1 /* 2 * This is the driver for the GMAC on-chip Ethernet controller for ST SoCs. 3 * DWC Ether MAC version 4.xx has been used for developing this code. 4 * 5 * This contains the functions to handle the dma. 6 * 7 * Copyright (C) 2015 STMicroelectronics Ltd 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms and conditions of the GNU General Public License, 11 * version 2, as published by the Free Software Foundation. 12 * 13 * Author: Alexandre Torgue <alexandre.torgue@st.com> 14 */ 15 16 #include <linux/io.h> 17 #include "dwmac4.h" 18 #include "dwmac4_dma.h" 19 20 static void dwmac4_dma_axi(void __iomem *ioaddr, struct stmmac_axi *axi) 21 { 22 u32 value = readl(ioaddr + DMA_SYS_BUS_MODE); 23 int i; 24 25 pr_info("dwmac4: Master AXI performs %s burst length\n", 26 (value & DMA_SYS_BUS_FB) ? "fixed" : "any"); 27 28 if (axi->axi_lpi_en) 29 value |= DMA_AXI_EN_LPI; 30 if (axi->axi_xit_frm) 31 value |= DMA_AXI_LPI_XIT_FRM; 32 33 value &= ~DMA_AXI_WR_OSR_LMT; 34 value |= (axi->axi_wr_osr_lmt & DMA_AXI_OSR_MAX) << 35 DMA_AXI_WR_OSR_LMT_SHIFT; 36 37 value &= ~DMA_AXI_RD_OSR_LMT; 38 value |= (axi->axi_rd_osr_lmt & DMA_AXI_OSR_MAX) << 39 DMA_AXI_RD_OSR_LMT_SHIFT; 40 41 /* Depending on the UNDEF bit the Master AXI will perform any burst 42 * length according to the BLEN programmed (by default all BLEN are 43 * set). 44 */ 45 for (i = 0; i < AXI_BLEN; i++) { 46 switch (axi->axi_blen[i]) { 47 case 256: 48 value |= DMA_AXI_BLEN256; 49 break; 50 case 128: 51 value |= DMA_AXI_BLEN128; 52 break; 53 case 64: 54 value |= DMA_AXI_BLEN64; 55 break; 56 case 32: 57 value |= DMA_AXI_BLEN32; 58 break; 59 case 16: 60 value |= DMA_AXI_BLEN16; 61 break; 62 case 8: 63 value |= DMA_AXI_BLEN8; 64 break; 65 case 4: 66 value |= DMA_AXI_BLEN4; 67 break; 68 } 69 } 70 71 writel(value, ioaddr + DMA_SYS_BUS_MODE); 72 } 73 74 static void dwmac4_dma_init_rx_chan(void __iomem *ioaddr, 75 struct stmmac_dma_cfg *dma_cfg, 76 u32 dma_rx_phy, u32 chan) 77 { 78 u32 value; 79 u32 rxpbl = dma_cfg->rxpbl ?: dma_cfg->pbl; 80 81 value = readl(ioaddr + DMA_CHAN_RX_CONTROL(chan)); 82 value = value | (rxpbl << DMA_BUS_MODE_RPBL_SHIFT); 83 writel(value, ioaddr + DMA_CHAN_RX_CONTROL(chan)); 84 85 writel(dma_rx_phy, ioaddr + DMA_CHAN_RX_BASE_ADDR(chan)); 86 } 87 88 static void dwmac4_dma_init_tx_chan(void __iomem *ioaddr, 89 struct stmmac_dma_cfg *dma_cfg, 90 u32 dma_tx_phy, u32 chan) 91 { 92 u32 value; 93 u32 txpbl = dma_cfg->txpbl ?: dma_cfg->pbl; 94 95 value = readl(ioaddr + DMA_CHAN_TX_CONTROL(chan)); 96 value = value | (txpbl << DMA_BUS_MODE_PBL_SHIFT); 97 98 /* Enable OSP to get best performance */ 99 value |= DMA_CONTROL_OSP; 100 101 writel(value, ioaddr + DMA_CHAN_TX_CONTROL(chan)); 