1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/pci.h> 10 #include <linux/netdevice.h> 11 #include <linux/etherdevice.h> 12 #include <linux/delay.h> 13 #include <linux/notifier.h> 14 #include <linux/ip.h> 15 #include <linux/tcp.h> 16 #include <linux/in.h> 17 #include <linux/ethtool.h> 18 #include <linux/topology.h> 19 #include <linux/gfp.h> 20 #include <linux/aer.h> 21 #include <linux/interrupt.h> 22 #include "net_driver.h" 23 #include <net/gre.h> 24 #include <net/udp_tunnel.h> 25 #include "efx.h" 26 #include "efx_common.h" 27 #include "efx_channels.h" 28 #include "rx_common.h" 29 #include "tx_common.h" 30 #include "nic.h" 31 #include "io.h" 32 #include "selftest.h" 33 #include "sriov.h" 34 35 #include "mcdi.h" 36 #include "mcdi_pcol.h" 37 #include "workarounds.h" 38 39 /************************************************************************** 40 * 41 * Type name strings 42 * 43 ************************************************************************** 44 */ 45 46 /* UDP tunnel type names */ 47 static const char *const efx_udp_tunnel_type_names[] = { 48 [TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN] = "vxlan", 49 [TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE] = "geneve", 50 }; 51 52 void efx_get_udp_tunnel_type_name(u16 type, char *buf, size_t buflen) 53 { 54 if (type < ARRAY_SIZE(efx_udp_tunnel_type_names) && 55 efx_udp_tunnel_type_names[type] != NULL) 56 snprintf(buf, buflen, "%s", efx_udp_tunnel_type_names[type]); 57 else 58 snprintf(buf, buflen, "type %d", type); 59 } 60 61 /************************************************************************** 62 * 63 * Configurable values 64 * 65 *************************************************************************/ 66 67 /* 68 * Use separate channels for TX and RX events 69 * 70 * Set this to 1 to use separate channels for TX and RX. It allows us 71 * to control interrupt affinity separately for TX and RX. 72 * 73 * This is only used in MSI-X interrupt mode 74 */ 75 bool efx_separate_tx_channels; 76 module_param(efx_separate_tx_channels, bool, 0444); 77 MODULE_PARM_DESC(efx_separate_tx_channels, 78 "Use separate channels for TX and RX"); 79 80 /* Initial interrupt moderation settings. They can be modified after 81 * module load with ethtool. 82 * 83 * The default for RX should strike a balance between increasing the 84 * round-trip latency and reducing overhead. 85 */ 86 static unsigned int rx_irq_mod_usec = 60; 87 88 /* Initial interrupt moderation settings. They can be modified after 89 * module load with ethtool. 90 * 91 * This default is chosen to ensure that a 10G link does not go idle 92 * while a TX queue is stopped after it has become full. A queue is 93 * restarted when it drops below half full. The time this takes (assuming 94 * worst case 3 descriptors per packet and 1024 descriptors) is 95 * 512 / 3 * 1.2 = 205 usec. 96 */ 97 static unsigned int tx_irq_mod_usec = 150; 98 99 static bool phy_flash_cfg; 100 module_param(phy_flash_cfg, bool, 0644); 101 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 102 103 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 104 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 105 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 106 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 107 module_param(debug, uint, 0); 108 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 109 110 /************************************************************************** 111 * 112 * Utility functions and prototypes 113 * 114 *************************************************************************/ 115 116 static void efx_remove_port(struct efx_nic *efx); 117 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog); 118 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp); 119 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, 120 u32 flags); 121 122 #define EFX_ASSERT_RESET_SERIALISED(efx) \ 123 do { \ 124 if ((efx->state == STATE_READY) || \ 125 (efx->state == STATE_RECOVERY) || \ 126 (efx->state == STATE_DISABLED)) \ 127 ASSERT_RTNL(); \ 128 } while (0) 129 130 /************************************************************************** 131 * 132 * Port handling 133 * 134 **************************************************************************/ 135 136 /* Equivalent to efx_link_set_advertising with all-zeroes, except does not 137 * force the Autoneg bit on. 138 */ 139 void efx_link_clear_advertising(struct efx_nic *efx) 140 { 141 bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS); 142 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); 143 } 144 145 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) 146 { 147 efx->wanted_fc = wanted_fc; 148 if (efx->link_advertising[0]) { 149 if (wanted_fc & EFX_FC_RX) 150 efx->link_advertising[0] |= (ADVERTISED_Pause | 151 ADVERTISED_Asym_Pause); 152 else 153 efx->link_advertising[0] &= ~(ADVERTISED_Pause | 154 ADVERTISED_Asym_Pause); 155 if (wanted_fc & EFX_FC_TX) 156 efx->link_advertising[0] ^= ADVERTISED_Asym_Pause; 157 } 158 } 159 160 static void efx_fini_port(struct efx_nic *efx); 161 162 static int efx_probe_port(struct efx_nic *efx) 163 { 164 int rc; 165 166 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 167 168 if (phy_flash_cfg) 169 efx->phy_mode = PHY_MODE_SPECIAL; 170 171 /* Connect up MAC/PHY operations table */ 172 rc = efx->type->probe_port(efx); 173 if (rc) 174 return rc; 175 176 /* Initialise MAC address to permanent address */ 177 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); 178 179 return 0; 180 } 181 182 static int efx_init_port(struct efx_nic *efx) 183 { 184 int rc; 185 186 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 187 188 mutex_lock(&efx->mac_lock); 189 190 rc = efx->phy_op->init(efx); 191 if (rc) 192 goto fail1; 193 194 efx->port_initialized = true; 195 196 /* Reconfigure the MAC before creating dma queues (required for 197 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ 198 efx_mac_reconfigure(efx); 199 200 /* Ensure the PHY advertises the correct flow control settings */ 201 rc = efx->phy_op->reconfigure(efx); 202 if (rc && rc != -EPERM) 203 goto fail2; 204 205 mutex_unlock(&efx->mac_lock); 206 return 0; 207 208 fail2: 209 efx->phy_op->fini(efx); 210 fail1: 211 mutex_unlock(&efx->mac_lock); 212 return rc; 213 } 214 215 static void efx_fini_port(struct efx_nic *efx) 216 { 217 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 218 219 if (!efx->port_initialized) 220 return; 221 222 efx->phy_op->fini(efx); 223 efx->port_initialized = false; 224 225 efx->link_state.up = false; 226 efx_link_status_changed(efx); 227 } 228 229 static void efx_remove_port(struct efx_nic *efx) 230 { 231 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 232 233 efx->type->remove_port(efx); 234 } 235 236 /************************************************************************** 237 * 238 * NIC handling 239 * 240 **************************************************************************/ 241 242 static LIST_HEAD(efx_primary_list); 243 static LIST_HEAD(efx_unassociated_list); 244 245 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right) 246 { 247 return left->type == right->type && 248 left->vpd_sn && right->vpd_sn && 249 !strcmp(left->vpd_sn, right->vpd_sn); 250 } 251 252 static void efx_associate(struct efx_nic *efx) 253 { 254 struct efx_nic *other, *next; 255 256 if (efx->primary == efx) { 257 /* Adding primary function; look for secondaries */ 258 259 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 260 list_add_tail(&efx->node, &efx_primary_list); 261 262 list_for_each_entry_safe(other, next, &efx_unassociated_list, 263 node) { 264 if (efx_same_controller(efx, other)) { 265 list_del(&other->node); 266 netif_dbg(other, probe, other->net_dev, 267 "moving to secondary list of %s %s\n", 268 pci_name(efx->pci_dev), 269 efx->net_dev->name); 270 list_add_tail(&other->node, 271 &efx->secondary_list); 272 other->primary = efx; 273 } 274 } 275 } else { 276 /* Adding secondary function; look for primary */ 277 278 list_for_each_entry(other, &efx_primary_list, node) { 279 if (efx_same_controller(efx, other)) { 280 netif_dbg(efx, probe, efx->net_dev, 281 "adding to secondary list of %s %s\n", 282 pci_name(other->pci_dev), 283 other->net_dev->name); 284 list_add_tail(&efx->node, 285 &other->secondary_list); 286 efx->primary = other; 287 return; 288 } 289 } 290 291 netif_dbg(efx, probe, efx->net_dev, 292 "adding to unassociated list\n"); 293 list_add_tail(&efx->node, &efx_unassociated_list); 294 } 295 } 296 297 static void efx_dissociate(struct efx_nic *efx) 298 { 299 struct efx_nic *other, *next; 300 301 list_del(&efx->node); 302 efx->primary = NULL; 303 304 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 305 list_del(&other->node); 306 netif_dbg(other, probe, other->net_dev, 307 "moving to unassociated list\n"); 308 list_add_tail(&other->node, &efx_unassociated_list); 309 other->primary = NULL; 310 } 311 } 312 313 static int efx_probe_nic(struct efx_nic *efx) 314 { 315 int rc; 316 317 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 318 319 /* Carry out hardware-type specific initialisation */ 320 rc = efx->type->probe(efx); 321 if (rc) 322 return rc; 323 324 do { 325 if (!efx->max_channels || !efx->max_tx_channels) { 326 netif_err(efx, drv, efx->net_dev, 327 "Insufficient resources to allocate" 328 " any channels\n"); 329 rc = -ENOSPC; 330 goto fail1; 331 } 332 333 /* Determine the number of channels and queues by trying 334 * to hook in MSI-X interrupts. 335 */ 336 rc = efx_probe_interrupts(efx); 337 if (rc) 338 goto fail1; 339 340 rc = efx_set_channels(efx); 341 if (rc) 342 goto fail1; 343 344 /* dimension_resources can fail with EAGAIN */ 345 rc = efx->type->dimension_resources(efx); 346 if (rc != 0 && rc != -EAGAIN) 347 goto fail2; 348 349 if (rc == -EAGAIN) 350 /* try again with new max_channels */ 351 efx_remove_interrupts(efx); 352 353 } while (rc == -EAGAIN); 354 355 if (efx->n_channels > 1) 356 netdev_rss_key_fill(efx->rss_context.rx_hash_key, 357 sizeof(efx->rss_context.rx_hash_key)); 358 efx_set_default_rx_indir_table(efx, &efx->rss_context); 359 360 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); 361 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); 362 363 /* Initialise the interrupt moderation settings */ 364 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); 365 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 366 true); 367 368 return 0; 369 370 fail2: 371 efx_remove_interrupts(efx); 372 fail1: 373 efx->type->remove(efx); 374 return rc; 375 } 376 377 static void efx_remove_nic(struct efx_nic *efx) 378 { 379 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 380 381 efx_remove_interrupts(efx); 382 efx->type->remove(efx); 383 } 384 385 /************************************************************************** 386 * 387 * NIC startup/shutdown 388 * 389 *************************************************************************/ 390 391 static int efx_probe_all(struct efx_nic *efx) 392 { 393 int rc; 394 395 rc = efx_probe_nic(efx); 396 if (rc) { 397 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 398 goto fail1; 399 } 400 401 rc = efx_probe_port(efx); 402 if (rc) { 403 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 404 goto fail2; 405 } 406 407 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); 408 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { 409 rc = -EINVAL; 410 goto fail3; 411 } 412 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; 413 414 #ifdef CONFIG_SFC_SRIOV 415 rc = efx->type->vswitching_probe(efx); 416 if (rc) /* not fatal; the PF will still work fine */ 417 netif_warn(efx, probe, efx->net_dev, 418 "failed to setup vswitching rc=%d;" 419 " VFs may not function\n", rc); 420 #endif 421 422 rc = efx_probe_filters(efx); 423 if (rc) { 424 netif_err(efx, probe, efx->net_dev, 425 "failed to create