xref: /openbmc/linux/drivers/net/ethernet/sfc/efx.c (revision de2bdb3d)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29 #include "sriov.h"
30 
31 #include "mcdi.h"
32 #include "workarounds.h"
33 
34 /**************************************************************************
35  *
36  * Type name strings
37  *
38  **************************************************************************
39  */
40 
41 /* Loopback mode names (see LOOPBACK_MODE()) */
42 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43 const char *const efx_loopback_mode_names[] = {
44 	[LOOPBACK_NONE]		= "NONE",
45 	[LOOPBACK_DATA]		= "DATAPATH",
46 	[LOOPBACK_GMAC]		= "GMAC",
47 	[LOOPBACK_XGMII]	= "XGMII",
48 	[LOOPBACK_XGXS]		= "XGXS",
49 	[LOOPBACK_XAUI]		= "XAUI",
50 	[LOOPBACK_GMII]		= "GMII",
51 	[LOOPBACK_SGMII]	= "SGMII",
52 	[LOOPBACK_XGBR]		= "XGBR",
53 	[LOOPBACK_XFI]		= "XFI",
54 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
55 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
56 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
57 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 	[LOOPBACK_GPHY]		= "GPHY",
59 	[LOOPBACK_PHYXS]	= "PHYXS",
60 	[LOOPBACK_PCS]		= "PCS",
61 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 	[LOOPBACK_XPORT]	= "XPORT",
63 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
66 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67 	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 	[LOOPBACK_XFI_WS]	= "XFI_WS",
69 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 };
72 
73 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74 const char *const efx_reset_type_names[] = {
75 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
76 	[RESET_TYPE_ALL]                = "ALL",
77 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
78 	[RESET_TYPE_WORLD]              = "WORLD",
79 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
80 	[RESET_TYPE_DATAPATH]           = "DATAPATH",
81 	[RESET_TYPE_MC_BIST]		= "MC_BIST",
82 	[RESET_TYPE_DISABLE]            = "DISABLE",
83 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
84 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
85 	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
86 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
87 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
88 	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
89 	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
90 };
91 
92 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
93  * queued onto this work queue. This is not a per-nic work queue, because
94  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
95  */
96 static struct workqueue_struct *reset_workqueue;
97 
98 /* How often and how many times to poll for a reset while waiting for a
99  * BIST that another function started to complete.
100  */
101 #define BIST_WAIT_DELAY_MS	100
102 #define BIST_WAIT_DELAY_COUNT	100
103 
104 /**************************************************************************
105  *
106  * Configurable values
107  *
108  *************************************************************************/
109 
110 /*
111  * Use separate channels for TX and RX events
112  *
113  * Set this to 1 to use separate channels for TX and RX. It allows us
114  * to control interrupt affinity separately for TX and RX.
115  *
116  * This is only used in MSI-X interrupt mode
117  */
118 bool efx_separate_tx_channels;
119 module_param(efx_separate_tx_channels, bool, 0444);
120 MODULE_PARM_DESC(efx_separate_tx_channels,
121 		 "Use separate channels for TX and RX");
122 
123 /* This is the weight assigned to each of the (per-channel) virtual
124  * NAPI devices.
125  */
126 static int napi_weight = 64;
127 
128 /* This is the time (in jiffies) between invocations of the hardware
129  * monitor.
130  * On Falcon-based NICs, this will:
131  * - Check the on-board hardware monitor;
132  * - Poll the link state and reconfigure the hardware as necessary.
133  * On Siena-based NICs for power systems with EEH support, this will give EEH a
134  * chance to start.
135  */
136 static unsigned int efx_monitor_interval = 1 * HZ;
137 
138 /* Initial interrupt moderation settings.  They can be modified after
139  * module load with ethtool.
140  *
141  * The default for RX should strike a balance between increasing the
142  * round-trip latency and reducing overhead.
143  */
144 static unsigned int rx_irq_mod_usec = 60;
145 
146 /* Initial interrupt moderation settings.  They can be modified after
147  * module load with ethtool.
148  *
149  * This default is chosen to ensure that a 10G link does not go idle
150  * while a TX queue is stopped after it has become full.  A queue is
151  * restarted when it drops below half full.  The time this takes (assuming
152  * worst case 3 descriptors per packet and 1024 descriptors) is
153  *   512 / 3 * 1.2 = 205 usec.
154  */
155 static unsigned int tx_irq_mod_usec = 150;
156 
157 /* This is the first interrupt mode to try out of:
158  * 0 => MSI-X
159  * 1 => MSI
160  * 2 => legacy
161  */
162 static unsigned int interrupt_mode;
163 
164 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
165  * i.e. the number of CPUs among which we may distribute simultaneous
166  * interrupt handling.
167  *
168  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
169  * The default (0) means to assign an interrupt to each core.
170  */
171 static unsigned int rss_cpus;
172 module_param(rss_cpus, uint, 0444);
173 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
174 
175 static bool phy_flash_cfg;
176 module_param(phy_flash_cfg, bool, 0644);
177 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
178 
179 static unsigned irq_adapt_low_thresh = 8000;
180 module_param(irq_adapt_low_thresh, uint, 0644);
181 MODULE_PARM_DESC(irq_adapt_low_thresh,
182 		 "Threshold score for reducing IRQ moderation");
183 
184 static unsigned irq_adapt_high_thresh = 16000;
185 module_param(irq_adapt_high_thresh, uint, 0644);
186 MODULE_PARM_DESC(irq_adapt_high_thresh,
187 		 "Threshold score for increasing IRQ moderation");
188 
189 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
190 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
191 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
192 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
193 module_param(debug, uint, 0);
194 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
195 
196 /**************************************************************************
197  *
198  * Utility functions and prototypes
199  *
200  *************************************************************************/
201 
202 static int efx_soft_enable_interrupts(struct efx_nic *efx);
203 static void efx_soft_disable_interrupts(struct efx_nic *efx);
204 static void efx_remove_channel(struct efx_channel *channel);
205 static void efx_remove_channels(struct efx_nic *efx);
206 static const struct efx_channel_type efx_default_channel_type;
207 static void efx_remove_port(struct efx_nic *efx);
208 static void efx_init_napi_channel(struct efx_channel *channel);
209 static void efx_fini_napi(struct efx_nic *efx);
210 static void efx_fini_napi_channel(struct efx_channel *channel);
211 static void efx_fini_struct(struct efx_nic *efx);
212 static void efx_start_all(struct efx_nic *efx);
213 static void efx_stop_all(struct efx_nic *efx);
214 
215 #define EFX_ASSERT_RESET_SERIALISED(efx)		\
216 	do {						\
217 		if ((efx->state == STATE_READY) ||	\
218 		    (efx->state == STATE_RECOVERY) ||	\
219 		    (efx->state == STATE_DISABLED))	\
220 			ASSERT_RTNL();			\
221 	} while (0)
222 
223 static int efx_check_disabled(struct efx_nic *efx)
224 {
225 	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
226 		netif_err(efx, drv, efx->net_dev,
227 			  "device is disabled due to earlier errors\n");
228 		return -EIO;
229 	}
230 	return 0;
231 }
232 
233 /**************************************************************************
234  *
235  * Event queue processing
236  *
237  *************************************************************************/
238 
239 /* Process channel's event queue
240  *
241  * This function is responsible for processing the event queue of a
242  * single channel.  The caller must guarantee that this function will
243  * never be concurrently called more than once on the same channel,
244  * though different channels may be being processed concurrently.
245  */
246 static int efx_process_channel(struct efx_channel *channel, int budget)
247 {
248 	struct efx_tx_queue *tx_queue;
249 	int spent;
250 
251 	if (unlikely(!channel->enabled))
252 		return 0;
253 
254 	efx_for_each_channel_tx_queue(tx_queue, channel) {
255 		tx_queue->pkts_compl = 0;
256 		tx_queue->bytes_compl = 0;
257 	}
258 
259 	spent = efx_nic_process_eventq(channel, budget);
260 	if (spent && efx_channel_has_rx_queue(channel)) {
261 		struct efx_rx_queue *rx_queue =
262 			efx_channel_get_rx_queue(channel);
263 
264 		efx_rx_flush_packet(channel);
265 		efx_fast_push_rx_descriptors(rx_queue, true);
266 	}
267 
268 	/* Update BQL */
269 	efx_for_each_channel_tx_queue(tx_queue, channel) {
270 		if (tx_queue->bytes_compl) {
271 			netdev_tx_completed_queue(tx_queue->core_txq,
272 				tx_queue->pkts_compl, tx_queue->bytes_compl);
273 		}
274 	}
275 
276 	return spent;
277 }
278 
279 /* NAPI poll handler
280  *
281  * NAPI guarantees serialisation of polls of the same device, which
282  * provides the guarantee required by efx_process_channel().
283  */
284 static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel)
285 {
286 	int step = efx->irq_mod_step_us;
287 
288 	if (channel->irq_mod_score < irq_adapt_low_thresh) {
289 		if (channel->irq_moderation_us > step) {
290 			channel->irq_moderation_us -= step;
291 			efx->type->push_irq_moderation(channel);
292 		}
293 	} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
294 		if (channel->irq_moderation_us <
295 		    efx->irq_rx_moderation_us) {
296 			channel->irq_moderation_us += step;
297 			efx->type->push_irq_moderation(channel);
298 		}
299 	}
300 
301 	channel->irq_count = 0;
302 	channel->irq_mod_score = 0;
303 }
304 
305 static int efx_poll(struct napi_struct *napi, int budget)
306 {
307 	struct efx_channel *channel =
308 		container_of(napi, struct efx_channel, napi_str);
309 	struct efx_nic *efx = channel->efx;
310 	int spent;
311 
312 	if (!efx_channel_lock_napi(channel))
313 		return budget;
314 
315 	netif_vdbg(efx, intr, efx->net_dev,
316 		   "channel %d NAPI poll executing on CPU %d\n",
317 		   channel->channel, raw_smp_processor_id());
318 
319 	spent = efx_process_channel(channel, budget);
320 
321 	if (spent < budget) {
322 		if (efx_channel_has_rx_queue(channel) &&
323 		    efx->irq_rx_adaptive &&
324 		    unlikely(++channel->irq_count == 1000)) {
325 			efx_update_irq_mod(efx, channel);
326 		}
327 
328 		efx_filter_rfs_expire(channel);
329 
330 		/* There is no race here; although napi_disable() will
331 		 * only wait for napi_complete(), this isn't a problem
332 		 * since efx_nic_eventq_read_ack() will have no effect if
333 		 * interrupts have already been disabled.
334 		 */
335 		napi_complete(napi);
336 		efx_nic_eventq_read_ack(channel);
337 	}
338 
339 	efx_channel_unlock_napi(channel);
340 	return spent;
341 }
342 
343 /* Create event queue
344  * Event queue memory allocations are done only once.  If the channel
345  * is reset, the memory buffer will be reused; this guards against
346  * errors during channel reset and also simplifies interrupt handling.
347  */
348 static int efx_probe_eventq(struct efx_channel *channel)
349 {
350 	struct efx_nic *efx = channel->efx;
351 	unsigned long entries;
352 
353 	netif_dbg(efx, probe, efx->net_dev,
354 		  "chan %d create event queue\n", channel->channel);
355 
356 	/* Build an event queue with room for one event per tx and rx buffer,
357 	 * plus some extra for link state events and MCDI completions. */
358 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
359 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
360 	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
361 
362 	return efx_nic_probe_eventq(channel);
363 }
364 
365 /* Prepare channel's event queue */
366 static int efx_init_eventq(struct efx_channel *channel)
367 {
368 	struct efx_nic *efx = channel->efx;
369 	int rc;
370 
371 	EFX_WARN_ON_PARANOID(channel->eventq_init);
372 
373 	netif_dbg(efx, drv, efx->net_dev,
374 		  "chan %d init event queue\n", channel->channel);
375 
376 	rc = efx_nic_init_eventq(channel);
377 	if (rc == 0) {
378 		efx->type->push_irq_moderation(channel);
379 		channel->eventq_read_ptr = 0;
380 		channel->eventq_init = true;
381 	}
382 	return rc;
383 }
384 
385 /* Enable event queue processing and NAPI */
386 void efx_start_eventq(struct efx_channel *channel)
387 {
388 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
389 		  "chan %d start event queue\n", channel->channel);
390 
391 	/* Make sure the NAPI handler sees the enabled flag set */
392 	channel->enabled = true;
393 	smp_wmb();
394 
395 	efx_channel_enable(channel);
396 	napi_enable(&channel->napi_str);
397 	efx_nic_eventq_read_ack(channel);
398 }
399 
400 /* Disable event queue processing and NAPI */
401 void efx_stop_eventq(struct efx_channel *channel)
402 {
403 	if (!channel->enabled)
404 		return;
405 
406 	napi_disable(&channel->napi_str);
407 	while (!efx_channel_disable(channel))
408 		usleep_range(1000, 20000);
409 	channel->enabled = false;
410 }
411 
412 static void efx_fini_eventq(struct efx_channel *channel)
413 {
414 	if (!channel->eventq_init)
415 		return;
416 
417 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
418 		  "chan %d fini event queue\n", channel->channel);
419 
420 	efx_nic_fini_eventq(channel);
421 	channel->eventq_init = false;
422 }
423 
424 static void efx_remove_eventq(struct efx_channel *channel)
425 {
426 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
427 		  "chan %d remove event queue\n", channel->channel);
428 
429 	efx_nic_remove_eventq(channel);
430 }
431 
432 /**************************************************************************
433  *
434  * Channel handling
435  *
436  *************************************************************************/
437 
438 /* Allocate and initialise a channel structure. */
439 static struct efx_channel *
440 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
441 {
442 	struct efx_channel *channel;
443 	struct efx_rx_queue *rx_queue;
444 	struct efx_tx_queue *tx_queue;
445 	int j;
446 
447 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
448 	if (!channel)
449 		return NULL;
450 
451 	channel->efx = efx;
452 	channel->channel = i;
453 	channel->type = &efx_default_channel_type;
454 
455 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
456 		tx_queue = &channel->tx_queue[j];
457 		tx_queue->efx = efx;
458 		tx_queue->queue = i * EFX_TXQ_TYPES + j;
459 		tx_queue->channel = channel;
460 	}
461 
462 	rx_queue = &channel->rx_queue;
463 	rx_queue->efx = efx;
464 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
465 		    (unsigned long)rx_queue);
466 
467 	return channel;
468 }
469 
470 /* Allocate and initialise a channel structure, copying parameters
471  * (but not resources) from an old channel structure.
