xref: /openbmc/linux/drivers/net/ethernet/sfc/efx.c (revision f294c1f7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/filter.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/delay.h>
14 #include <linux/notifier.h>
15 #include <linux/ip.h>
16 #include <linux/tcp.h>
17 #include <linux/in.h>
18 #include <linux/ethtool.h>
19 #include <linux/topology.h>
20 #include <linux/gfp.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include <net/gre.h>
24 #include <net/udp_tunnel.h>
25 #include "efx.h"
26 #include "efx_common.h"
27 #include "efx_channels.h"
28 #include "ef100.h"
29 #include "rx_common.h"
30 #include "tx_common.h"
31 #include "nic.h"
32 #include "io.h"
33 #include "selftest.h"
34 #include "sriov.h"
35 #include "efx_devlink.h"
36 
37 #include "mcdi_port_common.h"
38 #include "mcdi_pcol.h"
39 #include "workarounds.h"
40 
41 /**************************************************************************
42  *
43  * Configurable values
44  *
45  *************************************************************************/
46 
47 module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
48 MODULE_PARM_DESC(interrupt_mode,
49 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
50 
51 module_param(rss_cpus, uint, 0444);
52 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
53 
54 /*
55  * Use separate channels for TX and RX events
56  *
57  * Set this to 1 to use separate channels for TX and RX. It allows us
58  * to control interrupt affinity separately for TX and RX.
59  *
60  * This is only used in MSI-X interrupt mode
61  */
62 bool efx_separate_tx_channels;
63 module_param(efx_separate_tx_channels, bool, 0444);
64 MODULE_PARM_DESC(efx_separate_tx_channels,
65 		 "Use separate channels for TX and RX");
66 
67 /* Initial interrupt moderation settings.  They can be modified after
68  * module load with ethtool.
69  *
70  * The default for RX should strike a balance between increasing the
71  * round-trip latency and reducing overhead.
72  */
73 static unsigned int rx_irq_mod_usec = 60;
74 
75 /* Initial interrupt moderation settings.  They can be modified after
76  * module load with ethtool.
77  *
78  * This default is chosen to ensure that a 10G link does not go idle
79  * while a TX queue is stopped after it has become full.  A queue is
80  * restarted when it drops below half full.  The time this takes (assuming
81  * worst case 3 descriptors per packet and 1024 descriptors) is
82  *   512 / 3 * 1.2 = 205 usec.
83  */
84 static unsigned int tx_irq_mod_usec = 150;
85 
86 static bool phy_flash_cfg;
87 module_param(phy_flash_cfg, bool, 0644);
88 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
89 
90 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
91 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
92 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
93 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
94 module_param(debug, uint, 0);
95 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
96 
97 /**************************************************************************
98  *
99  * Utility functions and prototypes
100  *
101  *************************************************************************/
102 
103 static void efx_remove_port(struct efx_nic *efx);
104 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
105 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
106 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
107 			u32 flags);
108 
109 /**************************************************************************
110  *
111  * Port handling
112  *
113  **************************************************************************/
114 
115 static void efx_fini_port(struct efx_nic *efx);
116 
efx_probe_port(struct efx_nic * efx)117 static int efx_probe_port(struct efx_nic *efx)
118 {
119 	int rc;
120 
121 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
122 
123 	if (phy_flash_cfg)
124 		efx->phy_mode = PHY_MODE_SPECIAL;
125 
126 	/* Connect up MAC/PHY operations table */
127 	rc = efx->type->probe_port(efx);
128 	if (rc)
129 		return rc;
130 
131 	/* Initialise MAC address to permanent address */
132 	eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
133 
134 	return 0;
135 }
136 
efx_init_port(struct efx_nic * efx)137 static int efx_init_port(struct efx_nic *efx)
138 {
139 	int rc;
140 
141 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
142 
143 	mutex_lock(&efx->mac_lock);
144 
145 	efx->port_initialized = true;
146 
147 	/* Ensure the PHY advertises the correct flow control settings */
148 	rc = efx_mcdi_port_reconfigure(efx);
149 	if (rc && rc != -EPERM)
150 		goto fail;
151 
152 	mutex_unlock(&efx->mac_lock);
153 	return 0;
154 
155 fail:
156 	mutex_unlock(&efx->mac_lock);
157 	return rc;
158 }
159 
efx_fini_port(struct efx_nic * efx)160 static void efx_fini_port(struct efx_nic *efx)
161 {
162 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
163 
164 	if (!efx->port_initialized)
165 		return;
166 
167 	efx->port_initialized = false;
168 
169 	efx->link_state.up = false;
170 	efx_link_status_changed(efx);
171 }
172 
efx_remove_port(struct efx_nic * efx)173 static void efx_remove_port(struct efx_nic *efx)
174 {
175 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
176 
177 	efx->type->remove_port(efx);
178 }
179 
180 /**************************************************************************
181  *
182  * NIC handling
183  *
184  **************************************************************************/
185 
186 static LIST_HEAD(efx_primary_list);
187 static LIST_HEAD(efx_unassociated_list);
188 
efx_same_controller(struct efx_nic * left,struct efx_nic * right)189 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
190 {
191 	return left->type == right->type &&
192 		left->vpd_sn && right->vpd_sn &&
193 		!strcmp(left->vpd_sn, right->vpd_sn);
194 }
195 
efx_associate(struct efx_nic * efx)196 static void efx_associate(struct efx_nic *efx)
197 {
198 	struct efx_nic *other, *next;
199 
200 	if (efx->primary == efx) {
201 		/* Adding primary function; look for secondaries */
202 
203 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
204 		list_add_tail(&efx->node, &efx_primary_list);
