xref: /openbmc/linux/drivers/net/ethernet/stmicro/stmmac/stmmac_tc.c (revision 7994a4849c8b1501c2e5c21edd1085b16efb98fa)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /*
3  * Copyright (c) 2018 Synopsys, Inc. and/or its affiliates.
4  * stmmac TC Handling (HW only)
5  */
6 
7 #include <net/pkt_cls.h>
8 #include <net/tc_act/tc_gact.h>
9 #include "common.h"
10 #include "dwmac4.h"
11 #include "dwmac5.h"
12 #include "stmmac.h"
13 
14 static void tc_fill_all_pass_entry(struct stmmac_tc_entry *entry)
15 {
16 	memset(entry, 0, sizeof(*entry));
17 	entry->in_use = true;
18 	entry->is_last = true;
19 	entry->is_frag = false;
20 	entry->prio = ~0x0;
21 	entry->handle = 0;
22 	entry->val.match_data = 0x0;
23 	entry->val.match_en = 0x0;
24 	entry->val.af = 1;
25 	entry->val.dma_ch_no = 0x0;
26 }
27 
28 static struct stmmac_tc_entry *tc_find_entry(struct stmmac_priv *priv,
29 					     struct tc_cls_u32_offload *cls,
30 					     bool free)
31 {
32 	struct stmmac_tc_entry *entry, *first = NULL, *dup = NULL;
33 	u32 loc = cls->knode.handle;
34 	int i;
35 
36 	for (i = 0; i < priv->tc_entries_max; i++) {
37 		entry = &priv->tc_entries[i];
38 		if (!entry->in_use && !first && free)
39 			first = entry;
40 		if ((entry->handle == loc) && !free && !entry->is_frag)
41 			dup = entry;
42 	}
43 
44 	if (dup)
45 		return dup;
46 	if (first) {
47 		first->handle = loc;
48 		first->in_use = true;
49 
50 		/* Reset HW values */
51 		memset(&first->val, 0, sizeof(first->val));
52 	}
53 
54 	return first;
55 }
56 
57 static int tc_fill_actions(struct stmmac_tc_entry *entry,
58 			   struct stmmac_tc_entry *frag,
59 			   struct tc_cls_u32_offload *cls)
60 {
61 	struct stmmac_tc_entry *action_entry = entry;
62 	const struct tc_action *act;
63 	struct tcf_exts *exts;
64 	int i;
65 
66 	exts = cls->knode.exts;
67 	if (!tcf_exts_has_actions(exts))
68 		return -EINVAL;
69 	if (frag)
70 		action_entry = frag;
71 
72 	tcf_exts_for_each_action(i, act, exts) {
73 		/* Accept */
74 		if (is_tcf_gact_ok(act)) {
75 			action_entry->val.af = 1;
76 			break;
77 		}
78 		/* Drop */
79 		if (is_tcf_gact_shot(act)) {
80 			action_entry->val.rf = 1;
81 			break;
82 		}
83 
84 		/* Unsupported */
85 		return -EINVAL;
86 	}
87 
88 	return 0;
89 }
90 
91 static int tc_fill_entry(struct stmmac_priv *priv,
92 			 struct tc_cls_u32_offload *cls)
93 {
94 	struct stmmac_tc_entry *entry, *frag = NULL;
95 	struct tc_u32_sel *sel = cls->knode.sel;
96 	u32 off, data, mask, real_off, rem;
97 	u32 prio = cls->common.prio << 16;
98 	int ret;
99 
100 	/* Only 1 match per entry */
101 	if (sel->nkeys <= 0 || sel->nkeys > 1)
102 		return -EINVAL;
103 
104 	off = sel->keys[0].off << sel->offshift;
105 	data = sel->keys[0].val;
106 	mask = sel->keys[0].mask;
107 
108 	switch (ntohs(cls->common.protocol)) {
109 	case ETH_P_ALL:
110 		break;
111 	case ETH_P_IP:
112 		off += ETH_HLEN;
113 		break;
114 	default:
115 		return -EINVAL;
116 	}
117 
118 	if (off > priv->tc_off_max)
119 		return -EINVAL;
120 
121 	real_off = off / 4;
122 	rem = off % 4;
123 
124 	entry = tc_find_entry(priv, cls, true);
125 	if (!entry)
126 		return -EINVAL;
127 
128 	if (rem) {
129 		frag = tc_find_entry(priv, cls, true);
130 		if (!frag) {
131 			ret = -EINVAL;
132 			goto err_unuse;
133 		}
134 
135 		entry->frag_ptr = frag;
136 		entry->val.match_en = (mask << (rem * 8)) &
137 			GENMASK(31, rem * 8);
138 		entry->val.match_data = (data << (rem * 8)) &
139 			GENMASK(31, rem * 8);
140 		entry->val.frame_offset = real_off;
141 		entry->prio = prio;
142 
143 		frag->val.match_en = (mask >> (rem * 8)) &
144 			GENMASK(rem * 8 - 1, 0);
145 		frag->val.match_data = (data >> (rem * 8)) &
146 			GENMASK(rem * 8 - 1, 0);
147 		frag->val.frame_offset = real_off + 1;
148 		frag->prio = prio;
149 		frag->is_frag = true;
150 	} else {
151 		entry->frag_ptr = NULL;
152 		entry->val.match_en = mask;
153 		entry->val.match_data = data;
154 		entry->val.frame_offset = real_off;
155 		entry->prio = prio;
156 	}
157 