472  */
473 static struct efx_channel *
474 efx_copy_channel(const struct efx_channel *old_channel)
475 {
476 	struct efx_channel *channel;
477 	struct efx_rx_queue *rx_queue;
478 	struct efx_tx_queue *tx_queue;
479 	int j;
480 
481 	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
482 	if (!channel)
483 		return NULL;
484 
485 	*channel = *old_channel;
486 
487 	channel->napi_dev = NULL;
488 	memset(&channel->eventq, 0, sizeof(channel->eventq));
489 
490 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
491 		tx_queue = &channel->tx_queue[j];
492 		if (tx_queue->channel)
493 			tx_queue->channel = channel;
494 		tx_queue->buffer = NULL;
495 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
496 	}
497 
498 	rx_queue = &channel->rx_queue;
499 	rx_queue->buffer = NULL;
500 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
501 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
502 		    (unsigned long)rx_queue);
503 
504 	return channel;
505 }
506 
507 static int efx_probe_channel(struct efx_channel *channel)
508 {
509 	struct efx_tx_queue *tx_queue;
510 	struct efx_rx_queue *rx_queue;
511 	int rc;
512 
513 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
514 		  "creating channel %d\n", channel->channel);
515 
516 	rc = channel->type->pre_probe(channel);
517 	if (rc)
518 		goto fail;
519 
520 	rc = efx_probe_eventq(channel);
521 	if (rc)
522 		goto fail;
523 
524 	efx_for_each_channel_tx_queue(tx_queue, channel) {
525 		rc = efx_probe_tx_queue(tx_queue);
526 		if (rc)
527 			goto fail;
528 	}
529 
530 	efx_for_each_channel_rx_queue(rx_queue, channel) {
531 		rc = efx_probe_rx_queue(rx_queue);
532 		if (rc)
533 			goto fail;
534 	}
535 
536 	return 0;
537 
538 fail:
539 	efx_remove_channel(channel);
540 	return rc;
541 }
542 
543 static void
544 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
545 {
546 	struct efx_nic *efx = channel->efx;
547 	const char *type;
548 	int number;
549 
550 	number = channel->channel;
551 	if (efx->tx_channel_offset == 0) {
552 		type = "";
553 	} else if (channel->channel < efx->tx_channel_offset) {
554 		type = "-rx";
555 	} else {
556 		type = "-tx";
557 		number -= efx->tx_channel_offset;
558 	}
559 	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
560 }
561 
562 static void efx_set_channel_names(struct efx_nic *efx)
563 {
564 	struct efx_channel *channel;
565 
566 	efx_for_each_channel(channel, efx)
567 		channel->type->get_name(channel,
568 					efx->msi_context[channel->channel].name,
569 					sizeof(efx->msi_context[0].name));
570 }
571 
572 static int efx_probe_channels(struct efx_nic *efx)
573 {
574 	struct efx_channel *channel;
575 	int rc;
576 
577 	/* Restart special buffer allocation */
578 	efx->next_buffer_table = 0;
579 
580 	/* Probe channels in reverse, so that any 'extra' channels
581 	 * use the start of the buffer table. This allows the traffic
582 	 * channels to be resized without moving them or wasting the
583 	 * entries before them.
584 	 */
585 	efx_for_each_channel_rev(channel, efx) {
586 		rc = efx_probe_channel(channel);
587 		if (rc) {
588 			netif_err(efx, probe, efx->net_dev,
589 				  "failed to create channel %d\n",
590 				  channel->channel);
591 			goto fail;
592 		}
593 	}
594 	efx_set_channel_names(efx);
595 
596 	return 0;
597 
598 fail:
599 	efx_remove_channels(efx);
600 	return rc;
601 }
602 
603 /* Channels are shutdown and reinitialised whilst the NIC is running
604  * to propagate configuration changes (mtu, checksum offload), or
605  * to clear hardware error conditions
606  */
607 static void efx_start_datapath(struct efx_nic *efx)
608 {
609 	netdev_features_t old_features = efx->net_dev->features;
610 	bool old_rx_scatter = efx->rx_scatter;
611 	struct efx_tx_queue *tx_queue;
612 	struct efx_rx_queue *rx_queue;
613 	struct efx_channel *channel;
614 	size_t rx_buf_len;
615 
616 	/* Calculate the rx buffer allocation parameters required to
617 	 * support the current MTU, including padding for header
618 	 * alignment and overruns.
619 	 */
620 	efx->rx_dma_len = (efx->rx_prefix_size +
621 			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
622 			   efx->type->rx_buffer_padding);
623 	rx_buf_len = (sizeof(struct efx_rx_page_state) +
624 		      efx->rx_ip_align + efx->rx_dma_len);
625 	if (rx_buf_len <= PAGE_SIZE) {
626 		efx->rx_scatter = efx->type->always_rx_scatter;
627 		efx->rx_buffer_order = 0;
628 	} else if (efx->type->can_rx_scatter) {
629 		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
630 		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
631 			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
632 				       EFX_RX_BUF_ALIGNMENT) >
633 			     PAGE_SIZE);
634 		efx->rx_scatter = true;
635 		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
636 		efx->rx_buffer_order = 0;
637 	} else {
638 		efx->rx_scatter = false;
639 		efx->rx_buffer_order = get_order(rx_buf_len);
640 	}
641 
642 	efx_rx_config_page_split(efx);
643 	if (efx->rx_buffer_order)
644 		netif_dbg(efx, drv, efx->net_dev,
645 			  "RX buf len=%u; page order=%u batch=%u\n",
646 			  efx->rx_dma_len, efx->rx_buffer_order,
647 			  efx->rx_pages_per_batch);
648 	else
649 		netif_dbg(efx, drv, efx->net_dev,
650 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
651 			  efx->rx_dma_len, efx->rx_page_buf_step,
652 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
653 
654 	/* Restore previously fixed features in hw_features and remove
655 	 * features which are fixed now
656 	 */
657 	efx->net_dev->hw_features |= efx->net_dev->features;
658 	efx->net_dev->hw_features &= ~efx->fixed_features;
659 	efx->net_dev->features |= efx->fixed_features;
660 	if (efx->net_dev->features != old_features)
661 		netdev_features_change(efx->net_dev);
662 
663 	/* RX filters may also have scatter-enabled flags */
664 	if (efx->rx_scatter != old_rx_scatter)
665 		efx->type->filter_update_rx_scatter(efx);
666 
667 	/* We must keep at least one descriptor in a TX ring empty.
668 	 * We could avoid this when the queue size does not exactly
669 	 * match the hardware ring size, but it's not that important.
670 	 * Therefore we stop the queue when one more skb might fill
671 	 * the ring completely.  We wake it when half way back to
672 	 * empty.
673 	 */
674 	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
675 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
676 
677 	/* Initialise the channels */
678 	efx_for_each_channel(channel, efx) {
679 		efx_for_each_channel_tx_queue(tx_queue, channel) {
680 			efx_init_tx_queue(tx_queue);
681 			atomic_inc(&efx->active_queues);
682 		}
683 
684 		efx_for_each_channel_rx_queue(rx_queue, channel) {
685 			efx_init_rx_queue(rx_queue);
686 			atomic_inc(&efx->active_queues);
687 			efx_stop_eventq(channel);
688 			efx_fast_push_rx_descriptors(rx_queue, false);
689 			efx_start_eventq(channel);
690 		}
691 
692 		WARN_ON(channel->rx_pkt_n_frags);
693 	}
694 
695 	efx_ptp_start_datapath(efx);
696 
697 	if (netif_device_present(efx->net_dev))
698 		netif_tx_wake_all_queues(efx->net_dev);
699 }
700 
701 static void efx_stop_datapath(struct efx_nic *efx)
702 {
703 	struct efx_channel *channel;
704 	struct efx_tx_queue *tx_queue;
705 	struct efx_rx_queue *rx_queue;
706 	int rc;
707 
708 	EFX_ASSERT_RESET_SERIALISED(efx);
709 	BUG_ON(efx->port_enabled);
710 
711 	efx_ptp_stop_datapath(efx);
712 
713 	/* Stop RX refill */
714 	efx_for_each_channel(channel, efx) {
715 		efx_for_each_channel_rx_queue(rx_queue, channel)
716 			rx_queue->refill_enabled = false;
717 	}
718 
719 	efx_for_each_channel(channel, efx) {
720 		/* RX packet processing is pipelined, so wait for the
721 		 * NAPI handler to complete.  At least event queue 0
722 		 * might be kept active by non-data events, so don't
723 		 * use napi_synchronize() but actually disable NAPI
724 		 * temporarily.
725 		 */
726 		if (efx_channel_has_rx_queue(channel)) {
727 			efx_stop_eventq(channel);
728 			efx_start_eventq(channel);
729 		}
730 	}
731 
732 	rc = efx->type->fini_dmaq(efx);
733 	if (rc && EFX_WORKAROUND_7803(efx)) {
734 		/* Schedule a reset to recover from the flush failure. The
735 		 * descriptor caches reference memory we're about to free,
736 		 * but falcon_reconfigure_mac_wrapper() won't reconnect
737 		 * the MACs because of the pending reset.
738 		 */
739 		netif_err(efx, drv, efx->net_dev,
740 			  "Resetting to recover from flush failure\n");
741 		efx_schedule_reset(efx, RESET_TYPE_ALL);
742 	} else if (rc) {
743 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
744 	} else {
745 		netif_dbg(efx, drv, efx->net_dev,
746 			  "successfully flushed all queues\n");
747 	}
748 
749 	efx_for_each_channel(channel, efx) {
750 		efx_for_each_channel_rx_queue(rx_queue, channel)
751 			efx_fini_rx_queue(rx_queue);
752 		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
753 			efx_fini_tx_queue(tx_queue);
754 	}
755 }
756 
757 static void efx_remove_channel(struct efx_channel *channel)
758 {
759 	struct efx_tx_queue *tx_queue;
760 	struct efx_rx_queue *rx_queue;
761 
762 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
763 		  "destroy chan %d\n", channel->channel);
764 
765 	efx_for_each_channel_rx_queue(rx_queue, channel)
766 		efx_remove_rx_queue(rx_queue);
767 	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
768 		efx_remove_tx_queue(tx_queue);
769 	efx_remove_eventq(channel);
770 	channel->type->post_remove(channel);
771 }
772 
773 static void efx_remove_channels(struct efx_nic *efx)
774 {
775 	struct efx_channel *channel;
776 
777 	efx_for_each_channel(channel, efx)
778 		efx_remove_channel(channel);
779 }
780 
781 int
782 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
783 {
784 	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
785 	u32 old_rxq_entries, old_txq_entries;
786 	unsigned i, next_buffer_table = 0;
787 	int rc, rc2;
788 
789 	rc = efx_check_disabled(efx);
790 	if (rc)
791 		return rc;
792 
793 	/* Not all channels should be reallocated. We must avoid
794 	 * reallocating their buffer table entries.
795 	 */
796 	efx_for_each_channel(channel, efx) {
797 		struct efx_rx_queue *rx_queue;
798 		struct efx_tx_queue *tx_queue;
799 
800 		if (channel->type->copy)
801 			continue;
802 		next_buffer_table = max(next_buffer_table,
803 					channel->eventq.index +
804 					channel->eventq.entries);
805 		efx_for_each_channel_rx_queue(rx_queue, channel)
806 			next_buffer_table = max(next_buffer_table,
807 						rx_queue->rxd.index +
808 						rx_queue->rxd.entries);
809 		efx_for_each_channel_tx_queue(tx_queue, channel)
810 			next_buffer_table = max(next_buffer_table,
811 						tx_queue->txd.index +
812 						tx_queue->txd.entries);
813 	}
814 
815 	efx_device_detach_sync(efx);
816 	efx_stop_all(efx);
817 	efx_soft_disable_interrupts(efx);
818 
819 	/* Clone channels (where possible) */
820 	memset(other_channel, 0, sizeof(other_channel));
821 	for (i = 0; i < efx->n_channels; i++) {
822 		channel = efx->channel[i];
823 		if (channel->type->copy)
824 			channel = channel->type->copy(channel);
825 		if (!channel) {
826 			rc = -ENOMEM;
827 			goto out;
828 		}
829 		other_channel[i] = channel;
830 	}
831 
832 	/* Swap entry counts and channel pointers */
833 	old_rxq_entries = efx->rxq_entries;
834 	old_txq_entries = efx->txq_entries;
835 	efx->rxq_entries = rxq_entries;
836 	efx->txq_entries = txq_entries;
837 	for (i = 0; i < efx->n_channels; i++) {
838 		channel = efx->channel[i];
839 		efx->channel[i] = other_channel[i];
840 		other_channel[i] = channel;
841 	}
842 
843 	/* Restart buffer table allocation */
844 	efx->next_buffer_table = next_buffer_table;
845 
846 	for (i = 0; i < efx->n_channels; i++) {
847 		channel = efx->channel[i];
848 		if (!channel->type->copy)
849 			continue;
850 		rc = efx_probe_channel(channel);
851 		if (rc)
852 			goto rollback;
853 		efx_init_napi_channel(efx->channel[i]);
854 	}
855 
856 out:
857 	/* Destroy unused channel structures */
858 	for (i = 0; i < efx->n_channels; i++) {
859 		channel = other_channel[i];
860 		if (channel && channel->type->copy) {
861 			efx_fini_napi_channel(channel);
862 			efx_remove_channel(channel);
863 			kfree(channel);
864 		}
865 	}
866 
867 	rc2 = efx_soft_enable_interrupts(efx);
868 	if (rc2) {
869 		rc = rc ? rc : rc2;
870 		netif_err(efx, drv, efx->net_dev,
871 			  "unable to restart interrupts on channel reallocation\n");
872 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
873 	} else {
874 		efx_start_all(efx);
875 		netif_device_attach(efx->net_dev);
876 	}
877 	return rc;
878 
879 rollback:
880 	/* Swap back */
881 	efx->rxq_entries = old_rxq_entries;
882 	efx->txq_entries = old_txq_entries;
883 	for (i = 0; i < efx->n_channels; i++) {
884 		channel = efx->channel[i];
885 		efx->channel[i] = other_channel[i];
886 		other_channel[i] = channel;
887 	}
888 	goto out;
889 }
890 
891 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
892 {
893 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
894 }
895 
896 static const struct efx_channel_type efx_default_channel_type = {
897 	.pre_probe		= efx_channel_dummy_op_int,
898 	.post_remove		= efx_channel_dummy_op_void,
899 	.get_name		= efx_get_channel_name,
900 	.copy			= efx_copy_channel,
901 	.keep_eventq		= false,
902 };
903 
904 int efx_channel_dummy_op_int(struct efx_channel *channel)
905 {
906 	return 0;
907 }
908 
909 void efx_channel_dummy_op_void(struct efx_channel *channel)
910 {
911 }
912 
913 /**************************************************************************
914  *
915  * Port handling
916  *
917  **************************************************************************/
918 
919 /* This ensures that the kernel is kept informed (via
920  * netif_carrier_on/off) of the link status, and also maintains the
921  * link status's stop on the port's TX queue.