102 103 writel(dma_tx_phy, ioaddr + DMA_CHAN_TX_BASE_ADDR(chan)); 104 } 105 106 static void dwmac4_dma_init_channel(void __iomem *ioaddr, 107 struct stmmac_dma_cfg *dma_cfg, u32 chan) 108 { 109 u32 value; 110 111 /* common channel control register config */ 112 value = readl(ioaddr + DMA_CHAN_CONTROL(chan)); 113 if (dma_cfg->pblx8) 114 value = value | DMA_BUS_MODE_PBL; 115 writel(value, ioaddr + DMA_CHAN_CONTROL(chan)); 116 117 /* Mask interrupts by writing to CSR7 */ 118 writel(DMA_CHAN_INTR_DEFAULT_MASK, 119 ioaddr + DMA_CHAN_INTR_ENA(chan)); 120 } 121 122 static void dwmac4_dma_init(void __iomem *ioaddr, 123 struct stmmac_dma_cfg *dma_cfg, int atds) 124 { 125 u32 value = readl(ioaddr + DMA_SYS_BUS_MODE); 126 127 /* Set the Fixed burst mode */ 128 if (dma_cfg->fixed_burst) 129 value |= DMA_SYS_BUS_FB; 130 131 /* Mixed Burst has no effect when fb is set */ 132 if (dma_cfg->mixed_burst) 133 value |= DMA_SYS_BUS_MB; 134 135 if (dma_cfg->aal) 136 value |= DMA_SYS_BUS_AAL; 137 138 writel(value, ioaddr + DMA_SYS_BUS_MODE); 139 } 140 141 static void _dwmac4_dump_dma_regs(void __iomem *ioaddr, u32 channel, 142 u32 *reg_space) 143 { 144 reg_space[DMA_CHAN_CONTROL(channel) / 4] = 145 readl(ioaddr + DMA_CHAN_CONTROL(channel)); 146 reg_space[DMA_CHAN_TX_CONTROL(channel) / 4] = 147 readl(ioaddr + DMA_CHAN_TX_CONTROL(channel)); 148 reg_space[DMA_CHAN_RX_CONTROL(channel) / 4] = 149 readl(ioaddr + DMA_CHAN_RX_CONTROL(channel)); 150 reg_space[DMA_CHAN_TX_BASE_ADDR(channel) / 4] = 151 readl(ioaddr + DMA_CHAN_TX_BASE_ADDR(channel)); 152 reg_space[DMA_CHAN_RX_BASE_ADDR(channel) / 4] = 153 readl(ioaddr + DMA_CHAN_RX_BASE_ADDR(channel)); 154 reg_space[DMA_CHAN_TX_END_ADDR(channel) / 4] = 155 readl(ioaddr + DMA_CHAN_TX_END_ADDR(channel)); 156 reg_space[DMA_CHAN_RX_END_ADDR(channel) / 4] = 157 readl(ioaddr + DMA_CHAN_RX_END_ADDR(channel)); 158 reg_space[DMA_CHAN_TX_RING_LEN(channel) / 4] = 159 readl(ioaddr + DMA_CHAN_TX_RING_LEN(channel)); 160 reg_space[DMA_CHAN_RX_RING_LEN(channel) / 4] = 161 readl(ioaddr + DMA_CHAN_RX_RING_LEN(channel)); 162 reg_space[DMA_CHAN_INTR_ENA(channel) / 4] = 163 readl(ioaddr + DMA_CHAN_INTR_ENA(channel)); 164 reg_space[DMA_CHAN_RX_WATCHDOG(channel) / 4] = 165 readl(ioaddr + DMA_CHAN_RX_WATCHDOG(channel)); 166 reg_space[DMA_CHAN_SLOT_CTRL_STATUS(channel) / 4] = 167 readl(ioaddr + DMA_CHAN_SLOT_CTRL_STATUS(channel)); 168 reg_space[DMA_CHAN_CUR_TX_DESC(channel) / 4] = 169 readl(ioaddr + DMA_CHAN_CUR_TX_DESC(channel)); 170 reg_space[DMA_CHAN_CUR_RX_DESC(channel) / 4] = 171 readl(ioaddr + DMA_CHAN_CUR_RX_DESC(channel)); 172 reg_space[DMA_CHAN_CUR_TX_BUF_ADDR(channel) / 4] = 173 readl(ioaddr + DMA_CHAN_CUR_TX_BUF_ADDR(channel)); 