158 	ret = tc_fill_actions(entry, frag, cls);
159 	if (ret)
160 		goto err_unuse;
161 
162 	return 0;
163 
164 err_unuse:
165 	if (frag)
166 		frag->in_use = false;
167 	entry->in_use = false;
168 	return ret;
169 }
170 
171 static void tc_unfill_entry(struct stmmac_priv *priv,
172 			    struct tc_cls_u32_offload *cls)
173 {
174 	struct stmmac_tc_entry *entry;
175 
176 	entry = tc_find_entry(priv, cls, false);
177 	if (!entry)
178 		return;
179 
180 	entry->in_use = false;
181 	if (entry->frag_ptr) {
182 		entry = entry->frag_ptr;
183 		entry->is_frag = false;
184 		entry->in_use = false;
185 	}
186 }
187 
188 static int tc_config_knode(struct stmmac_priv *priv,
189 			   struct tc_cls_u32_offload *cls)
190 {
191 	int ret;
192 
193 	ret = tc_fill_entry(priv, cls);
194 	if (ret)
195 		return ret;
196 
197 	ret = stmmac_rxp_config(priv, priv->hw->pcsr, priv->tc_entries,
198 			priv->tc_entries_max);
199 	if (ret)
200 		goto err_unfill;
201 
202 	return 0;
203 
204 err_unfill:
205 	tc_unfill_entry(priv, cls);
206 	return ret;
207 }
208 
209 static int tc_delete_knode(struct stmmac_priv *priv,
210 			   struct tc_cls_u32_offload *cls)
211 {
212 	/* Set entry and fragments as not used */
213 	tc_unfill_entry(priv, cls);
214 
215 	return stmmac_rxp_config(priv, priv->hw->pcsr, priv->tc_entries,
216 				 priv->tc_entries_max);
217 }
218 
219 static int tc_setup_cls_u32(struct stmmac_priv *priv,
220 			    struct tc_cls_u32_offload *cls)
221 {
222 	switch (cls->command) {
223 	case TC_CLSU32_REPLACE_KNODE:
224 		tc_unfill_entry(priv, cls);
225 		fallthrough;
226 	case TC_CLSU32_NEW_KNODE:
227 		return tc_config_knode(priv, cls);
228 	case TC_CLSU32_DELETE_KNODE:
229 		return tc_delete_knode(priv, cls);
230 	default:
231 		return -EOPNOTSUPP;
232 	}
233 }
234 
235 static int tc_rfs_init(struct stmmac_priv *priv)
236 {
237 	int i;
238 
239 	priv->rfs_entries_max[STMMAC_RFS_T_VLAN] = 8;
240 	priv->rfs_entries_max[STMMAC_RFS_T_LLDP] = 1;
241 	priv->rfs_entries_max[STMMAC_RFS_T_1588] = 1;
242 
243 	for (i = 0; i < STMMAC_RFS_T_MAX; i++)
244 		priv->rfs_entries_total += priv->rfs_entries_max[i];
245 
246 	priv->rfs_entries = devm_kcalloc(priv->device,
247 					 priv->rfs_entries_total,
248 					 sizeof(*priv->rfs_entries),
249 					 GFP_KERNEL);
250 	if (!priv->rfs_entries)
251 		return -ENOMEM;
252 
253 	dev_info(priv->device, "Enabled RFS Flow TC (entries=%d)\n",
254 		 priv->rfs_entries_total);
255 
256 	return 0;
257 }
258 
259 static int tc_init(struct stmmac_priv *priv)
260 {
261 	struct dma_features *dma_cap = &priv->dma_cap;
262 	unsigned int count;
263 	int ret, i;
264 
265 	if (dma_cap->l3l4fnum) {
266 		priv->flow_entries_max = dma_cap->l3l4fnum;
267 		priv->flow_entries = devm_kcalloc(priv->device,
268 						  dma_cap->l3l4fnum,
269 						  sizeof(*priv->flow_entries),
270 						  GFP_KERNEL);
271 		if (!priv->flow_entries)
272 			return -ENOMEM;
273 
274 		for (i = 0; i < priv->flow_entries_max; i++)
275 			priv->flow_entries[i].idx = i;
276 
277 		dev_info(priv->device, "Enabled L3L4 Flow TC (entries=%d)\n",
278 			 priv->flow_entries_max);
279 	}
280 
281 	ret = tc_rfs_init(priv);
282 	if (ret)
283 		return -ENOMEM;
284 
285 	if (!priv->plat->fpe_cfg) {
286 		priv->plat->fpe_cfg = devm_kzalloc(priv->device,
287 						   sizeof(*priv->plat->fpe_cfg),
288 						   GFP_KERNEL);
289 		if (!priv->plat->fpe_cfg)
290 			return -ENOMEM;
291 	} else {
292 		memset(priv->plat->fpe_cfg, 0, sizeof(*priv->plat->fpe_cfg));
293 	}
294 
295 	/* Fail silently as we can still use remaining features, e.g. CBS */
296 	if (!dma_cap->frpsel)
297 		return 0;
298 
299 	switch (dma_cap->frpbs) {
300 	case 0x0:
301 		priv->tc_off_max = 64;
302 		break;
303 	case 0x1:
304 		priv->tc_off_max = 128;
305 		break;
306 	case 0x2:
307 		priv->tc_off_max = 256;
308 		break;
309 	default:
310 		return -EINVAL;
311 	}
312 
313 	switch (dma_cap->frpes) {
314 	case 0x0:
315 		count = 64;
316 		break;
317 	case 0x1:
318 		count = 128;
319 		break;
320 	case 0x2:
