// SPDX-License-Identifier: (GPL-2.0 OR MIT) /* * Copyright (c) 2018 Synopsys, Inc. and/or its affiliates. * stmmac TC Handling (HW only) */ #include #include #include "common.h" #include "dwmac4.h" #include "dwmac5.h" #include "stmmac.h" static void tc_fill_all_pass_entry(struct stmmac_tc_entry *entry) { memset(entry, 0, sizeof(*entry)); entry->in_use = true; entry->is_last = true; entry->is_frag = false; entry->prio = ~0x0; entry->handle = 0; entry->val.match_data = 0x0; entry->val.match_en = 0x0; entry->val.af = 1; entry->val.dma_ch_no = 0x0; } static struct stmmac_tc_entry *tc_find_entry(struct stmmac_priv *priv, struct tc_cls_u32_offload *cls, bool free) { struct stmmac_tc_entry *entry, *first = NULL, *dup = NULL; u32 loc = cls->knode.handle; int i; for (i = 0; i < priv->tc_entries_max; i++) { entry = &priv->tc_entries[i]; if (!entry->in_use && !first && free) first = entry; if ((entry->handle == loc) && !free && !entry->is_frag) dup = entry; } if (dup) return dup; if (first) { first->handle = loc; first->in_use = true; /* Reset HW values */ memset(&first->val, 0, sizeof(first->val)); } return first; } static int tc_fill_actions(struct stmmac_tc_entry *entry, struct stmmac_tc_entry *frag, struct tc_cls_u32_offload *cls) { struct stmmac_tc_entry *action_entry = entry; const struct tc_action *act; struct tcf_exts *exts; int i; exts = cls->knode.exts; if (!tcf_exts_has_actions(exts)) return -EINVAL; if (frag) action_entry = frag; tcf_exts_for_each_action(i, act, exts) { /* Accept */ if (is_tcf_gact_ok(act)) { action_entry->val.af = 1; break; } /* Drop */ if (is_tcf_gact_shot(act)) { action_entry->val.rf = 1; break; } /* Unsupported */ return -EINVAL; } return 0; } static int tc_fill_entry(struct stmmac_priv *priv, struct tc_cls_u32_offload *cls) { struct stmmac_tc_entry *entry, *frag = NULL; struct tc_u32_sel *sel = cls->knode.sel; u32 off, data, mask, real_off, rem; u32 prio = cls->common.prio << 16; int ret; /* Only 1 match per entry */ if (sel->nkeys <= 0 || sel->nkeys > 1) return -EINVAL; off = sel->keys[0].off << sel->offshift; data = sel->keys[0].val; mask = sel->keys[0].mask; switch (ntohs(cls->common.protocol)) { case ETH_P_ALL: break; case ETH_P_IP: off += ETH_HLEN; break; default: return -EINVAL; } if (off > priv->tc_off_max) return -EINVAL; real_off = off / 4; rem = off % 4; entry = tc_find_entry(priv, cls, true); if (!entry) return -EINVAL; if (rem) { frag = tc_find_entry(priv, cls, true); if (!frag) { ret = -EINVAL; goto err_unuse; } entry->frag_ptr = frag; entry->val.match_en = (mask << (rem * 8)) & GENMASK(31, rem * 8); entry->val.match_data = (data << (rem * 8)) & GENMASK(31, rem * 8); entry->val.frame_offset = real_off; entry->prio = prio; frag->val.match_en = (mask >> (rem * 8)) & GENMASK(rem * 8 - 1, 0); frag->val.match_data = (data >> (rem * 8)) & GENMASK(rem * 8 - 1, 0); frag->val.frame_offset = real_off + 1; frag->prio = prio; frag->is_frag = true; } else { entry->frag_ptr = NULL; entry->val.match_en = mask; entry->val.match_data = data; entry->val.frame_offset = real_off; entry->prio = prio; } ret = tc_fill_actions(entry, frag, cls); if (ret) goto err_unuse; return 0; err_unuse: if (frag) frag->in_use = false; entry->in_use = false; return ret; } static void tc_unfill_entry(struct stmmac_priv *priv, struct tc_cls_u32_offload *cls) { struct stmmac_tc_entry *entry; entry = tc_find_entry(priv, cls, false); if (!entry) return; entry->in_use = false; if (entry->frag_ptr) { entry = entry->frag_ptr; entry->is_frag = false; entry->in_use = false; } } static int tc_config_knode(struct stmmac_priv *priv, struct tc_cls_u32_offload *cls) { int ret; ret = tc_fill_entry(priv, cls); if (ret) return ret; ret = stmmac_rxp_config(priv, priv->hw->pcsr, priv->tc_entries, priv->tc_entries_max); if (ret) goto err_unfill; return 0; err_unfill: tc_unfill_entry(priv, cls); return ret; } static int tc_delete_knode(struct stmmac_priv *priv, struct tc_cls_u32_offload *cls) { /* Set entry and fragments as not used */ tc_unfill_entry(priv, cls); return stmmac_rxp_config(priv, priv->hw->pcsr, priv->tc_entries, priv->tc_entries_max); } static int tc_setup_cls_u32(struct stmmac_priv *priv, struct tc_cls_u32_offload *cls) { switch (cls->command) { case TC_CLSU32_REPLACE_KNODE: tc_unfill_entry(priv, cls); fallthrough; case TC_CLSU32_NEW_KNODE: return tc_config_knode(priv, cls); case TC_CLSU32_DELETE_KNODE: return tc_delete_knode(priv, cls); default: return -EOPNOTSUPP; } } static int tc_rfs_init(struct stmmac_priv *priv) { int i; priv->rfs_entries_max[STMMAC_RFS_T_VLAN] = 8; priv->rfs_entries_max[STMMAC_RFS_T_LLDP] = 1; priv->rfs_entries_max[STMMAC_RFS_T_1588] = 1; for (i = 0; i < STMMAC_RFS_T_MAX; i++) priv->rfs_entries_total += priv->rfs_entries_max[i]; priv->rfs_entries = devm_kcalloc(priv->device, priv->rfs_entries_total, sizeof(*priv->rfs_entries), GFP_KERNEL); if (!priv->rfs_entries) return -ENOMEM; dev_info(priv->device, "Enabled RFS Flow TC (entries=%d)\n", priv->rfs_entries_total); return 0; } static int tc_init(struct stmmac_priv *priv) { struct dma_features *dma_cap = &priv->dma_cap; unsigned int count; int ret, i; if (dma_cap->l3l4fnum) { priv->flow_entries_max = dma_cap->l3l4fnum; priv->flow_entries = devm_kcalloc(priv->device, dma_cap->l3l4fnum, sizeof(*priv->flow_entries), GFP_KERNEL); if (!priv->flow_entries) return -ENOMEM; for (i = 0; i < priv->flow_entries_max; i++) priv->flow_entries[i].idx = i; dev_info(priv->device, "Enabled L3L4 Flow TC (entries=%d)\n", priv->flow_entries_max); } ret = tc_rfs_init(priv); if (ret) return -ENOMEM; if (!priv->plat->fpe_cfg) { priv->plat->fpe_cfg = devm_kzalloc(priv->device, sizeof(*priv->plat->fpe_cfg), GFP_KERNEL); if (!priv->plat->fpe_cfg) return -ENOMEM; } else { memset(priv->plat->fpe_cfg, 0, sizeof(*priv->plat->fpe_cfg)); } /* Fail silently as we can still use remaining features, e.g. CBS */ if (!dma_cap->frpsel) return 0; switch (dma_cap->frpbs) { case 0x0: priv->tc_off_max = 64; break; case 0x1: priv->tc_off_max = 128; break; case 0x2: priv->tc_off_max = 256; break; default: return -EINVAL; } switch (dma_cap->frpes) { case 0x0: count = 64; break; case 0x1: count = 128; break; case 0x2: count = 256; break; default: return -EINVAL; } /* Reserve one last filter which lets all pass */ priv->tc_entries_max = count; priv->tc_entries = devm_kcalloc(priv->device, count, sizeof(*priv->tc_entries), GFP_KERNEL); if (!priv->tc_entries) return -ENOMEM; tc_fill_all_pass_entry(&priv->tc_entries[count - 1]); dev_info(priv->device, "Enabling HW TC (entries=%d, max_off=%d)\n", priv->tc_entries_max, priv->tc_off_max); return 0; } static int tc_setup_cbs(struct stmmac_priv *priv, struct tc_cbs_qopt_offload *qopt) { u32 tx_queues_count = priv->plat->tx_queues_to_use; s64 port_transmit_rate_kbps; u32 queue = qopt->queue; u32 mode_to_use; u64 value; u32 ptr; int