174 reg_space[DMA_CHAN_CUR_RX_BUF_ADDR(channel) / 4] = 175 readl(ioaddr + DMA_CHAN_CUR_RX_BUF_ADDR(channel)); 176 reg_space[DMA_CHAN_STATUS(channel) / 4] = 177 readl(ioaddr + DMA_CHAN_STATUS(channel)); 178 } 179 180 static void dwmac4_dump_dma_regs(void __iomem *ioaddr, u32 *reg_space) 181 { 182 int i; 183 184 for (i = 0; i < DMA_CHANNEL_NB_MAX; i++) 185 _dwmac4_dump_dma_regs(ioaddr, i, reg_space); 186 } 187 188 static void dwmac4_rx_watchdog(void __iomem *ioaddr, u32 riwt, u32 number_chan) 189 { 190 u32 chan; 191 192 for (chan = 0; chan < number_chan; chan++) 193 writel(riwt, ioaddr + DMA_CHAN_RX_WATCHDOG(chan)); 194 } 195 196 static void dwmac4_dma_rx_chan_op_mode(void __iomem *ioaddr, int mode, 197 u32 channel, int fifosz, u8 qmode) 198 { 199 unsigned int rqs = fifosz / 256 - 1; 200 u32 mtl_rx_op, mtl_rx_int; 201 202 mtl_rx_op = readl(ioaddr + MTL_CHAN_RX_OP_MODE(channel)); 203 204 if (mode == SF_DMA_MODE) { 205 pr_debug("GMAC: enable RX store and forward mode\n"); 206 mtl_rx_op |= MTL_OP_MODE_RSF; 207 } else { 208 pr_debug("GMAC: disable RX SF mode (threshold %d)\n", mode); 209 mtl_rx_op &= ~MTL_OP_MODE_RSF; 210 mtl_rx_op &= MTL_OP_MODE_RTC_MASK; 211 if (mode <= 32) 212 mtl_rx_op |= MTL_OP_MODE_RTC_32; 213 else if (mode <= 64) 214 mtl_rx_op |= MTL_OP_MODE_RTC_64; 215 else if (mode <= 96) 216 mtl_rx_op |= MTL_OP_MODE_RTC_96; 217 else 218 mtl_rx_op |= MTL_OP_MODE_RTC_128; 219 } 220 221 mtl_rx_op &= ~MTL_OP_MODE_RQS_MASK; 222 mtl_rx_op |= rqs << MTL_OP_MODE_RQS_SHIFT; 223 224 /* Enable flow control only if each channel gets 4 KiB or more FIFO and 225 * only if channel is not an AVB channel. 226 */ 227 if ((fifosz >= 4096) && (qmode != MTL_QUEUE_AVB)) { 228 unsigned int rfd, rfa; 229 230 mtl_rx_op |= MTL_OP_MODE_EHFC; 231 232 /* Set Threshold for Activating Flow Control to min 2 frames, 233 * i.e. 1500 * 2 = 3000 bytes. 234 * 235 * Set Threshold for Deactivating Flow Control to min 1 frame, 236 * i.e. 1500 bytes. 237 */ 238 switch (fifosz) { 239 case 4096: 240 /* This violates the above formula because of FIFO size 241 * limit therefore overflow may occur in spite of this. 242 */ 243 rfd = 0x03; /* Full-2.5K */ 244 rfa = 0x01; /* Full-1.5K */ 245 break; 246 247 case 8192: 248 rfd = 0x06; /* Full-4K */ 249 rfa = 0x0a; /* Full-6K */ 250 break; 251 252 case 16384: 253 rfd = 0x06; /* Full-4K */ 254 rfa = 0x12; /* Full-10K */ 255 break; 256 257 default: 258 rfd = 0x06; /* Full-4K */ 259 rfa = 0x1e; /* Full-16K */ 260 break; 261 } 262 263 mtl_rx_op &= ~MTL_OP_MODE_RFD_MASK; 264 mtl_rx_op |= rfd << MTL_OP_MODE_RFD_SHIFT; 265 266 mtl_rx_op &= ~MTL_OP_MODE_RFA_MASK; 267 mtl_rx_op |= rfa << MTL_OP_MODE_RFA_SHIFT; 268 } 269 