1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/pci.h> 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/delay.h> 16 #include <linux/notifier.h> 17 #include <linux/ip.h> 18 #include <linux/tcp.h> 19 #include <linux/in.h> 20 #include <linux/ethtool.h> 21 #include <linux/topology.h> 22 #include <linux/gfp.h> 23 #include <linux/aer.h> 24 #include <linux/interrupt.h> 25 #include "net_driver.h" 26 #include "efx.h" 27 #include "nic.h" 28 #include "selftest.h" 29 30 #include "mcdi.h" 31 #include "workarounds.h" 32 33 /************************************************************************** 34 * 35 * Type name strings 36 * 37 ************************************************************************** 38 */ 39 40 /* Loopback mode names (see LOOPBACK_MODE()) */ 41 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; 42 const char *const efx_loopback_mode_names[] = { 43 [LOOPBACK_NONE] = "NONE", 44 [LOOPBACK_DATA] = "DATAPATH", 45 [LOOPBACK_GMAC] = "GMAC", 46 [LOOPBACK_XGMII] = "XGMII", 47 [LOOPBACK_XGXS] = "XGXS", 48 [LOOPBACK_XAUI] = "XAUI", 49 [LOOPBACK_GMII] = "GMII", 50 [LOOPBACK_SGMII] = "SGMII", 51 [LOOPBACK_XGBR] = "XGBR", 52 [LOOPBACK_XFI] = "XFI", 53 [LOOPBACK_XAUI_FAR] = "XAUI_FAR", 54 [LOOPBACK_GMII_FAR] = "GMII_FAR", 55 [LOOPBACK_SGMII_FAR] = "SGMII_FAR", 56 [LOOPBACK_XFI_FAR] = "XFI_FAR", 57 [LOOPBACK_GPHY] = "GPHY", 58 [LOOPBACK_PHYXS] = "PHYXS", 59 [LOOPBACK_PCS] = "PCS", 60 [LOOPBACK_PMAPMD] = "PMA/PMD", 61 [LOOPBACK_XPORT] = "XPORT", 62 [LOOPBACK_XGMII_WS] = "XGMII_WS", 63 [LOOPBACK_XAUI_WS] = "XAUI_WS", 64 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", 65 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", 66 [LOOPBACK_GMII_WS] = "GMII_WS", 67 [LOOPBACK_XFI_WS] = "XFI_WS", 68 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", 69 [LOOPBACK_PHYXS_WS] = "PHYXS_WS", 70 }; 71 72 const unsigned int efx_reset_type_max = RESET_TYPE_MAX; 73 const char *const efx_reset_type_names[] = { 74 [RESET_TYPE_INVISIBLE] = "INVISIBLE", 75 [RESET_TYPE_ALL] = "ALL", 76 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", 77 [RESET_TYPE_WORLD] = "WORLD", 78 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", 79 [RESET_TYPE_MC_BIST] = "MC_BIST", 80 [RESET_TYPE_DISABLE] = "DISABLE", 81 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", 82 [RESET_TYPE_INT_ERROR] = "INT_ERROR", 83 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", 84 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", 85 [RESET_TYPE_TX_SKIP] = "TX_SKIP", 86 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", 87 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)", 88 }; 89 90 /* Reset workqueue. If any NIC has a hardware failure then a reset will be 91 * queued onto this work queue. This is not a per-nic work queue, because 92 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. 93 */ 94 static struct workqueue_struct *reset_workqueue; 95 96 /* How often and how many times to poll for a reset while waiting for a 97 * BIST that another function started to complete. 98 */ 99 #define BIST_WAIT_DELAY_MS 100 100 #define BIST_WAIT_DELAY_COUNT 100 101 102 /************************************************************************** 103 * 104 * Configurable values 105 * 106 *************************************************************************/ 107 108 /* 109 * Use separate channels for TX and RX events 110 * 111 * Set this to 1 to use separate channels for TX and RX. It allows us 112 * to control interrupt affinity separately for TX and RX. 113 * 114 * This is only used in MSI-X interrupt mode 115 */ 116 static bool separate_tx_channels; 117 module_param(separate_tx_channels, bool, 0444); 118 MODULE_PARM_DESC(separate_tx_channels, 119 "Use separate channels for TX and RX"); 120 121 /* This is the weight assigned to each of the (per-channel) virtual 122 * NAPI devices. 123 */ 124 static int napi_weight = 64; 125 126 /* This is the time (in jiffies) between invocations of the hardware 127 * monitor. 128 * On Falcon-based NICs, this will: 129 * - Check the on-board hardware monitor; 130 * - Poll the link state and reconfigure the hardware as necessary. 131 * On Siena-based NICs for power systems with EEH support, this will give EEH a 132 * chance to start. 133 */ 134 static unsigned int efx_monitor_interval = 1 * HZ; 135 136 /* Initial interrupt moderation settings. They can be modified after 137 * module load with ethtool. 138 * 139 * The default for RX should strike a balance between increasing the 140 * round-trip latency and reducing overhead. 141 */ 142 static unsigned int rx_irq_mod_usec = 60; 143 144 /* Initial interrupt moderation settings. They can be modified after 145 * module load with ethtool. 146 * 147 * This default is chosen to ensure that a 10G link does not go idle 148 * while a TX queue is stopped after it has become full. A queue is 149 * restarted when it drops below half full. The time this takes (assuming 150 * worst case 3 descriptors per packet and 1024 descriptors) is 151 * 512 / 3 * 1.2 = 205 usec. 152 */ 153 static unsigned int tx_irq_mod_usec = 150; 154 155 /* This is the first interrupt mode to try out of: 156 * 0 => MSI-X 157 * 1 => MSI 158 * 2 => legacy 159 */ 160 static unsigned int interrupt_mode; 161 162 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), 163 * i.e. the number of CPUs among which we may distribute simultaneous 164 * interrupt handling. 165 * 166 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. 