1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/pci.h> 10 #include <linux/netdevice.h> 11 #include <linux/etherdevice.h> 12 #include <linux/delay.h> 13 #include <linux/notifier.h> 14 #include <linux/ip.h> 15 #include <linux/tcp.h> 16 #include <linux/in.h> 17 #include <linux/ethtool.h> 18 #include <linux/topology.h> 19 #include <linux/gfp.h> 20 #include <linux/aer.h> 21 #include <linux/interrupt.h> 22 #include "net_driver.h" 23 #include <net/gre.h> 24 #include <net/udp_tunnel.h> 25 #include "efx.h" 26 #include "efx_common.h" 27 #include "efx_channels.h" 28 #include "rx_common.h" 29 #include "tx_common.h" 30 #include "nic.h" 31 #include "io.h" 32 #include "selftest.h" 33 #include "sriov.h" 34 35 #include "mcdi.h" 36 #include "mcdi_pcol.h" 37 #include "workarounds.h" 38 39 /************************************************************************** 40 * 41 * Type name strings 42 * 43 ************************************************************************** 44 */ 45 46 /* UDP tunnel type names */ 47 static const char *const efx_udp_tunnel_type_names[] = { 48 [TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN] = "vxlan", 49 [TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE] = "geneve", 50 }; 51 52 void efx_get_udp_tunnel_type_name(u16 type, char *buf, size_t buflen) 53 { 54 if (type < ARRAY_SIZE(efx_udp_tunnel_type_names) && 55 efx_udp_tunnel_type_names[type] != NULL) 56 snprintf(buf, buflen, "%s", efx_udp_tunnel_type_names[type]); 57 else 58 snprintf(buf, buflen, "type %d", type); 59 } 60 61 /************************************************************************** 62 * 63 * Configurable values 64 * 65 *************************************************************************/ 66 67 /* 68 * Use separate channels for TX and RX events 69 * 70 * Set this to 1 to use separate channels for TX and RX. It allows us 71 * to control interrupt affinity separately for TX and RX. 72 * 73 * This is only used in MSI-X interrupt mode 74 */ 75 bool efx_separate_tx_channels; 76 module_param(efx_separate_tx_channels, bool, 0444); 77 MODULE_PARM_DESC(efx_separate_tx_channels, 78 "Use separate channels for TX and RX"); 79 80 /* Initial interrupt moderation settings. They can be modified after 81 * module load with ethtool. 82 * 83 * The default for RX should strike a balance between increasing the 84 * round-trip latency and reducing overhead. 85 */ 86 static unsigned int rx_irq_mod_usec = 60; 87 88 /* Initial interrupt moderation settings. They can be modified after 89 * module load with ethtool. 90 * 91 * This default is chosen to ensure that a 10G link does not go idle 92 * while a TX queue is stopped after it has become full. A queue is 93 * restarted when it drops below half full. The time this takes (assuming 94 * worst case 3 descriptors per packet and 1024 descriptors) is 95 * 512 / 3 * 1.2 = 205 usec. 96 */ 97 static unsigned int tx_irq_mod_usec = 150; 98 99 static bool phy_flash_cfg; 100 module_param(phy_flash_cfg, bool, 0644); 101 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 102 103 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 104 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 105 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 106 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 107 module_param(debug, uint, 0); 108 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 109 110 /************************************************************************** 111 * 112 * Utility functions and prototypes 113 * 114 *************************************************************************/ 115 116 static const struct efx_channel_type efx_default_channel_type; 117 static void efx_remove_port(struct efx_nic *efx); 118 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog); 119 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp); 120 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, 121 u32 flags); 122 123 #define EFX_ASSERT_RESET_SERIALISED(efx) \ 124 do { \ 125 if ((efx->state == STATE_READY) || \ 126 (efx->state == STATE_RECOVERY) || \ 127 (efx->state == STATE_DISABLED)) \ 128 ASSERT_RTNL(); \ 129 } while (0) 130 131 /************************************************************************** 132 * 133 * Port handling 134 * 135 **************************************************************************/ 136 137 /* Equivalent to efx_link_set_advertising with all-zeroes, except does not 138 * force the Autoneg bit on. 139 */ 140 void efx_link_clear_advertising(struct efx_nic *efx) 141 { 142 bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS); 143 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); 144 } 145 146 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) 147 { 148 efx->wanted_fc = wanted_fc; 149 if (efx->link_advertising[0]) { 150 if (wanted_fc & EFX_FC_RX) 151 efx->link_advertising[0] |= (ADVERTISED_Pause | 152 ADVERTISED_Asym_Pause); 153 else 154 efx->link_advertising[0] &= ~(ADVERTISED_Pause | 155 ADVERTISED_Asym_Pause); 156 if (wanted_fc & EFX_FC_TX) 157 efx->link_advertising[0] ^= ADVERTISED_Asym_Pause; 158 } 159 } 160 161 static void efx_fini_port(struct efx_nic *efx); 162 163 static int efx_probe_port(struct efx_nic *efx) 164 { 165 int rc; 166 167 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 168 169 if (phy_flash_cfg) 170 efx->phy_mode = PHY_MODE_SPECIAL; 171 172 /* Connect up MAC/PHY operations table */ 173 rc = efx->type->probe_port(efx); 174 if (rc) 175 return rc; 176 177 /* Initialise MAC address to permanent address */ 178 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); 179 180 return 0; 181 } 182 183 static int efx_init_port(struct efx_nic *efx) 184 { 185 int rc; 186 187 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 188 189 mutex_lock(&efx->mac_lock); 190 191 rc = efx->phy_op->init(efx); 192 if (rc) 193 goto fail1; 194 195 efx->port_initialized = true; 196 197 /* Reconfigure the MAC before creating dma queues (required