205 
206 		list_for_each_entry_safe(other, next, &efx_unassociated_list,
207 					 node) {
208 			if (efx_same_controller(efx, other)) {
209 				list_del(&other->node);
210 				netif_dbg(other, probe, other->net_dev,
211 					  "moving to secondary list of %s %s\n",
212 					  pci_name(efx->pci_dev),
213 					  efx->net_dev->name);
214 				list_add_tail(&other->node,
215 					      &efx->secondary_list);
216 				other->primary = efx;
217 			}
218 		}
219 	} else {
220 		/* Adding secondary function; look for primary */
221 
222 		list_for_each_entry(other, &efx_primary_list, node) {
223 			if (efx_same_controller(efx, other)) {
224 				netif_dbg(efx, probe, efx->net_dev,
225 					  "adding to secondary list of %s %s\n",
226 					  pci_name(other->pci_dev),
227 					  other->net_dev->name);
228 				list_add_tail(&efx->node,
229 					      &other->secondary_list);
230 				efx->primary = other;
231 				return;
232 			}
233 		}
234 
235 		netif_dbg(efx, probe, efx->net_dev,
236 			  "adding to unassociated list\n");
237 		list_add_tail(&efx->node, &efx_unassociated_list);
238 	}
239 }
240 
efx_dissociate(struct efx_nic * efx)241 static void efx_dissociate(struct efx_nic *efx)
242 {
243 	struct efx_nic *other, *next;
244 
245 	list_del(&efx->node);
246 	efx->primary = NULL;
247 
248 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
249 		list_del(&other->node);
250 		netif_dbg(other, probe, other->net_dev,
251 			  "moving to unassociated list\n");
252 		list_add_tail(&other->node, &efx_unassociated_list);
253 		other->primary = NULL;
254 	}
255 }
256 
efx_probe_nic(struct efx_nic * efx)257 static int efx_probe_nic(struct efx_nic *efx)
258 {
259 	int rc;
260 
261 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
262 
263 	/* Carry out hardware-type specific initialisation */
264 	rc = efx->type->probe(efx);
265 	if (rc)
266 		return rc;
267 
268 	do {
269 		if (!efx->max_channels || !efx->max_tx_channels) {
270 			netif_err(efx, drv, efx->net_dev,
271 				  "Insufficient resources to allocate"
272 				  " any channels\n");
273 			rc = -ENOSPC;
274 			goto fail1;
275 		}
276 
277 		/* Determine the number of channels and queues by trying
278 		 * to hook in MSI-X interrupts.
279 		 */
280 		rc = efx_probe_interrupts(efx);
281 		if (rc)
282 			goto fail1;
283 
284 		rc = efx_set_channels(efx);
285 		if (rc)
286 			goto fail1;
287 
288 		/* dimension_resources can fail with EAGAIN */
289 		rc = efx->type->dimension_resources(efx);
290 		if (rc != 0 && rc != -EAGAIN)
291 			goto fail2;
292 
293 		if (rc == -EAGAIN)
294 			/* try again with new max_channels */
295 			efx_remove_interrupts(efx);
296 
297 	} while (rc == -EAGAIN);
298 
299 	if (efx->n_channels > 1)
300 		netdev_rss_key_fill(efx->rss_context.rx_hash_key,
301 				    sizeof(efx->rss_context.rx_hash_key));
302 	efx_set_default_rx_indir_table(efx, &efx->rss_context);
303 
304 	/* Initialise the interrupt moderation settings */
305 	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
306 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
307 				true);
308 
309 	return 0;
310 
311 fail2:
312 	efx_remove_interrupts(efx);
313 fail1:
314 	efx->type->remove(efx);
315 	return rc;
316 }
317 
efx_remove_nic(struct efx_nic * efx)318 static void efx_remove_nic(struct efx_nic *efx)
319 {
320 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
321 
322 	efx_remove_interrupts(efx);
323 	efx->type->remove(efx);
324 }
325 
326 /**************************************************************************
327  *
328  * NIC startup/shutdown
329  *
330  *************************************************************************/
331 
efx_probe_all(struct efx_nic * efx)332 static int efx_probe_all(struct efx_nic *efx)
333 {
334 	int rc;
335 
336 	rc = efx_probe_nic(efx);
337 	if (rc) {
338 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
339 		goto fail1;
340 	}
341 
342 	rc = efx_probe_port(efx);
343 	if (rc) {
344 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
345 		goto fail2;
346 	}
347 
348 	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
349 	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
350 		rc = -EINVAL;
351 		goto fail3;
352 	}
353 
354 #ifdef CONFIG_SFC_SRIOV
355 	rc = efx->type->vswitching_probe(efx);
356 	if (rc) /* not fatal; the PF will still work fine */
357 		netif_warn(efx, probe, efx->net_dev,
358 			   "failed to setup vswitching rc=%d;"
359 			   " VFs may not function\n", rc);
360 #endif
361 
362 	rc = efx_probe_filters(efx);
363 	if (rc) {
364 		netif_err(efx, probe, efx->net_dev,
365 			  "failed to create filter tables\n");
366 		goto fail4;
367 	}
368 
369 	rc = efx_probe_channels(efx);
370 	if (rc)
371 		goto fail5;
372 
373 	efx->state = STATE_NET_DOWN;
374 
375 	return 0;
376 
377  fail5:
378 	efx_remove_filters(efx);
379  fail4:
380 #ifdef CONFIG_SFC_SRIOV
381 	efx->type->vswitching_remove(efx);
382 #endif
383  fail3:
384 	efx_remove_port(efx);
385  fail2:
386 	efx_remove_nic(efx);
387  fail1:
388 	return rc;
389 }
390 
efx_remove_all(struct efx_nic * efx)391 static void efx_remove_all(struct efx_nic *efx)
392 {
393 	rtnl_lock();
394 	efx_xdp_setup_prog(efx, NULL);
395 	rtnl_unlock();
396 
397 	efx_remove_channels(efx);
398 	efx_remove_filters(efx);
399 #ifdef CONFIG_SFC_SRIOV
400 	efx->type->vswitching_remove(efx);
401 #endif
402 	efx_remove_port(efx);
403 	efx_remove_nic(efx);
404 }
405 
406 /**************************************************************************
407  *
408  * Interrupt moderation
409  *
410  **************************************************************************/
efx_usecs_to_ticks(struct efx_nic * efx,unsigned int usecs)411 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
412 {
413 	if (usecs == 0)
414 		return 0;
415 	if (usecs * 1000 < efx->timer_quantum_ns)
416 		return 1; /* never round down to 0 */
417 	return usecs * 1000 / efx->timer_quantum_ns;
418 }
419 
efx_ticks_to_usecs(struct efx_nic * efx,unsigned int ticks)420 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
421 {
422 	/* We must round up when converting ticks to microseconds
423 	 * because we round down when converting the other way.