167 * The default (0) means to assign an interrupt to each core. 168 */ 169 static unsigned int rss_cpus; 170 module_param(rss_cpus, uint, 0444); 171 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 172 173 static bool phy_flash_cfg; 174 module_param(phy_flash_cfg, bool, 0644); 175 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 176 177 static unsigned irq_adapt_low_thresh = 8000; 178 module_param(irq_adapt_low_thresh, uint, 0644); 179 MODULE_PARM_DESC(irq_adapt_low_thresh, 180 "Threshold score for reducing IRQ moderation"); 181 182 static unsigned irq_adapt_high_thresh = 16000; 183 module_param(irq_adapt_high_thresh, uint, 0644); 184 MODULE_PARM_DESC(irq_adapt_high_thresh, 185 "Threshold score for increasing IRQ moderation"); 186 187 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 188 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 189 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 190 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 191 module_param(debug, uint, 0); 192 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 193 194 /************************************************************************** 195 * 196 * Utility functions and prototypes 197 * 198 *************************************************************************/ 199 200 static int efx_soft_enable_interrupts(struct efx_nic *efx); 201 static void efx_soft_disable_interrupts(struct efx_nic *efx); 202 static void efx_remove_channel(struct efx_channel *channel); 203 static void efx_remove_channels(struct efx_nic *efx); 204 static const struct efx_channel_type efx_default_channel_type; 205 static void efx_remove_port(struct efx_nic *efx); 206 static void efx_init_napi_channel(struct efx_channel *channel); 207 static void efx_fini_napi(struct efx_nic *efx); 208 static void efx_fini_napi_channel(struct efx_channel *channel); 209 static void efx_fini_struct(struct efx_nic *efx); 210 static void efx_start_all(struct efx_nic *efx); 211 static void efx_stop_all(struct efx_nic *efx); 212 213 #define EFX_ASSERT_RESET_SERIALISED(efx) \ 214 do { \ 215 if ((efx->state == STATE_READY) || \ 216 (efx->state == STATE_RECOVERY) || \ 217 (efx->state == STATE_DISABLED)) \ 218 ASSERT_RTNL(); \ 219 } while (0) 220 221 static int efx_check_disabled(struct efx_nic *efx) 222 { 223 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { 224 netif_err(efx, drv, efx->net_dev, 225 "device is disabled due to earlier errors\n"); 226 return -EIO; 227 } 228 return 0; 229 } 230 231 /************************************************************************** 232 * 233 * Event queue processing 234 * 235 *************************************************************************/ 236 237 /* Process channel's event queue 238 * 239 * This function is responsible for processing the event queue of a 240 * single channel. The caller must guarantee that this function will 241 * never be concurrently called more than once on the same channel, 242 * though different channels may be being processed concurrently. 243 */ 244 static int efx_process_channel(struct efx_channel *channel, int budget) 245 { 246 int spent; 247 248 if (unlikely(!channel->enabled)) 249 return 0; 250 251 spent = efx_nic_process_eventq(channel, budget); 252 if (spent && efx_channel_has_rx_queue(channel)) { 253 struct efx_rx_queue *rx_queue = 254 efx_channel_get_rx_queue(channel); 255 256 efx_rx_flush_packet(channel); 257 efx_fast_push_rx_descriptors(rx_queue, true); 258 } 259 260 return spent; 261 } 262 263 /* NAPI poll handler 264 * 265 * NAPI guarantees serialisation of polls of the same device, which 266 * provides the guarantee required by efx_process_channel(). 267 */ 268 static int efx_poll(struct napi_struct *napi, int budget) 269 { 270 struct efx_channel *channel = 271 container_of(napi, struct efx_channel, napi_str); 272 struct efx_nic *efx = channel->efx; 273 int spent; 274 275 netif_vdbg(efx, intr, efx->net_dev, 276 "channel %d NAPI poll executing on CPU %d\n", 277 channel->channel, raw_smp_processor_id()); 278 279 spent = efx_process_channel(channel, budget); 280 281 if (spent < budget) { 282 if (efx_channel_has_rx_queue(channel) && 283 efx->irq_rx_adaptive && 284 unlikely(++channel->irq_count == 1000)) { 285 if (unlikely(channel->irq_mod_score < 286 irq_adapt_low_thresh)) { 287 if (channel->irq_moderation > 1) { 288 channel->irq_moderation -= 1; 289 efx->type->push_irq_moderation(channel); 290 } 291 } else if (unlikely(channel->irq_mod_score > 292 irq_adapt_high_thresh)) { 293 if (channel->irq_moderation < 294 efx->irq_rx_moderation) { 295 channel->irq_moderation += 1; 296 efx->type->push_irq_moderation(channel); 297 } 298 } 299 channel->irq_count = 0; 300 channel->irq_mod_score = 0; 301 } 302 303 efx_filter_rfs_expire(channel); 304 305 /* There is no race here; although napi_disable() will 306 * only wait for napi_complete(), this isn't a problem 307 * since efx_nic_eventq_read_ack() will have no effect if 308 * interrupts have already been disabled. 309 */ 310 napi_complete(napi); 311 efx_nic_eventq_read_ack(channel); 312 } 313 314 return spent; 315 } 316 317 /* Create event queue 318 * Event queue memory allocations are done only once. If the channel 319 * is reset, the memory buffer will be reused; this guards against 320 * errors during channel reset and also simplifies interrupt handling. 