct kszphy_ptp_priv * ptp_priv,int pin)4540 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4541 {
4542 struct phy_device *phydev = ptp_priv->phydev;
4543 int ret;
4544
4545 /* Set GPIO to be output */
4546 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4547 if (ret)
4548 return ret;
4549
4550 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4551 if (ret)
4552 return ret;
4553
4554 /* Disable capture on both of the edges */
4555 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
4556 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
4557 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
4558 0);
4559 if (ret)
4560 return ret;
4561
4562 /* Disable interrupt */
4563 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4564 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4565 0);
4566 }
4567
lan8841_ptp_extts(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)4568 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
4569 struct ptp_clock_request *rq, int on)
4570 {
4571 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4572 ptp_clock_info);
4573 int pin;
4574 int ret;
4575
4576 /* Reject requests with unsupported flags */
4577 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
4578 PTP_EXTTS_EDGES |
4579 PTP_STRICT_FLAGS))
4580 return -EOPNOTSUPP;
4581
4582 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
4583 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4584 return -EINVAL;
4585
4586 mutex_lock(&ptp_priv->ptp_lock);
4587 if (on)
4588 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
4589 else
4590 ret = lan8841_ptp_extts_off(ptp_priv, pin);
4591 mutex_unlock(&ptp_priv->ptp_lock);
4592
4593 return ret;
4594 }
4595
lan8841_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)4596 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
4597 struct ptp_clock_request *rq, int on)
4598 {
4599 switch (rq->type) {
4600 case PTP_CLK_REQ_EXTTS:
4601 return lan8841_ptp_extts(ptp, rq, on);
4602 case PTP_CLK_REQ_PEROUT:
4603 return lan8841_ptp_perout(ptp, rq, on);
4604 default:
4605 return -EOPNOTSUPP;
4606 }
4607
4608 return 0;
4609 }
4610
lan8841_ptp_do_aux_work(struct ptp_clock_info * ptp)4611 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
4612 {
4613 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4614 ptp_clock_info);
4615 struct timespec64 ts;
4616 unsigned long flags;
4617
4618 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
4619
4620 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4621 ptp_priv->seconds = ts.tv_sec;
4622 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4623
4624 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
4625 }
4626
4627 static struct ptp_clock_info lan8841_ptp_clock_info = {
4628 .owner = THIS_MODULE,
4629 .name = "lan8841 ptp",
4630 .max_adj = 31249999,
4631 .gettime64 = lan8841_ptp_gettime64,
4632 .settime64 = lan8841_ptp_settime64,
4633 .adjtime = lan8841_ptp_adjtime,
4634 .adjfine = lan8841_ptp_adjfine,
4635 .verify = lan8841_ptp_verify,
4636 .enable = lan8841_ptp_enable,
4637 .do_aux_work = lan8841_ptp_do_aux_work,
4638 .n_per_out = LAN8841_PTP_GPIO_NUM,
4639 .n_ext_ts = LAN8841_PTP_GPIO_NUM,
4640 .n_pins = LAN8841_PTP_GPIO_NUM,
4641 };
4642
4643 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
4644 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
4645
lan8841_probe(struct phy_device * phydev)4646 static int lan8841_probe(struct phy_device *phydev)
4647 {
4648 struct kszphy_ptp_priv *ptp_priv;
4649 struct kszphy_priv *priv;
4650 int err;
4651
4652 err = kszphy_probe(phydev);
4653 if (err)
4654 return err;
4655
4656 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4657 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
4658 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
4659 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
4660
4661 /* Register the clock */
4662 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