270 writel(mtl_rx_op, ioaddr + MTL_CHAN_RX_OP_MODE(channel)); 271 272 /* Enable MTL RX overflow */ 273 mtl_rx_int = readl(ioaddr + MTL_CHAN_INT_CTRL(channel)); 274 writel(mtl_rx_int | MTL_RX_OVERFLOW_INT_EN, 275 ioaddr + MTL_CHAN_INT_CTRL(channel)); 276 } 277 278 static void dwmac4_dma_tx_chan_op_mode(void __iomem *ioaddr, int mode, 279 u32 channel, int fifosz, u8 qmode) 280 { 281 u32 mtl_tx_op = readl(ioaddr + MTL_CHAN_TX_OP_MODE(channel)); 282 unsigned int tqs = fifosz / 256 - 1; 283 284 if (mode == SF_DMA_MODE) { 285 pr_debug("GMAC: enable TX store and forward mode\n"); 286 /* Transmit COE type 2 cannot be done in cut-through mode. */ 287 mtl_tx_op |= MTL_OP_MODE_TSF; 288 } else { 289 pr_debug("GMAC: disabling TX SF (threshold %d)\n", mode); 290 mtl_tx_op &= ~MTL_OP_MODE_TSF; 291 mtl_tx_op &= MTL_OP_MODE_TTC_MASK; 292 /* Set the transmit threshold */ 293 if (mode <= 32) 294 mtl_tx_op |= MTL_OP_MODE_TTC_32; 295 else if (mode <= 64) 296 mtl_tx_op |= MTL_OP_MODE_TTC_64; 297 else if (mode <= 96) 298 mtl_tx_op |= MTL_OP_MODE_TTC_96; 299 else if (mode <= 128) 300 mtl_tx_op |= MTL_OP_MODE_TTC_128; 301 else if (mode <= 192) 302 mtl_tx_op |= MTL_OP_MODE_TTC_192; 303 else if (mode <= 256) 304 mtl_tx_op |= MTL_OP_MODE_TTC_256; 305 else if (mode <= 384) 306 mtl_tx_op |= MTL_OP_MODE_TTC_384; 307 else 308 mtl_tx_op |= MTL_OP_MODE_TTC_512; 309 } 310 /* For an IP with DWC_EQOS_NUM_TXQ == 1, the fields TXQEN and TQS are RO 311 * with reset values: TXQEN on, TQS == DWC_EQOS_TXFIFO_SIZE. 312 * For an IP with DWC_EQOS_NUM_TXQ > 1, the fields TXQEN and TQS are R/W 313 * with reset values: TXQEN off, TQS 256 bytes. 314 * 315 * TXQEN must be written for multi-channel operation and TQS must 316 * reflect the available fifo size per queue (total fifo size / number 317 * of enabled queues). 318 */ 319 mtl_tx_op &= ~MTL_OP_MODE_TXQEN_MASK; 320 if (qmode != MTL_QUEUE_AVB) 321 mtl_tx_op |= MTL_OP_MODE_TXQEN; 322 else 323 mtl_tx_op |= MTL_OP_MODE_TXQEN_AV; 324 mtl_tx_op &= ~MTL_OP_MODE_TQS_MASK; 325 mtl_tx_op |= tqs << MTL_OP_MODE_TQS_SHIFT; 326 327 writel(mtl_tx_op, ioaddr + MTL_CHAN_TX_OP_MODE(channel)); 328 } 329 330 static void dwmac4_get_hw_feature(void __iomem *ioaddr, 331 struct dma_features *dma_cap) 332 { 333 u32 hw_cap = readl(ioaddr + GMAC_HW_FEATURE0); 334 335 /* MAC HW feature0 */ 336 dma_cap->mbps_10_100 = (hw_cap & GMAC_HW_FEAT_MIISEL); 337 dma_cap->mbps_1000 = (hw_cap & GMAC_HW_FEAT_GMIISEL) >> 1; 338 dma_cap->half_duplex = (hw_cap & GMAC_HW_FEAT_HDSEL) >> 2; 339 dma_cap->hash_filter = (hw_cap & GMAC_HW_FEAT_VLHASH) >> 4; 340 dma_cap->multi_addr = (hw_cap & GMAC_HW_FEAT_ADDMAC) >> 18; 341 dma_cap->pcs = (hw_cap & GMAC_HW_FEAT_PCSSEL) >> 3; 