filter tables\n"); 426 goto fail4; 427 } 428 429 rc = efx_probe_channels(efx); 430 if (rc) 431 goto fail5; 432 433 return 0; 434 435 fail5: 436 efx_remove_filters(efx); 437 fail4: 438 #ifdef CONFIG_SFC_SRIOV 439 efx->type->vswitching_remove(efx); 440 #endif 441 fail3: 442 efx_remove_port(efx); 443 fail2: 444 efx_remove_nic(efx); 445 fail1: 446 return rc; 447 } 448 449 static void efx_remove_all(struct efx_nic *efx) 450 { 451 rtnl_lock(); 452 efx_xdp_setup_prog(efx, NULL); 453 rtnl_unlock(); 454 455 efx_remove_channels(efx); 456 efx_remove_filters(efx); 457 #ifdef CONFIG_SFC_SRIOV 458 efx->type->vswitching_remove(efx); 459 #endif 460 efx_remove_port(efx); 461 efx_remove_nic(efx); 462 } 463 464 /************************************************************************** 465 * 466 * Interrupt moderation 467 * 468 **************************************************************************/ 469 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs) 470 { 471 if (usecs == 0) 472 return 0; 473 if (usecs * 1000 < efx->timer_quantum_ns) 474 return 1; /* never round down to 0 */ 475 return usecs * 1000 / efx->timer_quantum_ns; 476 } 477 478 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks) 479 { 480 /* We must round up when converting ticks to microseconds 481 * because we round down when converting the other way. 482 */ 483 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000); 484 } 485 486 /* Set interrupt moderation parameters */ 487 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, 488 unsigned int rx_usecs, bool rx_adaptive, 489 bool rx_may_override_tx) 490 { 491 struct efx_channel *channel; 492 unsigned int timer_max_us; 493 494 EFX_ASSERT_RESET_SERIALISED(efx); 495 496 timer_max_us = efx->timer_max_ns / 1000; 497 498 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) 499 return -EINVAL; 500 501 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && 502 !rx_may_override_tx) { 503 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 504 "RX and TX IRQ moderation must be equal\n"); 505 return -EINVAL; 506 } 507 508 efx->irq_rx_adaptive = rx_adaptive; 509 efx->irq_rx_moderation_us = rx_usecs; 510 efx_for_each_channel(channel, efx) { 511 if (efx_channel_has_rx_queue(channel)) 512 channel->irq_moderation_us = rx_usecs; 513 else if (efx_channel_has_tx_queues(channel)) 514 channel->irq_moderation_us = tx_usecs; 515 else if (efx_channel_is_xdp_tx(channel)) 516 channel->irq_moderation_us = tx_usecs; 517 } 518 519 return 0; 520 } 521 522 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, 523 unsigned int *rx_usecs, bool *rx_adaptive) 524 { 525 *rx_adaptive = efx->irq_rx_adaptive; 526 *rx_usecs = efx->irq_rx_moderation_us; 527 528 /* If channels are shared between RX and TX, so is IRQ 529 * moderation. Otherwise, IRQ moderation is the same for all 530 * TX channels and is not adaptive. 531 */ 532 if (efx->tx_channel_offset == 0) { 533 *tx_usecs = *rx_usecs; 534 } else { 535 struct efx_channel *tx_channel; 536 537 tx_channel = efx->channel[efx->tx_channel_offset]; 538 *tx_usecs = tx_channel->irq_moderation_us; 539 } 540 } 541 542 /************************************************************************** 543 * 544 * ioctls 545 * 546 *************************************************************************/ 547 548 /* Net device ioctl 549 * Context: process, rtnl_lock() held. 550 */ 551 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 552 { 553 struct efx_nic *efx = netdev_priv(net_dev); 554 struct mii_ioctl_data *data = if_mii(ifr); 555 556 if (cmd == SIOCSHWTSTAMP) 557 return efx_ptp_set_ts_config(efx, ifr); 558 if (cmd == SIOCGHWTSTAMP) 559 return efx_ptp_get_ts_config(efx, ifr); 560 561 /* Convert phy_id from older PRTAD/DEVAD format */ 562 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 563 (data->phy_id & 0xfc00) == 0x0400) 564 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 565 566 return mdio_mii_ioctl(&efx->mdio, data, cmd); 567 } 568 569 /************************************************************************** 570 * 571 * Kernel net device interface 572 * 573 *************************************************************************/ 574 575 /* Context: process, rtnl_lock() held. */ 576 int efx_net_open(struct net_device *net_dev) 577 { 578 struct efx_nic *efx = netdev_priv(net_dev); 579 int rc; 580 581 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 582 raw_smp_processor_id()); 583 584 rc = efx_check_disabled(efx); 585 if (rc) 586 return rc; 587 if (efx->phy_mode & PHY_MODE_SPECIAL) 588 return -EBUSY; 589 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) 590 return -EIO; 591 592 /* Notify the kernel of the link state polled during driver load, 593 * before the monitor starts running */ 594 efx_link_status_changed(efx); 595 596 efx_start_all(efx); 597 if (efx->state == STATE_DISABLED || efx->reset_pending) 598 netif_device_detach(efx->net_dev); 599 efx_selftest_async_start(efx); 600 return 0; 601 } 602 603 /* Context: process, rtnl_lock() held. 604 * Note that the kernel will ignore our return code; this method 605 * should really be a void. 606 */ 607 int efx_net_stop(struct net_device *net_dev) 608 { 609 struct efx_nic *efx = netdev_priv(net_dev); 610 611 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 612 raw_smp_processor_id()); 613 614 /* Stop the device and flush all the channels */ 615 efx_stop_all(efx); 616 617 return 0; 618 } 619 620 /* Context: netif_tx_lock held, BHs disabled. */ 621 static void efx_watchdog(struct net_device *net_dev, unsigned int txqueue) 622 { 623 struct efx_nic *efx = netdev_priv(net_dev); 624 625 netif_err(efx, tx_err, efx->net_dev, 626 "TX stuck with port_enabled=%d: resetting channels\n", 627 efx->port_enabled); 628 629 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 630 } 631 632 static int efx_set_mac_address(struct net_device *net_dev, void *data) 633 { 634 struct efx_nic *efx = netdev_priv(net_dev); 635 struct