922  */
923 void efx_link_status_changed(struct efx_nic *efx)
924 {
925 	struct efx_link_state *link_state = &efx->link_state;
926 
927 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
928 	 * that no events are triggered between unregister_netdev() and the
929 	 * driver unloading. A more general condition is that NETDEV_CHANGE
930 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
931 	if (!netif_running(efx->net_dev))
932 		return;
933 
934 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
935 		efx->n_link_state_changes++;
936 
937 		if (link_state->up)
938 			netif_carrier_on(efx->net_dev);
939 		else
940 			netif_carrier_off(efx->net_dev);
941 	}
942 
943 	/* Status message for kernel log */
944 	if (link_state->up)
945 		netif_info(efx, link, efx->net_dev,
946 			   "link up at %uMbps %s-duplex (MTU %d)\n",
947 			   link_state->speed, link_state->fd ? "full" : "half",
948 			   efx->net_dev->mtu);
949 	else
950 		netif_info(efx, link, efx->net_dev, "link down\n");
951 }
952 
953 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
954 {
955 	efx->link_advertising = advertising;
956 	if (advertising) {
957 		if (advertising & ADVERTISED_Pause)
958 			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
959 		else
960 			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
961 		if (advertising & ADVERTISED_Asym_Pause)
962 			efx->wanted_fc ^= EFX_FC_TX;
963 	}
964 }
965 
966 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
967 {
968 	efx->wanted_fc = wanted_fc;
969 	if (efx->link_advertising) {
970 		if (wanted_fc & EFX_FC_RX)
971 			efx->link_advertising |= (ADVERTISED_Pause |
972 						  ADVERTISED_Asym_Pause);
973 		else
974 			efx->link_advertising &= ~(ADVERTISED_Pause |
975 						   ADVERTISED_Asym_Pause);
976 		if (wanted_fc & EFX_FC_TX)
977 			efx->link_advertising ^= ADVERTISED_Asym_Pause;
978 	}
979 }
980 
981 static void efx_fini_port(struct efx_nic *efx);
982 
983 /* We assume that efx->type->reconfigure_mac will always try to sync RX
984  * filters and therefore needs to read-lock the filter table against freeing
985  */
986 void efx_mac_reconfigure(struct efx_nic *efx)
987 {
988 	down_read(&efx->filter_sem);
989 	efx->type->reconfigure_mac(efx);
990 	up_read(&efx->filter_sem);
991 }
992 
993 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
994  * the MAC appropriately. All other PHY configuration changes are pushed
995  * through phy_op->set_settings(), and pushed asynchronously to the MAC
996  * through efx_monitor().
997  *
998  * Callers must hold the mac_lock
999  */
1000 int __efx_reconfigure_port(struct efx_nic *efx)
1001 {
1002 	enum efx_phy_mode phy_mode;
1003 	int rc;
1004 
1005 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1006 
1007 	/* Disable PHY transmit in mac level loopbacks */
1008 	phy_mode = efx->phy_mode;
1009 	if (LOOPBACK_INTERNAL(efx))
1010 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
1011 	else
1012 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
1013 
1014 	rc = efx->type->reconfigure_port(efx);
1015 
1016 	if (rc)
1017 		efx->phy_mode = phy_mode;
1018 
1019 	return rc;
1020 }
1021 
1022 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1023  * disabled. */
1024 int efx_reconfigure_port(struct efx_nic *efx)
1025 {
1026 	int rc;
1027 
1028 	EFX_ASSERT_RESET_SERIALISED(efx);
1029 
1030 	mutex_lock(&efx->mac_lock);
1031 	rc = __efx_reconfigure_port(efx);
1032 	mutex_unlock(&efx->mac_lock);
1033 
1034 	return rc;
1035 }
1036 
1037 /* Asynchronous work item for changing MAC promiscuity and multicast
1038  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1039  * MAC directly. */
1040 static void efx_mac_work(struct work_struct *data)
1041 {
1042 	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1043 
1044 	mutex_lock(&efx->mac_lock);
1045 	if (efx->port_enabled)
1046 		efx_mac_reconfigure(efx);
1047 	mutex_unlock(&efx->mac_lock);
1048 }
1049 
1050 static int efx_probe_port(struct efx_nic *efx)
1051 {
1052 	int rc;
1053 
1054 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1055 
1056 	if (phy_flash_cfg)
1057 		efx->phy_mode = PHY_MODE_SPECIAL;
1058 
1059 	/* Connect up MAC/PHY operations table */
1060 	rc = efx->type->probe_port(efx);
1061 	if (rc)
1062 		return rc;
1063 
1064 	/* Initialise MAC address to permanent address */
1065 	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1066 
1067 	return 0;
1068 }
1069 
1070 static int efx_init_port(struct efx_nic *efx)
1071 {
1072 	int rc;
1073 
1074 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1075 
1076 	mutex_lock(&efx->mac_lock);
1077 
1078 	rc = efx->phy_op->init(efx);
1079 	if (rc)
1080 		goto fail1;
1081 
1082 	efx->port_initialized = true;
1083 
1084 	/* Reconfigure the MAC before creating dma queues (required for
1085 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1086 	efx_mac_reconfigure(efx);
1087 
1088 	/* Ensure the PHY advertises the correct flow control settings */
1089 	rc = efx->phy_op->reconfigure(efx);
1090 	if (rc && rc != -EPERM)
1091 		goto fail2;
1092 
1093 	mutex_unlock(&efx->mac_lock);
1094 	return 0;
1095 
1096 fail2:
1097 	efx->phy_op->fini(efx);
1098 fail1:
1099 	mutex_unlock(&efx->mac_lock);
1100 	return rc;
1101 }
1102 
1103 static void efx_start_port(struct efx_nic *efx)
1104 {
1105 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1106 	BUG_ON(efx->port_enabled);
1107 
1108 	mutex_lock(&efx->mac_lock);
1109 	efx->port_enabled = true;
1110 
1111 	/* Ensure MAC ingress/egress is enabled */
1112 	efx_mac_reconfigure(efx);
1113 
1114 	mutex_unlock(&efx->mac_lock);
1115 }
1116 
1117 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1118  * and the async self-test, wait for them to finish and prevent them
1119  * being scheduled again.  This doesn't cover online resets, which
1120  * should only be cancelled when removing the device.
1121  */
1122 static void efx_stop_port(struct efx_nic *efx)
1123 {
1124 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1125 
1126 	EFX_ASSERT_RESET_SERIALISED(efx);
1127 
1128 	mutex_lock(&efx->mac_lock);
1129 	efx->port_enabled = false;
1130 	mutex_unlock(&efx->mac_lock);
1131 
1132 	/* Serialise against efx_set_multicast_list() */
1133 	netif_addr_lock_bh(efx->net_dev);
1134 	netif_addr_unlock_bh(efx->net_dev);
1135 
1136 	cancel_delayed_work_sync(&efx->monitor_work);
1137 	efx_selftest_async_cancel(efx);
1138 	cancel_work_sync(&efx->mac_work);
1139 }
1140 
1141 static void efx_fini_port(struct efx_nic *efx)
1142 {
1143 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1144 
1145 	if (!efx->port_initialized)
1146 		return;
1147 
1148 	efx->phy_op->fini(efx);
1149 	efx->port_initialized = false;
1150 
1151 	efx->link_state.up = false;
1152 	efx_link_status_changed(efx);
1153 }
1154 
1155 static void efx_remove_port(struct efx_nic *efx)
1156 {
1157 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1158 
1159 	efx->type->remove_port(efx);
1160 }
1161 
1162 /**************************************************************************
1163  *
1164  * NIC handling
1165  *
1166  **************************************************************************/
1167 
1168 static LIST_HEAD(efx_primary_list);
1169 static LIST_HEAD(efx_unassociated_list);
1170 
1171 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1172 {
1173 	return left->type == right->type &&
1174 		left->vpd_sn && right->vpd_sn &&
1175 		!strcmp(left->vpd_sn, right->vpd_sn);
1176 }
1177 
1178 static void efx_associate(struct efx_nic *efx)
1179 {
1180 	struct efx_nic *other, *next;
1181 
1182 	if (efx->primary == efx) {
1183 		/* Adding primary function; look for secondaries */
1184 
1185 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1186 		list_add_tail(&efx->node, &efx_primary_list);
1187 
1188 		list_for_each_entry_safe(other, next, &efx_unassociated_list,
1189 					 node) {
1190 			if (efx_same_controller(efx, other)) {
1191 				list_del(&other->node);
1192 				netif_dbg(other, probe, other->net_dev,
1193 					  "moving to secondary list of %s %s\n",
1194 					  pci_name(efx->pci_dev),
1195 					  efx->net_dev->name);
1196 				list_add_tail(&other->node,
1197 					      &efx->secondary_list);
1198 				other->primary = efx;
1199 			}
1200 		}
1201 	} else {
1202 		/* Adding secondary function; look for primary */
1203 
1204 		list_for_each_entry(other, &efx_primary_list, node) {
1205 			if (efx_same_controller(efx, other)) {
1206 				netif_dbg(efx, probe, efx->net_dev,
1207 					  "adding to secondary list of %s %s\n",
1208 					  pci_name(other->pci_dev),
1209 					  other->net_dev->name);
1210 				list_add_tail(&efx->node,
1211 					      &other->secondary_list);
1212 				efx->primary = other;
1213 				return;
1214 			}
1215 		}
1216 
1217 		netif_dbg(efx, probe, efx->net_dev,
1218 			  "adding to unassociated list\n");
1219 		list_add_tail(&efx->node, &efx_unassociated_list);
1220 	}
1221 }
1222 
1223 static void efx_dissociate(struct efx_nic *efx)
1224 {
1225 	struct efx_nic *other, *next;
1226 
1227 	list_del(&efx->node);
1228 	efx->primary = NULL;
1229 
1230 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1231 		list_del(&other->node);
1232 		netif_dbg(other, probe, other->net_dev,
1233 			  "moving to unassociated list\n");
1234 		list_add_tail(&other->node, &efx_unassociated_list);
1235 		other->primary = NULL;
1236 	}
1237 }
1238 
1239 /* This configures the PCI device to enable I/O and DMA. */
1240 static int efx_init_io(struct efx_nic *efx)
1241 {
1242 	struct pci_dev *pci_dev = efx->pci_dev;
1243 	dma_addr_t dma_mask = efx->type->max_dma_mask;
1244 	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1245 	int rc, bar;
1246 
1247 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1248 
1249 	bar = efx->type->mem_bar;
1250 
1251 	rc = pci_enable_device(pci_dev);
1252 	if (rc) {
1253 		netif_err(efx, probe, efx->net_dev,
1254 			  "failed to enable PCI device\n");
1255 		goto fail1;
1256 	}
1257 
1258 	pci_set_master(pci_dev);
1259 
1260 	/* Set the PCI DMA mask.  Try all possibilities from our
1261 	 * genuine mask down to 32 bits, because some architectures
1262 	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1263 	 * masks event though they reject 46 bit masks.
1264 	 */
1265 	while (dma_mask > 0x7fffffffUL) {
1266 		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1267 		if (rc == 0)
1268 			break;
1269 		dma_mask >>= 1;
1270 	}
1271 	if (rc) {
1272 		netif_err(efx, probe, efx->net_dev,
1273 			  "could not find a suitable DMA mask\n");
1274 		goto fail2;
1275 	}
1276 	netif_dbg(efx, probe, efx->net_dev,
1277 		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1278 
1279 	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1280 	rc = pci_request_region(pci_dev, bar, "sfc");
1281 	if (rc) {
1282 		netif_err(efx, probe, efx->net_dev,
1283 			  "request for memory BAR failed\n");
1284 		rc = -EIO;
1285 		goto fail3;
1286 	}
1287 	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1288 	if (!efx->membase) {
1289 		netif_err(efx, probe, efx->net_dev,
1290 			  "could not map memory BAR at %llx+%x\n",
1291 			  (unsigned long long)efx->membase_phys, mem_map_size);
1292 		rc = -ENOMEM;
1293 		goto fail4;
1294 	}
1295 	netif_dbg(efx, probe, efx->net_dev,
1296 		  "memory BAR at %llx+%x (virtual %p)\n",
1297 		  (unsigned long long)efx->membase_phys, mem_map_size,
1298 		  efx->membase);
1299 
1300 	return 0;
1301 
1302  fail4:
1303 	pci_release_region(efx->pci_dev, bar);
1304  fail3:
1305 	efx->membase_phys = 0;
1306  fail2:
1307 	pci_disable_device(efx->pci_dev);
1308  fail1:
1309 	return rc;
1310 }
1311 
1312 static void efx_fini_io(struct efx_nic *efx)
1313 {
1314 	int bar;
1315 
1316 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1317 
1318 	if (efx->membase) {
1319 		iounmap(efx->membase);
1320 		efx->membase = NULL;
1321 	}
1322 
1323 	if (efx->membase_phys) {
1324 		bar = efx->type->mem_bar;
1325 		pci_release_region(efx->pci_dev, bar);
1326 		efx->membase_phys = 0;
1327 	}
1328 
1329 	/* Don't disable bus-mastering if VFs are assigned */
1330 	if (!pci_vfs_assigned(efx->pci_dev))
1331 		pci_disable_device(efx->pci_dev);
1332 }
1333 
1334 void efx_set_default_rx_indir_table(struct efx_nic *efx)
1335 {
1336 	size_t i;
1337 
1338 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1339 		efx->rx_indir_table[i] =
1340 			ethtool_rxfh_indir_default(i, efx->rss_spread);
1341 }
1342 
1343 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1344 {
1345 	cpumask_var_t thread_mask;
1346 	unsigned int count;
1347 	int cpu;
1348 
1349 	if (rss_cpus) {
1350 		count = rss_cpus;
1351 	} else {
1352 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1353 			netif_warn(efx, probe, efx->net_dev,
1354 				   "RSS disabled due to allocation failure\n");
1355 			return 1;
1356 		}
1357 
1358 		count = 0;
1359 		for_each_online_cpu(cpu) {
1360 			if (!cpumask_test_cpu(cpu, thread_mask)) {
1361 				++count;
1362 				cpumask_or(thread_mask, thread_mask,
1363 					   topology_sibling_cpumask(cpu));
1364 			}
1365 		}
1366 
1367 		free_cpumask_var(thread_mask);
1368 	}
1369 
1370 	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1371 	 * table entries that are inaccessible to VFs
1372 	 */
1373 #ifdef CONFIG_SFC_SRIOV
1374 	if (efx->type->sriov_wanted) {
1375 		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1376 		    count > efx_vf_size(efx)) {
1377 			netif_warn(efx, probe, efx->net_dev,
1378 				   "Reducing number of RSS channels from %u to %u for "
1379 				   "VF support. Increase vf-msix-limit to use more "
1380 				   "channels on the PF.\n",
1381 				   count, efx_vf_size(efx));
1382 			count = efx_vf_size(efx);
1383 		}
1384 	}
1385 #endif
1386 
1387 	return count;
1388 }
1389 
1390 /* Probe the number and type of interrupts we are able to obtain, and
1391  * the resulting numbers of channels and RX queues.