424 	 */
425 	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
426 }
427 
428 /* Set interrupt moderation parameters */
efx_init_irq_moderation(struct efx_nic * efx,unsigned int tx_usecs,unsigned int rx_usecs,bool rx_adaptive,bool rx_may_override_tx)429 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
430 			    unsigned int rx_usecs, bool rx_adaptive,
431 			    bool rx_may_override_tx)
432 {
433 	struct efx_channel *channel;
434 	unsigned int timer_max_us;
435 
436 	EFX_ASSERT_RESET_SERIALISED(efx);
437 
438 	timer_max_us = efx->timer_max_ns / 1000;
439 
440 	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
441 		return -EINVAL;
442 
443 	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
444 	    !rx_may_override_tx) {
445 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
446 			  "RX and TX IRQ moderation must be equal\n");
447 		return -EINVAL;
448 	}
449 
450 	efx->irq_rx_adaptive = rx_adaptive;
451 	efx->irq_rx_moderation_us = rx_usecs;
452 	efx_for_each_channel(channel, efx) {
453 		if (efx_channel_has_rx_queue(channel))
454 			channel->irq_moderation_us = rx_usecs;
455 		else if (efx_channel_has_tx_queues(channel))
456 			channel->irq_moderation_us = tx_usecs;
457 		else if (efx_channel_is_xdp_tx(channel))
458 			channel->irq_moderation_us = tx_usecs;
459 	}
460 
461 	return 0;
462 }
463 
efx_get_irq_moderation(struct efx_nic * efx,unsigned int * tx_usecs,unsigned int * rx_usecs,bool * rx_adaptive)464 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
465 			    unsigned int *rx_usecs, bool *rx_adaptive)
466 {
467 	*rx_adaptive = efx->irq_rx_adaptive;
468 	*rx_usecs = efx->irq_rx_moderation_us;
469 
470 	/* If channels are shared between RX and TX, so is IRQ
471 	 * moderation.  Otherwise, IRQ moderation is the same for all
472 	 * TX channels and is not adaptive.
473 	 */
474 	if (efx->tx_channel_offset == 0) {
475 		*tx_usecs = *rx_usecs;
476 	} else {
477 		struct efx_channel *tx_channel;
478 
479 		tx_channel = efx->channel[efx->tx_channel_offset];
480 		*tx_usecs = tx_channel->irq_moderation_us;
481 	}
482 }
483 
484 /**************************************************************************
485  *
486  * ioctls
487  *
488  *************************************************************************/
489 
490 /* Net device ioctl
491  * Context: process, rtnl_lock() held.
492  */
efx_ioctl(struct net_device * net_dev,struct ifreq * ifr,int cmd)493 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
494 {
495 	struct efx_nic *efx = efx_netdev_priv(net_dev);
496 	struct mii_ioctl_data *data = if_mii(ifr);
497 
498 	if (cmd == SIOCSHWTSTAMP)
499 		return efx_ptp_set_ts_config(efx, ifr);
500 	if (cmd == SIOCGHWTSTAMP)
501 		return efx_ptp_get_ts_config(efx, ifr);
502 
503 	/* Convert phy_id from older PRTAD/DEVAD format */
504 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
505 	    (data->phy_id & 0xfc00) == 0x0400)
506 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
507 
508 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
509 }
510 
511 /**************************************************************************
512  *
513  * Kernel net device interface
514  *
515  *************************************************************************/
516 
517 /* Context: process, rtnl_lock() held. */
efx_net_open(struct net_device * net_dev)518 int efx_net_open(struct net_device *net_dev)
519 {
520 	struct efx_nic *efx = efx_netdev_priv(net_dev);
521 	int rc;
522 
523 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
524 		  raw_smp_processor_id());
525 
526 	rc = efx_check_disabled(efx);
527 	if (rc)
528 		return rc;
529 	if (efx->phy_mode & PHY_MODE_SPECIAL)
530 		return -EBUSY;
531 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
532 		return -EIO;
533 
534 	/* Notify the kernel of the link state polled during driver load,
535 	 * before the monitor starts running */
536 	efx_link_status_changed(efx);
537 
538 	efx_start_all(efx);
539 	if (efx->state == STATE_DISABLED || efx->reset_pending)
540 		netif_device_detach(efx->net_dev);
541 	else
542 		efx->state = STATE_NET_UP;
543 
544 	return 0;
545 }
546 
547 /* Context: process, rtnl_lock() held.