342 dma_cap->sma_mdio = (hw_cap & GMAC_HW_FEAT_SMASEL) >> 5; 343 dma_cap->pmt_remote_wake_up = (hw_cap & GMAC_HW_FEAT_RWKSEL) >> 6; 344 dma_cap->pmt_magic_frame = (hw_cap & GMAC_HW_FEAT_MGKSEL) >> 7; 345 /* MMC */ 346 dma_cap->rmon = (hw_cap & GMAC_HW_FEAT_MMCSEL) >> 8; 347 /* IEEE 1588-2008 */ 348 dma_cap->atime_stamp = (hw_cap & GMAC_HW_FEAT_TSSEL) >> 12; 349 /* 802.3az - Energy-Efficient Ethernet (EEE) */ 350 dma_cap->eee = (hw_cap & GMAC_HW_FEAT_EEESEL) >> 13; 351 /* TX and RX csum */ 352 dma_cap->tx_coe = (hw_cap & GMAC_HW_FEAT_TXCOSEL) >> 14; 353 dma_cap->rx_coe = (hw_cap & GMAC_HW_FEAT_RXCOESEL) >> 16; 354 355 /* MAC HW feature1 */ 356 hw_cap = readl(ioaddr + GMAC_HW_FEATURE1); 357 dma_cap->av = (hw_cap & GMAC_HW_FEAT_AVSEL) >> 20; 358 dma_cap->tsoen = (hw_cap & GMAC_HW_TSOEN) >> 18; 359 /* RX and TX FIFO sizes are encoded as log2(n / 128). Undo that by 360 * shifting and store the sizes in bytes. 361 */ 362 dma_cap->tx_fifo_size = 128 << ((hw_cap & GMAC_HW_TXFIFOSIZE) >> 6); 363 dma_cap->rx_fifo_size = 128 << ((hw_cap & GMAC_HW_RXFIFOSIZE) >> 0); 364 /* MAC HW feature2 */ 365 hw_cap = readl(ioaddr + GMAC_HW_FEATURE2); 366 /* TX and RX number of channels */ 367 dma_cap->number_rx_channel = 368 ((hw_cap & GMAC_HW_FEAT_RXCHCNT) >> 12) + 1; 369 dma_cap->number_tx_channel = 370 ((hw_cap & GMAC_HW_FEAT_TXCHCNT) >> 18) + 1; 371 /* TX and RX number of queues */ 372 dma_cap->number_rx_queues = 373 ((hw_cap & GMAC_HW_FEAT_RXQCNT) >> 0) + 1; 374 dma_cap->number_tx_queues = 375 ((hw_cap & GMAC_HW_FEAT_TXQCNT) >> 6) + 1; 376 /* PPS output */ 377 dma_cap->pps_out_num = (hw_cap & GMAC_HW_FEAT_PPSOUTNUM) >> 24; 378 379 /* IEEE 1588-2002 */ 380 dma_cap->time_stamp = 0; 381 382 /* MAC HW feature3 */ 383 hw_cap = readl(ioaddr + GMAC_HW_FEATURE3); 384 385 /* 5.10 Features */ 386 dma_cap->asp = (hw_cap & GMAC_HW_FEAT_ASP) >> 28; 387 dma_cap->frpes = (hw_cap & GMAC_HW_FEAT_FRPES) >> 13; 388 dma_cap->frpbs = (hw_cap & GMAC_HW_FEAT_FRPBS) >> 11; 389 dma_cap->frpsel = (hw_cap & GMAC_HW_FEAT_FRPSEL) >> 10; 390 } 391 392 /* Enable/disable TSO feature and set MSS */ 393 static void dwmac4_enable_tso(void __iomem *ioaddr, bool en, u32 chan) 394 { 395 u32 value; 396 397 if (en) { 398 /* enable TSO */ 399 value = readl(ioaddr + DMA_CHAN_TX_CONTROL(chan)); 400 writel(value | DMA_CONTROL_TSE, 401 ioaddr + DMA_CHAN_TX_CONTROL(chan)); 402 } else { 403 /* enable TSO */ 404 value = readl(ioaddr + DMA_CHAN_TX_CONTROL(chan)); 405 writel(value & ~DMA_CONTROL_TSE, 406 ioaddr + DMA_CHAN_TX_CONTROL(chan)); 407 } 408 } 409 410 static void dwmac4_qmode(void __iomem *ioaddr, u32 channel, u8 qmode) 411 { 412 u32 mtl_tx_op = readl(ioaddr + MTL_CHAN_TX_OP_MODE(channel)); 