1392  */
1393 static int efx_probe_interrupts(struct efx_nic *efx)
1394 {
1395 	unsigned int extra_channels = 0;
1396 	unsigned int i, j;
1397 	int rc;
1398 
1399 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1400 		if (efx->extra_channel_type[i])
1401 			++extra_channels;
1402 
1403 	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1404 		struct msix_entry xentries[EFX_MAX_CHANNELS];
1405 		unsigned int n_channels;
1406 
1407 		n_channels = efx_wanted_parallelism(efx);
1408 		if (efx_separate_tx_channels)
1409 			n_channels *= 2;
1410 		n_channels += extra_channels;
1411 		n_channels = min(n_channels, efx->max_channels);
1412 
1413 		for (i = 0; i < n_channels; i++)
1414 			xentries[i].entry = i;
1415 		rc = pci_enable_msix_range(efx->pci_dev,
1416 					   xentries, 1, n_channels);
1417 		if (rc < 0) {
1418 			/* Fall back to single channel MSI */
1419 			efx->interrupt_mode = EFX_INT_MODE_MSI;
1420 			netif_err(efx, drv, efx->net_dev,
1421 				  "could not enable MSI-X\n");
1422 		} else if (rc < n_channels) {
1423 			netif_err(efx, drv, efx->net_dev,
1424 				  "WARNING: Insufficient MSI-X vectors"
1425 				  " available (%d < %u).\n", rc, n_channels);
1426 			netif_err(efx, drv, efx->net_dev,
1427 				  "WARNING: Performance may be reduced.\n");
1428 			n_channels = rc;
1429 		}
1430 
1431 		if (rc > 0) {
1432 			efx->n_channels = n_channels;
1433 			if (n_channels > extra_channels)
1434 				n_channels -= extra_channels;
1435 			if (efx_separate_tx_channels) {
1436 				efx->n_tx_channels = min(max(n_channels / 2,
1437 							     1U),
1438 							 efx->max_tx_channels);
1439 				efx->n_rx_channels = max(n_channels -
1440 							 efx->n_tx_channels,
1441 							 1U);
1442 			} else {
1443 				efx->n_tx_channels = min(n_channels,
1444 							 efx->max_tx_channels);
1445 				efx->n_rx_channels = n_channels;
1446 			}
1447 			for (i = 0; i < efx->n_channels; i++)
1448 				efx_get_channel(efx, i)->irq =
1449 					xentries[i].vector;
1450 		}
1451 	}
1452 
1453 	/* Try single interrupt MSI */
1454 	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1455 		efx->n_channels = 1;
1456 		efx->n_rx_channels = 1;
1457 		efx->n_tx_channels = 1;
1458 		rc = pci_enable_msi(efx->pci_dev);
1459 		if (rc == 0) {
1460 			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1461 		} else {
1462 			netif_err(efx, drv, efx->net_dev,
1463 				  "could not enable MSI\n");
1464 			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1465 		}
1466 	}
1467 
1468 	/* Assume legacy interrupts */
1469 	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1470 		efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
1471 		efx->n_rx_channels = 1;
1472 		efx->n_tx_channels = 1;
1473 		efx->legacy_irq = efx->pci_dev->irq;
1474 	}
1475 
1476 	/* Assign extra channels if possible */
1477 	j = efx->n_channels;
1478 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1479 		if (!efx->extra_channel_type[i])
1480 			continue;
1481 		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1482 		    efx->n_channels <= extra_channels) {
1483 			efx->extra_channel_type[i]->handle_no_channel(efx);
1484 		} else {
1485 			--j;
1486 			efx_get_channel(efx, j)->type =
1487 				efx->extra_channel_type[i];
1488 		}
1489 	}
1490 
1491 	/* RSS might be usable on VFs even if it is disabled on the PF */
1492 #ifdef CONFIG_SFC_SRIOV
1493 	if (efx->type->sriov_wanted) {
1494 		efx->rss_spread = ((efx->n_rx_channels > 1 ||
1495 				    !efx->type->sriov_wanted(efx)) ?
1496 				   efx->n_rx_channels : efx_vf_size(efx));
1497 		return 0;
1498 	}
1499 #endif
1500 	efx->rss_spread = efx->n_rx_channels;
1501 
1502 	return 0;
1503 }
1504 
1505 static int efx_soft_enable_interrupts(struct efx_nic *efx)
1506 {
1507 	struct efx_channel *channel, *end_channel;
1508 	int rc;
1509 
1510 	BUG_ON(efx->state == STATE_DISABLED);
1511 
1512 	efx->irq_soft_enabled = true;
1513 	smp_wmb();
1514 
1515 	efx_for_each_channel(channel, efx) {
1516 		if (!channel->type->keep_eventq) {
1517 			rc = efx_init_eventq(channel);
1518 			if (rc)
1519 				goto fail;
1520 		}
1521 		efx_start_eventq(channel);
1522 	}
1523 
1524 	efx_mcdi_mode_event(efx);
1525 
1526 	return 0;
1527 fail:
1528 	end_channel = channel;
1529 	efx_for_each_channel(channel, efx) {
1530 		if (channel == end_channel)
1531 			break;
1532 		efx_stop_eventq(channel);
1533 		if (!channel->type->keep_eventq)
1534 			efx_fini_eventq(channel);
1535 	}
1536 
1537 	return rc;
1538 }
1539 
1540 static void efx_soft_disable_interrupts(struct efx_nic *efx)
1541 {
1542 	struct efx_channel *channel;
1543 
1544 	if (efx->state == STATE_DISABLED)
1545 		return;
1546 
1547 	efx_mcdi_mode_poll(efx);
1548 
1549 	efx->irq_soft_enabled = false;
1550 	smp_wmb();
1551 
1552 	if (efx->legacy_irq)
1553 		synchronize_irq(efx->legacy_irq);
1554 
1555 	efx_for_each_channel(channel, efx) {
1556 		if (channel->irq)
1557 			synchronize_irq(channel->irq);
1558 
1559 		efx_stop_eventq(channel);
1560 		if (!channel->type->keep_eventq)
1561 			efx_fini_eventq(channel);
1562 	}
1563 
1564 	/* Flush the asynchronous MCDI request queue */
1565 	efx_mcdi_flush_async(efx);
1566 }
1567 
1568 static int efx_enable_interrupts(struct efx_nic *efx)
1569 {
1570 	struct efx_channel *channel, *end_channel;
1571 	int rc;
1572 
1573 	BUG_ON(efx->state == STATE_DISABLED);
1574 
1575 	if (efx->eeh_disabled_legacy_irq) {
1576 		enable_irq(efx->legacy_irq);
1577 		efx->eeh_disabled_legacy_irq = false;
1578 	}
1579 
1580 	efx->type->irq_enable_master(efx);
1581 
1582 	efx_for_each_channel(channel, efx) {
1583 		if (channel->type->keep_eventq) {
1584 			rc = efx_init_eventq(channel);
1585 			if (rc)
1586 				goto fail;
1587 		}
1588 	}
1589 
1590 	rc = efx_soft_enable_interrupts(efx);
1591 	if (rc)
1592 		goto fail;
1593 
1594 	return 0;
1595 
1596 fail:
1597 	end_channel = channel;
1598 	efx_for_each_channel(channel, efx) {
1599 		if (channel == end_channel)
1600 			break;
1601 		if (channel->type->keep_eventq)
1602 			efx_fini_eventq(channel);
1603 	}
1604 
1605 	efx->type->irq_disable_non_ev(efx);
1606 
1607 	return rc;
1608 }
1609 
1610 static void efx_disable_interrupts(struct efx_nic *efx)
1611 {
1612 	struct efx_channel *channel;
1613 
1614 	efx_soft_disable_interrupts(efx);
1615 
1616 	efx_for_each_channel(channel, efx) {
1617 		if (channel->type->keep_eventq)
1618 			efx_fini_eventq(channel);
1619 	}
1620 
1621 	efx->type->irq_disable_non_ev(efx);
1622 }
1623 
1624 static void efx_remove_interrupts(struct efx_nic *efx)
1625 {
1626 	struct efx_channel *channel;
1627 
1628 	/* Remove MSI/MSI-X interrupts */
1629 	efx_for_each_channel(channel, efx)
1630 		channel->irq = 0;
1631 	pci_disable_msi(efx->pci_dev);
1632 	pci_disable_msix(efx->pci_dev);
1633 
1634 	/* Remove legacy interrupt */
1635 	efx->legacy_irq = 0;
1636 }
1637 
1638 static void efx_set_channels(struct efx_nic *efx)
1639 {
1640 	struct efx_channel *channel;
1641 	struct efx_tx_queue *tx_queue;
1642 
1643 	efx->tx_channel_offset =
1644 		efx_separate_tx_channels ?
1645 		efx->n_channels - efx->n_tx_channels : 0;
1646 
1647 	/* We need to mark which channels really have RX and TX
1648 	 * queues, and adjust the TX queue numbers if we have separate
1649 	 * RX-only and TX-only channels.
1650 	 */
1651 	efx_for_each_channel(channel, efx) {
1652 		if (channel->channel < efx->n_rx_channels)
1653 			channel->rx_queue.core_index = channel->channel;
1654 		else
1655 			channel->rx_queue.core_index = -1;
1656 
1657 		efx_for_each_channel_tx_queue(tx_queue, channel)
1658 			tx_queue->queue -= (efx->tx_channel_offset *
1659 					    EFX_TXQ_TYPES);
1660 	}
1661 }
1662 
1663 static int efx_probe_nic(struct efx_nic *efx)
1664 {
1665 	int rc;
1666 
1667 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1668 
1669 	/* Carry out hardware-type specific initialisation */
1670 	rc = efx->type->probe(efx);
1671 	if (rc)
1672 		return rc;
1673 
1674 	do {
1675 		if (!efx->max_channels || !efx->max_tx_channels) {
1676 			netif_err(efx, drv, efx->net_dev,
1677 				  "Insufficient resources to allocate"
1678 				  " any channels\n");
1679 			rc = -ENOSPC;
1680 			goto fail1;
1681 		}
1682 
1683 		/* Determine the number of channels and queues by trying
1684 		 * to hook in MSI-X interrupts.
1685 		 */
1686 		rc = efx_probe_interrupts(efx);
1687 		if (rc)
1688 			goto fail1;
1689 
1690 		efx_set_channels(efx);
1691 
1692 		/* dimension_resources can fail with EAGAIN */
1693 		rc = efx->type->dimension_resources(efx);
1694 		if (rc != 0 && rc != -EAGAIN)
1695 			goto fail2;
1696 
1697 		if (rc == -EAGAIN)
1698 			/* try again with new max_channels */
1699 			efx_remove_interrupts(efx);
1700 
1701 	} while (rc == -EAGAIN);
1702 
1703 	if (efx->n_channels > 1)
1704 		netdev_rss_key_fill(&efx->rx_hash_key,
1705 				    sizeof(efx->rx_hash_key));
1706 	efx_set_default_rx_indir_table(efx);
1707 
1708 	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1709 	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1710 
1711 	/* Initialise the interrupt moderation settings */
1712 	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1713 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1714 				true);
1715 
1716 	return 0;
1717 
1718 fail2:
1719 	efx_remove_interrupts(efx);
1720 fail1:
1721 	efx->type->remove(efx);
1722 	return rc;
1723 }
1724 
1725 static void efx_remove_nic(struct efx_nic *efx)
1726 {
1727 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1728 
1729 	efx_remove_interrupts(efx);
1730 	efx->type->remove(efx);
1731 }
1732 
1733 static int efx_probe_filters(struct efx_nic *efx)
1734 {
1735 	int rc;
1736 
1737 	spin_lock_init(&efx->filter_lock);
1738 	init_rwsem(&efx->filter_sem);
1739 	mutex_lock(&efx->mac_lock);
1740 	down_write(&efx->filter_sem);
1741 	rc = efx->type->filter_table_probe(efx);
1742 	if (rc)
1743 		goto out_unlock;
1744 
1745 #ifdef CONFIG_RFS_ACCEL
1746 	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1747 		struct efx_channel *channel;
1748 		int i, success = 1;
1749 
1750 		efx_for_each_channel(channel, efx) {
1751 			channel->rps_flow_id =
1752 				kcalloc(efx->type->max_rx_ip_filters,
1753 					sizeof(*channel->rps_flow_id),
1754 					GFP_KERNEL);
1755 			if (!channel->rps_flow_id)
1756 				success = 0;
1757 			else
1758 				for (i = 0;
1759 				     i < efx->type->max_rx_ip_filters;
1760 				     ++i)
1761 					channel->rps_flow_id[i] =
1762 						RPS_FLOW_ID_INVALID;
1763 		}
1764 
1765 		if (!success) {
1766 			efx_for_each_channel(channel, efx)
1767 				kfree(channel->rps_flow_id);
1768 			efx->type->filter_table_remove(efx);
1769 			rc = -ENOMEM;
1770 			goto out_unlock;
1771 		}
1772 
1773 		efx->rps_expire_index = efx->rps_expire_channel = 0;
1774 	}
1775 #endif
1776 out_unlock:
1777 	up_write(&efx->filter_sem);
1778 	mutex_unlock(&efx->mac_lock);
1779 	return rc;
1780 }
1781 
1782 static void efx_remove_filters(struct efx_nic *efx)
1783 {
1784 #ifdef CONFIG_RFS_ACCEL
1785 	struct efx_channel *channel;
1786 
1787 	efx_for_each_channel(channel, efx)
1788 		kfree(channel->rps_flow_id);
1789 #endif
1790 	down_write(&efx->filter_sem);
1791 	efx->type->filter_table_remove(efx);
1792 	up_write(&efx->filter_sem);
1793 }
1794 
1795 static void efx_restore_filters(struct efx_nic *efx)
1796 {
1797 	down_read(&efx->filter_sem);
1798 	efx->type->filter_table_restore(efx);
1799 	up_read(&efx->filter_sem);
1800 }
1801 
1802 /**************************************************************************
1803  *
1804  * NIC startup/shutdown
1805  *
1806  *************************************************************************/
1807 
1808 static int efx_probe_all(struct efx_nic *efx)
1809 {
1810 	int rc;
1811 
1812 	rc = efx_probe_nic(efx);
1813 	if (rc) {
1814 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1815 		goto fail1;
1816 	}
1817 
1818 	rc = efx_probe_port(efx);
1819 	if (rc) {
1820 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1821 		goto fail2;
1822 	}
1823 
1824 	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1825 	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1826 		rc = -EINVAL;
1827 		goto fail3;
1828 	}
1829 	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1830 
1831 #ifdef CONFIG_SFC_SRIOV
1832 	rc = efx->type->vswitching_probe(efx);
1833 	if (rc) /* not fatal; the PF will still work fine */
1834 		netif_warn(efx, probe, efx->net_dev,
1835 			   "failed to setup vswitching rc=%d;"
1836 			   " VFs may not function\n", rc);
1837 #endif
1838 
1839 	rc = efx_probe_filters(efx);
1840 	if (rc) {
1841 		netif_err(efx, probe, efx->net_dev,
1842 			  "failed to create filter tables\n");
1843 		goto fail4;
1844 	}
1845 
1846 	rc = efx_probe_channels(efx);
1847 	if (rc)
1848 		goto fail5;
1849 
1850 	return 0;
1851 
1852  fail5:
1853 	efx_remove_filters(efx);
1854  fail4:
1855 #ifdef CONFIG_SFC_SRIOV
1856 	efx->type->vswitching_remove(efx);
1857 #endif
1858  fail3:
1859 	efx_remove_port(efx);
1860  fail2:
1861 	efx_remove_nic(efx);
1862  fail1:
1863 	return rc;
1864 }
1865 
1866 /* If the interface is supposed to be running but is not, start
1867  * the hardware and software data path, regular activity for the port
1868  * (MAC statistics, link polling, etc.) and schedule the port to be
1869  * reconfigured.  Interrupts must already be enabled.  This function
1870  * is safe to call multiple times, so long as the NIC is not disabled.