548  * Note that the kernel will ignore our return code; this method
549  * should really be a void.
550  */
efx_net_stop(struct net_device * net_dev)551 int efx_net_stop(struct net_device *net_dev)
552 {
553 	struct efx_nic *efx = efx_netdev_priv(net_dev);
554 
555 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
556 		  raw_smp_processor_id());
557 
558 	/* Stop the device and flush all the channels */
559 	efx_stop_all(efx);
560 
561 	return 0;
562 }
563 
efx_vlan_rx_add_vid(struct net_device * net_dev,__be16 proto,u16 vid)564 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
565 {
566 	struct efx_nic *efx = efx_netdev_priv(net_dev);
567 
568 	if (efx->type->vlan_rx_add_vid)
569 		return efx->type->vlan_rx_add_vid(efx, proto, vid);
570 	else
571 		return -EOPNOTSUPP;
572 }
573 
efx_vlan_rx_kill_vid(struct net_device * net_dev,__be16 proto,u16 vid)574 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
575 {
576 	struct efx_nic *efx = efx_netdev_priv(net_dev);
577 
578 	if (efx->type->vlan_rx_kill_vid)
579 		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
580 	else
581 		return -EOPNOTSUPP;
582 }
583 
584 static const struct net_device_ops efx_netdev_ops = {
585 	.ndo_open		= efx_net_open,
586 	.ndo_stop		= efx_net_stop,
587 	.ndo_get_stats64	= efx_net_stats,
588 	.ndo_tx_timeout		= efx_watchdog,
589 	.ndo_start_xmit		= efx_hard_start_xmit,
590 	.ndo_validate_addr	= eth_validate_addr,
591 	.ndo_eth_ioctl		= efx_ioctl,
592 	.ndo_change_mtu		= efx_change_mtu,
593 	.ndo_set_mac_address	= efx_set_mac_address,
594 	.ndo_set_rx_mode	= efx_set_rx_mode,
595 	.ndo_set_features	= efx_set_features,
596 	.ndo_features_check	= efx_features_check,
597 	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
598 	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
599 #ifdef CONFIG_SFC_SRIOV
600 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
601 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
602 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
603 	.ndo_get_vf_config	= efx_sriov_get_vf_config,
604 	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
605 #endif
606 	.ndo_get_phys_port_id   = efx_get_phys_port_id,
607 	.ndo_get_phys_port_name	= efx_get_phys_port_name,
608 #ifdef CONFIG_RFS_ACCEL
609 	.ndo_rx_flow_steer	= efx_filter_rfs,
610 #endif
611 	.ndo_xdp_xmit		= efx_xdp_xmit,
612 	.ndo_bpf		= efx_xdp
613 };
614 
efx_xdp_setup_prog(struct efx_nic * efx,struct bpf_prog * prog)615 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
616 {
617 	struct bpf_prog *old_prog;
618 
619 	if (efx->xdp_rxq_info_failed) {
620 		netif_err(efx, drv, efx->net_dev,
621 			  "Unable to bind XDP program due to previous failure of rxq_info\n");
622 		return -EINVAL;
623 	}
624 
625 	if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
626 		netif_err(efx, drv, efx->net_dev,
627 			  "Unable to configure XDP with MTU of %d (max: %d)\n",
628 			  efx->net_dev->mtu, efx_xdp_max_mtu(efx));
629 		return -EINVAL;
630 	}
631 
632 	old_prog = rtnl_dereference(efx->xdp_prog);
633 	rcu_assign_pointer(efx->xdp_prog, prog);
634 	/* Release the reference that was originally passed by the caller. */
635 	if (old_prog)
636 		bpf_prog_put(old_prog);
637 
638 	return 0;
639 }
640 
641 /* Context: process, rtnl_lock() held. */
efx_xdp(struct net_device * dev,struct netdev_bpf * xdp)642 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
643 {
644 	struct efx_nic *efx = efx_netdev_priv(dev);
645 
646 	switch (xdp->command) {
647 	case XDP_SETUP_PROG:
648 		return efx_xdp_setup_prog(efx, xdp->prog);
649 	default:
650 		return -EINVAL;
651 	}
652 }
653 
efx_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** xdpfs,u32 flags)654 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
655 			u32 flags)
656 {
657 	struct efx_nic *efx = efx_netdev_priv(dev);
658 
659 	if (!netif_running(dev))
660 		return -EINVAL;
661 
662 	return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
663 }
664 
efx_update_name(struct efx_nic * efx)665 static void efx_update_name(struct efx_nic *efx)
666 {
667 	strcpy(efx->name, efx->net_dev->name);
668 	efx_mtd_rename(efx);
669 	efx_set_channel_names(efx);
670 }
671 
efx_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)672 static int efx_netdev_event(struct notifier_block *this,
673 			    unsigned long event, void *ptr)
674 {
675 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
676 
677 	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
678 	    event == NETDEV_CHANGENAME)
679 		efx_update_name(efx_netdev_priv(net_dev));
680 
681 	return NOTIFY_DONE;
682 }
683 
684 static struct notifier_block efx_netdev_notifier = {
685 	.notifier_call = efx_netdev_event,
686 };
687 
phy_type_show(struct device * dev,struct device_attribute * attr,char * buf)688 static ssize_t phy_type_show(struct device *dev,
689 			     struct device_attribute *attr, char *buf)
690 {
691 	struct efx_nic *efx = dev_get_drvdata(dev);
692 	return sprintf(buf, "%d\n", efx->phy_type);
693 }
694 static DEVICE_ATTR_RO(phy_type);
695 
efx_register_netdev(struct efx_nic * efx)696 static int efx_register_netdev(struct efx_nic *efx)
697 {
698 	struct net_device *net_dev = efx->net_dev;
699 	struct efx_channel *channel;
700 	int rc;
701 
702 	net_dev->watchdog_timeo = 5 * HZ;
703 	net_dev->irq = efx->pci_dev->irq;
704 	net_dev->netdev_ops = &efx_netdev_ops;
705 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
706 		net_dev->priv_flags |= IFF_UNICAST_FLT;
707 	net_dev->ethtool_ops = &efx_ethtool_ops;
708 	netif_set_tso_max_segs(net_dev, EFX_TSO_MAX_SEGS);
709 	net_dev->min_mtu = EFX_MIN_MTU;
710 	net_dev->max_mtu = EFX_MAX_MTU;
711 
712 	rtnl_lock();
713 
714 	/* Enable resets to be scheduled and check whether any were
715 	 * already requested.  If so, the NIC is probably hosed so we
716 	 * abort.