413 414 mtl_tx_op &= ~MTL_OP_MODE_TXQEN_MASK; 415 if (qmode != MTL_QUEUE_AVB) 416 mtl_tx_op |= MTL_OP_MODE_TXQEN; 417 else 418 mtl_tx_op |= MTL_OP_MODE_TXQEN_AV; 419 420 writel(mtl_tx_op, ioaddr + MTL_CHAN_TX_OP_MODE(channel)); 421 } 422 423 static void dwmac4_set_bfsize(void __iomem *ioaddr, int bfsize, u32 chan) 424 { 425 u32 value = readl(ioaddr + DMA_CHAN_RX_CONTROL(chan)); 426 427 value &= ~DMA_RBSZ_MASK; 428 value |= (bfsize << DMA_RBSZ_SHIFT) & DMA_RBSZ_MASK; 429 430 writel(value, ioaddr + DMA_CHAN_RX_CONTROL(chan)); 431 } 432 433 const struct stmmac_dma_ops dwmac4_dma_ops = { 434 .reset = dwmac4_dma_reset, 435 .init = dwmac4_dma_init, 436 .init_chan = dwmac4_dma_init_channel, 437 .init_rx_chan = dwmac4_dma_init_rx_chan, 438 .init_tx_chan = dwmac4_dma_init_tx_chan, 439 .axi = dwmac4_dma_axi, 440 .dump_regs = dwmac4_dump_dma_regs, 441 .dma_rx_mode = dwmac4_dma_rx_chan_op_mode, 442 .dma_tx_mode = dwmac4_dma_tx_chan_op_mode, 443 .enable_dma_irq = dwmac4_enable_dma_irq, 444 .disable_dma_irq = dwmac4_disable_dma_irq, 445 .start_tx = dwmac4_dma_start_tx, 446 .stop_tx = dwmac4_dma_stop_tx, 447 .start_rx = dwmac4_dma_start_rx, 448 .stop_rx = dwmac4_dma_stop_rx, 449 .dma_interrupt = dwmac4_dma_interrupt, 450 .get_hw_feature = dwmac4_get_hw_feature, 451 .rx_watchdog = dwmac4_rx_watchdog, 452 .set_rx_ring_len = dwmac4_set_rx_ring_len, 453 .set_tx_ring_len = dwmac4_set_tx_ring_len, 454 .set_rx_tail_ptr = dwmac4_set_rx_tail_ptr, 455 .set_tx_tail_ptr = dwmac4_set_tx_tail_ptr, 456 .enable_tso = dwmac4_enable_tso, 457 .qmode = dwmac4_qmode, 458 .set_bfsize = dwmac4_set_bfsize, 459 }; 460 461 const struct stmmac_dma_ops dwmac410_dma_ops = { 462 .reset = dwmac4_dma_reset, 463 .init = dwmac4_dma_init, 464 .init_chan = dwmac4_dma_init_channel, 465 .init_rx_chan = dwmac4_dma_init_rx_chan, 466 .init_tx_chan = dwmac4_dma_init_tx_chan, 467 .axi = dwmac4_dma_axi, 468 .dump_regs = dwmac4_dump_dma_regs, 469 .dma_rx_mode = dwmac4_dma_rx_chan_op_mode, 470 .dma_tx_mode = dwmac4_dma_tx_chan_op_mode, 471 .enable_dma_irq = dwmac410_enable_dma_irq, 472 .disable_dma_irq = dwmac4_disable_dma_irq, 473 .start_tx = dwmac4_dma_start_tx, 474 .stop_tx = dwmac4_dma_stop_tx, 475 .start_rx = dwmac4_dma_start_rx, 476 .stop_rx = dwmac4_dma_stop_rx, 477 .dma_interrupt = dwmac4_dma_interrupt, 478 .get_hw_feature = dwmac4_get_hw_feature, 479 .rx_watchdog = dwmac4_rx_watchdog, 480 .set_rx_ring_len = dwmac4_set_rx_ring_len, 481 .set_tx_ring_len = dwmac4_set_tx_ring_len, 482 .set_rx_tail_ptr = dwmac4_set_rx_tail_ptr, 483 .set_tx_tail_ptr = dwmac4_set_tx_tail_ptr, 484 .enable_tso = dwmac4_enable_tso, 485 .qmode = dwmac4_qmode, 486 .set_bfsize = dwmac4_set_bfsize, 487 }; 488