321 */ 322 static int efx_probe_eventq(struct efx_channel *channel) 323 { 324 struct efx_nic *efx = channel->efx; 325 unsigned long entries; 326 327 netif_dbg(efx, probe, efx->net_dev, 328 "chan %d create event queue\n", channel->channel); 329 330 /* Build an event queue with room for one event per tx and rx buffer, 331 * plus some extra for link state events and MCDI completions. */ 332 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); 333 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); 334 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; 335 336 return efx_nic_probe_eventq(channel); 337 } 338 339 /* Prepare channel's event queue */ 340 static int efx_init_eventq(struct efx_channel *channel) 341 { 342 struct efx_nic *efx = channel->efx; 343 int rc; 344 345 EFX_WARN_ON_PARANOID(channel->eventq_init); 346 347 netif_dbg(efx, drv, efx->net_dev, 348 "chan %d init event queue\n", channel->channel); 349 350 rc = efx_nic_init_eventq(channel); 351 if (rc == 0) { 352 efx->type->push_irq_moderation(channel); 353 channel->eventq_read_ptr = 0; 354 channel->eventq_init = true; 355 } 356 return rc; 357 } 358 359 /* Enable event queue processing and NAPI */ 360 static void efx_start_eventq(struct efx_channel *channel) 361 { 362 netif_dbg(channel->efx, ifup, channel->efx->net_dev, 363 "chan %d start event queue\n", channel->channel); 364 365 /* Make sure the NAPI handler sees the enabled flag set */ 366 channel->enabled = true; 367 smp_wmb(); 368 369 napi_enable(&channel->napi_str); 370 efx_nic_eventq_read_ack(channel); 371 } 372 373 /* Disable event queue processing and NAPI */ 374 static void efx_stop_eventq(struct efx_channel *channel) 375 { 376 if (!channel->enabled) 377 return; 378 379 napi_disable(&channel->napi_str); 380 channel->enabled = false; 381 } 382 383 static void efx_fini_eventq(struct efx_channel *channel) 384 { 385 if (!channel->eventq_init) 386 return; 387 388 netif_dbg(channel->efx, drv, channel->efx->net_dev, 389 "chan %d fini event queue\n", channel->channel); 390 391 efx_nic_fini_eventq(channel); 392 channel->eventq_init = false; 393 } 394 395 static void efx_remove_eventq(struct efx_channel *channel) 396 { 397 netif_dbg(channel->efx, drv, channel->efx->net_dev, 398 "chan %d remove event queue\n", channel->channel); 399 400 efx_nic_remove_eventq(channel); 401 } 402 403 /************************************************************************** 404 * 405 * Channel handling 406 * 407 *************************************************************************/ 408 409 /* Allocate and initialise a channel structure. */ 410 static struct efx_channel * 411 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) 412 { 413 struct efx_channel *channel; 414 struct efx_rx_queue *rx_queue; 415 struct efx_tx_queue *tx_queue; 416 int j; 417 418 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 419 if (!channel) 420 return NULL; 421 422 channel->efx = efx; 423 channel->channel = i; 424 channel->type = &efx_default_channel_type; 425 426 for (j = 0; j < EFX_TXQ_TYPES; j++) { 427 tx_queue = &channel->tx_queue[j]; 428 tx_queue->efx = efx; 429 tx_queue->queue = i * EFX_TXQ_TYPES + j; 430 tx_queue->channel = channel; 431 } 432 433 rx_queue = &channel->rx_queue; 434 rx_queue->efx = efx; 435 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, 436 (unsigned long)rx_queue); 437 438 return channel; 439 } 440 441 /* Allocate and initialise a channel structure, copying parameters 442 * (but not resources) from an old channel structure. 443 */ 444 static struct efx_channel * 445 efx_copy_channel(const struct efx_channel *old_channel) 446 { 447 struct efx_channel *channel; 448 struct efx_rx_queue *rx_queue; 449 struct efx_tx_queue *tx_queue; 450 int j; 451 452 channel = kmalloc(sizeof(*channel), GFP_KERNEL); 453 if (!channel) 454 return NULL; 455 456 *channel = *old_channel; 457 458 channel->napi_dev = NULL; 459 memset(&channel->eventq, 0, sizeof(channel->eventq)); 460 461 for (j = 0; j < EFX_TXQ_TYPES; j++) { 462 tx_queue = &channel->tx_queue[j]; 463 if (tx_queue->channel) 464 tx_queue->channel = channel; 465 tx_queue->buffer = NULL; 466 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); 467 } 468 469 rx_queue = &channel->rx_queue; 470 rx_queue->buffer = NULL; 471 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); 472 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, 473 (unsigned long)rx_queue); 474 475 return channel; 476 } 477 478 static int efx_probe_channel(struct efx_channel *channel) 479 { 480 struct efx_tx_queue *tx_queue; 481 struct efx_rx_queue *rx_queue; 482 int rc; 483 484 netif_dbg(channel->efx, probe, channel->efx->net_dev, 485 "creating channel %d\n", channel->channel); 486 487 rc = channel->type->pre_probe(channel); 488 if (rc) 489 goto fail; 490 491 rc = efx_probe_eventq(channel); 492 if (rc) 493 goto fail; 494 495 efx_for_each_channel_tx_queue(tx_queue, channel) { 496 rc = efx_probe_tx_queue(tx_queue); 497 if (rc) 498 goto fail; 499 } 500 501 efx_for_each_channel_rx_queue(rx_queue, channel) { 502 rc = efx_probe_rx_queue(rx_queue); 503 if (rc) 504 goto fail; 505 } 506 507 return 0; 508 509 fail: 510 efx_remove_channel(channel); 511 return rc; 512 } 513 514 static void 515 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len) 516 { 517 struct efx_nic *efx = channel->efx; 518 const char *type; 519 int number; 520 521 number = channel->channel; 522 if (efx->tx_channel_offset == 0) { 523 type = ""; 524 } else if (channel->channel < efx->tx_channel_offset) { 525 type = "-rx"; 526 } else { 527 type = "-tx"; 528 number -= efx->tx_channel_offset; 529 } 530 snprintf(buf, len, "%s%s-%d", efx->name, type, number); 531 } 532 533 static void efx_set_channel_names(struct efx_nic *efx) 534 { 535 struct efx_channel *channel; 536 537 efx_for_each_channel(channel, efx) 538 channel->type->get_name(channel, 539 efx->msi_context[channel->channel].name, 540 sizeof(efx->msi_context[0].name)); 541 } 542 543 static int efx_probe_channels(struct efx_nic *efx) 544 { 545 struct efx_channel *channel; 546 int rc; 547 548 /* Restart special buffer allocation */ 549 efx->next_buffer_table = 0; 550 551 /* Probe channels in reverse, so that any 'extra' channels 552 * use the start of the buffer table. This allows the traffic 553 * channels to be resized without moving them or wasting the 554 * entries before them. 555 */ 556 efx_for_each_channel_rev(channel, efx) { 557 rc = efx_probe_channel(channel); 558 if (rc) { 559 netif_err(efx, probe, efx->net_dev, 560 "failed to create channel %d\n", 561 channel->channel); 562 goto fail; 563 } 564 } 565 efx_set_channel_names(efx); 566 567 return 0; 568 569 fail: 570 efx_remove_channels(efx); 571 return rc; 572 } 573 574 /* Channels are shutdown and reinitialised whilst the NIC is running 575 * to propagate configuration changes (mtu, checksum offload), or 576 * to clear hardware error conditions 577 */ 578 static void efx_start_datapath(struct efx_nic *efx) 579 { 580 bool old_rx_scatter = efx->rx_scatter; 581 struct efx_tx_queue *tx_queue; 582 struct efx_rx_queue *rx_queue; 583 struct efx_channel *channel; 584 size_t rx_buf_len; 585 586 /* Calculate the rx buffer allocation parameters required to 587 * support the current MTU, including padding for header 588 * alignment and overruns. 589 */ 590 efx->rx_dma_len = (efx->rx_prefix_size + 591 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + 592 efx->type->rx_buffer_padding); 593 rx_buf_len = (sizeof(struct efx_rx_page_state) + 594 efx->rx_ip_align + efx->rx_dma_len); 595 if (rx_buf_len <= PAGE_SIZE) { 596 efx->rx_scatter = efx->type->always_rx_scatter; 597 efx->rx_buffer_order = 0; 598 } else if (efx->type->can_rx_scatter) { 599 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES); 600 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) + 601 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE, 602 EFX_RX_BUF_ALIGNMENT) > 603 PAGE_SIZE); 604 efx->rx_scatter = true; 605 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE; 606 efx->rx_buffer_order = 0; 607 } else { 608 efx->rx_scatter = false; 609 efx->rx_buffer_order = get_order(rx_buf_len); 610 } 611 612 efx_rx_config_page_split(efx); 613 if (efx->rx_buffer_order) 614 netif_dbg(efx, drv, efx->net_dev, 615 "RX buf len=%u; page order=%u batch=%u\n", 616 efx->rx_dma_len, efx->rx_buffer_order, 617 efx->rx_pages_per_batch); 618 else 619 netif_dbg(efx, drv, efx->net_dev, 620 "RX buf len=%u step=%u bpp=%u; page batch=%u\n", 621 efx->rx_dma_len, efx->rx_page_buf_step, 622 efx->rx_bufs_per_page, efx->rx_pages_per_batch); 623 624 /* RX filters may also have scatter-enabled flags */ 625 if (efx->rx_scatter != old_rx_scatter) 626 efx->type->filter_update_rx_scatter(efx); 627 628 /* We must keep at least one descriptor in a TX ring empty. 629 * We could avoid this when the queue size does not exactly 630 * match the hardware ring size, but it's not that important. 631 * Therefore we stop the queue when one more skb might fill 632 * the ring completely. We wake it when half way back to 633 * empty. 634 */ 635 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx); 636 efx->txq_wake_thresh = efx->txq_stop_thresh / 2; 637 638 /* Initialise the channels */ 639 efx_for_each_channel(channel, efx) { 640 efx_for_each_channel_tx_queue(tx_queue, channel) { 641 efx_init_tx_queue(tx_queue); 642 atomic_inc(&efx->active_queues); 643 } 644 645 efx_for_each_channel_rx_queue(rx_queue, channel) { 646 efx_init_rx_queue(rx_queue); 647 atomic_inc(&efx->active_queues); 648 efx_stop_eventq(channel); 649 efx_fast_push_rx_descriptors(rx_queue, false); 650 efx_start_eventq(channel); 651 } 652 653 WARN_ON(channel->rx_pkt_n_frags); 654 } 655 656 efx_ptp_start_datapath(efx); 657 658 if (netif_device_present(efx->net_dev)) 659 netif_tx_wake_all_queues(efx->net_dev); 660 } 661 662 static void efx_stop_datapath(struct efx_nic *efx) 663 { 664 struct efx_channel *channel; 665 struct efx_tx_queue *tx_queue; 666 struct efx_rx_queue *rx_queue; 667 int rc; 668 669 EFX_ASSERT_RESET_SERIALISED(efx); 670 BUG_ON(efx->port_enabled); 671 672 efx_ptp_stop_datapath(efx); 673 674 /* Stop RX refill */ 675 efx_for_each_channel(channel, efx) { 676 efx_for_each_channel_rx_queue(rx_queue, channel) 677 rx_queue->refill_enabled = false; 678 } 679 680 efx_for_each_channel(channel, efx) { 681 /* RX packet processing is pipelined, so wait for the 682 * NAPI handler to complete. At least event queue 0 683 * might be kept active by non-data events, so don't 684 * use napi_synchronize() but actually disable NAPI 685 * temporarily. 686 */ 687 if (efx_channel_has_rx_queue(channel)) { 688 efx_stop_eventq(channel); 689 efx_start_eventq(channel); 690 } 691 } 692 693 rc = efx->type->fini_dmaq(efx); 694 if (rc && EFX_WORKAROUND_7803(efx)) { 695 /* Schedule a reset to recover from the flush failure. The 696 * descriptor caches reference memory we're about to free, 697 * but falcon_reconfigure_mac_wrapper() won't reconnect 698 * the MACs because of the pending reset. 