4663 return 0;
4664
4665 priv = phydev->priv;
4666 ptp_priv = &priv->ptp_priv;
4667
4668 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
4669 LAN8841_PTP_GPIO_NUM,
4670 sizeof(*ptp_priv->pin_config),
4671 GFP_KERNEL);
4672 if (!ptp_priv->pin_config)
4673 return -ENOMEM;
4674
4675 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
4676 struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
4677
4678 snprintf(p->name, sizeof(p->name), "pin%d", i);
4679 p->index = i;
4680 p->func = PTP_PF_NONE;
4681 }
4682
4683 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
4684 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
4685 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
4686 &phydev->mdio.dev);
4687 if (IS_ERR(ptp_priv->ptp_clock)) {
4688 phydev_err(phydev, "ptp_clock_register failed: %lu\n",
4689 PTR_ERR(ptp_priv->ptp_clock));
4690 return -EINVAL;
4691 }
4692
4693 if (!ptp_priv->ptp_clock)
4694 return 0;
4695
4696 /* Initialize the SW */
4697 skb_queue_head_init(&ptp_priv->tx_queue);
4698 ptp_priv->phydev = phydev;
4699 mutex_init(&ptp_priv->ptp_lock);
4700 spin_lock_init(&ptp_priv->seconds_lock);
4701
4702 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
4703 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
4704 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
4705 ptp_priv->mii_ts.ts_info = lan8841_ts_info;
4706
4707 phydev->mii_ts = &ptp_priv->mii_ts;
4708
4709 return 0;
4710 }
4711
lan8841_suspend(struct phy_device * phydev)4712 static int lan8841_suspend(struct phy_device *phydev)
4713 {
4714 struct kszphy_priv *priv = phydev->priv;
4715 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4716
4717 if (ptp_priv->ptp_clock)
4718 ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4719
4720 return genphy_suspend(phydev);
4721 }
4722
4723 static struct phy_driver ksphy_driver[] = {
4724 {
4725 .phy_id = PHY_ID_KS8737,
4726 .phy_id_mask = MICREL_PHY_ID_MASK,
4727 .name = "Micrel KS8737",
4728 /* PHY_BASIC_FEATURES */
4729 .driver_data = &ks8737_type,
4730 .probe = kszphy_probe,
4731 .config_init = kszphy_config_init,
4732 .config_intr = kszphy_config_intr,
4733 .handle_interrupt = kszphy_handle_interrupt,
4734 .suspend = kszphy_suspend,
4735 .resume = kszphy_resume,
4736 }, {
4737 .phy_id = PHY_ID_KSZ8021,
4738 .phy_id_mask = 0x00ffffff,
4739 .name = "Micrel KSZ8021 or KSZ8031",
4740 /* PHY_BASIC_FEATURES */
4741 .driver_data = &ksz8021_type,
4742 .probe = kszphy_probe,
4743 .config_init = kszphy_config_init,
4744 .config_intr = kszphy_config_intr,
4745 .handle_interrupt = kszphy_handle_interrupt,
4746 .get_sset_count = kszphy_get_sset_count,
4747 .get_strings = kszphy_get_strings,
4748 .get_stats = kszphy_get_stats,
4749 .suspend = kszphy_suspend,
4750 .resume = kszphy_resume,
4751 }, {
4752 .phy_id = PHY_ID_KSZ8031,
4753 .phy_id_mask = 0x00ffffff,
4754 .name = "Micrel KSZ8031",
4755 /* PHY_BASIC_FEATURES */
4756 .driver_data = &ksz8021_type,
4757 .probe = kszphy_probe,
4758 .config_init = kszphy_config_init,
4759 .config_intr = kszphy_config_intr,
4760 .handle_interrupt = kszphy_handle_interrupt,
4761 .get_sset_count = kszphy_get_sset_count,
4762 .get_strings = kszphy_get_strings,
4763 .get_stats = kszphy_get_stats,
4764 .suspend = kszphy_suspend,
4765 .resume = kszphy_resume,
4766 }, {
4767 .phy_id = PHY_ID_KSZ8041,
4768 .phy_id_mask = MICREL_PHY_ID_MASK,
4769 .name = "Micrel KSZ8041",
4770 /* PHY_BASIC_FEATURES */
4771 .driver_data = &ksz8041_type,
4772 .probe = kszphy_probe,
4773 .config_init = ksz8041_config_init,
4774 .config_aneg = ksz8041_config_aneg,
4775 .config_intr = kszphy_config_intr,
4776 .handle_interrupt = kszphy_handle_interrupt,
4777 .get_sset_count = kszphy_get_sset_count,
4778 .get_strings = kszphy_get_strings,
4779 .get_stats = kszphy_get_stats,
4780 /* No suspend/resume callbacks because of errata DS80000700A,
4781 * receiver error following software power down.