321 		count = 256;
322 		break;
323 	default:
324 		return -EINVAL;
325 	}
326 
327 	/* Reserve one last filter which lets all pass */
328 	priv->tc_entries_max = count;
329 	priv->tc_entries = devm_kcalloc(priv->device,
330 			count, sizeof(*priv->tc_entries), GFP_KERNEL);
331 	if (!priv->tc_entries)
332 		return -ENOMEM;
333 
334 	tc_fill_all_pass_entry(&priv->tc_entries[count - 1]);
335 
336 	dev_info(priv->device, "Enabling HW TC (entries=%d, max_off=%d)\n",
337 			priv->tc_entries_max, priv->tc_off_max);
338 
339 	return 0;
340 }
341 
342 static int tc_setup_cbs(struct stmmac_priv *priv,
343 			struct tc_cbs_qopt_offload *qopt)
344 {
345 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
346 	s64 port_transmit_rate_kbps;
347 	u32 queue = qopt->queue;
348 	u32 mode_to_use;
349 	u64 value;
350 	u32 ptr;
351 	int ret;
352 
353 	/* Queue 0 is not AVB capable */
354 	if (queue <= 0 || queue >= tx_queues_count)
355 		return -EINVAL;
356 	if (!priv->dma_cap.av)
357 		return -EOPNOTSUPP;
358 
359 	port_transmit_rate_kbps = qopt->idleslope - qopt->sendslope;
360 
361 	if (qopt->enable) {
362 		/* Port Transmit Rate and Speed Divider */
363 		switch (div_s64(port_transmit_rate_kbps, 1000)) {
364 		case SPEED_10000:
365 		case SPEED_5000:
366 			ptr = 32;
367 			break;
368 		case SPEED_2500:
369 		case SPEED_1000:
370 			ptr = 8;
371 			break;
372 		case SPEED_100:
373 			ptr = 4;
374 			break;
375 		default:
376 			netdev_err(priv->dev,
377 				   "Invalid portTransmitRate %lld (idleSlope - sendSlope)\n",
378 				   port_transmit_rate_kbps);
379 			return -EINVAL;
380 		}
381 	} else {
382 		ptr = 0;
383 	}
384 
385 	mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
386 	if (mode_to_use == MTL_QUEUE_DCB && qopt->enable) {
387 		ret = stmmac_dma_qmode(priv, priv->ioaddr, queue, MTL_QUEUE_AVB);
388 		if (ret)
389 			return ret;
390 
391 		priv->plat->tx_queues_cfg[queue].mode_to_use = MTL_QUEUE_AVB;
392 	} else if (!qopt->enable) {
393 		ret = stmmac_dma_qmode(priv, priv->ioaddr, queue,
394 				       MTL_QUEUE_DCB);
395 		if (ret)
396 			return ret;
397 
398 		priv->plat->tx_queues_cfg[queue].mode_to_use = MTL_QUEUE_DCB;
399 		return 0;
400 	}
401 
402 	/* Final adjustments for HW */
403 	value = div_s64(qopt->idleslope * 1024ll * ptr, port_transmit_rate_kbps);
404 	priv->plat->tx_queues_cfg[queue].idle_slope = value & GENMASK(31, 0);
405 
406 	value = div_s64(-qopt->sendslope * 1024ll * ptr, port_transmit_rate_kbps);
407 	priv->plat->tx_queues_cfg[queue].send_slope = value & GENMASK(31, 0);
408 
409 	value = qopt->hicredit * 1024ll * 8;
410 	priv->plat->tx_queues_cfg[queue].high_credit = value & GENMASK(31, 0);
411 
412 	value = qopt->locredit * 1024ll * 8;
413 	priv->plat->tx_queues_cfg[queue].low_credit = value & GENMASK(31, 0);
414 
415 	ret = stmmac_config_cbs(priv, priv->hw,
416 				priv->plat->tx_queues_cfg[queue].send_slope,
417 				priv->plat->tx_queues_cfg[queue].idle_slope,
418 				priv->plat->tx_queues_cfg[queue].high_credit,
419 				priv->plat->tx_queues_cfg[queue].low_credit,
420 				queue);
421 	if (ret)
422 		return ret;
423 
424 	dev_info(priv->device, "CBS queue %d: send %d, idle %d, hi %d, lo %d\n",
425 			queue, qopt->sendslope, qopt->idleslope,
426 			qopt->hicredit, qopt->locredit);
427 	return 0;
428 }
429 
430 static int tc_parse_flow_actions(struct stmmac_priv *priv,
431 				 struct flow_action *action,
432 				 struct stmmac_flow_entry *entry,
433 				 struct netlink_ext_ack *extack)
434 {
435 	struct flow_action_entry *act;
436 	int i;
437 
438 	if (!flow_action_has_entries(action))
439 		return -EINVAL;
440 
441 	if (!flow_action_basic_hw_stats_check(action, extack))
442 		return -EOPNOTSUPP;
443 
444 	flow_action_for_each(i, act, action) {
445 		switch (act->id) {
446 		case FLOW_ACTION_DROP:
447 			entry->action |= STMMAC_FLOW_ACTION_DROP;
448 			return 0;
449 		default:
450 			break;
451 		}
452 	}
453 
454 	/* Nothing to do, maybe inverse filter ? */
455 	return 0;
456 }
457 