699 */ 700 netif_err(efx, drv, efx->net_dev, 701 "Resetting to recover from flush failure\n"); 702 efx_schedule_reset(efx, RESET_TYPE_ALL); 703 } else if (rc) { 704 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); 705 } else { 706 netif_dbg(efx, drv, efx->net_dev, 707 "successfully flushed all queues\n"); 708 } 709 710 efx_for_each_channel(channel, efx) { 711 efx_for_each_channel_rx_queue(rx_queue, channel) 712 efx_fini_rx_queue(rx_queue); 713 efx_for_each_possible_channel_tx_queue(tx_queue, channel) 714 efx_fini_tx_queue(tx_queue); 715 } 716 } 717 718 static void efx_remove_channel(struct efx_channel *channel) 719 { 720 struct efx_tx_queue *tx_queue; 721 struct efx_rx_queue *rx_queue; 722 723 netif_dbg(channel->efx, drv, channel->efx->net_dev, 724 "destroy chan %d\n", channel->channel); 725 726 efx_for_each_channel_rx_queue(rx_queue, channel) 727 efx_remove_rx_queue(rx_queue); 728 efx_for_each_possible_channel_tx_queue(tx_queue, channel) 729 efx_remove_tx_queue(tx_queue); 730 efx_remove_eventq(channel); 731 channel->type->post_remove(channel); 732 } 733 734 static void efx_remove_channels(struct efx_nic *efx) 735 { 736 struct efx_channel *channel; 737 738 efx_for_each_channel(channel, efx) 739 efx_remove_channel(channel); 740 } 741 742 int 743 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) 744 { 745 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; 746 u32 old_rxq_entries, old_txq_entries; 747 unsigned i, next_buffer_table = 0; 748 int rc, rc2; 749 750 rc = efx_check_disabled(efx); 751 if (rc) 752 return rc; 753 754 /* Not all channels should be reallocated. We must avoid 755 * reallocating their buffer table entries. 756 */ 757 efx_for_each_channel(channel, efx) { 758 struct efx_rx_queue *rx_queue; 759 struct efx_tx_queue *tx_queue; 760 761 if (channel->type->copy) 762 continue; 763 next_buffer_table = max(next_buffer_table, 764 channel->eventq.index + 765 channel->eventq.entries); 766 efx_for_each_channel_rx_queue(rx_queue, channel) 767 next_buffer_table = max(next_buffer_table, 768 rx_queue->rxd.index + 769 rx_queue->rxd.entries); 770 efx_for_each_channel_tx_queue(tx_queue, channel) 771 next_buffer_table = max(next_buffer_table, 772 tx_queue->txd.index + 773 tx_queue->txd.entries); 774 } 775 776 efx_device_detach_sync(efx); 777 efx_stop_all(efx); 778 efx_soft_disable_interrupts(efx); 779 780 /* Clone channels (where possible) */ 781 memset(other_channel, 0, sizeof(other_channel)); 782 for (i = 0; i < efx->n_channels; i++) { 783 channel = efx->channel[i]; 784 if (channel->type->copy) 785 channel = channel->type->copy(channel); 786 if (!channel) { 787 rc = -ENOMEM; 788 goto out; 789 } 790 other_channel[i] = channel; 791 } 792 793 /* Swap entry counts and channel pointers */ 794 old_rxq_entries = efx->rxq_entries; 795 old_txq_entries = efx->txq_entries; 796 efx->rxq_entries = rxq_entries; 797 efx->txq_entries = txq_entries; 798 for (i = 0; i < efx->n_channels; i++) { 799 channel = efx->channel[i]; 800 efx->channel[i] = other_channel[i]; 801 other_channel[i] = channel; 802 } 803 804 /* Restart buffer table allocation */ 805 efx->next_buffer_table = next_buffer_table; 806 807 for (i = 0; i < efx->n_channels; i++) { 808 channel = efx->channel[i]; 809 if (!channel->type->copy) 810 continue; 811 rc = efx_probe_channel(channel); 812 if (rc) 813 goto rollback; 814 efx_init_napi_channel(efx->channel[i]); 815 } 816 817 out: 818 /* Destroy unused channel structures */ 819 for (i = 0; i < efx->n_channels; i++) { 820 channel = other_channel[i]; 821 if (channel && channel->type->copy) { 822 efx_fini_napi_channel(channel); 823 efx_remove_channel(channel); 824 kfree(channel); 825 } 826 } 827 828 rc2 = efx_soft_enable_interrupts(efx); 829 if (rc2) { 830 rc = rc ? rc : rc2; 831 netif_err(efx, drv, efx->net_dev, 832 "unable to restart interrupts on channel reallocation\n"); 833 efx_schedule_reset(efx, RESET_TYPE_DISABLE); 834 } else { 835 efx_start_all(efx); 836 netif_device_attach(efx->net_dev); 837 } 838 return rc; 839 840 rollback: 841 /* Swap back */ 842 efx->rxq_entries = old_rxq_entries; 843 efx->txq_entries = old_txq_entries; 844 for (i = 0; i < efx->n_channels; i++) { 845 channel = efx->channel[i]; 846 efx->channel[i] = other_channel[i]; 847 other_channel[i] = channel; 848 } 849 goto out; 850 } 851 852 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) 853 { 854 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); 855 } 856 857 static const struct efx_channel_type efx_default_channel_type = { 858 .pre_probe = efx_channel_dummy_op_int, 859 .post_remove = efx_channel_dummy_op_void, 860 .get_name = efx_get_channel_name, 861 .copy = efx_copy_channel, 862 .keep_eventq = false, 863 }; 864 865 int efx_channel_dummy_op_int(struct efx_channel *channel) 866 { 867 return 0; 868 } 869 870 void efx_channel_dummy_op_void(struct efx_channel *channel) 871 { 872 } 873 874 /************************************************************************** 875 * 876 * Port handling 877 * 878 **************************************************************************/ 879 880 /* This ensures that the kernel is kept informed (via 881 * netif_carrier_on/off) of the link status, and also maintains the 882 * link status's stop on the port's TX queue. 