4782 */
4783 }, {
4784 .phy_id = PHY_ID_KSZ8041RNLI,
4785 .phy_id_mask = MICREL_PHY_ID_MASK,
4786 .name = "Micrel KSZ8041RNLI",
4787 /* PHY_BASIC_FEATURES */
4788 .driver_data = &ksz8041_type,
4789 .probe = kszphy_probe,
4790 .config_init = kszphy_config_init,
4791 .config_intr = kszphy_config_intr,
4792 .handle_interrupt = kszphy_handle_interrupt,
4793 .get_sset_count = kszphy_get_sset_count,
4794 .get_strings = kszphy_get_strings,
4795 .get_stats = kszphy_get_stats,
4796 .suspend = kszphy_suspend,
4797 .resume = kszphy_resume,
4798 }, {
4799 .name = "Micrel KSZ8051",
4800 /* PHY_BASIC_FEATURES */
4801 .driver_data = &ksz8051_type,
4802 .probe = kszphy_probe,
4803 .config_init = kszphy_config_init,
4804 .config_intr = kszphy_config_intr,
4805 .handle_interrupt = kszphy_handle_interrupt,
4806 .get_sset_count = kszphy_get_sset_count,
4807 .get_strings = kszphy_get_strings,
4808 .get_stats = kszphy_get_stats,
4809 .match_phy_device = ksz8051_match_phy_device,
4810 .suspend = kszphy_suspend,
4811 .resume = kszphy_resume,
4812 }, {
4813 .phy_id = PHY_ID_KSZ8001,
4814 .name = "Micrel KSZ8001 or KS8721",
4815 .phy_id_mask = 0x00fffffc,
4816 /* PHY_BASIC_FEATURES */
4817 .driver_data = &ksz8041_type,
4818 .probe = kszphy_probe,
4819 .config_init = kszphy_config_init,
4820 .config_intr = kszphy_config_intr,
4821 .handle_interrupt = kszphy_handle_interrupt,
4822 .get_sset_count = kszphy_get_sset_count,
4823 .get_strings = kszphy_get_strings,
4824 .get_stats = kszphy_get_stats,
4825 .suspend = kszphy_suspend,
4826 .resume = kszphy_resume,
4827 }, {
4828 .phy_id = PHY_ID_KSZ8081,
4829 .name = "Micrel KSZ8081 or KSZ8091",
4830 .phy_id_mask = MICREL_PHY_ID_MASK,
4831 .flags = PHY_POLL_CABLE_TEST,
4832 /* PHY_BASIC_FEATURES */
4833 .driver_data = &ksz8081_type,
4834 .probe = kszphy_probe,
4835 .config_init = ksz8081_config_init,
4836 .soft_reset = genphy_soft_reset,
4837 .config_aneg = ksz8081_config_aneg,
4838 .read_status = ksz8081_read_status,
4839 .config_intr = kszphy_config_intr,
4840 .handle_interrupt = kszphy_handle_interrupt,
4841 .get_sset_count = kszphy_get_sset_count,
4842 .get_strings = kszphy_get_strings,
4843 .get_stats = kszphy_get_stats,
4844 .suspend = kszphy_suspend,
4845 .resume = kszphy_resume,
4846 .cable_test_start = ksz886x_cable_test_start,
4847 .cable_test_get_status = ksz886x_cable_test_get_status,
4848 }, {
4849 .phy_id = PHY_ID_KSZ8061,
4850 .name = "Micrel KSZ8061",
4851 .phy_id_mask = MICREL_PHY_ID_MASK,
4852 /* PHY_BASIC_FEATURES */
4853 .probe = kszphy_probe,
4854 .config_init = ksz8061_config_init,
4855 .soft_reset = genphy_soft_reset,
4856 .config_intr = kszphy_config_intr,
4857 .handle_interrupt = kszphy_handle_interrupt,
4858 .suspend = kszphy_suspend,
4859 .resume = ksz8061_resume,
4860 }, {
4861 .phy_id = PHY_ID_KSZ9021,
4862 .phy_id_mask = 0x000ffffe,
4863 .name = "Micrel KSZ9021 Gigabit PHY",
4864 /* PHY_GBIT_FEATURES */
4865 .driver_data = &ksz9021_type,
4866 .probe = kszphy_probe,
4867 .get_features = ksz9031_get_features,
4868 .config_init = ksz9021_config_init,
4869 .config_intr = kszphy_config_intr,
4870 .handle_interrupt = kszphy_handle_interrupt,
4871 .get_sset_count = kszphy_get_sset_count,
4872 .get_strings = kszphy_get_strings,
4873 .get_stats = kszphy_get_stats,