ret; /* Queue 0 is not AVB capable */ if (queue <= 0 || queue >= tx_queues_count) return -EINVAL; if (!priv->dma_cap.av) return -EOPNOTSUPP; port_transmit_rate_kbps = qopt->idleslope - qopt->sendslope; if (qopt->enable) { /* Port Transmit Rate and Speed Divider */ switch (div_s64(port_transmit_rate_kbps, 1000)) { case SPEED_10000: case SPEED_5000: ptr = 32; break; case SPEED_2500: case SPEED_1000: ptr = 8; break; case SPEED_100: ptr = 4; break; default: netdev_err(priv->dev, "Invalid portTransmitRate %lld (idleSlope - sendSlope)\n", port_transmit_rate_kbps); return -EINVAL; } } else { ptr = 0; } mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; if (mode_to_use == MTL_QUEUE_DCB && qopt->enable) { ret = stmmac_dma_qmode(priv, priv->ioaddr, queue, MTL_QUEUE_AVB); if (ret) return ret; priv->plat->tx_queues_cfg[queue].mode_to_use = MTL_QUEUE_AVB; } else if (!qopt->enable) { ret = stmmac_dma_qmode(priv, priv->ioaddr, queue, MTL_QUEUE_DCB); if (ret) return ret; priv->plat->tx_queues_cfg[queue].mode_to_use = MTL_QUEUE_DCB; return 0; } /* Final adjustments for HW */ value = div_s64(qopt->idleslope * 1024ll * ptr, port_transmit_rate_kbps); priv->plat->tx_queues_cfg[queue].idle_slope = value & GENMASK(31, 0); value = div_s64(-qopt->sendslope * 1024ll * ptr, port_transmit_rate_kbps); priv->plat->tx_queues_cfg[queue].send_slope = value & GENMASK(31, 0); value = qopt->hicredit * 1024ll * 8; priv->plat->tx_queues_cfg[queue].high_credit = value & GENMASK(31, 0); value = qopt->locredit * 1024ll * 8; priv->plat->tx_queues_cfg[queue].low_credit = value & GENMASK(31, 0); ret = stmmac_config_cbs(priv, priv->hw, priv->plat->tx_queues_cfg[queue].send_slope, priv->plat->tx_queues_cfg[queue].idle_slope, priv->plat->tx_queues_cfg[queue].high_credit, priv->plat->tx_queues_cfg[queue].low_credit, queue); if (ret) return ret; dev_info(priv->device, "CBS queue %d: send %d, idle %d, hi %d, lo %d\n", queue, qopt->sendslope, qopt->idleslope, qopt->hicredit, qopt->locredit); return 0; } static int tc_parse_flow_actions(struct stmmac_priv *priv, struct flow_action *action, struct stmmac_flow_entry *entry, struct netlink_ext_ack *extack) { struct flow_action_entry *act; int i; if (!flow_action_has_entries(action)) return -EINVAL; if (!flow_action_basic_hw_stats_check(action, extack)) return -EOPNOTSUPP; flow_action_for_each(i, act, action) { switch (act->id) { case FLOW_ACTION_DROP: entry->action |= STMMAC_FLOW_ACTION_DROP; return 0; default: break; } } /* Nothing to do, maybe inverse filter ? */ return 0; } #define ETHER_TYPE_FULL_MASK cpu_to_be16(~0) static int tc_add_basic_flow(struct stmmac_priv *priv, struct flow_cls_offload *cls, struct stmmac_flow_entry *entry) { struct flow_rule *rule = flow_cls_offload_flow_rule(cls); struct flow_dissector *dissector = rule->match.dissector; struct flow_match_basic match; /* Nothing to do here */ if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_BASIC)) return -EINVAL; flow_rule_match_basic(rule, &match); entry->ip_proto = match.key->ip_proto; return 0; } static int tc_add_ip4_flow(struct stmmac_priv *priv, struct flow_cls_offload *cls, struct stmmac_flow_entry *entry) { struct flow_rule *rule = flow_cls_offload_flow_rule(cls); struct flow_dissector *dissector = rule->match.dissector; bool inv = entry->action & STMMAC_FLOW_ACTION_DROP; struct flow_match_ipv4_addrs match; u32 hw_match; int ret; /* Nothing to do here */ if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) return -EINVAL; flow_rule_match_ipv4_addrs(rule, &match); hw_match = ntohl(match.key->src) & ntohl(match.mask->src); if (hw_match) { ret = stmmac_config_l3_filter(priv, priv->hw, entry->idx, true, false, true, inv, hw_match); if (ret) return ret; } hw_match = ntohl(match.key->dst) & ntohl(match.mask->dst); if (hw_match) { ret = stmmac_config_l3_filter(priv, priv->hw, entry->idx, true, false, false, inv, hw_match); if (ret) return ret; } return 0; } static int tc_add_ports_flow(struct stmmac_priv *priv, struct flow_cls_offload *cls, struct stmmac_flow_entry *entry) { struct flow_rule *rule = flow_cls_offload_flow_rule(cls); struct flow_dissector *dissector = rule->match.dissector; bool inv = entry->action & STMMAC_FLOW_ACTION_DROP; struct flow_match_ports match; u32 hw_match; bool is_udp; int ret; /* Nothing to do here */ if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_PORTS)) return -EINVAL; switch (entry->ip_proto) { case IPPROTO_TCP: is_udp = false; break; case IPPROTO_UDP: is_udp = true; break; default: return -EINVAL; } flow_rule_match_ports(rule, &match); hw_match = ntohs(match.key->src) & ntohs(match.mask->src); if (hw_match) { ret = stmmac_config_l4_filter(priv, priv->hw, entry->idx, true, is_udp, true, inv, hw_match); if (ret) return ret; } hw_match = ntohs(match.key->dst) & ntohs(match.mask->dst); if (hw_match) { ret = stmmac_config_l4_filter(priv, priv->hw, entry->idx, true, is_udp, false, inv, hw_match); if (ret) return ret; } entry->is_l4 = true; return 0; } static struct stmmac_flow_entry *tc_find_flow(struct stmmac_priv *priv, struct flow_cls_offload *cls, bool get_free) { int i; for (i = 0; i < priv->flow_entries_max; i++) { struct stmmac_flow_entry *entry = &priv->flow_entries[i]; if (entry->cookie == cls->cookie) return entry; if (get_free && (entry->in_use == false)) return entry; } return NULL; } static struct { int (*fn)(struct stmmac_priv *priv, struct flow_cls_offload *cls, struct stmmac_flow_entry *entry); } tc_flow_parsers[] = { { .fn = tc_add_basic_flow }, { .fn = tc_add_ip4_flow }, { .fn = tc_add_ports_flow }, }; static int tc_add_flow(struct stmmac_priv *priv, struct flow_cls_offload *cls) { struct stmmac_flow_entry *entry = tc_find_flow(priv, cls, false); struct flow_rule *rule = flow_cls_offload_flow_rule(cls); int i, ret; if (!entry) { entry = tc_find_flow(priv, cls, true); if (!entry) return -ENOENT; } ret = tc_parse_flow_actions(priv, &rule->action, entry, cls->common.extack); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(tc_flow_parsers); i++) { ret = tc_flow_parsers[i].fn(priv, cls, entry); if (!ret) entry->in_use = true; } if (!entry->in_use) return -EINVAL; entry->cookie = cls->cookie; return 0; } static int tc_del_flow(struct stmmac_priv *priv, struct flow_cls_offload *cls) { struct stmmac_flow_entry *entry = tc_find_flow(priv, cls, false); int ret; if (!entry || !entry->in_use) return -ENOENT; if (entry->is_l4) { ret = stmmac_config_l4_filter(priv, priv->hw, entry->idx, false, false, false, false, 0); } else { ret = stmmac_config_l3_filter(priv, priv->hw, entry->idx, false, false, false, false, 0); } entry->in_use = false; entry->cookie = 0; entry->is_l4 = false; return ret; } static struct stmmac_rfs_entry *tc_find_rfs(struct stmmac_priv *priv, struct flow_cls_offload *cls, bool get_free) { int i; for (i = 0; i < priv->rfs_entries_total; i++) { struct