for 198 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ 199 efx_mac_reconfigure(efx); 200 201 /* Ensure the PHY advertises the correct flow control settings */ 202 rc = efx->phy_op->reconfigure(efx); 203 if (rc && rc != -EPERM) 204 goto fail2; 205 206 mutex_unlock(&efx->mac_lock); 207 return 0; 208 209 fail2: 210 efx->phy_op->fini(efx); 211 fail1: 212 mutex_unlock(&efx->mac_lock); 213 return rc; 214 } 215 216 static void efx_fini_port(struct efx_nic *efx) 217 { 218 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 219 220 if (!efx->port_initialized) 221 return; 222 223 efx->phy_op->fini(efx); 224 efx->port_initialized = false; 225 226 efx->link_state.up = false; 227 efx_link_status_changed(efx); 228 } 229 230 static void efx_remove_port(struct efx_nic *efx) 231 { 232 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 233 234 efx->type->remove_port(efx); 235 } 236 237 /************************************************************************** 238 * 239 * NIC handling 240 * 241 **************************************************************************/ 242 243 static LIST_HEAD(efx_primary_list); 244 static LIST_HEAD(efx_unassociated_list); 245 246 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right) 247 { 248 return left->type == right->type && 249 left->vpd_sn && right->vpd_sn && 250 !strcmp(left->vpd_sn, right->vpd_sn); 251 } 252 253 static void efx_associate(struct efx_nic *efx) 254 { 255 struct efx_nic *other, *next; 256 257 if (efx->primary == efx) { 258 /* Adding primary function; look for secondaries */ 259 260 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 261 list_add_tail(&efx->node, &efx_primary_list); 262 263 list_for_each_entry_safe(other, next, &efx_unassociated_list, 264 node) { 265 if (efx_same_controller(efx, other)) { 266 list_del(&other->node); 267 netif_dbg(other, probe, other->net_dev, 268 "moving to secondary list of %s %s\n", 269 pci_name(efx->pci_dev), 270 efx->net_dev->name); 271 list_add_tail(&other->node, 272 &efx->secondary_list); 273 other->primary = efx; 274 } 275 } 276 } else { 277 /* Adding secondary function; look for primary */ 278 279 list_for_each_entry(other, &efx_primary_list, node) { 280 if (efx_same_controller(efx, other)) { 281 netif_dbg(efx, probe, efx->net_dev, 282 "adding to secondary list of %s %s\n", 283 pci_name(other->pci_dev), 284 other->net_dev->name); 285 list_add_tail(&efx->node, 286 &other->secondary_list); 287 efx->primary = other; 288 return; 289 } 290 } 291 292 netif_dbg(efx, probe, efx->net_dev, 293 "adding to unassociated list\n"); 294 list_add_tail(&efx->node, &efx_unassociated_list); 295 } 296 } 297 298 static void efx_dissociate(struct efx_nic *efx) 299 { 300 struct efx_nic *other, *next; 301 302 list_del(&efx->node); 303 efx->primary = NULL; 304 305 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 306 list_del(&other->node); 307 netif_dbg(other, probe, other->net_dev, 308 "moving to unassociated list\n"); 309 list_add_tail(&other->node, &efx_unassociated_list); 310 other->primary = NULL; 311 } 312 } 313 314 static int efx_probe_nic(struct efx_nic *efx) 315 { 316 int rc; 317 318 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 319 320 /* Carry out hardware-type specific initialisation */ 321 rc = efx->type->probe(efx); 322 if (rc) 323 return rc; 324 325 do { 326 if (!efx->max_channels || !efx->max_tx_channels) { 327 netif_err(efx, drv, efx->net_dev, 328 "Insufficient resources to allocate" 329 " any channels\n"); 330 rc = -ENOSPC; 331 goto fail1; 332 } 333 334 /* Determine the number of channels and queues by trying 335 * to hook in MSI-X interrupts. 336 */ 337 rc = efx_probe_interrupts(efx); 338 if (rc) 339 goto fail1; 340 341 rc = efx_set_channels(efx); 342 if (rc) 343 goto fail1; 344 345 /* dimension_resources can fail with EAGAIN */ 346 rc = efx->type->dimension_resources(efx); 347 if (rc != 0 && rc != -EAGAIN) 348 goto fail2; 349 350 if (rc == -EAGAIN) 351 /* try again with new max_channels */ 352 efx_remove_interrupts(efx); 353 354 } while (rc == -EAGAIN); 355 356 if (efx->n_channels > 1) 357 netdev_rss_key_fill(efx->rss_context.rx_hash_key, 358 sizeof(efx->rss_context.rx_hash_key)); 359 efx_set_default_rx_indir_table(efx, &efx->rss_context); 360 361 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); 362 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); 363 364 /* Initialise the interrupt moderation settings */ 365 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); 366 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 367 true); 368 369 return 0; 370 371 fail2: 372 efx_remove_interrupts(efx); 373 fail1: 374 efx->type->remove(efx); 375 return rc; 376 } 377 378 static void efx_remove_nic(struct efx_nic *efx) 379 { 380 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 381 382 efx_remove_interrupts(efx); 383 efx->type->remove(efx); 384 } 385 386 /************************************************************************** 387 * 388 * NIC startup/shutdown 389 * 390 *************************************************************************/ 391 392 static int efx_probe_all(struct efx_nic *efx) 393 { 394 int rc; 395 396 rc = efx_probe_nic(efx); 397 if (rc) { 398 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 399 goto fail1; 400 } 401 402 rc = efx_probe_port(efx); 403 if (rc) { 404 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 405 goto fail2; 406 } 407 408 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); 409 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { 410 rc = -EINVAL; 411 goto fail3; 412 } 413 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; 414 415 #ifdef CONFIG_SFC_SRIOV 416 rc = efx->type->vswitching_probe(efx); 417 if (rc) /* not fatal; the PF will still work fine */ 418 netif_warn(efx, probe, efx->net_dev, 419 "failed to setup vswitching rc=%d;" 420 " VFs may not function\n", rc); 421 #endif 422 423 rc = efx_probe_filters(efx); 424 if (rc) { 425 