1871  * Requires the RTNL lock.
1872  */
1873 static void efx_start_all(struct efx_nic *efx)
1874 {
1875 	EFX_ASSERT_RESET_SERIALISED(efx);
1876 	BUG_ON(efx->state == STATE_DISABLED);
1877 
1878 	/* Check that it is appropriate to restart the interface. All
1879 	 * of these flags are safe to read under just the rtnl lock */
1880 	if (efx->port_enabled || !netif_running(efx->net_dev) ||
1881 	    efx->reset_pending)
1882 		return;
1883 
1884 	efx_start_port(efx);
1885 	efx_start_datapath(efx);
1886 
1887 	/* Start the hardware monitor if there is one */
1888 	if (efx->type->monitor != NULL)
1889 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1890 				   efx_monitor_interval);
1891 
1892 	/* If link state detection is normally event-driven, we have
1893 	 * to poll now because we could have missed a change
1894 	 */
1895 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1896 		mutex_lock(&efx->mac_lock);
1897 		if (efx->phy_op->poll(efx))
1898 			efx_link_status_changed(efx);
1899 		mutex_unlock(&efx->mac_lock);
1900 	}
1901 
1902 	efx->type->start_stats(efx);
1903 	efx->type->pull_stats(efx);
1904 	spin_lock_bh(&efx->stats_lock);
1905 	efx->type->update_stats(efx, NULL, NULL);
1906 	spin_unlock_bh(&efx->stats_lock);
1907 }
1908 
1909 /* Quiesce the hardware and software data path, and regular activity
1910  * for the port without bringing the link down.  Safe to call multiple
1911  * times with the NIC in almost any state, but interrupts should be
1912  * enabled.  Requires the RTNL lock.
1913  */
1914 static void efx_stop_all(struct efx_nic *efx)
1915 {
1916 	EFX_ASSERT_RESET_SERIALISED(efx);
1917 
1918 	/* port_enabled can be read safely under the rtnl lock */
1919 	if (!efx->port_enabled)
1920 		return;
1921 
1922 	/* update stats before we go down so we can accurately count
1923 	 * rx_nodesc_drops
1924 	 */
1925 	efx->type->pull_stats(efx);
1926 	spin_lock_bh(&efx->stats_lock);
1927 	efx->type->update_stats(efx, NULL, NULL);
1928 	spin_unlock_bh(&efx->stats_lock);
1929 	efx->type->stop_stats(efx);
1930 	efx_stop_port(efx);
1931 
1932 	/* Stop the kernel transmit interface.  This is only valid if
1933 	 * the device is stopped or detached; otherwise the watchdog
1934 	 * may fire immediately.
1935 	 */
1936 	WARN_ON(netif_running(efx->net_dev) &&
1937 		netif_device_present(efx->net_dev));
1938 	netif_tx_disable(efx->net_dev);
1939 
1940 	efx_stop_datapath(efx);
1941 }
1942 
1943 static void efx_remove_all(struct efx_nic *efx)
1944 {
1945 	efx_remove_channels(efx);
1946 	efx_remove_filters(efx);
1947 #ifdef CONFIG_SFC_SRIOV
1948 	efx->type->vswitching_remove(efx);
1949 #endif
1950 	efx_remove_port(efx);
1951 	efx_remove_nic(efx);
1952 }
1953 
1954 /**************************************************************************
1955  *
1956  * Interrupt moderation
1957  *
1958  **************************************************************************/
1959 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
1960 {
1961 	if (usecs == 0)
1962 		return 0;
1963 	if (usecs * 1000 < efx->timer_quantum_ns)
1964 		return 1; /* never round down to 0 */
1965 	return usecs * 1000 / efx->timer_quantum_ns;
1966 }
1967 
1968 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
1969 {
1970 	/* We must round up when converting ticks to microseconds
1971 	 * because we round down when converting the other way.
1972 	 */
1973 	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1974 }
1975 
1976 /* Set interrupt moderation parameters */
1977 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1978 			    unsigned int rx_usecs, bool rx_adaptive,
1979 			    bool rx_may_override_tx)
1980 {
1981 	struct efx_channel *channel;
1982 	unsigned int timer_max_us;
1983 
1984 	EFX_ASSERT_RESET_SERIALISED(efx);
1985 
1986 	timer_max_us = efx->timer_max_ns / 1000;
1987 
1988 	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1989 		return -EINVAL;
1990 
1991 	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1992 	    !rx_may_override_tx) {
1993 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1994 			  "RX and TX IRQ moderation must be equal\n");
1995 		return -EINVAL;
1996 	}
1997 
1998 	efx->irq_rx_adaptive = rx_adaptive;
1999 	efx->irq_rx_moderation_us = rx_usecs;
2000 	efx_for_each_channel(channel, efx) {
2001 		if (efx_channel_has_rx_queue(channel))
2002 			channel->irq_moderation_us = rx_usecs;
2003 		else if (efx_channel_has_tx_queues(channel))
2004 			channel->irq_moderation_us = tx_usecs;
2005 	}
2006 
2007 	return 0;
2008 }
2009 
2010 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
2011 			    unsigned int *rx_usecs, bool *rx_adaptive)
2012 {
2013 	*rx_adaptive = efx->irq_rx_adaptive;
2014 	*rx_usecs = efx->irq_rx_moderation_us;
2015 
2016 	/* If channels are shared between RX and TX, so is IRQ
2017 	 * moderation.  Otherwise, IRQ moderation is the same for all
2018 	 * TX channels and is not adaptive.
2019 	 */
2020 	if (efx->tx_channel_offset == 0) {
2021 		*tx_usecs = *rx_usecs;
2022 	} else {
2023 		struct efx_channel *tx_channel;
2024 
2025 		tx_channel = efx->channel[efx->tx_channel_offset];
2026 		*tx_usecs = tx_channel->irq_moderation_us;
2027 	}
2028 }
2029 
2030 /**************************************************************************
2031  *
2032  * Hardware monitor
2033  *
2034  **************************************************************************/
2035 
2036 /* Run periodically off the general workqueue */
2037 static void efx_monitor(struct work_struct *data)
2038 {
2039 	struct efx_nic *efx = container_of(data, struct efx_nic,
2040 					   monitor_work.work);
2041 
2042 	netif_vdbg(efx, timer, efx->net_dev,
2043 		   "hardware monitor executing on CPU %d\n",
2044 		   raw_smp_processor_id());
2045 	BUG_ON(efx->type->monitor == NULL);
2046 
2047 	/* If the mac_lock is already held then it is likely a port
2048 	 * reconfiguration is already in place, which will likely do
2049 	 * most of the work of monitor() anyway. */
2050 	if (mutex_trylock(&efx->mac_lock)) {
2051 		if (efx->port_enabled)
2052 			efx->type->monitor(efx);
2053 		mutex_unlock(&efx->mac_lock);
2054 	}
2055 
2056 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
2057 			   efx_monitor_interval);
2058 }
2059 
2060 /**************************************************************************
2061  *
2062  * ioctls
2063  *
2064  *************************************************************************/
2065 
2066 /* Net device ioctl
2067  * Context: process, rtnl_lock() held.
2068  */
2069 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2070 {
2071 	struct efx_nic *efx = netdev_priv(net_dev);
2072 	struct mii_ioctl_data *data = if_mii(ifr);
2073 
2074 	if (cmd == SIOCSHWTSTAMP)
2075 		return efx_ptp_set_ts_config(efx, ifr);
2076 	if (cmd == SIOCGHWTSTAMP)
2077 		return efx_ptp_get_ts_config(efx, ifr);
2078 
2079 	/* Convert phy_id from older PRTAD/DEVAD format */
2080 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2081 	    (data->phy_id & 0xfc00) == 0x0400)
2082 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2083 
2084 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2085 }
2086 
2087 /**************************************************************************
2088  *
2089  * NAPI interface
2090  *
2091  **************************************************************************/
2092 
2093 static void efx_init_napi_channel(struct efx_channel *channel)
2094 {
2095 	struct efx_nic *efx = channel->efx;
2096 
2097 	channel->napi_dev = efx->net_dev;
2098 	netif_napi_add(channel->napi_dev, &channel->napi_str,
2099 		       efx_poll, napi_weight);
2100 	efx_channel_busy_poll_init(channel);
2101 }
2102 
2103 static void efx_init_napi(struct efx_nic *efx)
2104 {
2105 	struct efx_channel *channel;
2106 
2107 	efx_for_each_channel(channel, efx)
2108 		efx_init_napi_channel(channel);
2109 }
2110 
2111 static void efx_fini_napi_channel(struct efx_channel *channel)
2112 {
2113 	if (channel->napi_dev) {
2114 		netif_napi_del(&channel->napi_str);
2115 		napi_hash_del(&channel->napi_str);
2116 	}
2117 	channel->napi_dev = NULL;
2118 }
2119 
2120 static void efx_fini_napi(struct efx_nic *efx)
2121 {
2122 	struct efx_channel *channel;
2123 
2124 	efx_for_each_channel(channel, efx)
2125 		efx_fini_napi_channel(channel);
2126 }
2127 
2128 /**************************************************************************
2129  *
2130  * Kernel netpoll interface
2131  *
2132  *************************************************************************/
2133 
2134 #ifdef CONFIG_NET_POLL_CONTROLLER
2135 
2136 /* Although in the common case interrupts will be disabled, this is not
2137  * guaranteed. However, all our work happens inside the NAPI callback,
2138  * so no locking is required.
2139  */
2140 static void efx_netpoll(struct net_device *net_dev)
2141 {
2142 	struct efx_nic *efx = netdev_priv(net_dev);
2143 	struct efx_channel *channel;
2144 
2145 	efx_for_each_channel(channel, efx)
2146 		efx_schedule_channel(channel);
2147 }
2148 
2149 #endif
2150 
2151 #ifdef CONFIG_NET_RX_BUSY_POLL
2152 static int efx_busy_poll(struct napi_struct *napi)
2153 {
2154 	struct efx_channel *channel =
2155 		container_of(napi, struct efx_channel, napi_str);
2156 	struct efx_nic *efx = channel->efx;
2157 	int budget = 4;
2158 	int old_rx_packets, rx_packets;
2159 
2160 	if (!netif_running(efx->net_dev))
2161 		return LL_FLUSH_FAILED;
2162 
2163 	if (!efx_channel_try_lock_poll(channel))
2164 		return LL_FLUSH_BUSY;
2165 
2166 	old_rx_packets = channel->rx_queue.rx_packets;
2167 	efx_process_channel(channel, budget);
2168 
2169 	rx_packets = channel->rx_queue.rx_packets - old_rx_packets;
2170 
2171 	/* There is no race condition with NAPI here.
2172 	 * NAPI will automatically be rescheduled if it yielded during busy
2173 	 * polling, because it was not able to take the lock and thus returned
2174 	 * the full budget.
2175 	 */
2176 	efx_channel_unlock_poll(channel);
2177 
2178 	return rx_packets;
2179 }
2180 #endif
2181 
2182 /**************************************************************************
2183  *
2184  * Kernel net device interface
2185  *
2186  *************************************************************************/
2187 
2188 /* Context: process, rtnl_lock() held. */
2189 int efx_net_open(struct net_device *net_dev)
2190 {
2191 	struct efx_nic *efx = netdev_priv(net_dev);
2192 	int rc;
2193 
2194 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2195 		  raw_smp_processor_id());
2196 
2197 	rc = efx_check_disabled(efx);
2198 	if (rc)
2199 		return rc;
2200 	if (efx->phy_mode & PHY_MODE_SPECIAL)
2201 		return -EBUSY;
2202 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2203 		return -EIO;
2204 
2205 	/* Notify the kernel of the link state polled during driver load,
2206 	 * before the monitor starts running */
2207 	efx_link_status_changed(efx);
2208 
2209 	efx_start_all(efx);
2210 	efx_selftest_async_start(efx);
2211 	return 0;
2212 }
2213 
2214 /* Context: process, rtnl_lock() held.
2215  * Note that the kernel will ignore our return code; this method
2216  * should really be a void.