717 	 */
718 	if (efx->reset_pending) {
719 		pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n");
720 		rc = -EIO;
721 		goto fail_locked;
722 	}
723 
724 	rc = dev_alloc_name(net_dev, net_dev->name);
725 	if (rc < 0)
726 		goto fail_locked;
727 	efx_update_name(efx);
728 
729 	/* Always start with carrier off; PHY events will detect the link */
730 	netif_carrier_off(net_dev);
731 
732 	rc = register_netdevice(net_dev);
733 	if (rc)
734 		goto fail_locked;
735 
736 	efx_for_each_channel(channel, efx) {
737 		struct efx_tx_queue *tx_queue;
738 		efx_for_each_channel_tx_queue(tx_queue, channel)
739 			efx_init_tx_queue_core_txq(tx_queue);
740 	}
741 
742 	efx_associate(efx);
743 
744 	efx->state = STATE_NET_DOWN;
745 
746 	rtnl_unlock();
747 
748 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
749 	if (rc) {
750 		netif_err(efx, drv, efx->net_dev,
751 			  "failed to init net dev attributes\n");
752 		goto fail_registered;
753 	}
754 
755 	efx_init_mcdi_logging(efx);
756 
757 	return 0;
758 
759 fail_registered:
760 	rtnl_lock();
761 	efx_dissociate(efx);
762 	unregister_netdevice(net_dev);
763 fail_locked:
764 	efx->state = STATE_UNINIT;
765 	rtnl_unlock();
766 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
767 	return rc;
768 }
769 
efx_unregister_netdev(struct efx_nic * efx)770 static void efx_unregister_netdev(struct efx_nic *efx)
771 {
772 	if (!efx->net_dev)
773 		return;
774 
775 	if (WARN_ON(efx_netdev_priv(efx->net_dev) != efx))
776 		return;
777 
778 	if (efx_dev_registered(efx)) {
779 		strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
780 		efx_fini_mcdi_logging(efx);
781 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
782 		unregister_netdev(efx->net_dev);
783 	}
784 }
785 
786 /**************************************************************************
787  *
788  * List of NICs we support
789  *
790  **************************************************************************/
791 
792 /* PCI device ID table */
793 static const struct pci_device_id efx_pci_table[] = {
794 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
795 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
796 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
797 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
798 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
799 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
800 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
801 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
802 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
803 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
804 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
805 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
806 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03),  /* SFC9250 PF */
807 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
808 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03),  /* SFC9250 VF */
809 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
810 	{0}			/* end of list */
811 };
812 
813 /**************************************************************************
814  *
815  * Data housekeeping
816  *
817  **************************************************************************/
818 
efx_update_sw_stats(struct efx_nic * efx,u64 * stats)819 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
820 {
821 	u64 n_rx_nodesc_trunc = 0;
822 	struct efx_channel *channel;
823 
824 	efx_for_each_channel(channel, efx)
825 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
826 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
827 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
828 }
829 
830 /**************************************************************************
831  *
832  * PCI interface
833  *
834  **************************************************************************/
835 
836 /* Main body of final NIC shutdown code
837  * This is called only at module unload (or hotplug removal).
838  */
efx_pci_remove_main(struct efx_nic * efx)839 static void efx_pci_remove_main(struct efx_nic *efx)
840 {
841 	/* Flush reset_work. It can no longer be scheduled since we
842 	 * are not READY.
843 	 */
844 	WARN_ON(efx_net_active(efx->state));
845 	efx_flush_reset_workqueue(efx);
846 
847 	efx_disable_interrupts(efx);
848 	efx_clear_interrupt_affinity(efx);
849 	efx_nic_fini_interrupt(efx);
850 	efx_fini_port(efx);
851 	efx->type->fini(efx);
852 	efx_fini_napi(efx);
853 	efx_remove_all(efx);
854 }
855 
856 /* Final NIC shutdown
857  * This is called only at module unload (or hotplug removal).  A PF can call
858  * this on its VFs to ensure they are unbound first.
859  */
efx_pci_remove(struct pci_dev * pci_dev)860 static void efx_pci_remove(struct pci_dev *pci_dev)
861 {
862 	struct efx_probe_data *probe_data;
863 	struct efx_nic *efx;
864 
865 	efx = pci_get_drvdata(pci_dev);
866 	if (!efx)
867 		return;
868 
869 	/* Mark the NIC as fini, then stop the interface */
870 	rtnl_lock();
871 	efx_dissociate(efx);
872 	dev_close(efx->net_dev);
873 	efx_disable_interrupts(efx);
874 	efx->state = STATE_UNINIT;
875 	rtnl_unlock();
876 
877 	if (efx->type->sriov_fini)
878 		efx->type->sriov_fini(efx);
879 
880 	efx_fini_devlink_lock(efx);
881 	efx_unregister_netdev(efx);
882 
883 	efx_mtd_remove(efx);
884 
885 	efx_pci_remove_main(efx);
886 
887 	efx_fini_io(efx);
888 	pci_dbg(efx->pci_dev, "shutdown successful\n");
889 
890 	efx_fini_devlink_and_unlock(efx);
891 	efx_fini_struct(efx);
892 	free_netdev(efx->net_dev);
893 	probe_data = container_of(efx, struct efx_probe_data, efx);
894 	kfree(probe_data);
895 };
896 
897 /* NIC VPD information
898  * Called during probe to display the part number of the
899  * installed NIC.