netif_err(efx, probe, efx->net_dev, 426 "failed to create filter tables\n"); 427 goto fail4; 428 } 429 430 rc = efx_probe_channels(efx); 431 if (rc) 432 goto fail5; 433 434 return 0; 435 436 fail5: 437 efx_remove_filters(efx); 438 fail4: 439 #ifdef CONFIG_SFC_SRIOV 440 efx->type->vswitching_remove(efx); 441 #endif 442 fail3: 443 efx_remove_port(efx); 444 fail2: 445 efx_remove_nic(efx); 446 fail1: 447 return rc; 448 } 449 450 static void efx_remove_all(struct efx_nic *efx) 451 { 452 rtnl_lock(); 453 efx_xdp_setup_prog(efx, NULL); 454 rtnl_unlock(); 455 456 efx_remove_channels(efx); 457 efx_remove_filters(efx); 458 #ifdef CONFIG_SFC_SRIOV 459 efx->type->vswitching_remove(efx); 460 #endif 461 efx_remove_port(efx); 462 efx_remove_nic(efx); 463 } 464 465 /************************************************************************** 466 * 467 * Interrupt moderation 468 * 469 **************************************************************************/ 470 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs) 471 { 472 if (usecs == 0) 473 return 0; 474 if (usecs * 1000 < efx->timer_quantum_ns) 475 return 1; /* never round down to 0 */ 476 return usecs * 1000 / efx->timer_quantum_ns; 477 } 478 479 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks) 480 { 481 /* We must round up when converting ticks to microseconds 482 * because we round down when converting the other way. 483 */ 484 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000); 485 } 486 487 /* Set interrupt moderation parameters */ 488 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, 489 unsigned int rx_usecs, bool rx_adaptive, 490 bool rx_may_override_tx) 491 { 492 struct efx_channel *channel; 493 unsigned int timer_max_us; 494 495 EFX_ASSERT_RESET_SERIALISED(efx); 496 497 timer_max_us = efx->timer_max_ns / 1000; 498 499 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) 500 return -EINVAL; 501 502 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && 503 !rx_may_override_tx) { 504 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 505 "RX and TX IRQ moderation must be equal\n"); 506 return -EINVAL; 507 } 508 509 efx->irq_rx_adaptive = rx_adaptive; 510 efx->irq_rx_moderation_us = rx_usecs; 511 efx_for_each_channel(channel, efx) { 512 if (efx_channel_has_rx_queue(channel)) 513 channel->irq_moderation_us = rx_usecs; 514 else if (efx_channel_has_tx_queues(channel)) 515 channel->irq_moderation_us = tx_usecs; 516 else if (efx_channel_is_xdp_tx(channel)) 517 channel->irq_moderation_us = tx_usecs; 518 } 519 520 return 0; 521 } 522 523 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, 524 unsigned int *rx_usecs, bool *rx_adaptive) 525 { 526 *rx_adaptive = efx->irq_rx_adaptive; 527 *rx_usecs = efx->irq_rx_moderation_us; 528 529 /* If channels are shared between RX and TX, so is IRQ 530 * moderation. Otherwise, IRQ moderation is the same for all 531 * TX channels and is not adaptive. 532 */ 533 if (efx->tx_channel_offset == 0) { 534 *tx_usecs = *rx_usecs; 535 } else { 536 struct efx_channel *tx_channel; 537 538 tx_channel = efx->channel[efx->tx_channel_offset]; 539 *tx_usecs = tx_channel->irq_moderation_us; 540 } 541 } 542 543 /************************************************************************** 544 * 545 * ioctls 546 * 547 *************************************************************************/ 548 549 /* Net device ioctl 550 * Context: process, rtnl_lock() held. 551 */ 552 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 553 { 554 struct efx_nic *efx = netdev_priv(net_dev); 555 struct mii_ioctl_data *data = if_mii(ifr); 556 557 if (cmd == SIOCSHWTSTAMP) 558 return efx_ptp_set_ts_config(efx, ifr); 559 if (cmd == SIOCGHWTSTAMP) 560 return efx_ptp_get_ts_config(efx, ifr); 561 562 /* Convert phy_id from older PRTAD/DEVAD format */ 563 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 564 (data->phy_id & 0xfc00) == 0x0400) 565 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 566 567 return mdio_mii_ioctl(&efx->mdio, data, cmd); 568 } 569 570 /************************************************************************** 571 * 572 * Kernel net device interface 573 * 574 *************************************************************************/ 575 576 /* Context: process, rtnl_lock() held. */ 577 int efx_net_open(struct net_device *net_dev) 578 { 579 struct efx_nic *efx = netdev_priv(net_dev); 580 int rc; 581 582 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 583 raw_smp_processor_id()); 584 585 rc = efx_check_disabled(efx); 586 if (rc) 587 return rc; 588 if (efx->phy_mode & PHY_MODE_SPECIAL) 589 return -EBUSY; 590 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) 591 return -EIO; 592 593 /* Notify the kernel of the link state polled during driver load, 594 * before the monitor starts running */ 595 efx_link_status_changed(efx); 596 597 efx_start_all(efx); 598 if (efx->state == STATE_DISABLED || efx->reset_pending) 599 netif_device_detach(efx->net_dev); 600 efx_selftest_async_start(efx); 601 return 0; 602 } 603 604 /* Context: process, rtnl_lock() held. 605 * Note that the kernel will ignore our return code; this method 606 * should really be a void. 607 */ 608 int efx_net_stop(struct net_device *net_dev) 609 { 610 struct efx_nic *efx = netdev_priv(net_dev); 611 612 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 613 raw_smp_processor_id()); 614 615 /* Stop the device and flush all the channels */ 616 efx_stop_all(efx); 617 618 return 0; 619 } 620 621 /* Context: netif_tx_lock held, BHs disabled. */ 622 static void efx_watchdog(struct net_device *net_dev, unsigned int txqueue) 623 { 624 struct efx_nic *efx = netdev_priv(net_dev); 625 626 netif_err(efx, tx_err, efx->net_dev, 627 "TX stuck with port_enabled=%d: resetting channels\n", 628 efx->port_enabled); 629 630 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 631 } 632 633 static int efx_set_mac_address(struct net_device *net_dev, void *data) 634 { 635 struct efx_nic *efx = netdev_priv(net_dev); 636 struct sockaddr *addr = data; 637 u8 *new_addr = addr->sa_data; 638 u8 old_addr[6]; 639 int rc; 640 641 if (!is_valid_ether_addr(new_addr)) { 642 netif_err(efx, drv, efx->net_dev, 643 "invalid ethernet MAC address requested: %pM\n", 644 new_addr); 645 return -EADDRNOTAVAIL; 646 } 647 648 /* save old address */ 649 ether_addr_copy(old_addr, net_dev->dev_addr); 650 ether_addr_copy(net_dev->dev_addr, new_addr); 651 if (efx->type->set_mac_address) { 652 rc = efx->type->set_mac_address(efx); 653 if (rc) { 654 ether_addr_copy(net_dev->dev_addr, old_addr); 655 return rc; 656 } 657 } 658 659 /* Reconfigure the MAC */ 660 mutex_lock(&efx->mac_lock); 661 efx_mac_reconfigure(efx); 662 mutex_unlock(&efx->mac_lock); 663 664 return 0; 665 } 666 667 /* Context: netif_addr_lock held, BHs disabled. */ 668 static void efx_set_rx_mode(struct net_device *net_dev) 669 { 670 struct efx_nic *efx = netdev_priv(net_dev); 671 672 if (efx->port_enabled) 673 queue_work(efx->workqueue, &efx->mac_work); 674 /* Otherwise efx_start_port() will do this */ 675 } 676 677 static int efx_set_features(struct net_device *net_dev, netdev_features_t data) 678 { 679 struct efx_nic *efx = netdev_priv(net_dev); 680 int rc; 681 682 /* If disabling RX n-tuple filtering, clear existing filters */ 683 if (net_dev->features & ~data & NETIF_F_NTUPLE) { 684 rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); 685 if (rc) 686 return rc; 687 } 688 689 /* If Rx VLAN filter is changed, update filters via mac_reconfigure. 690 * If rx-fcs is changed, mac_reconfigure updates that too. 691 */ 692 if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER | 693 NETIF_F_RXFCS)) { 694 /* efx_set_rx_mode() will schedule MAC work to update filters 695 * when a new features are finally set in net_dev. 696 */ 697 efx_set_rx_mode(net_dev); 698 } 699 700 return 0; 701 } 702 703 static int efx_get_phys_port_id(struct net_device *net_dev, 704 struct netdev_phys_item_id *ppid) 705 { 706 struct efx_nic *efx = netdev_priv(net_dev); 707 708 if (efx->type->get_phys_port_id) 709 return efx->type->get_phys_port_id(efx, ppid); 710 else 711 return -EOPNOTSUPP; 712 } 713 714 static int efx_get_phys_port_name(struct net_device *net_dev, 715 char *name, size_t len) 716 { 717 struct efx_nic *efx = netdev_priv(net_dev); 718 719 if (snprintf(name, len, "p%u", efx->port_num) >= len) 720 return -EINVAL; 721 return 0; 722 } 723 724 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid) 725 { 726 struct efx_nic *efx = netdev_priv(net_dev); 727 728 if (efx->type->vlan_rx_add_vid) 729 return efx->type->vlan_rx_add_vid(efx, proto, vid); 730 else 731 return -EOPNOTSUPP; 732 } 733 734 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid) 735 { 736 struct efx_nic *efx = netdev_priv(net_dev); 737 738 if (efx->type->vlan_rx_kill_vid) 739 return efx->type->vlan_rx_kill_vid(efx, proto, vid); 740 else 741 return -EOPNOTSUPP; 742 } 743 744 static int efx_udp_tunnel_type_map(enum udp_parsable_tunnel_type in) 745 { 746 switch (in) { 747 case UDP_TUNNEL_TYPE_VXLAN: 748 return TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN; 749 case UDP_TUNNEL_TYPE_GENEVE: 750 return TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE; 751 default: 752 return -1; 753 } 754 } 755 756 static void efx_udp_tunnel_add(struct net_device *dev, struct udp_tunnel_info *ti) 757 { 758 struct efx_nic *efx = netdev_priv(dev); 759 struct efx_udp_tunnel tnl; 760 int efx_tunnel_type; 761 762 efx_tunnel_type = efx_udp_tunnel_type_map(ti->type); 763 if (efx_tunnel_type < 0) 764 return; 765 766 tnl.type = (u16)efx_tunnel_type; 767 tnl.port = ti->port; 768 769 if (efx->type->udp_tnl_add_port) 770 (void)efx->type->udp_tnl_add_port(efx, tnl); 771 } 772 773 static void efx_udp_tunnel_del(struct net_device *dev, struct udp_tunnel_info *ti) 774 { 775 struct efx_nic *efx = netdev_priv(dev); 776 struct efx_udp_tunnel tnl; 777 int efx_tunnel_type; 778 779 efx_tunnel_type = efx_udp_tunnel_type_map(ti->type); 780 if (efx_tunnel_type < 0) 781 return; 782 783 tnl.type = (u16)efx_tunnel_type; 784 tnl.port = ti->port; 785 786 if (efx->type->udp_tnl_del_port) 787 (void)efx->type->udp_tnl_del_port(efx, tnl); 788 } 789 790 static const struct net_device_ops efx_netdev_ops = { 791 .ndo_open = efx_net_open, 792 .ndo_stop = efx_net_stop, 793 .ndo_get_stats64 = efx_net_stats, 794 .ndo_tx_timeout = efx_watchdog, 795 .ndo_start_xmit = efx_hard_start_xmit, 796 .ndo_validate_addr = eth_validate_addr, 797 .ndo_do_ioctl = efx_ioctl, 798 .ndo_change_mtu = efx_change_mtu, 799 .ndo_set_mac_address = efx_set_mac_address, 800 .ndo_set_rx_mode = efx_set_rx_mode, 801 .ndo_set_features = efx_set_features, 802 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid, 803 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid, 804 #ifdef CONFIG_SFC_SRIOV 805 .ndo_set_vf_mac = efx_sriov_set_vf_mac, 806 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, 807 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, 808 .ndo_get_vf_config = efx_sriov_get_vf_config, 809 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state, 810 #endif 811 .ndo_get_phys_port_id = efx_get_phys_port_id, 812 .ndo_get_phys_port_name = efx_get_phys_port_name, 813 .ndo_setup_tc = efx_setup_tc, 814 #ifdef CONFIG_RFS_ACCEL 815 .ndo_rx_flow_steer = efx_filter_rfs, 816 #endif 817 .ndo_udp_tunnel_add = efx_udp_tunnel_add, 818 .ndo_udp_tunnel_del = efx_udp_tunnel_del, 819 .ndo_xdp_xmit = efx_xdp_xmit, 820 .ndo_bpf = efx_xdp 821 }; 822 823 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog) 824 { 825 struct bpf_prog *old_prog; 826 827 if (efx->xdp_rxq_info_failed) { 828 netif_err(efx, drv, efx->net_dev, 829 "Unable to bind XDP program due to previous failure of rxq_info\n"); 830 return -EINVAL; 831 } 832 833 if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) { 834 netif_err(efx, drv, efx->net_dev, 835 "Unable to configure XDP with MTU of %d (max: %d)\n", 