2217  */
2218 int efx_net_stop(struct net_device *net_dev)
2219 {
2220 	struct efx_nic *efx = netdev_priv(net_dev);
2221 
2222 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2223 		  raw_smp_processor_id());
2224 
2225 	/* Stop the device and flush all the channels */
2226 	efx_stop_all(efx);
2227 
2228 	return 0;
2229 }
2230 
2231 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2232 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2233 					       struct rtnl_link_stats64 *stats)
2234 {
2235 	struct efx_nic *efx = netdev_priv(net_dev);
2236 
2237 	spin_lock_bh(&efx->stats_lock);
2238 	efx->type->update_stats(efx, NULL, stats);
2239 	spin_unlock_bh(&efx->stats_lock);
2240 
2241 	return stats;
2242 }
2243 
2244 /* Context: netif_tx_lock held, BHs disabled. */
2245 static void efx_watchdog(struct net_device *net_dev)
2246 {
2247 	struct efx_nic *efx = netdev_priv(net_dev);
2248 
2249 	netif_err(efx, tx_err, efx->net_dev,
2250 		  "TX stuck with port_enabled=%d: resetting channels\n",
2251 		  efx->port_enabled);
2252 
2253 	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2254 }
2255 
2256 
2257 /* Context: process, rtnl_lock() held. */
2258 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2259 {
2260 	struct efx_nic *efx = netdev_priv(net_dev);
2261 	int rc;
2262 
2263 	rc = efx_check_disabled(efx);
2264 	if (rc)
2265 		return rc;
2266 	if (new_mtu > EFX_MAX_MTU) {
2267 		netif_err(efx, drv, efx->net_dev,
2268 			  "Requested MTU of %d too big (max: %d)\n",
2269 			  new_mtu, EFX_MAX_MTU);
2270 		return -EINVAL;
2271 	}
2272 	if (new_mtu < EFX_MIN_MTU) {
2273 		netif_err(efx, drv, efx->net_dev,
2274 			  "Requested MTU of %d too small (min: %d)\n",
2275 			  new_mtu, EFX_MIN_MTU);
2276 		return -EINVAL;
2277 	}
2278 
2279 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2280 
2281 	efx_device_detach_sync(efx);
2282 	efx_stop_all(efx);
2283 
2284 	mutex_lock(&efx->mac_lock);
2285 	net_dev->mtu = new_mtu;
2286 	efx_mac_reconfigure(efx);
2287 	mutex_unlock(&efx->mac_lock);
2288 
2289 	efx_start_all(efx);
2290 	netif_device_attach(efx->net_dev);
2291 	return 0;
2292 }
2293 
2294 static int efx_set_mac_address(struct net_device *net_dev, void *data)
2295 {
2296 	struct efx_nic *efx = netdev_priv(net_dev);
2297 	struct sockaddr *addr = data;
2298 	u8 *new_addr = addr->sa_data;
2299 	u8 old_addr[6];
2300 	int rc;
2301 
2302 	if (!is_valid_ether_addr(new_addr)) {
2303 		netif_err(efx, drv, efx->net_dev,
2304 			  "invalid ethernet MAC address requested: %pM\n",
2305 			  new_addr);
2306 		return -EADDRNOTAVAIL;
2307 	}
2308 
2309 	/* save old address */
2310 	ether_addr_copy(old_addr, net_dev->dev_addr);
2311 	ether_addr_copy(net_dev->dev_addr, new_addr);
2312 	if (efx->type->set_mac_address) {
2313 		rc = efx->type->set_mac_address(efx);
2314 		if (rc) {
2315 			ether_addr_copy(net_dev->dev_addr, old_addr);
2316 			return rc;
2317 		}
2318 	}
2319 
2320 	/* Reconfigure the MAC */
2321 	mutex_lock(&efx->mac_lock);
2322 	efx_mac_reconfigure(efx);
2323 	mutex_unlock(&efx->mac_lock);
2324 
2325 	return 0;
2326 }
2327 
2328 /* Context: netif_addr_lock held, BHs disabled. */
2329 static void efx_set_rx_mode(struct net_device *net_dev)
2330 {
2331 	struct efx_nic *efx = netdev_priv(net_dev);
2332 
2333 	if (efx->port_enabled)
2334 		queue_work(efx->workqueue, &efx->mac_work);
2335 	/* Otherwise efx_start_port() will do this */
2336 }
2337 
2338 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2339 {
2340 	struct efx_nic *efx = netdev_priv(net_dev);
2341 	int rc;
2342 
2343 	/* If disabling RX n-tuple filtering, clear existing filters */
2344 	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2345 		rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2346 		if (rc)
2347 			return rc;
2348 	}
2349 
2350 	/* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2351 	if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2352 		/* efx_set_rx_mode() will schedule MAC work to update filters
2353 		 * when a new features are finally set in net_dev.
2354 		 */
2355 		efx_set_rx_mode(net_dev);
2356 	}
2357 
2358 	return 0;
2359 }
2360 
2361 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
2362 {
2363 	struct efx_nic *efx = netdev_priv(net_dev);
2364 
2365 	if (efx->type->vlan_rx_add_vid)
2366 		return efx->type->vlan_rx_add_vid(efx, proto, vid);
2367 	else
2368 		return -EOPNOTSUPP;
2369 }
2370 
2371 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
2372 {
2373 	struct efx_nic *efx = netdev_priv(net_dev);
2374 
2375 	if (efx->type->vlan_rx_kill_vid)
2376 		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
2377 	else
2378 		return -EOPNOTSUPP;
2379 }
2380 
2381 static const struct net_device_ops efx_netdev_ops = {
2382 	.ndo_open		= efx_net_open,
2383 	.ndo_stop		= efx_net_stop,
2384 	.ndo_get_stats64	= efx_net_stats,
2385 	.ndo_tx_timeout		= efx_watchdog,
2386 	.ndo_start_xmit		= efx_hard_start_xmit,
2387 	.ndo_validate_addr	= eth_validate_addr,
2388 	.ndo_do_ioctl		= efx_ioctl,
2389 	.ndo_change_mtu		= efx_change_mtu,
2390 	.ndo_set_mac_address	= efx_set_mac_address,
2391 	.ndo_set_rx_mode	= efx_set_rx_mode,
2392 	.ndo_set_features	= efx_set_features,
2393 	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
2394 	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
2395 #ifdef CONFIG_SFC_SRIOV
2396 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2397 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2398 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2399 	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2400 	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
2401 	.ndo_get_phys_port_id   = efx_sriov_get_phys_port_id,
2402 #endif
2403 #ifdef CONFIG_NET_POLL_CONTROLLER
2404 	.ndo_poll_controller = efx_netpoll,
2405 #endif
2406 	.ndo_setup_tc		= efx_setup_tc,
2407 #ifdef CONFIG_NET_RX_BUSY_POLL
2408 	.ndo_busy_poll		= efx_busy_poll,
2409 #endif
2410 #ifdef CONFIG_RFS_ACCEL
2411 	.ndo_rx_flow_steer	= efx_filter_rfs,
2412 #endif
2413 };
2414 
2415 static void efx_update_name(struct efx_nic *efx)
2416 {
2417 	strcpy(efx->name, efx->net_dev->name);
2418 	efx_mtd_rename(efx);
2419 	efx_set_channel_names(efx);
2420 }
2421 
2422 static int efx_netdev_event(struct notifier_block *this,
2423 			    unsigned long event, void *ptr)
2424 {
2425 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2426 
2427 	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2428 	    event == NETDEV_CHANGENAME)
2429 		efx_update_name(netdev_priv(net_dev));
2430 
2431 	return NOTIFY_DONE;
2432 }
2433 
2434 static struct notifier_block efx_netdev_notifier = {
2435 	.notifier_call = efx_netdev_event,
2436 };
2437 
2438 static ssize_t
2439 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2440 {
2441 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2442 	return sprintf(buf, "%d\n", efx->phy_type);
2443 }
2444 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2445 
2446 #ifdef CONFIG_SFC_MCDI_LOGGING
2447 static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
2448 			     char *buf)
2449 {
2450 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2451 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2452 
2453 	return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
2454 }
2455 static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
2456 			    const char *buf, size_t count)
2457 {
2458 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2459 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2460 	bool enable = count > 0 && *buf != '0';
2461 
2462 	mcdi->logging_enabled = enable;
2463 	return count;
2464 }
2465 static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
2466 #endif
2467 
2468 static int efx_register_netdev(struct efx_nic *efx)
2469 {
2470 	struct net_device *net_dev = efx->net_dev;
2471 	struct efx_channel *channel;
2472 	int rc;
2473 
2474 	net_dev->watchdog_timeo = 5 * HZ;
2475 	net_dev->irq = efx->pci_dev->irq;
2476 	net_dev->netdev_ops = &efx_netdev_ops;
2477 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2478 		net_dev->priv_flags |= IFF_UNICAST_FLT;
2479 	net_dev->ethtool_ops = &efx_ethtool_ops;
2480 	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2481 
2482 	rtnl_lock();
2483 
2484 	/* Enable resets to be scheduled and check whether any were
2485 	 * already requested.  If so, the NIC is probably hosed so we
2486 	 * abort.
2487 	 */
2488 	efx->state = STATE_READY;
2489 	smp_mb(); /* ensure we change state before checking reset_pending */
2490 	if (efx->reset_pending) {
2491 		netif_err(efx, probe, efx->net_dev,
2492 			  "aborting probe due to scheduled reset\n");
2493 		rc = -EIO;
2494 		goto fail_locked;
2495 	}
2496 
2497 	rc = dev_alloc_name(net_dev, net_dev->name);
2498 	if (rc < 0)
2499 		goto fail_locked;
2500 	efx_update_name(efx);
2501 
2502 	/* Always start with carrier off; PHY events will detect the link */
2503 	netif_carrier_off(net_dev);
2504 
2505 	rc = register_netdevice(net_dev);
2506 	if (rc)
2507 		goto fail_locked;
2508 
2509 	efx_for_each_channel(channel, efx) {
2510 		struct efx_tx_queue *tx_queue;
2511 		efx_for_each_channel_tx_queue(tx_queue, channel)
2512 			efx_init_tx_queue_core_txq(tx_queue);
2513 	}
2514 
2515 	efx_associate(efx);
2516 
2517 	rtnl_unlock();
2518 
2519 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2520 	if (rc) {
2521 		netif_err(efx, drv, efx->net_dev,
2522 			  "failed to init net dev attributes\n");
2523 		goto fail_registered;
2524 	}
2525 #ifdef CONFIG_SFC_MCDI_LOGGING
2526 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2527 	if (rc) {
2528 		netif_err(efx, drv, efx->net_dev,
2529 			  "failed to init net dev attributes\n");
2530 		goto fail_attr_mcdi_logging;
2531 	}
2532 #endif
2533 
2534 	return 0;
2535 
2536 #ifdef CONFIG_SFC_MCDI_LOGGING
2537 fail_attr_mcdi_logging:
2538 	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2539 #endif
2540 fail_registered:
2541 	rtnl_lock();
2542 	efx_dissociate(efx);
2543 	unregister_netdevice(net_dev);
2544 fail_locked:
2545 	efx->state = STATE_UNINIT;
2546 	rtnl_unlock();
2547 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2548 	return rc;
2549 }
2550 
2551 static void efx_unregister_netdev(struct efx_nic *efx)
2552 {
2553 	if (!efx->net_dev)
2554 		return;
2555 
2556 	BUG_ON(netdev_priv(efx->net_dev) != efx);
2557 
2558 	if (efx_dev_registered(efx)) {
2559 		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2560 #ifdef CONFIG_SFC_MCDI_LOGGING
2561 		device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2562 #endif
2563 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2564 		unregister_netdev(efx->net_dev);
2565 	}
2566 }
2567 
2568 /**************************************************************************
2569  *
2570  * Device reset and suspend
2571  *
2572  **************************************************************************/
2573 
2574 /* Tears down the entire software state and most of the hardware state
2575  * before reset.  */
2576 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2577 {
2578 	EFX_ASSERT_RESET_SERIALISED(efx);
2579 
2580 	if (method == RESET_TYPE_MCDI_TIMEOUT)
2581 		efx->type->prepare_flr(efx);
2582 
2583 	efx_stop_all(efx);
2584 	efx_disable_interrupts(efx);
2585 
2586 	mutex_lock(&efx->mac_lock);
2587 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2588 	    method != RESET_TYPE_DATAPATH)
2589 		efx->phy_op->fini(efx);
2590 	efx->type->fini(efx);
2591 }
2592 
2593 /* This function will always ensure that the locks acquired in
2594  * efx_reset_down() are released. A failure return code indicates
2595  * that we were unable to reinitialise the hardware, and the
2596  * driver should be disabled. If ok is false, then the rx and tx
2597  * engines are not restarted, pending a RESET_DISABLE. */
2598 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2599 {
2600 	int rc;
2601 
2602 	EFX_ASSERT_RESET_SERIALISED(efx);
2603 
2604 	if (method == RESET_TYPE_MCDI_TIMEOUT)
2605 		efx->type->finish_flr(efx);
2606 
2607 	/* Ensure that SRAM is initialised even if we're disabling the device */
2608 	rc = efx->type->init(efx);
2609 	if (rc) {
2610 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2611 		goto fail;
2612 	}
2613 
2614 	if (!ok)
2615 		goto fail;
2616 
2617 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2618 	    method != RESET_TYPE_DATAPATH) {
2619 		rc = efx->phy_op->init(efx);
2620 		if (rc)
2621 			goto fail;
2622 		rc = efx->phy_op->reconfigure(efx);
2623 		if (rc && rc != -EPERM)
2624 			netif_err(efx, drv, efx->net_dev,
2625 				  "could not restore PHY settings\n");
2626 	}
2627 
2628 	rc = efx_enable_interrupts(efx);
2629 	if (rc)
2630 		goto fail;
2631 
2632 #ifdef CONFIG_SFC_SRIOV
2633 	rc = efx->type->vswitching_restore(efx);
2634 	if (rc) /* not fatal; the PF will still work fine */
2635 		netif_warn(efx, probe, efx->net_dev,
2636 			   "failed to restore vswitching rc=%d;"
2637 			   " VFs may not function\n", rc);
2638 #endif
2639 
2640 	down_read(&efx->filter_sem);
2641 	efx_restore_filters(efx);
2642 	up_read(&efx->filter_sem);
2643 	if (efx->type->sriov_reset)
2644 		efx->type->sriov_reset(efx);
2645 
2646 	mutex_unlock(&efx->mac_lock);
2647 
2648 	efx_start_all(efx);
2649 
2650 	return 0;
2651 
2652 fail:
2653 	efx->port_initialized = false;
2654 
2655 	mutex_unlock(&efx->mac_lock);
2656 
2657 	return rc;
2658 }
2659 
2660 /* Reset the NIC using the specified method.  Note that the reset may
2661  * fail, in which case the card will be left in an unusable state.
2662  *
2663  * Caller must hold the rtnl_lock.
2664  */
2665 int efx_reset(struct efx_nic *efx, enum reset_type method)
2666 {
2667 	int rc, rc2;
2668 	bool disabled;
2669 
2670 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2671 		   RESET_TYPE(method));
2672 
2673 	efx_device_detach_sync(efx);
2674 	efx_reset_down(efx, method);
2675 
2676 	rc = efx->type->reset(efx, method);
2677 	if (rc) {
2678 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2679 		goto out;
2680 	}
2681 
2682 	/* Clear flags for the scopes we covered.  We assume the NIC and
2683 	 * driver are now quiescent so that there is no race here.