sockaddr *addr = data; 636 u8 *new_addr = addr->sa_data; 637 u8 old_addr[6]; 638 int rc; 639 640 if (!is_valid_ether_addr(new_addr)) { 641 netif_err(efx, drv, efx->net_dev, 642 "invalid ethernet MAC address requested: %pM\n", 643 new_addr); 644 return -EADDRNOTAVAIL; 645 } 646 647 /* save old address */ 648 ether_addr_copy(old_addr, net_dev->dev_addr); 649 ether_addr_copy(net_dev->dev_addr, new_addr); 650 if (efx->type->set_mac_address) { 651 rc = efx->type->set_mac_address(efx); 652 if (rc) { 653 ether_addr_copy(net_dev->dev_addr, old_addr); 654 return rc; 655 } 656 } 657 658 /* Reconfigure the MAC */ 659 mutex_lock(&efx->mac_lock); 660 efx_mac_reconfigure(efx); 661 mutex_unlock(&efx->mac_lock); 662 663 return 0; 664 } 665 666 /* Context: netif_addr_lock held, BHs disabled. */ 667 static void efx_set_rx_mode(struct net_device *net_dev) 668 { 669 struct efx_nic *efx = netdev_priv(net_dev); 670 671 if (efx->port_enabled) 672 queue_work(efx->workqueue, &efx->mac_work); 673 /* Otherwise efx_start_port() will do this */ 674 } 675 676 static int efx_set_features(struct net_device *net_dev, netdev_features_t data) 677 { 678 struct efx_nic *efx = netdev_priv(net_dev); 679 int rc; 680 681 /* If disabling RX n-tuple filtering, clear existing filters */ 682 if (net_dev->features & ~data & NETIF_F_NTUPLE) { 683 rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); 684 if (rc) 685 return rc; 686 } 687 688 /* If Rx VLAN filter is changed, update filters via mac_reconfigure. 689 * If rx-fcs is changed, mac_reconfigure updates that too. 690 */ 691 if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER | 692 NETIF_F_RXFCS)) { 693 /* efx_set_rx_mode() will schedule MAC work to update filters 694 * when a new features are finally set in net_dev. 695 */ 696 efx_set_rx_mode(net_dev); 697 } 698 699 return 0; 700 } 701 702 static int efx_get_phys_port_id(struct net_device *net_dev, 703 struct netdev_phys_item_id *ppid) 704 { 705 struct efx_nic *efx = netdev_priv(net_dev); 706 707 if (efx->type->get_phys_port_id) 708 return efx->type->get_phys_port_id(efx, ppid); 709 else 710 return -EOPNOTSUPP; 711 } 712 713 static int efx_get_phys_port_name(struct net_device *net_dev, 714 char *name, size_t len) 715 { 716 struct efx_nic *efx = netdev_priv(net_dev); 717 718 if (snprintf(name, len, "p%u", efx->port_num) >= len) 719 return -EINVAL; 720 return 0; 721 } 722 723 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid) 724 { 725 struct efx_nic *efx = netdev_priv(net_dev); 726 727 if (efx->type->vlan_rx_add_vid) 728 return efx->type->vlan_rx_add_vid(efx, proto, vid); 729 else 730 return -EOPNOTSUPP; 731 } 732 733 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid) 734 { 735 struct efx_nic *efx = netdev_priv(net_dev); 736 737 if (efx->type->vlan_rx_kill_vid) 738 return efx->type->vlan_rx_kill_vid(efx, proto, vid); 739 else 740 return -EOPNOTSUPP; 741 } 742 743 static int efx_udp_tunnel_type_map(enum udp_parsable_tunnel_type in) 744 { 745 switch (in) { 746 case UDP_TUNNEL_TYPE_VXLAN: 747 return TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN; 748 case UDP_TUNNEL_TYPE_GENEVE: 749 return TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE; 750 default: 751 return -1; 752 } 753 } 754 755 static void efx_udp_tunnel_add(struct net_device *dev, struct udp_tunnel_info *ti) 756 { 757 struct efx_nic *efx = netdev_priv(dev); 758 struct efx_udp_tunnel tnl; 759 int efx_tunnel_type; 760 761 efx_tunnel_type = efx_udp_tunnel_type_map(ti->type); 762 if (efx_tunnel_type < 0) 763 return; 764 765 tnl.type = (u16)efx_tunnel_type; 766 tnl.port = ti->port; 767 768 if (efx->type->udp_tnl_add_port) 769 (void)efx->type->udp_tnl_add_port(efx, tnl); 770 } 771 772 static void efx_udp_tunnel_del(struct net_device *dev, struct udp_tunnel_info *ti) 773 { 774 struct efx_nic *efx = netdev_priv(dev); 775 struct efx_udp_tunnel tnl; 776 int efx_tunnel_type; 777 778 efx_tunnel_type = efx_udp_tunnel_type_map(ti->type); 779 if (efx_tunnel_type < 0) 780 return; 781 782 tnl.type = (u16)efx_tunnel_type; 783 tnl.port = ti->port; 784 785 if (efx->type->udp_tnl_del_port) 786 (void)efx->type->udp_tnl_del_port(efx, tnl); 787 } 788 789 static const struct net_device_ops efx_netdev_ops = { 790 .ndo_open = efx_net_open, 791 .ndo_stop = efx_net_stop, 792 .ndo_get_stats64 = efx_net_stats, 793 .ndo_tx_timeout = efx_watchdog, 794 .ndo_start_xmit = efx_hard_start_xmit, 795 .ndo_validate_addr = eth_validate_addr, 796 .ndo_do_ioctl = efx_ioctl, 797 .ndo_change_mtu = efx_change_mtu, 798 .ndo_set_mac_address = efx_set_mac_address, 799 .ndo_set_rx_mode = efx_set_rx_mode, 800 .ndo_set_features = efx_set_features, 801 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid, 802 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid, 803 #ifdef CONFIG_SFC_SRIOV 804 .ndo_set_vf_mac = efx_sriov_set_vf_mac, 805 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, 806 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, 807 .ndo_get_vf_config = efx_sriov_get_vf_config, 808 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state, 809 #endif 810 .ndo_get_phys_port_id = efx_get_phys_port_id, 811 .ndo_get_phys_port_name = efx_get_phys_port_name, 812 .ndo_setup_tc = efx_setup_tc, 813 #ifdef CONFIG_RFS_ACCEL 814 .ndo_rx_flow_steer = efx_filter_rfs, 815 #endif 816 .ndo_udp_tunnel_add = efx_udp_tunnel_add, 817 .ndo_udp_tunnel_del = efx_udp_tunnel_del, 818 .ndo_xdp_xmit = efx_xdp_xmit, 819 .ndo_bpf = efx_xdp 820 }; 821 822 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog) 823 { 824 struct bpf_prog *old_prog; 825 826 if (efx->xdp_rxq_info_failed) { 827 netif_err(efx, drv, efx->net_dev, 828 "Unable to bind XDP program due to previous failure of rxq_info\n"); 829 return -EINVAL; 830 } 831 832 if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) { 833 netif_err(efx, drv, efx->net_dev, 834 "Unable to configure XDP with MTU of %d (max: %d)\n", 835 efx->net_dev->mtu, efx_xdp_max_mtu(efx)); 