883 */ 884 void efx_link_status_changed(struct efx_nic *efx) 885 { 886 struct efx_link_state *link_state = &efx->link_state; 887 888 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure 889 * that no events are triggered between unregister_netdev() and the 890 * driver unloading. A more general condition is that NETDEV_CHANGE 891 * can only be generated between NETDEV_UP and NETDEV_DOWN */ 892 if (!netif_running(efx->net_dev)) 893 return; 894 895 if (link_state->up != netif_carrier_ok(efx->net_dev)) { 896 efx->n_link_state_changes++; 897 898 if (link_state->up) 899 netif_carrier_on(efx->net_dev); 900 else 901 netif_carrier_off(efx->net_dev); 902 } 903 904 /* Status message for kernel log */ 905 if (link_state->up) 906 netif_info(efx, link, efx->net_dev, 907 "link up at %uMbps %s-duplex (MTU %d)\n", 908 link_state->speed, link_state->fd ? "full" : "half", 909 efx->net_dev->mtu); 910 else 911 netif_info(efx, link, efx->net_dev, "link down\n"); 912 } 913 914 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising) 915 { 916 efx->link_advertising = advertising; 917 if (advertising) { 918 if (advertising & ADVERTISED_Pause) 919 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); 920 else 921 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); 922 if (advertising & ADVERTISED_Asym_Pause) 923 efx->wanted_fc ^= EFX_FC_TX; 924 } 925 } 926 927 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) 928 { 929 efx->wanted_fc = wanted_fc; 930 if (efx->link_advertising) { 931 if (wanted_fc & EFX_FC_RX) 932 efx->link_advertising |= (ADVERTISED_Pause | 933 ADVERTISED_Asym_Pause); 934 else 935 efx->link_advertising &= ~(ADVERTISED_Pause | 936 ADVERTISED_Asym_Pause); 937 if (wanted_fc & EFX_FC_TX) 938 efx->link_advertising ^= ADVERTISED_Asym_Pause; 939 } 940 } 941 942 static void efx_fini_port(struct efx_nic *efx); 943 944 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure 945 * the MAC appropriately. All other PHY configuration changes are pushed 946 * through phy_op->set_settings(), and pushed asynchronously to the MAC 947 * through efx_monitor(). 948 * 949 * Callers must hold the mac_lock 950 */ 951 int __efx_reconfigure_port(struct efx_nic *efx) 952 { 953 enum efx_phy_mode phy_mode; 954 int rc; 955 956 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 957 958 /* Disable PHY transmit in mac level loopbacks */ 959 phy_mode = efx->phy_mode; 960 if (LOOPBACK_INTERNAL(efx)) 961 efx->phy_mode |= PHY_MODE_TX_DISABLED; 962 else 963 efx->phy_mode &= ~PHY_MODE_TX_DISABLED; 964 965 rc = efx->type->reconfigure_port(efx); 966 967 if (rc) 968 efx->phy_mode = phy_mode; 969 970 return rc; 971 } 972 973 /* Reinitialise the MAC to pick up new PHY settings, even if the port is 974 * disabled. */ 975 int efx_reconfigure_port(struct efx_nic *efx) 976 { 977 int rc; 978 979 EFX_ASSERT_RESET_SERIALISED(efx); 980 981 mutex_lock(&efx->mac_lock); 982 rc = __efx_reconfigure_port(efx); 983 mutex_unlock(&efx->mac_lock); 984 985 return rc; 986 } 987 988 /* Asynchronous work item for changing MAC promiscuity and multicast 989 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current 990 * MAC directly. */ 991 static void efx_mac_work(struct work_struct *data) 992 { 993 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); 994 995 mutex_lock(&efx->mac_lock); 996 if (efx->port_enabled) 997 efx->type->reconfigure_mac(efx); 998 mutex_unlock(&efx->mac_lock); 999 } 1000 1001 static int efx_probe_port(struct efx_nic *efx) 1002 { 1003 int rc; 1004 1005 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 1006 1007 if (phy_flash_cfg) 1008 efx->phy_mode = PHY_MODE_SPECIAL; 1009 1010 /* Connect up MAC/PHY operations table */ 1011 rc = efx->type->probe_port(efx); 1012 if (rc) 1013 return rc; 1014 1015 /* Initialise MAC address to permanent address */ 1016 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); 1017 1018 return 0; 1019 } 1020 1021 static int efx_init_port(struct efx_nic *efx) 1022 { 1023 int rc; 1024 1025 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 1026 1027 mutex_lock(&efx->mac_lock); 1028 1029 rc = efx->phy_op->init(efx); 1030 if (rc) 1031 goto fail1; 1032 1033 efx->port_initialized = true; 1034 1035 /* Reconfigure the MAC before creating dma queues (required for 1036 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ 1037 efx->type->reconfigure_mac(efx); 1038 1039 /* Ensure the PHY advertises the correct flow control settings */ 1040 rc = efx->phy_op->reconfigure(efx); 1041 if (rc) 1042 goto fail2; 1043 1044 mutex_unlock(&efx->mac_lock); 1045 return 0; 1046 1047 fail2: 1048 efx->phy_op->fini(efx); 1049 fail1: 1050 mutex_unlock(&efx->mac_lock); 1051 return rc; 1052 } 1053 1054 static void efx_start_port(struct efx_nic *efx) 1055 { 1056 netif_dbg(efx, ifup, efx->net_dev, "start port\n"); 1057 BUG_ON(efx->port_enabled); 1058 1059 mutex_lock(&efx->mac_lock); 1060 efx->port_enabled = true; 1061 1062 /* Ensure MAC ingress/egress is enabled */ 1063 efx->type->reconfigure_mac(efx); 1064 1065 mutex_unlock(&efx->mac_lock); 1066 } 1067 1068 /* Cancel work for MAC reconfiguration, periodic hardware monitoring 1069 * and the async self-test, wait for them to finish and prevent them 1070 * being scheduled again. This doesn't cover online resets, which 1071 * should only be cancelled when removing the device. 