458 #define ETHER_TYPE_FULL_MASK	cpu_to_be16(~0)
459 
460 static int tc_add_basic_flow(struct stmmac_priv *priv,
461 			     struct flow_cls_offload *cls,
462 			     struct stmmac_flow_entry *entry)
463 {
464 	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
465 	struct flow_dissector *dissector = rule->match.dissector;
466 	struct flow_match_basic match;
467 
468 	/* Nothing to do here */
469 	if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_BASIC))
470 		return -EINVAL;
471 
472 	flow_rule_match_basic(rule, &match);
473 
474 	entry->ip_proto = match.key->ip_proto;
475 	return 0;
476 }
477 
478 static int tc_add_ip4_flow(struct stmmac_priv *priv,
479 			   struct flow_cls_offload *cls,
480 			   struct stmmac_flow_entry *entry)
481 {
482 	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
483 	struct flow_dissector *dissector = rule->match.dissector;
484 	bool inv = entry->action & STMMAC_FLOW_ACTION_DROP;
485 	struct flow_match_ipv4_addrs match;
486 	u32 hw_match;
487 	int ret;
488 
489 	/* Nothing to do here */
490 	if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS))
491 		return -EINVAL;
492 
493 	flow_rule_match_ipv4_addrs(rule, &match);
494 	hw_match = ntohl(match.key->src) & ntohl(match.mask->src);
495 	if (hw_match) {
496 		ret = stmmac_config_l3_filter(priv, priv->hw, entry->idx, true,
497 					      false, true, inv, hw_match);
498 		if (ret)
499 			return ret;
500 	}
501 
502 	hw_match = ntohl(match.key->dst) & ntohl(match.mask->dst);
503 	if (hw_match) {
504 		ret = stmmac_config_l3_filter(priv, priv->hw, entry->idx, true,
505 					      false, false, inv, hw_match);
506 		if (ret)
507 			return ret;
508 	}
509 
510 	return 0;
511 }
512 
513 static int tc_add_ports_flow(struct stmmac_priv *priv,
514 			     struct flow_cls_offload *cls,
515 			     struct stmmac_flow_entry *entry)
516 {
517 	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
518 	struct flow_dissector *dissector = rule->match.dissector;
519 	bool inv = entry->action & STMMAC_FLOW_ACTION_DROP;
520 	struct flow_match_ports match;
521 	u32 hw_match;
522 	bool is_udp;
523 	int ret;
524 
525 	/* Nothing to do here */
526 	if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_PORTS))
527 		return -EINVAL;
528 
529 	switch (entry->ip_proto) {
530 	case IPPROTO_TCP:
531 		is_udp = false;
532 		break;
533 	case IPPROTO_UDP:
534 		is_udp = true;
535 		break;
536 	default:
537 		return -EINVAL;
538 	}
539 
540 	flow_rule_match_ports(rule, &match);
541 
542 	hw_match = ntohs(match.key->src) & ntohs(match.mask->src);
543 	if (hw_match) {
544 		ret = stmmac_config_l4_filter(priv, priv->hw, entry->idx, true,
545 					      is_udp, true, inv, hw_match);
546 		if (ret)
547 			return ret;
548 	}
549 
550 	hw_match = ntohs(match.key->dst) & ntohs(match.mask->dst);
551 	if (hw_match) {
552 		ret = stmmac_config_l4_filter(priv, priv->hw, entry->idx, true,
553 					      is_udp, false, inv, hw_match);
554 		if (ret)
555 			return ret;
556 	}
557 
558 	entry->is_l4 = true;
559 	return 0;
560 }
561 
562 static struct stmmac_flow_entry *tc_find_flow(struct stmmac_priv *priv,
563 					      struct flow_cls_offload *cls,
564 					      bool get_free)
565 {
566 	int i;
567 
568 	for (i = 0; i < priv->flow_entries_max; i++) {
569 		struct stmmac_flow_entry *entry = &priv->flow_entries[i];
570 
571 		if (entry->cookie == cls->cookie)
572 			return entry;
573 		if (get_free && (entry->in_use == false))
574 			return entry;
575 	}
576 
577 	return NULL;
578 }
579 
580 static struct {
581 	int (*fn)(struct stmmac_priv *priv, struct flow_cls_offload *cls,
582 		  struct stmmac_flow_entry *entry);
583 } tc_flow_parsers[] = {
584 	{ .fn = tc_add_basic_flow },
585 	{ .fn = tc_add_ip4_flow },
586 	{ .fn = tc_add_ports_flow },
587 };
588 
589 static int tc_add_flow(struct stmmac_priv *priv,
590 		       struct flow_cls_offload *cls)
591 {
592 	struct stmmac_flow_entry *entry = tc_find_flow(priv, cls, false);
593 	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