836 efx->net_dev->mtu, efx_xdp_max_mtu(efx)); 837 return -EINVAL; 838 } 839 840 old_prog = rtnl_dereference(efx->xdp_prog); 841 rcu_assign_pointer(efx->xdp_prog, prog); 842 /* Release the reference that was originally passed by the caller. */ 843 if (old_prog) 844 bpf_prog_put(old_prog); 845 846 return 0; 847 } 848 849 /* Context: process, rtnl_lock() held. */ 850 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp) 851 { 852 struct efx_nic *efx = netdev_priv(dev); 853 struct bpf_prog *xdp_prog; 854 855 switch (xdp->command) { 856 case XDP_SETUP_PROG: 857 return efx_xdp_setup_prog(efx, xdp->prog); 858 case XDP_QUERY_PROG: 859 xdp_prog = rtnl_dereference(efx->xdp_prog); 860 xdp->prog_id = xdp_prog ? xdp_prog->aux->id : 0; 861 return 0; 862 default: 863 return -EINVAL; 864 } 865 } 866 867 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, 868 u32 flags) 869 { 870 struct efx_nic *efx = netdev_priv(dev); 871 872 if (!netif_running(dev)) 873 return -EINVAL; 874 875 return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH); 876 } 877 878 static void efx_update_name(struct efx_nic *efx) 879 { 880 strcpy(efx->name, efx->net_dev->name); 881 efx_mtd_rename(efx); 882 efx_set_channel_names(efx); 883 } 884 885 static int efx_netdev_event(struct notifier_block *this, 886 unsigned long event, void *ptr) 887 { 888 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 889 890 if ((net_dev->netdev_ops == &efx_netdev_ops) && 891 event == NETDEV_CHANGENAME) 892 efx_update_name(netdev_priv(net_dev)); 893 894 return NOTIFY_DONE; 895 } 896 897 static struct notifier_block efx_netdev_notifier = { 898 .notifier_call = efx_netdev_event, 899 }; 900 901 static ssize_t 902 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) 903 { 904 struct efx_nic *efx = dev_get_drvdata(dev); 905 return sprintf(buf, "%d\n", efx->phy_type); 906 } 907 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); 908 909 static int efx_register_netdev(struct efx_nic *efx) 910 { 911 struct net_device *net_dev = efx->net_dev; 912 struct efx_channel *channel; 913 int rc; 914 915 net_dev->watchdog_timeo = 5 * HZ; 916 net_dev->irq = efx->pci_dev->irq; 917 net_dev->netdev_ops = &efx_netdev_ops; 918 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) 919 net_dev->priv_flags |= IFF_UNICAST_FLT; 920 net_dev->ethtool_ops = &efx_ethtool_ops; 921 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS; 922 net_dev->min_mtu = EFX_MIN_MTU; 923 net_dev->max_mtu = EFX_MAX_MTU; 924 925 rtnl_lock(); 926 927 /* Enable resets to be scheduled and check whether any were 928 * already requested. If so, the NIC is probably hosed so we 929 * abort. 930 */ 931 efx->state = STATE_READY; 932 smp_mb(); /* ensure we change state before checking reset_pending */ 933 if (efx->reset_pending) { 934 netif_err(efx, probe, efx->net_dev, 935 "aborting probe due to scheduled reset\n"); 936 rc = -EIO; 937 goto fail_locked; 938 } 939 940 rc = dev_alloc_name(net_dev, net_dev->name); 941 if (rc < 0) 942 goto fail_locked; 943 efx_update_name(efx); 944 945 /* Always start with carrier off; PHY events will detect the link */ 946 netif_carrier_off(net_dev); 947 948 rc = register_netdevice(net_dev); 949 if (rc) 950 goto fail_locked; 951 952 efx_for_each_channel(channel, efx) { 953 struct efx_tx_queue *tx_queue; 954 efx_for_each_channel_tx_queue(tx_queue, channel) 955 efx_init_tx_queue_core_txq(tx_queue); 956 } 957 958 efx_associate(efx); 959 960 rtnl_unlock(); 961 962 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 963 if (rc) { 964 netif_err(efx, drv, efx->net_dev, 965 "failed to init net dev attributes\n"); 966 goto fail_registered; 967 } 968 969 efx_init_mcdi_logging(efx); 970 971 return 0; 972 973 fail_registered: 974 rtnl_lock(); 975 efx_dissociate(efx); 976 unregister_netdevice(net_dev); 977 fail_locked: 978 efx->state = STATE_UNINIT; 979 rtnl_unlock(); 980 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 981 return rc; 982 } 983 984 static void efx_unregister_netdev(struct efx_nic *efx) 985 { 986 if (!efx->net_dev) 987 return; 988 989 BUG_ON(netdev_priv(efx->net_dev) != efx); 990 991 if (efx_dev_registered(efx)) { 992 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 993 efx_fini_mcdi_logging(efx); 994 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 995 unregister_netdev(efx->net_dev); 996 } 997 } 998 999 /************************************************************************** 1000 * 1001 * List of NICs we support 1002 * 1003 **************************************************************************/ 1004 1005 /* PCI device ID table */ 1006 static const struct pci_device_id efx_pci_table[] = { 1007 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ 1008 .driver_data = (unsigned long) &siena_a0_nic_type}, 1009 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ 1010 .driver_data = (unsigned long) &siena_a0_nic_type}, 1011 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */ 1012 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 1013 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */ 1014 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 1015 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */ 1016 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 1017 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */ 1018 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 1019 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */ 1020 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 1021 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */ 1022 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 1023 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */ 1024 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 1025 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */ 1026 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 1027 {0} /* end of list */ 1028 }; 1029 1030 /************************************************************************** 1031 * 1032 * Data housekeeping 1033 * 1034 **************************************************************************/ 1035 1036 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats) 1037 { 1038 u64 n_rx_nodesc_trunc = 0; 1039 struct efx_channel *channel; 1040 1041 efx_for_each_channel(channel, efx) 1042 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; 1043 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; 1044 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); 1045 } 1046 1047 /************************************************************************** 1048 * 1049 * PCI interface 1050 * 1051 **************************************************************************/ 1052 1053 /* Main body of final NIC shutdown code 1054 * This is called only at module unload (or hotplug removal). 