stmmac_rfs_entry *entry = &priv->rfs_entries[i]; if (entry->cookie == cls->cookie) return entry; if (get_free && entry->in_use == false) return entry; } return NULL; } #define VLAN_PRIO_FULL_MASK (0x07) static int tc_add_vlan_flow(struct stmmac_priv *priv, struct flow_cls_offload *cls) { struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false); struct flow_rule *rule = flow_cls_offload_flow_rule(cls); struct flow_dissector *dissector = rule->match.dissector; int tc = tc_classid_to_hwtc(priv->dev, cls->classid); struct flow_match_vlan match; if (!entry) { entry = tc_find_rfs(priv, cls, true); if (!entry) return -ENOENT; } if (priv->rfs_entries_cnt[STMMAC_RFS_T_VLAN] >= priv->rfs_entries_max[STMMAC_RFS_T_VLAN]) return -ENOENT; /* Nothing to do here */ if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_VLAN)) return -EINVAL; if (tc < 0) { netdev_err(priv->dev, "Invalid traffic class\n"); return -EINVAL; } flow_rule_match_vlan(rule, &match); if (match.mask->vlan_priority) { u32 prio; if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) { netdev_err(priv->dev, "Only full mask is supported for VLAN priority"); return -EINVAL; } prio = BIT(match.key->vlan_priority); stmmac_rx_queue_prio(priv, priv->hw, prio, tc); entry->in_use = true; entry->cookie = cls->cookie; entry->tc = tc; entry->type = STMMAC_RFS_T_VLAN; priv->rfs_entries_cnt[STMMAC_RFS_T_VLAN]++; } return 0; } static int tc_del_vlan_flow(struct stmmac_priv *priv, struct flow_cls_offload *cls) { struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false); if (!entry || !entry->in_use || entry->type != STMMAC_RFS_T_VLAN) return -ENOENT; stmmac_rx_queue_prio(priv, priv->hw, 0, entry->tc); entry->in_use = false; entry->cookie = 0; entry->tc = 0; entry->type = 0; priv->rfs_entries_cnt[STMMAC_RFS_T_VLAN]--; return 0; } static int tc_add_ethtype_flow(struct stmmac_priv *priv, struct flow_cls_offload *cls) { struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false); struct flow_rule *rule = flow_cls_offload_flow_rule(cls); struct flow_dissector *dissector = rule->match.dissector; int tc = tc_classid_to_hwtc(priv->dev, cls->classid); struct flow_match_basic match; if (!entry) { entry = tc_find_rfs(priv, cls, true); if (!entry) return -ENOENT; } /* Nothing to do here */ if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_BASIC)) return -EINVAL; if (tc < 0) { netdev_err(priv->dev, "Invalid traffic class\n"); return -EINVAL; } flow_rule_match_basic(rule, &match); if (match.mask->n_proto) { u16 etype = ntohs(match.key->n_proto); if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) { netdev_err(priv->dev, "Only full mask is supported for EthType filter"); return -EINVAL; } switch (etype) { case ETH_P_LLDP: if (priv->rfs_entries_cnt[STMMAC_RFS_T_LLDP] >= priv->rfs_entries_max[STMMAC_RFS_T_LLDP]) return -ENOENT; entry->type = STMMAC_RFS_T_LLDP; priv->rfs_entries_cnt[STMMAC_RFS_T_LLDP]++; stmmac_rx_queue_routing(priv, priv->hw, PACKET_DCBCPQ, tc); break; case ETH_P_1588: if (priv->rfs_entries_cnt[STMMAC_RFS_T_1588] >= priv->rfs_entries_max[STMMAC_RFS_T_1588]) return -ENOENT; entry->type = STMMAC_RFS_T_1588; priv->rfs_entries_cnt[STMMAC_RFS_T_1588]++; stmmac_rx_queue_routing(priv, priv->hw, PACKET_PTPQ, tc); break; default: netdev_err(priv->dev, "EthType(0x%x) is not supported", etype); return -EINVAL; } entry->in_use = true; entry->cookie = cls->cookie; entry->tc = tc; entry->etype = etype; return 0; } return -EINVAL; } static int tc_del_ethtype_flow(struct stmmac_priv *priv, struct flow_cls_offload *cls) { struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false); if (!entry || !entry->in_use || entry->type < STMMAC_RFS_T_LLDP || entry->type > STMMAC_RFS_T_1588) return -ENOENT; switch (entry->etype) { case ETH_P_LLDP: stmmac_rx_queue_routing(priv, priv->hw, PACKET_DCBCPQ, 0); priv->rfs_entries_cnt[STMMAC_RFS_T_LLDP]--; break; case ETH_P_1588: stmmac_rx_queue_routing(priv, priv->hw, PACKET_PTPQ, 0); priv->rfs_entries_cnt[STMMAC_RFS_T_1588]--; break; default: netdev_err(priv->dev, "EthType(0x%x) is not supported", entry->etype); return -EINVAL; } entry->in_use = false; entry->cookie = 0; entry->tc = 0; entry->etype = 0; entry->type = 0; return 0; } static int tc_add_flow_cls(struct stmmac_priv *priv, struct flow_cls_offload *cls) { int ret; ret = tc_add_flow(priv, cls); if (!ret) return ret; ret = tc_add_ethtype_flow(priv, cls); if (!ret) return ret; return tc_add_vlan_flow(priv, cls); } static int tc_del_flow_cls(struct stmmac_priv *priv, struct flow_cls_offload *cls) { int ret; ret = tc_del_flow(priv, cls); if (!ret) return ret; ret = tc_del_ethtype_flow(priv, cls); if (!ret) return ret; return tc_del_vlan_flow(priv, cls); } static int tc_setup_cls(struct stmmac_priv *priv, struct flow_cls_offload *cls) { int ret = 0; /* When RSS is enabled, the filtering will be bypassed */ if (priv->rss.enable) return -EBUSY; switch (cls->command) { case FLOW_CLS_REPLACE: ret = tc_add_flow_cls(priv, cls); break; case FLOW_CLS_DESTROY: ret = tc_del_flow_cls(priv, cls); break; default: return -EOPNOTSUPP; } return ret; } struct timespec64 stmmac_calc_tas_basetime(ktime_t old_base_time, ktime_t current_time, u64 cycle_time) { struct timespec64 time; if (ktime_after(old_base_time, current_time)) { time = ktime_to_timespec64(old_base_time); } else { s64 n; ktime_t base_time; n = div64_s64(ktime_sub_ns(current_time, old_base_time), cycle_time); base_time = ktime_add_ns(old_base_time, (n + 1) * cycle_time); time = ktime_to_timespec64(base_time); } return time; } static int tc_setup_taprio(struct stmmac_priv *priv, struct tc_taprio_qopt_offload *qopt) { u32 size, wid = priv->dma_cap.estwid, dep = priv->dma_cap.estdep; struct plat_stmmacenet_data *plat = priv->plat; struct timespec64 time, current_time, qopt_time; ktime_t current_time_ns; bool fpe = false; int i, ret = 0; u64 ctr; if (qopt->base_time < 0) return -ERANGE; if (!priv->dma_cap.estsel) return -EOPNOTSUPP; switch (wid) { case 0x1: wid = 16; break; case 0x2: wid = 20; break; case 0x3: wid = 24; break; default: return -EOPNOTSUPP; } switch (dep) { case 0x1: dep = 64; break; case 0x2: dep = 128; break; case 0x3: dep = 256; break; case 0x4: dep = 512; break; case 0x5: dep = 1024; break; default: return -EOPNOTSUPP; } if (qopt->cmd == TAPRIO_CMD_DESTROY) goto disable; else if (qopt->cmd != TAPRIO_CMD_REPLACE) return -EOPNOTSUPP; if (qopt->num_entries >= dep) return -EINVAL; if (!qopt->cycle_time) return -ERANGE; if (!plat->est) { plat->est = devm_kzalloc(priv->device, sizeof(*plat->est), GFP_KERNEL); if (!plat->est) return -ENOMEM; mutex_init(&priv->est_lock); } else { mutex_lock(&priv->est_lock); memset(plat->est, 0, sizeof(*plat->est)); mutex_unlock(&priv->est_lock); } size = qopt->num_entries; mutex_lock(&priv->est_lock); priv->plat->est->gcl_size = size; priv->plat->est->enable = qopt->cmd == TAPRIO_CMD_REPLACE; mutex_unlock(&priv->est_lock); for (i = 0; i < size; i++) { s64 delta_ns = qopt->entries[i].interval; u32 gates = qopt->entries[i].gate_mask; if (delta_ns > GENMASK(wid, 0)) return -ERANGE; if (gates > GENMASK(31 - wid, 0)) return -ERANGE; switch (qopt->entries[i].command) { case TC_TAPRIO_CMD_SET_GATES: if (fpe) return -EINVAL; break; case TC_TAPRIO_CMD_SET_AND_HOLD: gates |= BIT(0); fpe = true; break; case TC_TAPRIO_CMD_SET_AND_RELEASE: gates &= ~BIT(0); fpe = true; break; default: return -EOPNOTSUPP; } priv->plat->est->gcl[i] = delta_ns | (gates << wid); } mutex_lock(&priv->est_lock); /* Adjust for real system time */ priv->ptp_clock_ops.gettime64(&priv->ptp_clock_ops, ¤t_time); current_time_ns = timespec64_to_ktime(current_time); time = stmmac_calc_tas_basetime(qopt->base_time, current_time_ns, qopt->cycle_time); priv->plat->est->btr[0] = (u32)time.tv_nsec; priv->plat->est->btr[1] = (u32)time.tv_sec; qopt_time = ktime_to_timespec64(qopt->base_time); priv->plat->est->btr_reserve[0] = (u32)qopt_time.tv_nsec; priv->plat->est->btr_reserve[1] = (u32)qopt_time.tv_sec; ctr = qopt->cycle_time; priv->plat->est->ctr[0] = do_div(ctr, NSEC_PER_SEC); priv->plat->est->ctr[1] = (u32)ctr; if (fpe && !priv->dma_cap.fpesel) { mutex_unlock(&priv->est_lock); return -EOPNOTSUPP; } /* Actual FPE register configuration will be done after FPE handshake * is success. */ priv->plat->fpe_cfg->enable = fpe; ret = stmmac_est_configure(priv, priv->ioaddr, priv->plat->est, priv->plat->clk_ptp_rate); mutex_unlock(&priv->est_lock); if (ret) { netdev_err(priv->dev, "failed to configure EST\n"); goto disable; } netdev_info(priv->dev, "configured EST\n"); if (fpe) { stmmac_fpe_handshake(priv, true); netdev_info(priv->dev, "start FPE handshake\n"); } return 0; disable: if (priv->plat->est) { mutex_lock(&priv->est_lock); priv->plat->est->enable = false; stmmac_est_configure(priv, priv->ioaddr, priv->plat->est, priv->plat->clk_ptp_rate); mutex_unlock(&priv->est_lock); } priv->plat->fpe_cfg->enable = false; stmmac_fpe_configure(priv, priv->ioaddr, priv->plat->fpe_cfg, priv->plat->tx_queues_to_use, priv->plat->rx_queues_to_use, false); netdev_info(priv->dev, "disabled FPE\n"); stmmac_fpe_handshake(priv, false); netdev_info(priv->dev, "stop FPE handshake\n"); return ret; } static int tc_setup_etf(struct stmmac_priv *priv, struct tc_etf_qopt_offload *qopt) { if (!priv->dma_cap.tbssel) return -EOPNOTSUPP; if (qopt->queue >= priv->plat->tx_queues_to_use) return -EINVAL; if (!(priv->dma_conf.tx_queue[qopt->queue].tbs & STMMAC_TBS_AVAIL)) return -EINVAL; if (qopt->enable) priv->dma_conf.tx_queue[qopt->queue].tbs |= STMMAC_TBS_EN; else priv->dma_conf.tx_queue[qopt->queue].tbs &= ~STMMAC_TBS_EN; netdev_info(priv->dev, "%s ETF for Queue %d\n", qopt->enable ? "enabled" : "disabled", qopt->queue); return 0; } static int tc_query_caps(struct stmmac_priv *priv, struct tc_query_caps_base *base) { switch (base->type) { case TC_SETUP_QDISC_TAPRIO: { struct tc_taprio_caps *caps = base->caps; if (!priv->dma_cap.estsel) return -EOPNOTSUPP; caps->gate_mask_per_txq = true; return 0; } default: return -EOPNOTSUPP; } } const struct stmmac_tc_ops dwmac510_tc_ops = { .init = tc_init, .setup_cls_u32 = tc_setup_cls_u32, .setup_cbs = tc_setup_cbs, .setup_cls = tc_setup_cls, .setup_taprio = tc_setup_taprio, .setup_etf = tc_setup_etf, .query_caps = tc_query_caps, };