836 return -EINVAL; 837 } 838 839 old_prog = rtnl_dereference(efx->xdp_prog); 840 rcu_assign_pointer(efx->xdp_prog, prog); 841 /* Release the reference that was originally passed by the caller. */ 842 if (old_prog) 843 bpf_prog_put(old_prog); 844 845 return 0; 846 } 847 848 /* Context: process, rtnl_lock() held. */ 849 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp) 850 { 851 struct efx_nic *efx = netdev_priv(dev); 852 struct bpf_prog *xdp_prog; 853 854 switch (xdp->command) { 855 case XDP_SETUP_PROG: 856 return efx_xdp_setup_prog(efx, xdp->prog); 857 case XDP_QUERY_PROG: 858 xdp_prog = rtnl_dereference(efx->xdp_prog); 859 xdp->prog_id = xdp_prog ? xdp_prog->aux->id : 0; 860 return 0; 861 default: 862 return -EINVAL; 863 } 864 } 865 866 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, 867 u32 flags) 868 { 869 struct efx_nic *efx = netdev_priv(dev); 870 871 if (!netif_running(dev)) 872 return -EINVAL; 873 874 return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH); 875 } 876 877 static void efx_update_name(struct efx_nic *efx) 878 { 879 strcpy(efx->name, efx->net_dev->name); 880 efx_mtd_rename(efx); 881 efx_set_channel_names(efx); 882 } 883 884 static int efx_netdev_event(struct notifier_block *this, 885 unsigned long event, void *ptr) 886 { 887 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 888 889 if ((net_dev->netdev_ops == &efx_netdev_ops) && 890 event == NETDEV_CHANGENAME) 891 efx_update_name(netdev_priv(net_dev)); 892 893 return NOTIFY_DONE; 894 } 895 896 static struct notifier_block efx_netdev_notifier = { 897 .notifier_call = efx_netdev_event, 898 }; 899 900 static ssize_t 901 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) 902 { 903 struct efx_nic *efx = dev_get_drvdata(dev); 904 return sprintf(buf, "%d\n", efx->phy_type); 905 } 906 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); 907 908 static int efx_register_netdev(struct efx_nic *efx) 909 { 910 struct net_device *net_dev = efx->net_dev; 911 struct efx_channel *channel; 912 int rc; 913 914 net_dev->watchdog_timeo = 5 * HZ; 915 net_dev->irq = efx->pci_dev->irq; 916 net_dev->netdev_ops = &efx_netdev_ops; 917 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) 918 net_dev->priv_flags |= IFF_UNICAST_FLT; 919 net_dev->ethtool_ops = &efx_ethtool_ops; 920 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS; 921 net_dev->min_mtu = EFX_MIN_MTU; 922 net_dev->max_mtu = EFX_MAX_MTU; 923 924 rtnl_lock(); 925 926 /* Enable resets to be scheduled and check whether any were 927 * already requested. If so, the NIC is probably hosed so we 928 * abort. 929 */ 930 efx->state = STATE_READY; 931 smp_mb(); /* ensure we change state before checking reset_pending */ 932 if (efx->reset_pending) { 933 netif_err(efx, probe, efx->net_dev, 934 "aborting probe due to scheduled reset\n"); 935 rc = -EIO; 936 goto fail_locked; 937 } 938 939 rc = dev_alloc_name(net_dev, net_dev->name); 940 if (rc < 0) 941 goto fail_locked; 942 efx_update_name(efx); 943 944 /* Always start with carrier off; PHY events will detect the link */ 945 netif_carrier_off(net_dev); 946 947 rc = register_netdevice(net_dev); 948 if (rc) 949 goto fail_locked; 950 951 efx_for_each_channel(channel, efx) { 952 struct efx_tx_queue *tx_queue; 953 efx_for_each_channel_tx_queue(tx_queue, channel) 954 efx_init_tx_queue_core_txq(tx_queue); 955 } 956 957 efx_associate(efx); 958 959 rtnl_unlock(); 960 961 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 962 if (rc) { 963 netif_err(efx, drv, efx->net_dev, 964 "failed to init net dev attributes\n"); 965 goto fail_registered; 966 } 967 968 efx_init_mcdi_logging(efx); 969 970 return 0; 971 972 fail_registered: 973 rtnl_lock(); 974 efx_dissociate(efx); 975 unregister_netdevice(net_dev); 976 fail_locked: 977 efx->state = STATE_UNINIT; 978 rtnl_unlock(); 979 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 980 return rc; 981 } 982 983 static void efx_unregister_netdev(struct efx_nic *efx) 984 { 985 if (!efx->net_dev) 986 return; 987 988 BUG_ON(netdev_priv(efx->net_dev) != efx); 989 990 if (efx_dev_registered(efx)) { 991 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 992 efx_fini_mcdi_logging(efx); 993 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 994 unregister_netdev(efx->net_dev); 995 } 996 } 997 998 /************************************************************************** 999 * 1000 * List of NICs we support 1001 * 1002 **************************************************************************/ 1003 1004 /* PCI device ID table */ 1005 static const struct pci_device_id efx_pci_table[] = { 1006 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ 1007 .driver_data = (unsigned long) &siena_a0_nic_type}, 1008 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ 1009 .driver_data = (unsigned long) &siena_a0_nic_type}, 1010 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */ 1011 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 1012 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */ 1013 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 1014 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */ 1015 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 1016 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */ 1017 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 1018 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */ 1019 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 1020 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */ 1021 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 1022 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */ 1023 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 1024 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */ 1025 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 1026 {0} /* end of list */ 1027 }; 1028 1029 /************************************************************************** 1030 * 1031 * Data housekeeping 1032 * 1033 **************************************************************************/ 1034 1035 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats) 1036 { 1037 u64 n_rx_nodesc_trunc = 0; 1038 struct efx_channel *channel; 1039 1040 efx_for_each_channel(channel, efx) 1041 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; 1042 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; 1043 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); 1044 } 1045 1046 /************************************************************************** 1047 * 1048 * PCI interface 1049 * 1050 **************************************************************************/ 1051 1052 /* Main body of final NIC shutdown code 1053 * This is called only at module unload (or hotplug removal). 