1055 */ 1056 static void efx_pci_remove_main(struct efx_nic *efx) 1057 { 1058 /* Flush reset_work. It can no longer be scheduled since we 1059 * are not READY. 1060 */ 1061 BUG_ON(efx->state == STATE_READY); 1062 efx_flush_reset_workqueue(efx); 1063 1064 efx_disable_interrupts(efx); 1065 efx_clear_interrupt_affinity(efx); 1066 efx_nic_fini_interrupt(efx); 1067 efx_fini_port(efx); 1068 efx->type->fini(efx); 1069 efx_fini_napi(efx); 1070 efx_remove_all(efx); 1071 } 1072 1073 /* Final NIC shutdown 1074 * This is called only at module unload (or hotplug removal). A PF can call 1075 * this on its VFs to ensure they are unbound first. 1076 */ 1077 static void efx_pci_remove(struct pci_dev *pci_dev) 1078 { 1079 struct efx_nic *efx; 1080 1081 efx = pci_get_drvdata(pci_dev); 1082 if (!efx) 1083 return; 1084 1085 /* Mark the NIC as fini, then stop the interface */ 1086 rtnl_lock(); 1087 efx_dissociate(efx); 1088 dev_close(efx->net_dev); 1089 efx_disable_interrupts(efx); 1090 efx->state = STATE_UNINIT; 1091 rtnl_unlock(); 1092 1093 if (efx->type->sriov_fini) 1094 efx->type->sriov_fini(efx); 1095 1096 efx_unregister_netdev(efx); 1097 1098 efx_mtd_remove(efx); 1099 1100 efx_pci_remove_main(efx); 1101 1102 efx_fini_io(efx, efx->type->mem_bar(efx)); 1103 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 1104 1105 efx_fini_struct(efx); 1106 free_netdev(efx->net_dev); 1107 1108 pci_disable_pcie_error_reporting(pci_dev); 1109 }; 1110 1111 /* NIC VPD information 1112 * Called during probe to display the part number of the 1113 * installed NIC. VPD is potentially very large but this should 1114 * always appear within the first 512 bytes. 1115 */ 1116 #define SFC_VPD_LEN 512 1117 static void efx_probe_vpd_strings(struct efx_nic *efx) 1118 { 1119 struct pci_dev *dev = efx->pci_dev; 1120 char vpd_data[SFC_VPD_LEN]; 1121 ssize_t vpd_size; 1122 int ro_start, ro_size, i, j; 1123 1124 /* Get the vpd data from the device */ 1125 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); 1126 if (vpd_size <= 0) { 1127 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); 1128 return; 1129 } 1130 1131 /* Get the Read only section */ 1132 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 1133 if (ro_start < 0) { 1134 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); 1135 return; 1136 } 1137 1138 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 1139 j = ro_size; 1140 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1141 if (i + j > vpd_size) 1142 j = vpd_size - i; 1143 1144 /* Get the Part number */ 1145 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); 1146 if (i < 0) { 1147 netif_err(efx, drv, efx->net_dev, "Part number not found\n"); 1148 return; 1149 } 1150 1151 j = pci_vpd_info_field_size(&vpd_data[i]); 1152 i += PCI_VPD_INFO_FLD_HDR_SIZE; 1153 if (i + j > vpd_size) { 1154 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); 1155 return; 1156 } 1157 1158 netif_info(efx, drv, efx->net_dev, 1159 "Part Number : %.*s\n", j, &vpd_data[i]); 1160 1161 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1162 j = ro_size; 1163 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); 1164 if (i < 0) { 1165 netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); 1166 return; 1167 } 1168 1169 j = pci_vpd_info_field_size(&vpd_data[i]); 1170 i += PCI_VPD_INFO_FLD_HDR_SIZE; 1171 if (i + j > vpd_size) { 1172 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); 1173 return; 1174 } 1175 1176 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); 1177 if (!efx->vpd_sn) 1178 return; 1179 1180 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); 1181 } 1182 1183 1184 /* Main body of NIC initialisation 1185 * This is called at module load (or hotplug insertion, theoretically). 1186 */ 1187 static int efx_pci_probe_main(struct efx_nic *efx) 1188 { 1189 int rc; 1190 1191 /* Do start-of-day initialisation */ 1192 rc = efx_probe_all(efx); 1193 if (rc) 1194 goto fail1; 1195 1196 efx_init_napi(efx); 1197 1198 down_write(&efx->filter_sem); 1199 rc = efx->type->init(efx); 1200 up_write(&efx->filter_sem); 1201 if (rc) { 1202 netif_err(efx, probe, efx->net_dev, 1203 "failed to initialise NIC\n"); 1204 goto fail3; 1205 } 1206 1207 rc = efx_init_port(efx); 1208 if (rc) { 1209 netif_err(efx, probe, efx->net_dev, 1210 "failed to initialise port\n"); 1211 goto fail4; 1212 } 1213 1214 rc = efx_nic_init_interrupt(efx); 1215 if (rc) 1216 goto fail5; 1217 1218 efx_set_interrupt_affinity(efx); 1219 rc = efx_enable_interrupts(efx); 1220 if (rc) 1221 goto fail6; 1222 1223 return 0; 1224 1225 fail6: 1226 efx_clear_interrupt_affinity(efx); 1227 efx_nic_fini_interrupt(efx); 1228 fail5: 1229 efx_fini_port(efx); 1230 fail4: 1231 efx->type->fini(efx); 1232 fail3: 1233 efx_fini_napi(efx); 1234 efx_remove_all(efx); 1235 fail1: 1236 return rc; 1237 } 1238 1239 static int efx_pci_probe_post_io(struct efx_nic *efx) 1240 { 1241 struct net_device *net_dev = efx->net_dev; 1242 int rc = efx_pci_probe_main(efx); 1243 1244 if (rc) 1245 return rc; 1246 1247 if (efx->type->sriov_init) { 1248 rc = efx->type->sriov_init(efx); 1249 if (rc) 1250 