1072 */ 1073 static void efx_stop_port(struct efx_nic *efx) 1074 { 1075 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); 1076 1077 EFX_ASSERT_RESET_SERIALISED(efx); 1078 1079 mutex_lock(&efx->mac_lock); 1080 efx->port_enabled = false; 1081 mutex_unlock(&efx->mac_lock); 1082 1083 /* Serialise against efx_set_multicast_list() */ 1084 netif_addr_lock_bh(efx->net_dev); 1085 netif_addr_unlock_bh(efx->net_dev); 1086 1087 cancel_delayed_work_sync(&efx->monitor_work); 1088 efx_selftest_async_cancel(efx); 1089 cancel_work_sync(&efx->mac_work); 1090 } 1091 1092 static void efx_fini_port(struct efx_nic *efx) 1093 { 1094 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 1095 1096 if (!efx->port_initialized) 1097 return; 1098 1099 efx->phy_op->fini(efx); 1100 efx->port_initialized = false; 1101 1102 efx->link_state.up = false; 1103 efx_link_status_changed(efx); 1104 } 1105 1106 static void efx_remove_port(struct efx_nic *efx) 1107 { 1108 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 1109 1110 efx->type->remove_port(efx); 1111 } 1112 1113 /************************************************************************** 1114 * 1115 * NIC handling 1116 * 1117 **************************************************************************/ 1118 1119 static LIST_HEAD(efx_primary_list); 1120 static LIST_HEAD(efx_unassociated_list); 1121 1122 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right) 1123 { 1124 return left->type == right->type && 1125 left->vpd_sn && right->vpd_sn && 1126 !strcmp(left->vpd_sn, right->vpd_sn); 1127 } 1128 1129 static void efx_associate(struct efx_nic *efx) 1130 { 1131 struct efx_nic *other, *next; 1132 1133 if (efx->primary == efx) { 1134 /* Adding primary function; look for secondaries */ 1135 1136 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 1137 list_add_tail(&efx->node, &efx_primary_list); 1138 1139 list_for_each_entry_safe(other, next, &efx_unassociated_list, 1140 node) { 1141 if (efx_same_controller(efx, other)) { 1142 list_del(&other->node); 1143 netif_dbg(other, probe, other->net_dev, 1144 "moving to secondary list of %s %s\n", 1145 pci_name(efx->pci_dev), 1146 efx->net_dev->name); 1147 list_add_tail(&other->node, 1148 &efx->secondary_list); 1149 other->primary = efx; 1150 } 1151 } 1152 } else { 1153 /* Adding secondary function; look for primary */ 1154 1155 list_for_each_entry(other, &efx_primary_list, node) { 1156 if (efx_same_controller(efx, other)) { 1157 netif_dbg(efx, probe, efx->net_dev, 1158 "adding to secondary list of %s %s\n", 1159 pci_name(other->pci_dev), 1160 other->net_dev->name); 1161 list_add_tail(&efx->node, 1162 &other->secondary_list); 1163 efx->primary = other; 1164 return; 1165 } 1166 } 1167 1168 netif_dbg(efx, probe, efx->net_dev, 1169 "adding to unassociated list\n"); 1170 list_add_tail(&efx->node, &efx_unassociated_list); 1171 } 1172 } 1173 1174 static void efx_dissociate(struct efx_nic *efx) 1175 { 1176 struct efx_nic *other, *next; 1177 1178 list_del(&efx->node); 1179 efx->primary = NULL; 1180 1181 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 1182 list_del(&other->node); 1183 netif_dbg(other, probe, other->net_dev, 1184 "moving to unassociated list\n"); 1185 list_add_tail(&other->node, &efx_unassociated_list); 1186 other->primary = NULL; 1187 } 1188 } 1189 1190 /* This configures the PCI device to enable I/O and DMA. */ 1191 static int efx_init_io(struct efx_nic *efx) 1192 { 1193 struct pci_dev *pci_dev = efx->pci_dev; 1194 dma_addr_t dma_mask = efx->type->max_dma_mask; 1195 unsigned int mem_map_size = efx->type->mem_map_size(efx); 1196 int rc; 1197 1198 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); 1199 1200 rc = pci_enable_device(pci_dev); 1201 if (rc) { 1202 netif_err(efx, probe, efx->net_dev, 1203 "failed to enable PCI device\n"); 1204 goto fail1; 1205 } 1206 1207 pci_set_master(pci_dev); 1208 1209 /* Set the PCI DMA mask. Try all possibilities from our 1210 * genuine mask down to 32 bits, because some architectures 1211 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit 1212 * masks event though they reject 46 bit masks. 1213 */ 1214 while (dma_mask > 0x7fffffffUL) { 1215 if (dma_supported(&pci_dev->dev, dma_mask)) { 1216 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); 1217 if (rc == 0) 1218 break; 1219 } 1220 dma_mask >>= 1; 1221 } 1222 if (rc) { 1223 netif_err(efx, probe, efx->net_dev, 1224 "could not find a suitable DMA mask\n"); 1225 goto fail2; 1226 } 1227 netif_dbg(efx, probe, efx->net_dev, 1228 "using DMA mask %llx\n", (unsigned long long) dma_mask); 1229 1230 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR); 1231 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc"); 1232 if (rc) { 1233 netif_err(efx, probe, efx->net_dev, 1234 "request for memory BAR failed\n"); 1235 rc = -EIO; 1236 goto fail3; 1237 } 1238 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size); 1239 if (!efx->membase) { 1240 netif_err(efx, probe, efx->net_dev, 1241 "could not map memory BAR at %llx+%x\n", 1242 (unsigned long long)efx->membase_phys, mem_map_size); 1243 rc = -ENOMEM; 1244 goto fail4; 1245 } 1246 netif_dbg(efx, probe, efx->net_dev, 1247 "memory BAR at %llx+%x (virtual %p)\n", 1248 (unsigned long long)efx->membase_phys, mem_map_size, 1249 efx->membase); 1250 1251 return 0; 1252 1253 fail4: 1254 pci_release_region(efx->pci_dev, EFX_MEM_BAR); 1255 fail3: 1256 efx->membase_phys = 0; 1257 fail2: 1258 pci_disable_device(efx->pci_dev); 1259 fail1: 1260 return rc; 1261 } 1262 1263 static void efx_fini_io(struct efx_nic *efx) 1264 { 1265 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); 1266 1267 if (efx->membase) { 1268 iounmap(efx->membase); 1269 efx->membase = NULL; 1270 } 1271 1272 if (efx->membase_phys) { 1273 