1054 */ 1055 static void efx_pci_remove_main(struct efx_nic *efx) 1056 { 1057 /* Flush reset_work. It can no longer be scheduled since we 1058 * are not READY. 1059 */ 1060 BUG_ON(efx->state == STATE_READY); 1061 efx_flush_reset_workqueue(efx); 1062 1063 efx_disable_interrupts(efx); 1064 efx_clear_interrupt_affinity(efx); 1065 efx_nic_fini_interrupt(efx); 1066 efx_fini_port(efx); 1067 efx->type->fini(efx); 1068 efx_fini_napi(efx); 1069 efx_remove_all(efx); 1070 } 1071 1072 /* Final NIC shutdown 1073 * This is called only at module unload (or hotplug removal). A PF can call 1074 * this on its VFs to ensure they are unbound first. 1075 */ 1076 static void efx_pci_remove(struct pci_dev *pci_dev) 1077 { 1078 struct efx_nic *efx; 1079 1080 efx = pci_get_drvdata(pci_dev); 1081 if (!efx) 1082 return; 1083 1084 /* Mark the NIC as fini, then stop the interface */ 1085 rtnl_lock(); 1086 efx_dissociate(efx); 1087 dev_close(efx->net_dev); 1088 efx_disable_interrupts(efx); 1089 efx->state = STATE_UNINIT; 1090 rtnl_unlock(); 1091 1092 if (efx->type->sriov_fini) 1093 efx->type->sriov_fini(efx); 1094 1095 efx_unregister_netdev(efx); 1096 1097 efx_mtd_remove(efx); 1098 1099 efx_pci_remove_main(efx); 1100 1101 efx_fini_io(efx, efx->type->mem_bar(efx)); 1102 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 1103 1104 efx_fini_struct(efx); 1105 free_netdev(efx->net_dev); 1106 1107 pci_disable_pcie_error_reporting(pci_dev); 1108 }; 1109 1110 /* NIC VPD information 1111 * Called during probe to display the part number of the 1112 * installed NIC. VPD is potentially very large but this should 1113 * always appear within the first 512 bytes. 1114 */ 1115 #define SFC_VPD_LEN 512 1116 static void efx_probe_vpd_strings(struct efx_nic *efx) 1117 { 1118 struct pci_dev *dev = efx->pci_dev; 1119 char vpd_data[SFC_VPD_LEN]; 1120 ssize_t vpd_size; 1121 int ro_start, ro_size, i, j; 1122 1123 /* Get the vpd data from the device */ 1124 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); 1125 if (vpd_size <= 0) { 1126 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); 1127 return; 1128 } 1129 1130 /* Get the Read only section */ 1131 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 1132 if (ro_start < 0) { 1133 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); 1134 return; 1135 } 1136 1137 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 1138 j = ro_size; 1139 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1140 if (i + j > vpd_size) 1141 j = vpd_size - i; 1142 1143 /* Get the Part number */ 1144 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); 1145 if (i < 0) { 1146 netif_err(efx, drv, efx->net_dev, "Part number not found\n"); 1147 return; 1148 } 1149 1150 j = pci_vpd_info_field_size(&vpd_data[i]); 1151 i += PCI_VPD_INFO_FLD_HDR_SIZE; 1152 if (i + j > vpd_size) { 1153 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); 1154 return; 1155 } 1156 1157 netif_info(efx, drv, efx->net_dev, 1158 "Part Number : %.*s\n", j, &vpd_data[i]); 1159 1160 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1161 j = ro_size; 1162 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); 1163 if (i < 0) { 1164 netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); 1165 return; 1166 } 1167 1168 j = pci_vpd_info_field_size(&vpd_data[i]); 1169 i += PCI_VPD_INFO_FLD_HDR_SIZE; 1170 if (i + j > vpd_size) { 1171 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); 1172 return; 1173 } 1174 1175 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); 1176 if (!efx->vpd_sn) 1177 return; 1178 1179 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); 1180 } 1181 1182 1183 /* Main body of NIC initialisation 1184 * This is called at module load (or hotplug insertion, theoretically). 1185 */ 1186 static int efx_pci_probe_main(struct efx_nic *efx) 1187 { 1188 int rc; 1189 1190 /* Do start-of-day initialisation */ 1191 rc = efx_probe_all(efx); 1192 if (rc) 1193 goto fail1; 1194 1195 efx_init_napi(efx); 1196 1197 down_write(&efx->filter_sem); 1198 rc = efx->type->init(efx); 1199 up_write(&efx->filter_sem); 1200 if (rc) { 1201 netif_err(efx, probe, efx->net_dev, 1202 "failed to initialise NIC\n"); 1203 goto fail3; 1204 } 1205 1206 rc = efx_init_port(efx); 1207 if (rc) { 1208 netif_err(efx, probe, efx->net_dev, 1209 "failed to initialise port\n"); 1210 goto fail4; 1211 } 1212 1213 rc = efx_nic_init_interrupt(efx); 1214 if (rc) 1215 goto fail5; 1216 1217 efx_set_interrupt_affinity(efx); 1218 rc = efx_enable_interrupts(efx); 1219 if (rc) 1220 goto fail6; 1221 1222 return 0; 1223 1224 fail6: 1225 efx_clear_interrupt_affinity(efx); 1226 efx_nic_fini_interrupt(efx); 1227 fail5: 1228 efx_fini_port(efx); 1229 fail4: 1230 efx->type->fini(efx); 1231 fail3: 1232 efx_fini_napi(efx); 1233 efx_remove_all(efx); 1234 fail1: 1235 return rc; 1236 } 1237 1238 static int efx_pci_probe_post_io(struct efx_nic *efx) 1239 { 1240 struct net_device *net_dev = efx->net_dev; 1241 int rc = efx_pci_probe_main(efx); 1242 1243 if (rc) 1244 return rc; 1245 1246 if (efx->type->sriov_init) { 1247 rc = efx->type->sriov_init(efx); 1248 if (rc) 1249 netif_err(efx, probe, efx->net_dev, 