900  */
efx_probe_vpd_strings(struct efx_nic * efx)901 static void efx_probe_vpd_strings(struct efx_nic *efx)
902 {
903 	struct pci_dev *dev = efx->pci_dev;
904 	unsigned int vpd_size, kw_len;
905 	u8 *vpd_data;
906 	int start;
907 
908 	vpd_data = pci_vpd_alloc(dev, &vpd_size);
909 	if (IS_ERR(vpd_data)) {
910 		pci_warn(dev, "Unable to read VPD\n");
911 		return;
912 	}
913 
914 	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
915 					     PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
916 	if (start < 0)
917 		pci_err(dev, "Part number not found or incomplete\n");
918 	else
919 		pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
920 
921 	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
922 					     PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
923 	if (start < 0)
924 		pci_err(dev, "Serial number not found or incomplete\n");
925 	else
926 		efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
927 
928 	kfree(vpd_data);
929 }
930 
931 
932 /* Main body of NIC initialisation
933  * This is called at module load (or hotplug insertion, theoretically).
934  */
efx_pci_probe_main(struct efx_nic * efx)935 static int efx_pci_probe_main(struct efx_nic *efx)
936 {
937 	int rc;
938 
939 	/* Do start-of-day initialisation */
940 	rc = efx_probe_all(efx);
941 	if (rc)
942 		goto fail1;
943 
944 	efx_init_napi(efx);
945 
946 	down_write(&efx->filter_sem);
947 	rc = efx->type->init(efx);
948 	up_write(&efx->filter_sem);
949 	if (rc) {
950 		pci_err(efx->pci_dev, "failed to initialise NIC\n");
951 		goto fail3;
952 	}
953 
954 	rc = efx_init_port(efx);
955 	if (rc) {
956 		netif_err(efx, probe, efx->net_dev,
957 			  "failed to initialise port\n");
958 		goto fail4;
959 	}
960 
961 	rc = efx_nic_init_interrupt(efx);
962 	if (rc)
963 		goto fail5;
964 
965 	efx_set_interrupt_affinity(efx);
966 	rc = efx_enable_interrupts(efx);
967 	if (rc)
968 		goto fail6;
969 
970 	return 0;
971 
972  fail6:
973 	efx_clear_interrupt_affinity(efx);
974 	efx_nic_fini_interrupt(efx);
975  fail5:
976 	efx_fini_port(efx);
977  fail4:
978 	efx->type->fini(efx);
979  fail3:
980 	efx_fini_napi(efx);
981 	efx_remove_all(efx);
982  fail1:
983 	return rc;
984 }
985 
efx_pci_probe_post_io(struct efx_nic * efx)986 static int efx_pci_probe_post_io(struct efx_nic *efx)
987 {
988 	struct net_device *net_dev = efx->net_dev;
989 	int rc = efx_pci_probe_main(efx);
990 
991 	if (rc)
992 		return rc;
993 
994 	if (efx->type->sriov_init) {
995 		rc = efx->type->sriov_init(efx);
996 		if (rc)
997 			pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n",
998 				rc);
999 	}
1000 
1001 	/* Determine netdevice features */
1002 	net_dev->features |= efx->type->offload_features;
1003 
1004 	/* Add TSO features */
1005 	if (efx->type->tso_versions && efx->type->tso_versions(efx))
1006 		net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1007 
1008 	/* Mask for features that also apply to VLAN devices */
1009 	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1010 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1011 				   NETIF_F_RXCSUM);
1012 
1013 	/* Determine user configurable features */
1014 	net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1015 
1016 	/* Disable receiving frames with bad FCS, by default. */
1017 	net_dev->features &= ~NETIF_F_RXALL;
1018 
1019 	/* Disable VLAN filtering by default.  It may be enforced if
1020 	 * the feature is fixed (i.e. VLAN filters are required to
1021 	 * receive VLAN tagged packets due to vPort restrictions).
1022 	 */
1023 	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1024 	net_dev->features |= efx->fixed_features;
1025 
1026 	net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
1027 				NETDEV_XDP_ACT_REDIRECT |
1028 				NETDEV_XDP_ACT_NDO_XMIT;
1029 
1030 	/* devlink creation, registration and lock */
1031 	rc = efx_probe_devlink_and_lock(efx);
1032 	if (rc)
1033 		pci_err(efx->pci_dev, "devlink registration failed");
1034 
1035 	rc = efx_register_netdev(efx);
1036 	efx_probe_devlink_unlock(efx);
1037 	if (!rc)
1038 		return 0;
1039 
1040 	efx_pci_remove_main(efx);
1041 	return rc;
1042 }
1043 
1044 /* NIC initialisation
1045  *
1046  * This is called at module load (or hotplug insertion,
1047  * theoretically).  It sets up PCI mappings, resets the NIC,
1048  * sets up and registers the network devices with the kernel and hooks
1049  * the interrupt service routine.  It does not prepare the device for
1050  * transmission; this is left to the first time one of the network
1051  * interfaces is brought up (i.e. efx_net_open).