594 	int i, ret;
595 
596 	if (!entry) {
597 		entry = tc_find_flow(priv, cls, true);
598 		if (!entry)
599 			return -ENOENT;
600 	}
601 
602 	ret = tc_parse_flow_actions(priv, &rule->action, entry,
603 				    cls->common.extack);
604 	if (ret)
605 		return ret;
606 
607 	for (i = 0; i < ARRAY_SIZE(tc_flow_parsers); i++) {
608 		ret = tc_flow_parsers[i].fn(priv, cls, entry);
609 		if (!ret)
610 			entry->in_use = true;
611 	}
612 
613 	if (!entry->in_use)
614 		return -EINVAL;
615 
616 	entry->cookie = cls->cookie;
617 	return 0;
618 }
619 
620 static int tc_del_flow(struct stmmac_priv *priv,
621 		       struct flow_cls_offload *cls)
622 {
623 	struct stmmac_flow_entry *entry = tc_find_flow(priv, cls, false);
624 	int ret;
625 
626 	if (!entry || !entry->in_use)
627 		return -ENOENT;
628 
629 	if (entry->is_l4) {
630 		ret = stmmac_config_l4_filter(priv, priv->hw, entry->idx, false,
631 					      false, false, false, 0);
632 	} else {
633 		ret = stmmac_config_l3_filter(priv, priv->hw, entry->idx, false,
634 					      false, false, false, 0);
635 	}
636 
637 	entry->in_use = false;
638 	entry->cookie = 0;
639 	entry->is_l4 = false;
640 	return ret;
641 }
642 
643 static struct stmmac_rfs_entry *tc_find_rfs(struct stmmac_priv *priv,
644 					    struct flow_cls_offload *cls,
645 					    bool get_free)
646 {
647 	int i;
648 
649 	for (i = 0; i < priv->rfs_entries_total; i++) {
650 		struct stmmac_rfs_entry *entry = &priv->rfs_entries[i];
651 
652 		if (entry->cookie == cls->cookie)
653 			return entry;
654 		if (get_free && entry->in_use == false)
655 			return entry;
656 	}
657 
658 	return NULL;
659 }
660 
661 #define VLAN_PRIO_FULL_MASK (0x07)
662 
663 static int tc_add_vlan_flow(struct stmmac_priv *priv,
664 			    struct flow_cls_offload *cls)
665 {
666 	struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false);
667 	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
668 	struct flow_dissector *dissector = rule->match.dissector;
669 	int tc = tc_classid_to_hwtc(priv->dev, cls->classid);
670 	struct flow_match_vlan match;
671 
672 	if (!entry) {
673 		entry = tc_find_rfs(priv, cls, true);
674 		if (!entry)
675 			return -ENOENT;
676 	}
677 
678 	if (priv->rfs_entries_cnt[STMMAC_RFS_T_VLAN] >=
679 	    priv->rfs_entries_max[STMMAC_RFS_T_VLAN])
680 		return -ENOENT;
681 
682 	/* Nothing to do here */
683 	if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_VLAN))
684 		return -EINVAL;
685 
686 	if (tc < 0) {
687 		netdev_err(priv->dev, "Invalid traffic class\n");
688 		return -EINVAL;
689 	}
690 
691 	flow_rule_match_vlan(rule, &match);
692 
693 	if (match.mask->vlan_priority) {
694 		u32 prio;
695 
696 		if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
697 			netdev_err(priv->dev, "Only full mask is supported for VLAN priority");
698 			return -EINVAL;
699 		}
700 
701 		prio = BIT(match.key->vlan_priority);
702 		stmmac_rx_queue_prio(priv, priv->hw, prio, tc);
703 
704 		entry->in_use = true;
705 		entry->cookie = cls->cookie;
706 		entry->tc = tc;
707 		entry->type = STMMAC_RFS_T_VLAN;
708 		priv->rfs_entries_cnt[STMMAC_RFS_T_VLAN]++;
709 	}
710 
711 	return 0;
712 }
713 
714 static int tc_del_vlan_flow(struct stmmac_priv *priv,
715 			    struct flow_cls_offload *cls)
716 {
717 	struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false);
718 
719 	if (!entry || !entry->in_use || entry->type != STMMAC_RFS_T_VLAN)
720 		return -ENOENT;
721 
722 	stmmac_rx_queue_prio(priv, priv->hw, 0, entry->tc);
723 
724 	entry->in_use = false;
725 	entry->cookie = 0;
726 	entry->tc = 0;
727 	entry->type = 0;
728 
729 	priv->rfs_entries_cnt[STMMAC_RFS_T_VLAN]--;
730 
731 	return 0;
732 }
733 
734 static int tc_add_ethtype_flow(struct stmmac_priv *priv,
735 			       struct flow_cls_offload *cls)
736 {
737 	struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false);
738 	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
739 	struct flow_dissector *dissector = rule->match.dissector;