netif_err(efx, probe, efx->net_dev, 1251 "SR-IOV can't be enabled rc %d\n", rc); 1252 } 1253 1254 /* Determine netdevice features */ 1255 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 1256 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL); 1257 if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM)) 1258 net_dev->features |= NETIF_F_TSO6; 1259 /* Check whether device supports TSO */ 1260 if (!efx->type->tso_versions || !efx->type->tso_versions(efx)) 1261 net_dev->features &= ~NETIF_F_ALL_TSO; 1262 /* Mask for features that also apply to VLAN devices */ 1263 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | 1264 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | 1265 NETIF_F_RXCSUM); 1266 1267 net_dev->hw_features |= net_dev->features & ~efx->fixed_features; 1268 1269 /* Disable receiving frames with bad FCS, by default. */ 1270 net_dev->features &= ~NETIF_F_RXALL; 1271 1272 /* Disable VLAN filtering by default. It may be enforced if 1273 * the feature is fixed (i.e. VLAN filters are required to 1274 * receive VLAN tagged packets due to vPort restrictions). 1275 */ 1276 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 1277 net_dev->features |= efx->fixed_features; 1278 1279 rc = efx_register_netdev(efx); 1280 if (!rc) 1281 return 0; 1282 1283 efx_pci_remove_main(efx); 1284 return rc; 1285 } 1286 1287 /* NIC initialisation 1288 * 1289 * This is called at module load (or hotplug insertion, 1290 * theoretically). It sets up PCI mappings, resets the NIC, 1291 * sets up and registers the network devices with the kernel and hooks 1292 * the interrupt service routine. It does not prepare the device for 1293 * transmission; this is left to the first time one of the network 1294 * interfaces is brought up (i.e. efx_net_open). 1295 */ 1296 static int efx_pci_probe(struct pci_dev *pci_dev, 1297 const struct pci_device_id *entry) 1298 { 1299 struct net_device *net_dev; 1300 struct efx_nic *efx; 1301 int rc; 1302 1303 /* Allocate and initialise a struct net_device and struct efx_nic */ 1304 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, 1305 EFX_MAX_RX_QUEUES); 1306 if (!net_dev) 1307 return -ENOMEM; 1308 efx = netdev_priv(net_dev); 1309 efx->type = (const struct efx_nic_type *) entry->driver_data; 1310 efx->fixed_features |= NETIF_F_HIGHDMA; 1311 1312 pci_set_drvdata(pci_dev, efx); 1313 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 1314 rc = efx_init_struct(efx, pci_dev, net_dev); 1315 if (rc) 1316 goto fail1; 1317 1318 netif_info(efx, probe, efx->net_dev, 1319 "Solarflare NIC detected\n"); 1320 1321 if (!efx->type->is_vf) 1322 efx_probe_vpd_strings(efx); 1323 1324 /* Set up basic I/O (BAR mappings etc) */ 1325 rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask, 1326 efx->type->mem_map_size(efx)); 1327 if (rc) 1328 goto fail2; 1329 1330 rc = efx_pci_probe_post_io(efx); 1331 if (rc) { 1332 /* On failure, retry once immediately. 1333 * If we aborted probe due to a scheduled reset, dismiss it. 1334 */ 1335 efx->reset_pending = 0; 1336 rc = efx_pci_probe_post_io(efx); 1337 if (rc) { 1338 /* On another failure, retry once more 1339 * after a 50-305ms delay. 1340 */ 1341 unsigned char r; 1342 1343 get_random_bytes(&r, 1); 1344 msleep((unsigned int)r + 50); 1345 efx->reset_pending = 0; 1346 rc = efx_pci_probe_post_io(efx); 1347 } 1348 } 1349 if (rc) 1350 goto fail3; 1351 1352 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 1353 1354 /* Try to create MTDs, but allow this to fail */ 1355 rtnl_lock(); 1356 rc = efx_mtd_probe(efx); 1357 rtnl_unlock(); 1358 if (rc && rc != -EPERM) 1359 netif_warn(efx, probe, efx->net_dev, 1360 "failed to create MTDs (%d)\n", rc); 1361 1362 (void)pci_enable_pcie_error_reporting(pci_dev); 1363 1364 if (efx->type->udp_tnl_push_ports) 1365 efx->type->udp_tnl_push_ports(efx); 1366 1367 return 0; 1368 1369 fail3: 1370 efx_fini_io(efx, efx->type->mem_bar(efx)); 1371 fail2: 1372 efx_fini_struct(efx); 1373 fail1: 1374 WARN_ON(rc > 0); 1375 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 1376 free_netdev(net_dev); 1377 return rc; 1378 } 1379 1380 /* efx_pci_sriov_configure returns the actual number of Virtual Functions 1381 * enabled on success 1382 */ 1383 #ifdef CONFIG_SFC_SRIOV 1384 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 1385 { 1386 int rc; 1387 struct efx_nic *efx = pci_get_drvdata(dev); 1388 1389 if (efx->type->sriov_configure) { 1390 rc = efx->type->sriov_configure(efx, num_vfs); 1391 if (rc) 1392 return rc; 1393 else 1394 return num_vfs; 1395 } else 1396 return -EOPNOTSUPP; 1397 } 1398 #endif 1399 1400 static int efx_pm_freeze(struct device *dev) 1401 { 1402 struct efx_nic *efx = dev_get_drvdata(dev); 1403 1404 rtnl_lock(); 1405 1406 if (efx->state != STATE_DISABLED) { 1407 efx->state = STATE_UNINIT; 1408 1409 efx_device_detach_sync(efx); 1410 1411 efx_stop_all(efx); 1412 efx_disable_interrupts(efx); 1413 } 1414 1415 rtnl_unlock(); 1416 1417 return 0; 1418 } 1419 1420 static int efx_pm_thaw(struct device *dev) 1421 { 1422 int rc; 1423 struct efx_nic *efx = dev_get_drvdata(dev); 1424 1425 rtnl_lock(); 1426 1427 if (efx->state != STATE_DISABLED) { 1428 rc = efx_enable_interrupts(efx); 1429 if (rc) 1430 goto fail; 1431 1432 mutex_lock(&efx->mac_lock); 1433 efx->phy_op->reconfigure(efx); 1434 mutex_unlock(&efx->mac_lock); 1435 1436 efx_start_all(efx); 1437 1438 efx_device_attach_if_not_resetting(efx); 1439 1440 efx->state = STATE_READY; 1441 1442 efx->type->resume_wol(efx); 1443 } 1444 1445 rtnl_unlock(); 1446 1447 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ 1448 efx_queue_reset_work(efx); 1449 1450 return 0; 1451 1452 fail: 1453 rtnl_unlock(); 1454 1455 return rc; 1456 } 1457 1458 static int efx_pm_poweroff(struct device *dev) 1459 { 1460 struct pci_dev *pci_dev = to_pci_dev(dev); 1461 struct efx_nic *efx = pci_get_drvdata(pci_dev); 1462 1463 efx->type->fini(efx); 1464 1465 efx->reset_pending = 0; 1466 1467 pci_save_state(pci_dev); 