1052  */
efx_pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * entry)1053 static int efx_pci_probe(struct pci_dev *pci_dev,
1054 			 const struct pci_device_id *entry)
1055 {
1056 	struct efx_probe_data *probe_data, **probe_ptr;
1057 	struct net_device *net_dev;
1058 	struct efx_nic *efx;
1059 	int rc;
1060 
1061 	/* Allocate probe data and struct efx_nic */
1062 	probe_data = kzalloc(sizeof(*probe_data), GFP_KERNEL);
1063 	if (!probe_data)
1064 		return -ENOMEM;
1065 	probe_data->pci_dev = pci_dev;
1066 	efx = &probe_data->efx;
1067 
1068 	/* Allocate and initialise a struct net_device */
1069 	net_dev = alloc_etherdev_mq(sizeof(probe_data), EFX_MAX_CORE_TX_QUEUES);
1070 	if (!net_dev) {
1071 		rc = -ENOMEM;
1072 		goto fail0;
1073 	}
1074 	probe_ptr = netdev_priv(net_dev);
1075 	*probe_ptr = probe_data;
1076 	efx->net_dev = net_dev;
1077 	efx->type = (const struct efx_nic_type *) entry->driver_data;
1078 	efx->fixed_features |= NETIF_F_HIGHDMA;
1079 
1080 	pci_set_drvdata(pci_dev, efx);
1081 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1082 	rc = efx_init_struct(efx, pci_dev);
1083 	if (rc)
1084 		goto fail1;
1085 	efx->mdio.dev = net_dev;
1086 
1087 	pci_info(pci_dev, "Solarflare NIC detected\n");
1088 
1089 	if (!efx->type->is_vf)
1090 		efx_probe_vpd_strings(efx);
1091 
1092 	/* Set up basic I/O (BAR mappings etc) */
1093 	rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1094 			 efx->type->mem_map_size(efx));
1095 	if (rc)
1096 		goto fail2;
1097 
1098 	rc = efx_pci_probe_post_io(efx);
1099 	if (rc) {
1100 		/* On failure, retry once immediately.
1101 		 * If we aborted probe due to a scheduled reset, dismiss it.
1102 		 */
1103 		efx->reset_pending = 0;
1104 		rc = efx_pci_probe_post_io(efx);
1105 		if (rc) {
1106 			/* On another failure, retry once more
1107 			 * after a 50-305ms delay.
1108 			 */
1109 			unsigned char r;
1110 
1111 			get_random_bytes(&r, 1);
1112 			msleep((unsigned int)r + 50);
1113 			efx->reset_pending = 0;
1114 			rc = efx_pci_probe_post_io(efx);
1115 		}
1116 	}
1117 	if (rc)
1118 		goto fail3;
1119 
1120 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1121 
1122 	/* Try to create MTDs, but allow this to fail */
1123 	rtnl_lock();
1124 	rc = efx_mtd_probe(efx);
1125 	rtnl_unlock();
1126 	if (rc && rc != -EPERM)
1127 		netif_warn(efx, probe, efx->net_dev,
1128 			   "failed to create MTDs (%d)\n", rc);
1129 
1130 	if (efx->type->udp_tnl_push_ports)
1131 		efx->type->udp_tnl_push_ports(efx);
1132 
1133 	return 0;
1134 
1135  fail3:
1136 	efx_fini_io(efx);
1137  fail2:
1138 	efx_fini_struct(efx);
1139  fail1:
1140 	WARN_ON(rc > 0);
1141 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1142 	free_netdev(net_dev);
1143  fail0:
1144 	kfree(probe_data);
1145 	return rc;
1146 }
1147 
1148 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
1149  * enabled on success
1150  */
1151 #ifdef CONFIG_SFC_SRIOV
efx_pci_sriov_configure(struct pci_dev * dev,int num_vfs)1152 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1153 {
1154 	int rc;
1155 	struct efx_nic *efx = pci_get_drvdata(dev);
1156 
1157 	if (efx->type->sriov_configure) {
1158 		rc = efx->type->sriov_configure(efx, num_vfs);
1159 		if (rc)
1160 			return rc;
1161 		else
1162 			return num_vfs;
1163 	} else
1164 		return -EOPNOTSUPP;
1165 }
1166 #endif
1167 
efx_pm_freeze(struct device * dev)1168 static int efx_pm_freeze(struct device *dev)
1169 {
1170 	struct efx_nic *efx = dev_get_drvdata(dev);
1171 
1172 	rtnl_lock();
1173 
1174 	if (efx_net_active(efx->state)) {
1175 		efx_device_detach_sync(efx);
1176 
1177 		efx_stop_all(efx);
1178 		efx_disable_interrupts(efx);
1179 
1180 		efx->state = efx_freeze(efx->state);
1181 	}
1182 
1183 	rtnl_unlock();
1184 
1185 	return 0;
1186 }
1187 
efx_pci_shutdown(struct pci_dev * pci_dev)1188 static void efx_pci_shutdown(struct pci_dev *pci_dev)
1189 {
1190 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1191 
1192 	if (!efx)
1193 		return;
1194 
1195 	efx_pm_freeze(&pci_dev->dev);
1196 	pci_disable_device(pci_dev);
1197 }
1198 
efx_pm_thaw(struct device * dev)1199 static int efx_pm_thaw(struct device *dev)
1200 {
1201 	int rc;
1202 	struct efx_nic *efx = dev_get_drvdata(dev);
1203 
1204 	rtnl_lock();
1205 
1206 	if (efx_frozen(efx->state)) {