740 	int tc = tc_classid_to_hwtc(priv->dev, cls->classid);
741 	struct flow_match_basic match;
742 
743 	if (!entry) {
744 		entry = tc_find_rfs(priv, cls, true);
745 		if (!entry)
746 			return -ENOENT;
747 	}
748 
749 	/* Nothing to do here */
750 	if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_BASIC))
751 		return -EINVAL;
752 
753 	if (tc < 0) {
754 		netdev_err(priv->dev, "Invalid traffic class\n");
755 		return -EINVAL;
756 	}
757 
758 	flow_rule_match_basic(rule, &match);
759 
760 	if (match.mask->n_proto) {
761 		u16 etype = ntohs(match.key->n_proto);
762 
763 		if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
764 			netdev_err(priv->dev, "Only full mask is supported for EthType filter");
765 			return -EINVAL;
766 		}
767 		switch (etype) {
768 		case ETH_P_LLDP:
769 			if (priv->rfs_entries_cnt[STMMAC_RFS_T_LLDP] >=
770 			    priv->rfs_entries_max[STMMAC_RFS_T_LLDP])
771 				return -ENOENT;
772 
773 			entry->type = STMMAC_RFS_T_LLDP;
774 			priv->rfs_entries_cnt[STMMAC_RFS_T_LLDP]++;
775 
776 			stmmac_rx_queue_routing(priv, priv->hw,
777 						PACKET_DCBCPQ, tc);
778 			break;
779 		case ETH_P_1588:
780 			if (priv->rfs_entries_cnt[STMMAC_RFS_T_1588] >=
781 			    priv->rfs_entries_max[STMMAC_RFS_T_1588])
782 				return -ENOENT;
783 
784 			entry->type = STMMAC_RFS_T_1588;
785 			priv->rfs_entries_cnt[STMMAC_RFS_T_1588]++;
786 
787 			stmmac_rx_queue_routing(priv, priv->hw,
788 						PACKET_PTPQ, tc);
789 			break;
790 		default:
791 			netdev_err(priv->dev, "EthType(0x%x) is not supported", etype);
792 			return -EINVAL;
793 		}
794 
795 		entry->in_use = true;
796 		entry->cookie = cls->cookie;
797 		entry->tc = tc;
798 		entry->etype = etype;
799 
800 		return 0;
801 	}
802 
803 	return -EINVAL;
804 }
805 
806 static int tc_del_ethtype_flow(struct stmmac_priv *priv,
807 			       struct flow_cls_offload *cls)
808 {
809 	struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false);
810 
811 	if (!entry || !entry->in_use ||
812 	    entry->type < STMMAC_RFS_T_LLDP ||
813 	    entry->type > STMMAC_RFS_T_1588)
814 		return -ENOENT;
815 
816 	switch (entry->etype) {
817 	case ETH_P_LLDP:
818 		stmmac_rx_queue_routing(priv, priv->hw,
819 					PACKET_DCBCPQ, 0);
820 		priv->rfs_entries_cnt[STMMAC_RFS_T_LLDP]--;
821 		break;
822 	case ETH_P_1588:
823 		stmmac_rx_queue_routing(priv, priv->hw,
824 					PACKET_PTPQ, 0);
825 		priv->rfs_entries_cnt[STMMAC_RFS_T_1588]--;
826 		break;
827 	default:
828 		netdev_err(priv->dev, "EthType(0x%x) is not supported",
829 			   entry->etype);
830 		return -EINVAL;
831 	}
832 
833 	entry->in_use = false;
834 	entry->cookie = 0;
835 	entry->tc = 0;
836 	entry->etype = 0;
837 	entry->type = 0;
838 
839 	return 0;
840 }
841 
842 static int tc_add_flow_cls(struct stmmac_priv *priv,
843 			   struct flow_cls_offload *cls)
844 {
845 	int ret;
846 
847 	ret = tc_add_flow(priv, cls);
848 	if (!ret)
849 		return ret;
850 
851 	ret = tc_add_ethtype_flow(priv, cls);
852 	if (!ret)
853 		return ret;
854 
855 	return tc_add_vlan_flow(priv, cls);
856 }
857 
858 static int tc_del_flow_cls(struct stmmac_priv *priv,
859 			   struct flow_cls_offload *cls)
860 {
861 	int ret;
862 
863 	ret = tc_del_flow(priv, cls);
864 	if (!ret)
865 		return ret;
866 
867 	ret = tc_del_ethtype_flow(priv, cls);
868 	if (!ret)
869 		return ret;
870 
871 	return tc_del_vlan_flow(priv, cls);
872 }
873 
874 static int tc_setup_cls(struct stmmac_priv *priv,
875 			struct flow_cls_offload *cls)
876 {
877 	int ret = 0;
878 
879 	/* When RSS is enabled, the filtering will be bypassed */
880 	if (priv->rss.enable)
881 		return -EBUSY;
882 
883 	switch (cls->command) {
884 	case FLOW_CLS_REPLACE:
885 		ret = tc_add_flow_cls(priv, cls);
886 		break;
887 	case FLOW_CLS_DESTROY:
888 		ret = tc_del_flow_cls(priv, cls);
889 		break;
890 	default:
891 		return -EOPNOTSUPP;
892 	}
893 
894 	return ret;
895 }
896 
897 struct timespec64 stmmac_calc_tas_basetime(ktime_t old_base_time,
898 					   ktime_t current_time,