2684 	 */
2685 	if (method < RESET_TYPE_MAX_METHOD)
2686 		efx->reset_pending &= -(1 << (method + 1));
2687 	else /* it doesn't fit into the well-ordered scope hierarchy */
2688 		__clear_bit(method, &efx->reset_pending);
2689 
2690 	/* Reinitialise bus-mastering, which may have been turned off before
2691 	 * the reset was scheduled. This is still appropriate, even in the
2692 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2693 	 * can respond to requests. */
2694 	pci_set_master(efx->pci_dev);
2695 
2696 out:
2697 	/* Leave device stopped if necessary */
2698 	disabled = rc ||
2699 		method == RESET_TYPE_DISABLE ||
2700 		method == RESET_TYPE_RECOVER_OR_DISABLE;
2701 	rc2 = efx_reset_up(efx, method, !disabled);
2702 	if (rc2) {
2703 		disabled = true;
2704 		if (!rc)
2705 			rc = rc2;
2706 	}
2707 
2708 	if (disabled) {
2709 		dev_close(efx->net_dev);
2710 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2711 		efx->state = STATE_DISABLED;
2712 	} else {
2713 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2714 		netif_device_attach(efx->net_dev);
2715 	}
2716 	return rc;
2717 }
2718 
2719 /* Try recovery mechanisms.
2720  * For now only EEH is supported.
2721  * Returns 0 if the recovery mechanisms are unsuccessful.
2722  * Returns a non-zero value otherwise.
2723  */
2724 int efx_try_recovery(struct efx_nic *efx)
2725 {
2726 #ifdef CONFIG_EEH
2727 	/* A PCI error can occur and not be seen by EEH because nothing
2728 	 * happens on the PCI bus. In this case the driver may fail and
2729 	 * schedule a 'recover or reset', leading to this recovery handler.
2730 	 * Manually call the eeh failure check function.
2731 	 */
2732 	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2733 	if (eeh_dev_check_failure(eehdev)) {
2734 		/* The EEH mechanisms will handle the error and reset the
2735 		 * device if necessary.
2736 		 */
2737 		return 1;
2738 	}
2739 #endif
2740 	return 0;
2741 }
2742 
2743 static void efx_wait_for_bist_end(struct efx_nic *efx)
2744 {
2745 	int i;
2746 
2747 	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2748 		if (efx_mcdi_poll_reboot(efx))
2749 			goto out;
2750 		msleep(BIST_WAIT_DELAY_MS);
2751 	}
2752 
2753 	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2754 out:
2755 	/* Either way unset the BIST flag. If we found no reboot we probably
2756 	 * won't recover, but we should try.
2757 	 */
2758 	efx->mc_bist_for_other_fn = false;
2759 }
2760 
2761 /* The worker thread exists so that code that cannot sleep can
2762  * schedule a reset for later.
2763  */
2764 static void efx_reset_work(struct work_struct *data)
2765 {
2766 	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2767 	unsigned long pending;
2768 	enum reset_type method;
2769 
2770 	pending = ACCESS_ONCE(efx->reset_pending);
2771 	method = fls(pending) - 1;
2772 
2773 	if (method == RESET_TYPE_MC_BIST)
2774 		efx_wait_for_bist_end(efx);
2775 
2776 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2777 	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2778 	    efx_try_recovery(efx))
2779 		return;
2780 
2781 	if (!pending)
2782 		return;
2783 
2784 	rtnl_lock();
2785 
2786 	/* We checked the state in efx_schedule_reset() but it may
2787 	 * have changed by now.  Now that we have the RTNL lock,
2788 	 * it cannot change again.
2789 	 */
2790 	if (efx->state == STATE_READY)
2791 		(void)efx_reset(efx, method);
2792 
2793 	rtnl_unlock();
2794 }
2795 
2796 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2797 {
2798 	enum reset_type method;
2799 
2800 	if (efx->state == STATE_RECOVERY) {
2801 		netif_dbg(efx, drv, efx->net_dev,
2802 			  "recovering: skip scheduling %s reset\n",
2803 			  RESET_TYPE(type));
2804 		return;
2805 	}
2806 
2807 	switch (type) {
2808 	case RESET_TYPE_INVISIBLE:
2809 	case RESET_TYPE_ALL:
2810 	case RESET_TYPE_RECOVER_OR_ALL:
2811 	case RESET_TYPE_WORLD:
2812 	case RESET_TYPE_DISABLE:
2813 	case RESET_TYPE_RECOVER_OR_DISABLE:
2814 	case RESET_TYPE_DATAPATH:
2815 	case RESET_TYPE_MC_BIST:
2816 	case RESET_TYPE_MCDI_TIMEOUT:
2817 		method = type;
2818 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2819 			  RESET_TYPE(method));
2820 		break;
2821 	default:
2822 		method = efx->type->map_reset_reason(type);
2823 		netif_dbg(efx, drv, efx->net_dev,
2824 			  "scheduling %s reset for %s\n",
2825 			  RESET_TYPE(method), RESET_TYPE(type));
2826 		break;
2827 	}
2828 
2829 	set_bit(method, &efx->reset_pending);
2830 	smp_mb(); /* ensure we change reset_pending before checking state */
2831 
2832 	/* If we're not READY then just leave the flags set as the cue
2833 	 * to abort probing or reschedule the reset later.
2834 	 */
2835 	if (ACCESS_ONCE(efx->state) != STATE_READY)
2836 		return;
2837 
2838 	/* efx_process_channel() will no longer read events once a
2839 	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2840 	efx_mcdi_mode_poll(efx);
2841 
2842 	queue_work(reset_workqueue, &efx->reset_work);
2843 }
2844 
2845 /**************************************************************************
2846  *
2847  * List of NICs we support
2848  *
2849  **************************************************************************/
2850 
2851 /* PCI device ID table */
2852 static const struct pci_device_id efx_pci_table[] = {
2853 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2854 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2855 	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2856 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2857 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2858 	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2859 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2860 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2861 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2862 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2863 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2864 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2865 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
2866 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2867 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
2868 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2869 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
2870 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2871 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
2872 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2873 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
2874 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2875 	{0}			/* end of list */
2876 };
2877 
2878 /**************************************************************************
2879  *
2880  * Dummy PHY/MAC operations
2881  *
2882  * Can be used for some unimplemented operations
2883  * Needed so all function pointers are valid and do not have to be tested
2884  * before use
2885  *
2886  **************************************************************************/
2887 int efx_port_dummy_op_int(struct efx_nic *efx)
2888 {
2889 	return 0;
2890 }
2891 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2892 
2893 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2894 {
2895 	return false;
2896 }
2897 
2898 static const struct efx_phy_operations efx_dummy_phy_operations = {
2899 	.init		 = efx_port_dummy_op_int,
2900 	.reconfigure	 = efx_port_dummy_op_int,
2901 	.poll		 = efx_port_dummy_op_poll,
2902 	.fini		 = efx_port_dummy_op_void,
2903 };
2904 
2905 /**************************************************************************
2906  *
2907  * Data housekeeping
2908  *
2909  **************************************************************************/
2910 
2911 /* This zeroes out and then fills in the invariants in a struct
2912  * efx_nic (including all sub-structures).
2913  */
2914 static int efx_init_struct(struct efx_nic *efx,
2915 			   struct pci_dev *pci_dev, struct net_device *net_dev)
2916 {
2917 	int i;
2918 
2919 	/* Initialise common structures */
2920 	INIT_LIST_HEAD(&efx->node);
2921 	INIT_LIST_HEAD(&efx->secondary_list);
2922 	spin_lock_init(&efx->biu_lock);
2923 #ifdef CONFIG_SFC_MTD
2924 	INIT_LIST_HEAD(&efx->mtd_list);
2925 #endif
2926 	INIT_WORK(&efx->reset_work, efx_reset_work);
2927 	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2928 	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2929 	efx->pci_dev = pci_dev;
2930 	efx->msg_enable = debug;
2931 	efx->state = STATE_UNINIT;
2932 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2933 
2934 	efx->net_dev = net_dev;
2935 	efx->rx_prefix_size = efx->type->rx_prefix_size;
2936 	efx->rx_ip_align =
2937 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2938 	efx->rx_packet_hash_offset =
2939 		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2940 	efx->rx_packet_ts_offset =
2941 		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2942 	spin_lock_init(&efx->stats_lock);
2943 	mutex_init(&efx->mac_lock);
2944 	efx->phy_op = &efx_dummy_phy_operations;
2945 	efx->mdio.dev = net_dev;
2946 	INIT_WORK(&efx->mac_work, efx_mac_work);
2947 	init_waitqueue_head(&efx->flush_wq);
2948 
2949 	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2950 		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2951 		if (!efx->channel[i])
2952 			goto fail;
2953 		efx->msi_context[i].efx = efx;
2954 		efx->msi_context[i].index = i;
2955 	}
2956 
2957 	/* Higher numbered interrupt modes are less capable! */
2958 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2959 				  interrupt_mode);
2960 
2961 	/* Would be good to use the net_dev name, but we're too early */
2962 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2963 		 pci_name(pci_dev));
2964 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2965 	if (!efx->workqueue)
2966 		goto fail;
2967 
2968 	return 0;
2969 
2970 fail:
2971 	efx_fini_struct(efx);
2972 	return -ENOMEM;
2973 }
2974 
2975 static void efx_fini_struct(struct efx_nic *efx)
2976 {
2977 	int i;
2978 
2979 	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2980 		kfree(efx->channel[i]);
2981 
2982 	kfree(efx->vpd_sn);
2983 
2984 	if (efx->workqueue) {
2985 		destroy_workqueue(efx->workqueue);
2986 		efx->workqueue = NULL;
2987 	}
2988 }
2989 
2990 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
2991 {
2992 	u64 n_rx_nodesc_trunc = 0;
2993 	struct efx_channel *channel;
2994 
2995 	efx_for_each_channel(channel, efx)
2996 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2997 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2998 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2999 }
3000 
3001 /**************************************************************************
3002  *
3003  * PCI interface
3004  *
3005  **************************************************************************/
3006 
3007 /* Main body of final NIC shutdown code
3008  * This is called only at module unload (or hotplug removal).
3009  */
3010 static void efx_pci_remove_main(struct efx_nic *efx)
3011 {
3012 	/* Flush reset_work. It can no longer be scheduled since we
3013 	 * are not READY.
3014 	 */
3015 	BUG_ON(efx->state == STATE_READY);
3016 	cancel_work_sync(&efx->reset_work);
3017 
3018 	efx_disable_interrupts(efx);
3019 	efx_nic_fini_interrupt(efx);
3020 	efx_fini_port(efx);
3021 	efx->type->fini(efx);
3022 	efx_fini_napi(efx);
3023 	efx_remove_all(efx);
3024 }
3025 
3026 /* Final NIC shutdown
3027  * This is called only at module unload (or hotplug removal).  A PF can call
3028  * this on its VFs to ensure they are unbound first.
3029  */
3030 static void efx_pci_remove(struct pci_dev *pci_dev)
3031 {
3032 	struct efx_nic *efx;
3033 
3034 	efx = pci_get_drvdata(pci_dev);
3035 	if (!efx)
3036 		return;
3037 
3038 	/* Mark the NIC as fini, then stop the interface */
3039 	rtnl_lock();
3040 	efx_dissociate(efx);
3041 	dev_close(efx->net_dev);
3042 	efx_disable_interrupts(efx);
3043 	efx->state = STATE_UNINIT;
3044 	rtnl_unlock();
3045 
3046 	if (efx->type->sriov_fini)
3047 		efx->type->sriov_fini(efx);
3048 
3049 	efx_unregister_netdev(efx);
3050 
3051 	efx_mtd_remove(efx);
3052 
3053 	efx_pci_remove_main(efx);
3054 
3055 	efx_fini_io(efx);
3056 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
3057 
3058 	efx_fini_struct(efx);
3059 	free_netdev(efx->net_dev);
3060 
3061 	pci_disable_pcie_error_reporting(pci_dev);
3062 };
3063 
3064 /* NIC VPD information
3065  * Called during probe to display the part number of the
3066  * installed NIC.  VPD is potentially very large but this should
3067  * always appear within the first 512 bytes.
3068  */
3069 #define SFC_VPD_LEN 512
3070 static void efx_probe_vpd_strings(struct efx_nic *efx)
3071 {
3072 	struct pci_dev *dev = efx->pci_dev;
3073 	char vpd_data[SFC_VPD_LEN];
3074 	ssize_t vpd_size;
3075 	int ro_start, ro_size, i, j;
3076 
3077 	/* Get the vpd data from the device */
3078 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
3079 	if (vpd_size <= 0) {
3080 		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
3081 		return;
3082 	}
3083 
3084 	/* Get the Read only section */
3085 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
3086 	if (ro_start < 0) {
3087 		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
3088 		return;
3089 	}
3090 
3091 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
3092 	j = ro_size;
3093 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3094 	if (i + j > vpd_size)
3095 		j = vpd_size - i;
3096 
3097 	/* Get the Part number */
3098 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
3099 	if (i < 0) {
3100 		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
3101 		return;
3102 	}
3103 
3104 	j = pci_vpd_info_field_size(&vpd_data[i]);
3105 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
3106 	if (i + j > vpd_size) {
3107 		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
3108 		return;
3109 	}
3110 
3111 	netif_info(efx, drv, efx->net_dev,
3112 		   "Part Number : %.*s\n", j, &vpd_data[i]);
3113 
3114 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3115 	j = ro_size;
3116 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
3117 	if (i < 0) {
3118 		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
3119 		return;
3120 	}
3121 
3122 	j = pci_vpd_info_field_size(&vpd_data[i]);
3123 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
3124 	if (i + j > vpd_size) {
3125 		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
3126 		return;
3127 	}
3128 
3129 	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
3130 	if (!efx->vpd_sn)
3131 		return;
3132 
3133 	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3134 }
3135 
3136 
3137 /* Main body of NIC initialisation
3138  * This is called at module load (or hotplug insertion, theoretically).