1250 "SR-IOV can't be enabled rc %d\n", rc); 1251 } 1252 1253 /* Determine netdevice features */ 1254 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 1255 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL); 1256 if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM)) 1257 net_dev->features |= NETIF_F_TSO6; 1258 /* Check whether device supports TSO */ 1259 if (!efx->type->tso_versions || !efx->type->tso_versions(efx)) 1260 net_dev->features &= ~NETIF_F_ALL_TSO; 1261 /* Mask for features that also apply to VLAN devices */ 1262 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | 1263 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | 1264 NETIF_F_RXCSUM); 1265 1266 net_dev->hw_features |= net_dev->features & ~efx->fixed_features; 1267 1268 /* Disable receiving frames with bad FCS, by default. */ 1269 net_dev->features &= ~NETIF_F_RXALL; 1270 1271 /* Disable VLAN filtering by default. It may be enforced if 1272 * the feature is fixed (i.e. VLAN filters are required to 1273 * receive VLAN tagged packets due to vPort restrictions). 1274 */ 1275 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 1276 net_dev->features |= efx->fixed_features; 1277 1278 rc = efx_register_netdev(efx); 1279 if (!rc) 1280 return 0; 1281 1282 efx_pci_remove_main(efx); 1283 return rc; 1284 } 1285 1286 /* NIC initialisation 1287 * 1288 * This is called at module load (or hotplug insertion, 1289 * theoretically). It sets up PCI mappings, resets the NIC, 1290 * sets up and registers the network devices with the kernel and hooks 1291 * the interrupt service routine. It does not prepare the device for 1292 * transmission; this is left to the first time one of the network 1293 * interfaces is brought up (i.e. efx_net_open). 1294 */ 1295 static int efx_pci_probe(struct pci_dev *pci_dev, 1296 const struct pci_device_id *entry) 1297 { 1298 struct net_device *net_dev; 1299 struct efx_nic *efx; 1300 int rc; 1301 1302 /* Allocate and initialise a struct net_device and struct efx_nic */ 1303 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, 1304 EFX_MAX_RX_QUEUES); 1305 if (!net_dev) 1306 return -ENOMEM; 1307 efx = netdev_priv(net_dev); 1308 efx->type = (const struct efx_nic_type *) entry->driver_data; 1309 efx->fixed_features |= NETIF_F_HIGHDMA; 1310 1311 pci_set_drvdata(pci_dev, efx); 1312 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 1313 rc = efx_init_struct(efx, pci_dev, net_dev); 1314 if (rc) 1315 goto fail1; 1316 1317 netif_info(efx, probe, efx->net_dev, 1318 "Solarflare NIC detected\n"); 1319 1320 if (!efx->type->is_vf) 1321 efx_probe_vpd_strings(efx); 1322 1323 /* Set up basic I/O (BAR mappings etc) */ 1324 rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask, 1325 efx->type->mem_map_size(efx)); 1326 if (rc) 1327 goto fail2; 1328 1329 rc = efx_pci_probe_post_io(efx); 1330 if (rc) { 1331 /* On failure, retry once immediately. 1332 * If we aborted probe due to a scheduled reset, dismiss it. 1333 */ 1334 efx->reset_pending = 0; 1335 rc = efx_pci_probe_post_io(efx); 1336 if (rc) { 1337 /* On another failure, retry once more 1338 * after a 50-305ms delay. 1339 */ 1340 unsigned char r; 1341 1342 get_random_bytes(&r, 1); 1343 msleep((unsigned int)r + 50); 1344 efx->reset_pending = 0; 1345 rc = efx_pci_probe_post_io(efx); 1346 } 1347 } 1348 if (rc) 1349 goto fail3; 1350 1351 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 1352 1353 /* Try to create MTDs, but allow this to fail */ 1354 rtnl_lock(); 1355 rc = efx_mtd_probe(efx); 1356 rtnl_unlock(); 1357 if (rc && rc != -EPERM) 1358 netif_warn(efx, probe, efx->net_dev, 1359 "failed to create MTDs (%d)\n", rc); 1360 1361 (void)pci_enable_pcie_error_reporting(pci_dev); 1362 1363 if (efx->type->udp_tnl_push_ports) 1364 efx->type->udp_tnl_push_ports(efx); 1365 1366 return 0; 1367 1368 fail3: 1369 efx_fini_io(efx, efx->type->mem_bar(efx)); 1370 fail2: 1371 efx_fini_struct(efx); 1372 fail1: 1373 WARN_ON(rc > 0); 1374 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 1375 free_netdev(net_dev); 1376 return rc; 1377 } 1378 1379 /* efx_pci_sriov_configure returns the actual number of Virtual Functions 1380 * enabled on success 1381 */ 1382 #ifdef CONFIG_SFC_SRIOV 1383 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 1384 { 1385 int rc; 1386 struct efx_nic *efx = pci_get_drvdata(dev); 1387 1388 if (efx->type->sriov_configure) { 1389 rc = efx->type->sriov_configure(efx, num_vfs); 1390 if (rc) 1391 return rc; 1392 else 1393 return num_vfs; 1394 } else 1395 return -EOPNOTSUPP; 1396 } 1397 #endif 1398 1399 static int efx_pm_freeze(struct device *dev) 1400 { 1401 struct efx_nic *efx = dev_get_drvdata(dev); 1402 1403 rtnl_lock(); 1404 1405 if (efx->state != STATE_DISABLED) { 1406 efx->state = STATE_UNINIT; 1407 1408 efx_device_detach_sync(efx); 1409 1410 efx_stop_all(efx); 1411 efx_disable_interrupts(efx); 1412 } 1413 1414 rtnl_unlock(); 1415 1416 return 0; 1417 } 1418 1419 static int efx_pm_thaw(struct device *dev) 1420 { 1421 int rc; 1422 struct efx_nic *efx = dev_get_drvdata(dev); 1423 1424 rtnl_lock(); 1425 1426 if (efx->state != STATE_DISABLED) { 1427 rc = efx_enable_interrupts(efx); 1428 if (rc) 1429 goto fail; 1430 1431 mutex_lock(&efx->mac_lock); 1432 efx->phy_op->reconfigure(efx); 1433 mutex_unlock(&efx->mac_lock); 1434 1435 efx_start_all(efx); 1436 1437 efx_device_attach_if_not_resetting(efx); 1438 1439 efx->state = STATE_READY; 1440 1441 efx->type->resume_wol(efx); 1442 } 1443 1444 rtnl_unlock(); 1445 1446 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ 1447 efx_queue_reset_work(efx); 1448 1449 return 0; 1450 1451 fail: 1452 rtnl_unlock(); 1453 1454 return rc; 1455 } 1456 1457 static int efx_pm_poweroff(struct device *dev) 1458 { 1459 struct pci_dev *pci_dev = to_pci_dev(dev); 1460 struct efx_nic *efx = pci_get_drvdata(pci_dev); 1461 1462 efx->type->fini(efx); 1463 1464 efx->reset_pending = 0; 1465 1466 pci_save_state(pci_dev); 1467 return