899 					   u64 cycle_time)
900 {
901 	struct timespec64 time;
902 
903 	if (ktime_after(old_base_time, current_time)) {
904 		time = ktime_to_timespec64(old_base_time);
905 	} else {
906 		s64 n;
907 		ktime_t base_time;
908 
909 		n = div64_s64(ktime_sub_ns(current_time, old_base_time),
910 			      cycle_time);
911 		base_time = ktime_add_ns(old_base_time,
912 					 (n + 1) * cycle_time);
913 
914 		time = ktime_to_timespec64(base_time);
915 	}
916 
917 	return time;
918 }
919 
920 static int tc_setup_taprio(struct stmmac_priv *priv,
921 			   struct tc_taprio_qopt_offload *qopt)
922 {
923 	u32 size, wid = priv->dma_cap.estwid, dep = priv->dma_cap.estdep;
924 	struct plat_stmmacenet_data *plat = priv->plat;
925 	struct timespec64 time, current_time, qopt_time;
926 	ktime_t current_time_ns;
927 	bool fpe = false;
928 	int i, ret = 0;
929 	u64 ctr;
930 
931 	if (qopt->base_time < 0)
932 		return -ERANGE;
933 
934 	if (!priv->dma_cap.estsel)
935 		return -EOPNOTSUPP;
936 
937 	switch (wid) {
938 	case 0x1:
939 		wid = 16;
940 		break;
941 	case 0x2:
942 		wid = 20;
943 		break;
944 	case 0x3:
945 		wid = 24;
946 		break;
947 	default:
948 		return -EOPNOTSUPP;
949 	}
950 
951 	switch (dep) {
952 	case 0x1:
953 		dep = 64;
954 		break;
955 	case 0x2:
956 		dep = 128;
957 		break;
958 	case 0x3:
959 		dep = 256;
960 		break;
961 	case 0x4:
962 		dep = 512;
963 		break;
964 	case 0x5:
965 		dep = 1024;
966 		break;
967 	default:
968 		return -EOPNOTSUPP;
969 	}
970 
971 	if (qopt->cmd == TAPRIO_CMD_DESTROY)
972 		goto disable;
973 	else if (qopt->cmd != TAPRIO_CMD_REPLACE)
974 		return -EOPNOTSUPP;
975 
976 	if (qopt->num_entries >= dep)
977 		return -EINVAL;
978 	if (!qopt->cycle_time)
979 		return -ERANGE;
980 
981 	if (!plat->est) {
982 		plat->est = devm_kzalloc(priv->device, sizeof(*plat->est),
983 					 GFP_KERNEL);
984 		if (!plat->est)
985 			return -ENOMEM;
986 
987 		mutex_init(&priv->est_lock);
988 	} else {
989 		mutex_lock(&priv->est_lock);
990 		memset(plat->est, 0, sizeof(*plat->est));
991 		mutex_unlock(&priv->est_lock);
992 	}
993 
994 	size = qopt->num_entries;
995 
996 	mutex_lock(&priv->est_lock);
997 	priv->plat->est->gcl_size = size;
998 	priv->plat->est->enable = qopt->cmd == TAPRIO_CMD_REPLACE;
999 	mutex_unlock(&priv->est_lock);
1000 
1001 	for (i = 0; i < size; i++) {
1002 		s64 delta_ns = qopt->entries[i].interval;
1003 		u32 gates = qopt->entries[i].gate_mask;
1004 
1005 		if (delta_ns > GENMASK(wid, 0))
1006 			return -ERANGE;
1007 		if (gates > GENMASK(31 - wid, 0))
1008 			return -ERANGE;
1009 
1010 		switch (qopt->entries[i].command) {
1011 		case TC_TAPRIO_CMD_SET_GATES:
1012 			if (fpe)
1013 				return -EINVAL;
1014 			break;
1015 		case TC_TAPRIO_CMD_SET_AND_HOLD:
1016 			gates |= BIT(0);
1017 			fpe = true;
1018 			break;
1019 		case TC_TAPRIO_CMD_SET_AND_RELEASE:
1020 			gates &= ~BIT(0);
1021 			fpe = true;
1022 			break;
1023 		default:
1024 			return -EOPNOTSUPP;
1025 		}
1026 
1027 		priv->plat->est->gcl[i] = delta_ns | (gates << wid);
1028 	}
1029 
1030 	mutex_lock(&priv->est_lock);
1031 	/* Adjust for real system time */
1032 	priv->ptp_clock_ops.gettime64(&priv->ptp_clock_ops, &current_time);
1033 	current_time_ns = timespec64_to_ktime(current_time);
1034 	time = stmmac_calc_tas_basetime(qopt->base_time, current_time_ns,
1035 					qopt->cycle_time);
1036 
1037 	priv->plat->est->btr[0] = (u32)time.tv_nsec;
1038 	priv->plat->est->btr[1] = (u32)time.tv_sec;
1039 
1040 	qopt_time = ktime_to_timespec64(qopt->base_time);
1041 	priv->plat->est->btr_reserve[0] = (u32)qopt_time.tv_nsec;
1042 	priv->plat->est->btr_reserve[1] = (u32)qopt_time.tv_sec;
1043 
1044 	ctr = qopt->cycle_time;
1045 	priv->plat->est->ctr[0] = do_div(ctr, NSEC_PER_SEC);
1046 	priv->plat->est->ctr[1] = (u32)ctr;
1047 
1048 	if (fpe && !priv->dma_cap.fpesel) {
1049 		mutex_unlock(&priv->est_lock);
1050 		return -EOPNOTSUPP;
1051 	}
1052 
1053 	/* Actual FPE register configuration will be done after FPE handshake
1054 	 * is success.