4874 .suspend = kszphy_suspend,
4875 .resume = kszphy_resume,
4876 .read_mmd = genphy_read_mmd_unsupported,
4877 .write_mmd = genphy_write_mmd_unsupported,
4878 }, {
4879 .phy_id = PHY_ID_KSZ9031,
4880 .phy_id_mask = MICREL_PHY_ID_MASK,
4881 .name = "Micrel KSZ9031 Gigabit PHY",
4882 .flags = PHY_POLL_CABLE_TEST,
4883 .driver_data = &ksz9021_type,
4884 .probe = kszphy_probe,
4885 .get_features = ksz9031_get_features,
4886 .config_init = ksz9031_config_init,
4887 .soft_reset = genphy_soft_reset,
4888 .read_status = ksz9031_read_status,
4889 .config_intr = kszphy_config_intr,
4890 .handle_interrupt = kszphy_handle_interrupt,
4891 .get_sset_count = kszphy_get_sset_count,
4892 .get_strings = kszphy_get_strings,
4893 .get_stats = kszphy_get_stats,
4894 .suspend = kszphy_suspend,
4895 .resume = kszphy_resume,
4896 .cable_test_start = ksz9x31_cable_test_start,
4897 .cable_test_get_status = ksz9x31_cable_test_get_status,
4898 }, {
4899 .phy_id = PHY_ID_LAN8814,
4900 .phy_id_mask = MICREL_PHY_ID_MASK,
4901 .name = "Microchip INDY Gigabit Quad PHY",
4902 .flags = PHY_POLL_CABLE_TEST,
4903 .config_init = lan8814_config_init,
4904 .driver_data = &lan8814_type,
4905 .probe = lan8814_probe,
4906 .soft_reset = genphy_soft_reset,
4907 .read_status = ksz9031_read_status,
4908 .get_sset_count = kszphy_get_sset_count,
4909 .get_strings = kszphy_get_strings,
4910 .get_stats = kszphy_get_stats,
4911 .suspend = genphy_suspend,
4912 .resume = kszphy_resume,
4913 .config_intr = lan8814_config_intr,
4914 .handle_interrupt = lan8814_handle_interrupt,
4915 .cable_test_start = lan8814_cable_test_start,
4916 .cable_test_get_status = ksz886x_cable_test_get_status,
4917 }, {
4918 .phy_id = PHY_ID_LAN8804,
4919 .phy_id_mask = MICREL_PHY_ID_MASK,
4920 .name = "Microchip LAN966X Gigabit PHY",
4921 .config_init = lan8804_config_init,
4922 .driver_data = &ksz9021_type,
4923 .probe = kszphy_probe,
4924 .soft_reset = genphy_soft_reset,
4925 .read_status = ksz9031_read_status,
4926 .get_sset_count = kszphy_get_sset_count,
4927 .get_strings = kszphy_get_strings,
4928 .get_stats = kszphy_get_stats,
4929 .suspend = genphy_suspend,
4930 .resume = kszphy_resume,
4931 .config_intr = lan8804_config_intr,
4932 .handle_interrupt = lan8804_handle_interrupt,
4933 }, {
4934 .phy_id = PHY_ID_LAN8841,
4935 .phy_id_mask = MICREL_PHY_ID_MASK,
4936 .name = "Microchip LAN8841 Gigabit PHY",
4937 .flags = PHY_POLL_CABLE_TEST,
4938 .driver_data = &lan8841_type,
4939 .config_init = lan8841_config_init,
4940 .probe = lan8841_probe,
4941 .soft_reset = genphy_soft_reset,
4942 .config_intr = lan8841_config_intr,
4943 .handle_interrupt = lan8841_handle_interrupt,
4944 .get_sset_count = kszphy_get_sset_count,
4945 .get_strings = kszphy_get_strings,
4946 .get_stats = kszphy_get_stats,
4947 .suspend = lan8841_suspend,
4948 .resume = genphy_resume,
4949 .cable_test_start = lan8814_cable_test_start,
4950 .cable_test_get_status = ksz886x_cable_test_get_status,
4951 }, {
4952 .phy_id = PHY_ID_KSZ9131,
4953 .phy_id_mask = MICREL_PHY_ID_MASK,
4954 .name = "Microchip KSZ9131 Gigabit PHY",
4955 /* PHY_GBIT_FEATURES */
4956 .flags = PHY_POLL_CABLE_TEST,
4957 .driver_data = &ksz9131_type,
4958 .probe = kszphy_probe,
4959 .soft_reset = genphy_soft_reset,