1468 return pci_set_power_state(pci_dev, PCI_D3hot); 1469 } 1470 1471 /* Used for both resume and restore */ 1472 static int efx_pm_resume(struct device *dev) 1473 { 1474 struct pci_dev *pci_dev = to_pci_dev(dev); 1475 struct efx_nic *efx = pci_get_drvdata(pci_dev); 1476 int rc; 1477 1478 rc = pci_set_power_state(pci_dev, PCI_D0); 1479 if (rc) 1480 return rc; 1481 pci_restore_state(pci_dev); 1482 rc = pci_enable_device(pci_dev); 1483 if (rc) 1484 return rc; 1485 pci_set_master(efx->pci_dev); 1486 rc = efx->type->reset(efx, RESET_TYPE_ALL); 1487 if (rc) 1488 return rc; 1489 down_write(&efx->filter_sem); 1490 rc = efx->type->init(efx); 1491 up_write(&efx->filter_sem); 1492 if (rc) 1493 return rc; 1494 rc = efx_pm_thaw(dev); 1495 return rc; 1496 } 1497 1498 static int efx_pm_suspend(struct device *dev) 1499 { 1500 int rc; 1501 1502 efx_pm_freeze(dev); 1503 rc = efx_pm_poweroff(dev); 1504 if (rc) 1505 efx_pm_resume(dev); 1506 return rc; 1507 } 1508 1509 static const struct dev_pm_ops efx_pm_ops = { 1510 .suspend = efx_pm_suspend, 1511 .resume = efx_pm_resume, 1512 .freeze = efx_pm_freeze, 1513 .thaw = efx_pm_thaw, 1514 .poweroff = efx_pm_poweroff, 1515 .restore = efx_pm_resume, 1516 }; 1517 1518 /* A PCI error affecting this device was detected. 1519 * At this point MMIO and DMA may be disabled. 1520 * Stop the software path and request a slot reset. 1521 */ 1522 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev, 1523 enum pci_channel_state state) 1524 { 1525 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 1526 struct efx_nic *efx = pci_get_drvdata(pdev); 1527 1528 if (state == pci_channel_io_perm_failure) 1529 return PCI_ERS_RESULT_DISCONNECT; 1530 1531 rtnl_lock(); 1532 1533 if (efx->state != STATE_DISABLED) { 1534 efx->state = STATE_RECOVERY; 1535 efx->reset_pending = 0; 1536 1537 efx_device_detach_sync(efx); 1538 1539 efx_stop_all(efx); 1540 efx_disable_interrupts(efx); 1541 1542 status = PCI_ERS_RESULT_NEED_RESET; 1543 } else { 1544 /* If the interface is disabled we don't want to do anything 1545 * with it. 1546 */ 1547 status = PCI_ERS_RESULT_RECOVERED; 1548 } 1549 1550 rtnl_unlock(); 1551 1552 pci_disable_device(pdev); 1553 1554 return status; 1555 } 1556 1557 /* Fake a successful reset, which will be performed later in efx_io_resume. */ 1558 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev) 1559 { 1560 struct efx_nic *efx = pci_get_drvdata(pdev); 1561 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 1562 1563 if (pci_enable_device(pdev)) { 1564 netif_err(efx, hw, efx->net_dev, 1565 "Cannot re-enable PCI device after reset.\n"); 1566 status = PCI_ERS_RESULT_DISCONNECT; 1567 } 1568 1569 return status; 1570 } 1571 1572 /* Perform the actual reset and resume I/O operations. */ 1573 static void efx_io_resume(struct pci_dev *pdev) 1574 { 1575 struct efx_nic *efx = pci_get_drvdata(pdev); 1576 int rc; 1577 1578 rtnl_lock(); 1579 1580 if (efx->state == STATE_DISABLED) 1581 goto out; 1582 1583 rc = efx_reset(efx, RESET_TYPE_ALL); 1584 if (rc) { 1585 netif_err(efx, hw, efx->net_dev, 1586 "efx_reset failed after PCI error (%d)\n", rc); 1587 } else { 1588 efx->state = STATE_READY; 1589 netif_dbg(efx, hw, efx->net_dev, 1590 "Done resetting and resuming IO after PCI error.\n"); 1591 } 1592 1593 out: 1594 rtnl_unlock(); 1595 } 1596 1597 /* For simplicity and reliability, we always require a slot reset and try to 1598 * reset the hardware when a pci error affecting the device is detected. 1599 * We leave both the link_reset and mmio_enabled callback unimplemented: 1600 * with our request for slot reset the mmio_enabled callback will never be 1601 * called, and the link_reset callback is not used by AER or EEH mechanisms. 1602 */ 1603 static const struct pci_error_handlers efx_err_handlers = { 1604 .error_detected = efx_io_error_detected, 1605 .slot_reset = efx_io_slot_reset, 1606 .resume = efx_io_resume, 1607 }; 1608 1609 static struct pci_driver efx_pci_driver = { 1610 .name = KBUILD_MODNAME, 1611 .id_table = efx_pci_table, 1612 .probe = efx_pci_probe, 1613 .remove = efx_pci_remove, 1614 .driver.pm = &efx_pm_ops, 1615 .err_handler = &efx_err_handlers, 1616 #ifdef CONFIG_SFC_SRIOV 1617 .sriov_configure = efx_pci_sriov_configure, 1618 #endif 1619 }; 1620 1621 /************************************************************************** 1622 * 1623 * Kernel module interface 1624 * 1625 *************************************************************************/ 1626 1627 static int __init efx_init_module(void) 1628 { 1629 int rc; 1630 1631 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); 1632 1633 rc = register_netdevice_notifier(&efx_netdev_notifier); 1634 if (rc) 1635 goto err_notifier; 1636 1637 #ifdef CONFIG_SFC_SRIOV 1638 rc = efx_init_sriov(); 1639 if (rc) 1640 goto err_sriov; 1641 #endif 1642 1643 rc = efx_create_reset_workqueue(); 1644 if (rc) 1645 goto err_reset; 1646 1647 rc = pci_register_driver(&efx_pci_driver); 1648 if (rc < 0) 1649 goto err_pci; 1650 1651 return 0; 1652 1653 err_pci: 1654 efx_destroy_reset_workqueue(); 1655 err_reset: 1656 #ifdef CONFIG_SFC_SRIOV 1657 efx_fini_sriov(); 1658 err_sriov: 1659 #endif 1660 unregister_netdevice_notifier(&efx_netdev_notifier); 1661 err_notifier: 1662 return rc; 1663 } 1664 1665 static void __exit efx_exit_module(void) 1666 { 1667 printk(KERN_INFO "Solarflare NET driver unloading\n"); 1668 1669 pci_unregister_driver(&efx_pci_driver); 1670 efx_destroy_reset_workqueue(); 1671 #ifdef CONFIG_SFC_SRIOV 1672 efx_fini_sriov(); 1673 #endif 1674 unregister_netdevice_notifier(&efx_netdev_notifier); 1675 1676 } 1677 1678 module_init(efx_init_module); 1679 module_exit(efx_exit_module); 1680 1681 MODULE_AUTHOR("Solarflare Communications and " 1682 "Michael Brown <mbrown@fensystems.co.uk>"); 1683 MODULE_DESCRIPTION("Solarflare network driver"); 1684 MODULE_LICENSE("GPL"); 1685 MODULE_DEVICE_TABLE(pci, efx_pci_table); 1686 MODULE_VERSION(EFX_DRIVER_VERSION); 1687