1207 		rc = efx_enable_interrupts(efx);
1208 		if (rc)
1209 			goto fail;
1210 
1211 		mutex_lock(&efx->mac_lock);
1212 		efx_mcdi_port_reconfigure(efx);
1213 		mutex_unlock(&efx->mac_lock);
1214 
1215 		efx_start_all(efx);
1216 
1217 		efx_device_attach_if_not_resetting(efx);
1218 
1219 		efx->state = efx_thaw(efx->state);
1220 
1221 		efx->type->resume_wol(efx);
1222 	}
1223 
1224 	rtnl_unlock();
1225 
1226 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1227 	efx_queue_reset_work(efx);
1228 
1229 	return 0;
1230 
1231 fail:
1232 	rtnl_unlock();
1233 
1234 	return rc;
1235 }
1236 
efx_pm_poweroff(struct device * dev)1237 static int efx_pm_poweroff(struct device *dev)
1238 {
1239 	struct pci_dev *pci_dev = to_pci_dev(dev);
1240 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1241 
1242 	efx->type->fini(efx);
1243 
1244 	efx->reset_pending = 0;
1245 
1246 	pci_save_state(pci_dev);
1247 	return pci_set_power_state(pci_dev, PCI_D3hot);
1248 }
1249 
1250 /* Used for both resume and restore */
efx_pm_resume(struct device * dev)1251 static int efx_pm_resume(struct device *dev)
1252 {
1253 	struct pci_dev *pci_dev = to_pci_dev(dev);
1254 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1255 	int rc;
1256 
1257 	rc = pci_set_power_state(pci_dev, PCI_D0);
1258 	if (rc)
1259 		return rc;
1260 	pci_restore_state(pci_dev);
1261 	rc = pci_enable_device(pci_dev);
1262 	if (rc)
1263 		return rc;
1264 	pci_set_master(efx->pci_dev);
1265 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
1266 	if (rc)
1267 		return rc;
1268 	down_write(&efx->filter_sem);
1269 	rc = efx->type->init(efx);
1270 	up_write(&efx->filter_sem);
1271 	if (rc)
1272 		return rc;
1273 	rc = efx_pm_thaw(dev);
1274 	return rc;
1275 }
1276 
efx_pm_suspend(struct device * dev)1277 static int efx_pm_suspend(struct device *dev)
1278 {
1279 	int rc;
1280 
1281 	efx_pm_freeze(dev);
1282 	rc = efx_pm_poweroff(dev);
1283 	if (rc)
1284 		efx_pm_resume(dev);
1285 	return rc;
1286 }
1287 
1288 static const struct dev_pm_ops efx_pm_ops = {
1289 	.suspend	= efx_pm_suspend,
1290 	.resume		= efx_pm_resume,
1291 	.freeze		= efx_pm_freeze,
1292 	.thaw		= efx_pm_thaw,
1293 	.poweroff	= efx_pm_poweroff,
1294 	.restore	= efx_pm_resume,
1295 };
1296 
1297 static struct pci_driver efx_pci_driver = {
1298 	.name		= KBUILD_MODNAME,
1299 	.id_table	= efx_pci_table,
1300 	.probe		= efx_pci_probe,
1301 	.remove		= efx_pci_remove,
1302 	.driver.pm	= &efx_pm_ops,
1303 	.shutdown	= efx_pci_shutdown,
1304 	.err_handler	= &efx_err_handlers,
1305 #ifdef CONFIG_SFC_SRIOV
1306 	.sriov_configure = efx_pci_sriov_configure,
1307 #endif
1308 };
1309 
1310 /**************************************************************************
1311  *
1312  * Kernel module interface
1313  *
1314  *************************************************************************/
1315 
efx_init_module(void)1316 static int __init efx_init_module(void)
1317 {
1318 	int rc;
1319 
1320 	printk(KERN_INFO "Solarflare NET driver\n");
1321 
1322 	rc = register_netdevice_notifier(&efx_netdev_notifier);
1323 	if (rc)
1324 		goto err_notifier;
1325 
1326 	rc = efx_create_reset_workqueue();
1327 	if (rc)
1328 		goto err_reset;
1329 
1330 	rc = pci_register_driver(&efx_pci_driver);
1331 	if (rc < 0)
1332 		goto err_pci;
1333 
1334 	rc = pci_register_driver(&ef100_pci_driver);
1335 	if (rc < 0)
1336 		goto err_pci_ef100;
1337 
1338 	return 0;
1339 
1340  err_pci_ef100:
1341 	pci_unregister_driver(&efx_pci_driver);
1342  err_pci:
1343 	efx_destroy_reset_workqueue();
1344  err_reset:
1345 	unregister_netdevice_notifier(&efx_netdev_notifier);
1346  err_notifier:
1347 	return rc;
1348 }
1349 
efx_exit_module(void)1350 static void __exit efx_exit_module(void)
1351 {
1352 	printk(KERN_INFO "Solarflare NET driver unloading\n");
1353 
1354 	pci_unregister_driver(&ef100_pci_driver);
1355 	pci_unregister_driver(&efx_pci_driver);
1356 	efx_destroy_reset_workqueue();
1357 	unregister_netdevice_notifier(&efx_netdev_notifier);
1358 
1359 }
1360 
1361 module_init(efx_init_module);
1362 module_exit(efx_exit_module);
1363 
1364 MODULE_AUTHOR("Solarflare Communications and "
1365 	      "Michael Brown <mbrown@fensystems.co.uk>");
1366 MODULE_DESCRIPTION("Solarflare network driver");
1367 MODULE_LICENSE("GPL");
1368 MODULE_DEVICE_TABLE(pci, efx_pci_table);
1369