3139  */
3140 static int efx_pci_probe_main(struct efx_nic *efx)
3141 {
3142 	int rc;
3143 
3144 	/* Do start-of-day initialisation */
3145 	rc = efx_probe_all(efx);
3146 	if (rc)
3147 		goto fail1;
3148 
3149 	efx_init_napi(efx);
3150 
3151 	rc = efx->type->init(efx);
3152 	if (rc) {
3153 		netif_err(efx, probe, efx->net_dev,
3154 			  "failed to initialise NIC\n");
3155 		goto fail3;
3156 	}
3157 
3158 	rc = efx_init_port(efx);
3159 	if (rc) {
3160 		netif_err(efx, probe, efx->net_dev,
3161 			  "failed to initialise port\n");
3162 		goto fail4;
3163 	}
3164 
3165 	rc = efx_nic_init_interrupt(efx);
3166 	if (rc)
3167 		goto fail5;
3168 	rc = efx_enable_interrupts(efx);
3169 	if (rc)
3170 		goto fail6;
3171 
3172 	return 0;
3173 
3174  fail6:
3175 	efx_nic_fini_interrupt(efx);
3176  fail5:
3177 	efx_fini_port(efx);
3178  fail4:
3179 	efx->type->fini(efx);
3180  fail3:
3181 	efx_fini_napi(efx);
3182 	efx_remove_all(efx);
3183  fail1:
3184 	return rc;
3185 }
3186 
3187 /* NIC initialisation
3188  *
3189  * This is called at module load (or hotplug insertion,
3190  * theoretically).  It sets up PCI mappings, resets the NIC,
3191  * sets up and registers the network devices with the kernel and hooks
3192  * the interrupt service routine.  It does not prepare the device for
3193  * transmission; this is left to the first time one of the network
3194  * interfaces is brought up (i.e. efx_net_open).
3195  */
3196 static int efx_pci_probe(struct pci_dev *pci_dev,
3197 			 const struct pci_device_id *entry)
3198 {
3199 	struct net_device *net_dev;
3200 	struct efx_nic *efx;
3201 	int rc;
3202 
3203 	/* Allocate and initialise a struct net_device and struct efx_nic */
3204 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
3205 				     EFX_MAX_RX_QUEUES);
3206 	if (!net_dev)
3207 		return -ENOMEM;
3208 	efx = netdev_priv(net_dev);
3209 	efx->type = (const struct efx_nic_type *) entry->driver_data;
3210 	efx->fixed_features |= NETIF_F_HIGHDMA;
3211 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
3212 			      NETIF_F_TSO | NETIF_F_RXCSUM);
3213 	if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
3214 		net_dev->features |= NETIF_F_TSO6;
3215 	/* Mask for features that also apply to VLAN devices */
3216 	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
3217 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
3218 				   NETIF_F_RXCSUM);
3219 
3220 	net_dev->hw_features = net_dev->features & ~efx->fixed_features;
3221 
3222 	/* Disable VLAN filtering by default.  It may be enforced if
3223 	 * the feature is fixed (i.e. VLAN filters are required to
3224 	 * receive VLAN tagged packets due to vPort restrictions).
3225 	 */
3226 	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3227 	net_dev->features |= efx->fixed_features;
3228 
3229 	pci_set_drvdata(pci_dev, efx);
3230 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3231 	rc = efx_init_struct(efx, pci_dev, net_dev);
3232 	if (rc)
3233 		goto fail1;
3234 
3235 	netif_info(efx, probe, efx->net_dev,
3236 		   "Solarflare NIC detected\n");
3237 
3238 	if (!efx->type->is_vf)
3239 		efx_probe_vpd_strings(efx);
3240 
3241 	/* Set up basic I/O (BAR mappings etc) */
3242 	rc = efx_init_io(efx);
3243 	if (rc)
3244 		goto fail2;
3245 
3246 	rc = efx_pci_probe_main(efx);
3247 	if (rc)
3248 		goto fail3;
3249 
3250 	rc = efx_register_netdev(efx);
3251 	if (rc)
3252 		goto fail4;
3253 
3254 	if (efx->type->sriov_init) {
3255 		rc = efx->type->sriov_init(efx);
3256 		if (rc)
3257 			netif_err(efx, probe, efx->net_dev,
3258 				  "SR-IOV can't be enabled rc %d\n", rc);
3259 	}
3260 
3261 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3262 
3263 	/* Try to create MTDs, but allow this to fail */
3264 	rtnl_lock();
3265 	rc = efx_mtd_probe(efx);
3266 	rtnl_unlock();
3267 	if (rc && rc != -EPERM)
3268 		netif_warn(efx, probe, efx->net_dev,
3269 			   "failed to create MTDs (%d)\n", rc);
3270 
3271 	rc = pci_enable_pcie_error_reporting(pci_dev);
3272 	if (rc && rc != -EINVAL)
3273 		netif_notice(efx, probe, efx->net_dev,
3274 			     "PCIE error reporting unavailable (%d).\n",
3275 			     rc);
3276 
3277 	return 0;
3278 
3279  fail4:
3280 	efx_pci_remove_main(efx);
3281  fail3:
3282 	efx_fini_io(efx);
3283  fail2:
3284 	efx_fini_struct(efx);
3285  fail1:
3286 	WARN_ON(rc > 0);
3287 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3288 	free_netdev(net_dev);
3289 	return rc;
3290 }
3291 
3292 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
3293  * enabled on success
3294  */
3295 #ifdef CONFIG_SFC_SRIOV
3296 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
3297 {
3298 	int rc;
3299 	struct efx_nic *efx = pci_get_drvdata(dev);
3300 
3301 	if (efx->type->sriov_configure) {
3302 		rc = efx->type->sriov_configure(efx, num_vfs);
3303 		if (rc)
3304 			return rc;
3305 		else
3306 			return num_vfs;
3307 	} else
3308 		return -EOPNOTSUPP;
3309 }
3310 #endif
3311 
3312 static int efx_pm_freeze(struct device *dev)
3313 {
3314 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3315 
3316 	rtnl_lock();
3317 
3318 	if (efx->state != STATE_DISABLED) {
3319 		efx->state = STATE_UNINIT;
3320 
3321 		efx_device_detach_sync(efx);
3322 
3323 		efx_stop_all(efx);
3324 		efx_disable_interrupts(efx);
3325 	}
3326 
3327 	rtnl_unlock();
3328 
3329 	return 0;
3330 }
3331 
3332 static int efx_pm_thaw(struct device *dev)
3333 {
3334 	int rc;
3335 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3336 
3337 	rtnl_lock();
3338 
3339 	if (efx->state != STATE_DISABLED) {
3340 		rc = efx_enable_interrupts(efx);
3341 		if (rc)
3342 			goto fail;
3343 
3344 		mutex_lock(&efx->mac_lock);
3345 		efx->phy_op->reconfigure(efx);
3346 		mutex_unlock(&efx->mac_lock);
3347 
3348 		efx_start_all(efx);
3349 
3350 		netif_device_attach(efx->net_dev);
3351 
3352 		efx->state = STATE_READY;
3353 
3354 		efx->type->resume_wol(efx);
3355 	}
3356 
3357 	rtnl_unlock();
3358 
3359 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3360 	queue_work(reset_workqueue, &efx->reset_work);
3361 
3362 	return 0;
3363 
3364 fail:
3365 	rtnl_unlock();
3366 
3367 	return rc;
3368 }
3369 
3370 static int efx_pm_poweroff(struct device *dev)
3371 {
3372 	struct pci_dev *pci_dev = to_pci_dev(dev);
3373 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3374 
3375 	efx->type->fini(efx);
3376 
3377 	efx->reset_pending = 0;
3378 
3379 	pci_save_state(pci_dev);
3380 	return pci_set_power_state(pci_dev, PCI_D3hot);
3381 }
3382 
3383 /* Used for both resume and restore */
3384 static int efx_pm_resume(struct device *dev)
3385 {
3386 	struct pci_dev *pci_dev = to_pci_dev(dev);
3387 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3388 	int rc;
3389 
3390 	rc = pci_set_power_state(pci_dev, PCI_D0);
3391 	if (rc)
3392 		return rc;
3393 	pci_restore_state(pci_dev);
3394 	rc = pci_enable_device(pci_dev);
3395 	if (rc)
3396 		return rc;
3397 	pci_set_master(efx->pci_dev);
3398 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3399 	if (rc)
3400 		return rc;
3401 	rc = efx->type->init(efx);
3402 	if (rc)
3403 		return rc;
3404 	rc = efx_pm_thaw(dev);
3405 	return rc;
3406 }
3407 
3408 static int efx_pm_suspend(struct device *dev)
3409 {
3410 	int rc;
3411 
3412 	efx_pm_freeze(dev);
3413 	rc = efx_pm_poweroff(dev);
3414 	if (rc)
3415 		efx_pm_resume(dev);
3416 	return rc;
3417 }
3418 
3419 static const struct dev_pm_ops efx_pm_ops = {
3420 	.suspend	= efx_pm_suspend,
3421 	.resume		= efx_pm_resume,
3422 	.freeze		= efx_pm_freeze,
3423 	.thaw		= efx_pm_thaw,
3424 	.poweroff	= efx_pm_poweroff,
3425 	.restore	= efx_pm_resume,
3426 };
3427 
3428 /* A PCI error affecting this device was detected.
3429  * At this point MMIO and DMA may be disabled.
3430  * Stop the software path and request a slot reset.
3431  */
3432 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3433 					      enum pci_channel_state state)
3434 {
3435 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3436 	struct efx_nic *efx = pci_get_drvdata(pdev);
3437 
3438 	if (state == pci_channel_io_perm_failure)
3439 		return PCI_ERS_RESULT_DISCONNECT;
3440 
3441 	rtnl_lock();
3442 
3443 	if (efx->state != STATE_DISABLED) {
3444 		efx->state = STATE_RECOVERY;
3445 		efx->reset_pending = 0;
3446 
3447 		efx_device_detach_sync(efx);
3448 
3449 		efx_stop_all(efx);
3450 		efx_disable_interrupts(efx);
3451 
3452 		status = PCI_ERS_RESULT_NEED_RESET;
3453 	} else {
3454 		/* If the interface is disabled we don't want to do anything
3455 		 * with it.
3456 		 */
3457 		status = PCI_ERS_RESULT_RECOVERED;
3458 	}
3459 
3460 	rtnl_unlock();
3461 
3462 	pci_disable_device(pdev);
3463 
3464 	return status;
3465 }
3466 
3467 /* Fake a successful reset, which will be performed later in efx_io_resume. */
3468 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3469 {
3470 	struct efx_nic *efx = pci_get_drvdata(pdev);
3471 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3472 	int rc;
3473 
3474 	if (pci_enable_device(pdev)) {
3475 		netif_err(efx, hw, efx->net_dev,
3476 			  "Cannot re-enable PCI device after reset.\n");
3477 		status =  PCI_ERS_RESULT_DISCONNECT;
3478 	}
3479 
3480 	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3481 	if (rc) {
3482 		netif_err(efx, hw, efx->net_dev,
3483 		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3484 		/* Non-fatal error. Continue. */
3485 	}
3486 
3487 	return status;
3488 }
3489 
3490 /* Perform the actual reset and resume I/O operations. */
3491 static void efx_io_resume(struct pci_dev *pdev)
3492 {
3493 	struct efx_nic *efx = pci_get_drvdata(pdev);
3494 	int rc;
3495 
3496 	rtnl_lock();
3497 
3498 	if (efx->state == STATE_DISABLED)
3499 		goto out;
3500 
3501 	rc = efx_reset(efx, RESET_TYPE_ALL);
3502 	if (rc) {
3503 		netif_err(efx, hw, efx->net_dev,
3504 			  "efx_reset failed after PCI error (%d)\n", rc);
3505 	} else {
3506 		efx->state = STATE_READY;
3507 		netif_dbg(efx, hw, efx->net_dev,
3508 			  "Done resetting and resuming IO after PCI error.\n");
3509 	}
3510 
3511 out:
3512 	rtnl_unlock();
3513 }
3514 
3515 /* For simplicity and reliability, we always require a slot reset and try to
3516  * reset the hardware when a pci error affecting the device is detected.
3517  * We leave both the link_reset and mmio_enabled callback unimplemented:
3518  * with our request for slot reset the mmio_enabled callback will never be
3519  * called, and the link_reset callback is not used by AER or EEH mechanisms.
3520  */
3521 static const struct pci_error_handlers efx_err_handlers = {
3522 	.error_detected = efx_io_error_detected,
3523 	.slot_reset	= efx_io_slot_reset,
3524 	.resume		= efx_io_resume,
3525 };
3526 
3527 static struct pci_driver efx_pci_driver = {
3528 	.name		= KBUILD_MODNAME,
3529 	.id_table	= efx_pci_table,
3530 	.probe		= efx_pci_probe,
3531 	.remove		= efx_pci_remove,
3532 	.driver.pm	= &efx_pm_ops,
3533 	.err_handler	= &efx_err_handlers,
3534 #ifdef CONFIG_SFC_SRIOV
3535 	.sriov_configure = efx_pci_sriov_configure,
3536 #endif
3537 };
3538 
3539 /**************************************************************************
3540  *
3541  * Kernel module interface
3542  *
3543  *************************************************************************/
3544 
3545 module_param(interrupt_mode, uint, 0444);
3546 MODULE_PARM_DESC(interrupt_mode,
3547 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3548 
3549 static int __init efx_init_module(void)
3550 {
3551 	int rc;
3552 
3553 	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3554 
3555 	rc = register_netdevice_notifier(&efx_netdev_notifier);
3556 	if (rc)
3557 		goto err_notifier;
3558 
3559 #ifdef CONFIG_SFC_SRIOV
3560 	rc = efx_init_sriov();
3561 	if (rc)
3562 		goto err_sriov;
3563 #endif
3564 
3565 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3566 	if (!reset_workqueue) {
3567 		rc = -ENOMEM;
3568 		goto err_reset;
3569 	}
3570 
3571 	rc = pci_register_driver(&efx_pci_driver);
3572 	if (rc < 0)
3573 		goto err_pci;
3574 
3575 	return 0;
3576 
3577  err_pci:
3578 	destroy_workqueue(reset_workqueue);
3579  err_reset:
3580 #ifdef CONFIG_SFC_SRIOV
3581 	efx_fini_sriov();
3582  err_sriov:
3583 #endif
3584 	unregister_netdevice_notifier(&efx_netdev_notifier);
3585  err_notifier:
3586 	return rc;
3587 }
3588 
3589 static void __exit efx_exit_module(void)
3590 {
3591 	printk(KERN_INFO "Solarflare NET driver unloading\n");
3592 
3593 	pci_unregister_driver(&efx_pci_driver);
3594 	destroy_workqueue(reset_workqueue);
3595 #ifdef CONFIG_SFC_SRIOV
3596 	efx_fini_sriov();
3597 #endif
3598 	unregister_netdevice_notifier(&efx_netdev_notifier);
3599 
3600 }
3601 
3602 module_init(efx_init_module);
3603 module_exit(efx_exit_module);
3604 
3605 MODULE_AUTHOR("Solarflare Communications and "
3606 	      "Michael Brown <mbrown@fensystems.co.uk>");
3607 MODULE_DESCRIPTION("Solarflare network driver");
3608 MODULE_LICENSE("GPL");
3609 MODULE_DEVICE_TABLE(pci, efx_pci_table);
3610