4960 .config_init = ksz9131_config_init,
4961 .config_intr = kszphy_config_intr,
4962 .config_aneg = ksz9131_config_aneg,
4963 .read_status = ksz9131_read_status,
4964 .handle_interrupt = kszphy_handle_interrupt,
4965 .get_sset_count = kszphy_get_sset_count,
4966 .get_strings = kszphy_get_strings,
4967 .get_stats = kszphy_get_stats,
4968 .suspend = kszphy_suspend,
4969 .resume = kszphy_resume,
4970 .cable_test_start = ksz9x31_cable_test_start,
4971 .cable_test_get_status = ksz9x31_cable_test_get_status,
4972 .get_features = ksz9477_get_features,
4973 }, {
4974 .phy_id = PHY_ID_KSZ8873MLL,
4975 .phy_id_mask = MICREL_PHY_ID_MASK,
4976 .name = "Micrel KSZ8873MLL Switch",
4977 /* PHY_BASIC_FEATURES */
4978 .config_init = kszphy_config_init,
4979 .config_aneg = ksz8873mll_config_aneg,
4980 .read_status = ksz8873mll_read_status,
4981 .suspend = genphy_suspend,
4982 .resume = genphy_resume,
4983 }, {
4984 .phy_id = PHY_ID_KSZ886X,
4985 .phy_id_mask = MICREL_PHY_ID_MASK,
4986 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
4987 .driver_data = &ksz886x_type,
4988 /* PHY_BASIC_FEATURES */
4989 .flags = PHY_POLL_CABLE_TEST,
4990 .config_init = kszphy_config_init,
4991 .config_aneg = ksz886x_config_aneg,
4992 .read_status = ksz886x_read_status,
4993 .suspend = genphy_suspend,
4994 .resume = genphy_resume,
4995 .cable_test_start = ksz886x_cable_test_start,
4996 .cable_test_get_status = ksz886x_cable_test_get_status,
4997 }, {
4998 .name = "Micrel KSZ87XX Switch",
4999 /* PHY_BASIC_FEATURES */
5000 .config_init = kszphy_config_init,
5001 .match_phy_device = ksz8795_match_phy_device,
5002 .suspend = genphy_suspend,
5003 .resume = genphy_resume,
5004 }, {
5005 .phy_id = PHY_ID_KSZ9477,
5006 .phy_id_mask = MICREL_PHY_ID_MASK,
5007 .name = "Microchip KSZ9477",
5008 /* PHY_GBIT_FEATURES */
5009 .config_init = ksz9477_config_init,
5010 .config_intr = kszphy_config_intr,
5011 .handle_interrupt = kszphy_handle_interrupt,
5012 .suspend = genphy_suspend,
5013 .resume = ksz9477_resume,
5014 .get_features = ksz9477_get_features,
5015 } };
5016
5017 module_phy_driver(ksphy_driver);
5018
5019 MODULE_DESCRIPTION("Micrel PHY driver");
5020 MODULE_AUTHOR("David J. Choi");
5021 MODULE_LICENSE("GPL");
5022
5023 static struct mdio_device_id __maybe_unused micrel_tbl[] = {
5024 { PHY_ID_KSZ9021, 0x000ffffe },
5025 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
5026 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
5027 { PHY_ID_KSZ8001, 0x00fffffc },
5028 { PHY_ID_KS8737, MICREL_PHY_ID_MASK },
5029 { PHY_ID_KSZ8021, 0x00ffffff },
5030 { PHY_ID_KSZ8031, 0x00ffffff },
5031 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
5032 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
5033 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
5034 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
5035 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
5036 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
5037 { PHY_ID_KSZ9477, MICREL_PHY_ID_MASK },
5038 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
5039 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
5040 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
5041 { }
5042 };
5043
5044 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
5045