1055 	 */
1056 	priv->plat->fpe_cfg->enable = fpe;
1057 
1058 	ret = stmmac_est_configure(priv, priv->ioaddr, priv->plat->est,
1059 				   priv->plat->clk_ptp_rate);
1060 	mutex_unlock(&priv->est_lock);
1061 	if (ret) {
1062 		netdev_err(priv->dev, "failed to configure EST\n");
1063 		goto disable;
1064 	}
1065 
1066 	netdev_info(priv->dev, "configured EST\n");
1067 
1068 	if (fpe) {
1069 		stmmac_fpe_handshake(priv, true);
1070 		netdev_info(priv->dev, "start FPE handshake\n");
1071 	}
1072 
1073 	return 0;
1074 
1075 disable:
1076 	if (priv->plat->est) {
1077 		mutex_lock(&priv->est_lock);
1078 		priv->plat->est->enable = false;
1079 		stmmac_est_configure(priv, priv->ioaddr, priv->plat->est,
1080 				     priv->plat->clk_ptp_rate);
1081 		mutex_unlock(&priv->est_lock);
1082 	}
1083 
1084 	priv->plat->fpe_cfg->enable = false;
1085 	stmmac_fpe_configure(priv, priv->ioaddr,
1086 			     priv->plat->fpe_cfg,
1087 			     priv->plat->tx_queues_to_use,
1088 			     priv->plat->rx_queues_to_use,
1089 			     false);
1090 	netdev_info(priv->dev, "disabled FPE\n");
1091 
1092 	stmmac_fpe_handshake(priv, false);
1093 	netdev_info(priv->dev, "stop FPE handshake\n");
1094 
1095 	return ret;
1096 }
1097 
1098 static int tc_setup_etf(struct stmmac_priv *priv,
1099 			struct tc_etf_qopt_offload *qopt)
1100 {
1101 	if (!priv->dma_cap.tbssel)
1102 		return -EOPNOTSUPP;
1103 	if (qopt->queue >= priv->plat->tx_queues_to_use)
1104 		return -EINVAL;
1105 	if (!(priv->dma_conf.tx_queue[qopt->queue].tbs & STMMAC_TBS_AVAIL))
1106 		return -EINVAL;
1107 
1108 	if (qopt->enable)
1109 		priv->dma_conf.tx_queue[qopt->queue].tbs |= STMMAC_TBS_EN;
1110 	else
1111 		priv->dma_conf.tx_queue[qopt->queue].tbs &= ~STMMAC_TBS_EN;
1112 
1113 	netdev_info(priv->dev, "%s ETF for Queue %d\n",
1114 		    qopt->enable ? "enabled" : "disabled", qopt->queue);
1115 	return 0;
1116 }
1117 
1118 static int tc_query_caps(struct stmmac_priv *priv,
1119 			 struct tc_query_caps_base *base)
1120 {
1121 	switch (base->type) {
1122 	case TC_SETUP_QDISC_TAPRIO: {
1123 		struct tc_taprio_caps *caps = base->caps;
1124 
1125 		if (!priv->dma_cap.estsel)
1126 			return -EOPNOTSUPP;
1127 
1128 		caps->gate_mask_per_txq = true;
1129 
1130 		return 0;
1131 	}
1132 	default:
1133 		return -EOPNOTSUPP;
1134 	}
1135 }
1136 
1137 const struct stmmac_tc_ops dwmac510_tc_ops = {
1138 	.init = tc_init,
1139 	.setup_cls_u32 = tc_setup_cls_u32,
1140 	.setup_cbs = tc_setup_cbs,
1141 	.setup_cls = tc_setup_cls,
1142 	.setup_taprio = tc_setup_taprio,
1143 	.setup_etf = tc_setup_etf,
1144 	.query_caps = tc_query_caps,
1145 };
1146