pci_set_power_state(pci_dev, PCI_D3hot); 1468 } 1469 1470 /* Used for both resume and restore */ 1471 static int efx_pm_resume(struct device *dev) 1472 { 1473 struct pci_dev *pci_dev = to_pci_dev(dev); 1474 struct efx_nic *efx = pci_get_drvdata(pci_dev); 1475 int rc; 1476 1477 rc = pci_set_power_state(pci_dev, PCI_D0); 1478 if (rc) 1479 return rc; 1480 pci_restore_state(pci_dev); 1481 rc = pci_enable_device(pci_dev); 1482 if (rc) 1483 return rc; 1484 pci_set_master(efx->pci_dev); 1485 rc = efx->type->reset(efx, RESET_TYPE_ALL); 1486 if (rc) 1487 return rc; 1488 down_write(&efx->filter_sem); 1489 rc = efx->type->init(efx); 1490 up_write(&efx->filter_sem); 1491 if (rc) 1492 return rc; 1493 rc = efx_pm_thaw(dev); 1494 return rc; 1495 } 1496 1497 static int efx_pm_suspend(struct device *dev) 1498 { 1499 int rc; 1500 1501 efx_pm_freeze(dev); 1502 rc = efx_pm_poweroff(dev); 1503 if (rc) 1504 efx_pm_resume(dev); 1505 return rc; 1506 } 1507 1508 static const struct dev_pm_ops efx_pm_ops = { 1509 .suspend = efx_pm_suspend, 1510 .resume = efx_pm_resume, 1511 .freeze = efx_pm_freeze, 1512 .thaw = efx_pm_thaw, 1513 .poweroff = efx_pm_poweroff, 1514 .restore = efx_pm_resume, 1515 }; 1516 1517 /* A PCI error affecting this device was detected. 1518 * At this point MMIO and DMA may be disabled. 1519 * Stop the software path and request a slot reset. 1520 */ 1521 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev, 1522 enum pci_channel_state state) 1523 { 1524 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 1525 struct efx_nic *efx = pci_get_drvdata(pdev); 1526 1527 if (state == pci_channel_io_perm_failure) 1528 return PCI_ERS_RESULT_DISCONNECT; 1529 1530 rtnl_lock(); 1531 1532 if (efx->state != STATE_DISABLED) { 1533 efx->state = STATE_RECOVERY; 1534 efx->reset_pending = 0; 1535 1536 efx_device_detach_sync(efx); 1537 1538 efx_stop_all(efx); 1539 efx_disable_interrupts(efx); 1540 1541 status = PCI_ERS_RESULT_NEED_RESET; 1542 } else { 1543 /* If the interface is disabled we don't want to do anything 1544 * with it. 1545 */ 1546 status = PCI_ERS_RESULT_RECOVERED; 1547 } 1548 1549 rtnl_unlock(); 1550 1551 pci_disable_device(pdev); 1552 1553 return status; 1554 } 1555 1556 /* Fake a successful reset, which will be performed later in efx_io_resume. */ 1557 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev) 1558 { 1559 struct efx_nic *efx = pci_get_drvdata(pdev); 1560 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 1561 1562 if (pci_enable_device(pdev)) { 1563 netif_err(efx, hw, efx->net_dev, 1564 "Cannot re-enable PCI device after reset.\n"); 1565 status = PCI_ERS_RESULT_DISCONNECT; 1566 } 1567 1568 return status; 1569 } 1570 1571 /* Perform the actual reset and resume I/O operations. */ 1572 static void efx_io_resume(struct pci_dev *pdev) 1573 { 1574 struct efx_nic *efx = pci_get_drvdata(pdev); 1575 int rc; 1576 1577 rtnl_lock(); 1578 1579 if (efx->state == STATE_DISABLED) 1580 goto out; 1581 1582 rc = efx_reset(efx, RESET_TYPE_ALL); 1583 if (rc) { 1584 netif_err(efx, hw, efx->net_dev, 1585 "efx_reset failed after PCI error (%d)\n", rc); 1586 } else { 1587 efx->state = STATE_READY; 1588 netif_dbg(efx, hw, efx->net_dev, 1589 "Done resetting and resuming IO after PCI error.\n"); 1590 } 1591 1592 out: 1593 rtnl_unlock(); 1594 } 1595 1596 /* For simplicity and reliability, we always require a slot reset and try to 1597 * reset the hardware when a pci error affecting the device is detected. 1598 * We leave both the link_reset and mmio_enabled callback unimplemented: 1599 * with our request for slot reset the mmio_enabled callback will never be 1600 * called, and the link_reset callback is not used by AER or EEH mechanisms. 1601 */ 1602 static const struct pci_error_handlers efx_err_handlers = { 1603 .error_detected = efx_io_error_detected, 1604 .slot_reset = efx_io_slot_reset, 1605 .resume = efx_io_resume, 1606 }; 1607 1608 static struct pci_driver efx_pci_driver = { 1609 .name = KBUILD_MODNAME, 1610 .id_table = efx_pci_table, 1611 .probe = efx_pci_probe, 1612 .remove = efx_pci_remove, 1613 .driver.pm = &efx_pm_ops, 1614 .err_handler = &efx_err_handlers, 1615 #ifdef CONFIG_SFC_SRIOV 1616 .sriov_configure = efx_pci_sriov_configure, 1617 #endif 1618 }; 1619 1620 /************************************************************************** 1621 * 1622 * Kernel module interface 1623 * 1624 *************************************************************************/ 1625 1626 static int __init efx_init_module(void) 1627 { 1628 int rc; 1629 1630 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); 1631 1632 rc = register_netdevice_notifier(&efx_netdev_notifier); 1633 if (rc) 1634 goto err_notifier; 1635 1636 #ifdef CONFIG_SFC_SRIOV 1637 rc = efx_init_sriov(); 1638 if (rc) 1639 goto err_sriov; 1640 #endif 1641 1642 rc = efx_create_reset_workqueue(); 1643 if (rc) 1644 goto err_reset; 1645 1646 rc = pci_register_driver(&efx_pci_driver); 1647 if (rc < 0) 1648 goto err_pci; 1649 1650 return 0; 1651 1652 err_pci: 1653 efx_destroy_reset_workqueue(); 1654 err_reset: 1655 #ifdef CONFIG_SFC_SRIOV 1656 efx_fini_sriov(); 1657 err_sriov: 1658 #endif 1659 unregister_netdevice_notifier(&efx_netdev_notifier); 1660 err_notifier: 1661 return rc; 1662 } 1663 1664 static void __exit efx_exit_module(void) 1665 { 1666 printk(KERN_INFO "Solarflare NET driver unloading\n"); 1667 1668 pci_unregister_driver(&efx_pci_driver); 1669 efx_destroy_reset_workqueue(); 1670 #ifdef CONFIG_SFC_SRIOV 1671 efx_fini_sriov(); 1672 #endif 1673 unregister_netdevice_notifier(&efx_netdev_notifier); 1674 1675 } 1676 1677 module_init(efx_init_module); 1678 module_exit(efx_exit_module); 1679 1680 MODULE_AUTHOR("Solarflare Communications and " 1681 "Michael Brown <mbrown@fensystems.co.uk>"); 1682 MODULE_DESCRIPTION("Solarflare network driver"); 1683 MODULE_LICENSE("GPL"); 1684 MODULE_DEVICE_TABLE(pci, efx_pci_table); 1685 MODULE_VERSION(EFX_DRIVER_VERSION); 1686