pci_release_region(efx->pci_dev, EFX_MEM_BAR); 1274 efx->membase_phys = 0; 1275 } 1276 1277 pci_disable_device(efx->pci_dev); 1278 } 1279 1280 static unsigned int efx_wanted_parallelism(struct efx_nic *efx) 1281 { 1282 cpumask_var_t thread_mask; 1283 unsigned int count; 1284 int cpu; 1285 1286 if (rss_cpus) { 1287 count = rss_cpus; 1288 } else { 1289 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { 1290 netif_warn(efx, probe, efx->net_dev, 1291 "RSS disabled due to allocation failure\n"); 1292 return 1; 1293 } 1294 1295 count = 0; 1296 for_each_online_cpu(cpu) { 1297 if (!cpumask_test_cpu(cpu, thread_mask)) { 1298 ++count; 1299 cpumask_or(thread_mask, thread_mask, 1300 topology_thread_cpumask(cpu)); 1301 } 1302 } 1303 1304 free_cpumask_var(thread_mask); 1305 } 1306 1307 /* If RSS is requested for the PF *and* VFs then we can't write RSS 1308 * table entries that are inaccessible to VFs 1309 */ 1310 if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 && 1311 count > efx_vf_size(efx)) { 1312 netif_warn(efx, probe, efx->net_dev, 1313 "Reducing number of RSS channels from %u to %u for " 1314 "VF support. Increase vf-msix-limit to use more " 1315 "channels on the PF.\n", 1316 count, efx_vf_size(efx)); 1317 count = efx_vf_size(efx); 1318 } 1319 1320 return count; 1321 } 1322 1323 /* Probe the number and type of interrupts we are able to obtain, and 1324 * the resulting numbers of channels and RX queues. 1325 */ 1326 static int efx_probe_interrupts(struct efx_nic *efx) 1327 { 1328 unsigned int extra_channels = 0; 1329 unsigned int i, j; 1330 int rc; 1331 1332 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) 1333 if (efx->extra_channel_type[i]) 1334 ++extra_channels; 1335 1336 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { 1337 struct msix_entry xentries[EFX_MAX_CHANNELS]; 1338 unsigned int n_channels; 1339 1340 n_channels = efx_wanted_parallelism(efx); 1341 if (separate_tx_channels) 1342 n_channels *= 2; 1343 n_channels += extra_channels; 1344 n_channels = min(n_channels, efx->max_channels); 1345 1346 for (i = 0; i < n_channels; i++) 1347 xentries[i].entry = i; 1348 rc = pci_enable_msix_range(efx->pci_dev, 1349 xentries, 1, n_channels); 1350 if (rc < 0) { 1351 /* Fall back to single channel MSI */ 1352 efx->interrupt_mode = EFX_INT_MODE_MSI; 1353 netif_err(efx, drv, efx->net_dev, 1354 "could not enable MSI-X\n"); 1355 } else if (rc < n_channels) { 1356 netif_err(efx, drv, efx->net_dev, 1357 "WARNING: Insufficient MSI-X vectors" 1358 " available (%d < %u).\n", rc, n_channels); 1359 netif_err(efx, drv, efx->net_dev, 1360 "WARNING: Performance may be reduced.\n"); 1361 n_channels = rc; 1362 } 1363 1364 if (rc > 0) { 1365 efx->n_channels = n_channels; 1366 if (n_channels > extra_channels) 1367 n_channels -= extra_channels; 1368 if (separate_tx_channels) { 1369 efx->n_tx_channels = max(n_channels / 2, 1U); 1370 efx->n_rx_channels = max(n_channels - 1371 efx->n_tx_channels, 1372 1U); 1373 } else { 1374 efx->n_tx_channels = n_channels; 1375 efx->n_rx_channels = n_channels; 1376 } 1377 for (i = 0; i < efx->n_channels; i++) 1378 efx_get_channel(efx, i)->irq = 1379 xentries[i].vector; 1380 } 1381 } 1382 1383 /* Try single interrupt MSI */ 1384 if (efx->interrupt_mode == EFX_INT_MODE_MSI) { 1385 efx->n_channels = 1; 1386 efx->n_rx_channels = 1; 1387 efx->n_tx_channels = 1; 1388 rc = pci_enable_msi(efx->pci_dev); 1389 if (rc == 0) { 1390 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; 1391 } else { 1392 netif_err(efx, drv, efx->net_dev, 1393 "could not enable MSI\n"); 1394 efx->interrupt_mode = EFX_INT_MODE_LEGACY; 1395 } 1396 } 1397 1398 /* Assume legacy interrupts */ 1399 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { 1400 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0); 1401 efx->n_rx_channels = 1; 1402 efx->n_tx_channels = 1; 1403 efx->legacy_irq = efx->pci_dev->irq; 1404 } 1405 1406 /* Assign extra channels if possible */ 1407 j = efx->n_channels; 1408 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) { 1409 if (!efx->extra_channel_type[i]) 1410 continue; 1411 if (efx->interrupt_mode != EFX_INT_MODE_MSIX || 1412 efx->n_channels <= extra_channels) { 1413 efx->extra_channel_type[i]->handle_no_channel(efx); 1414 } else { 1415 --j; 1416 efx_get_channel(efx, j)->type = 1417 efx->extra_channel_type[i]; 1418 } 1419 } 1420 1421 /* RSS might be usable on VFs even if it is disabled on the PF */ 1422 efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ? 1423 efx->n_rx_channels : efx_vf_size(efx)); 1424 1425 return 0; 1426 } 1427 1428 static int efx_soft_enable_interrupts(struct efx_nic *efx) 1429 { 1430 struct efx_channel *channel, *end_channel; 1431 int rc; 1432 1433 BUG_ON(efx->state == STATE_DISABLED); 1434 1435 efx->irq_soft_enabled = true; 1436 smp_wmb(); 1437 1438 efx_for_each_channel(channel, efx) { 1439 if (!channel->type->keep_eventq) { 1440 rc = efx_init_eventq(channel); 1441 if (rc) 1442 goto fail; 1443 } 1444 efx_start_eventq(channel); 1445 } 1446 1447 efx_mcdi_mode_event(efx); 1448 1449 return 0; 1450 fail: 1451 end_channel = channel; 1452 efx_for_each_channel(channel, efx) { 1453 if (channel == end_channel) 1454 break; 1455 efx_stop_eventq(channel); 1456 if (!channel->type->keep_eventq) 1457 efx_fini_eventq(channel); 1458 } 1459 1460 return rc; 1461 } 1462 1463 static void efx_soft_disable_interrupts(struct efx_nic *efx) 1464 { 1465 struct efx_channel *channel; 1466 1467 if (efx->state == STATE_DISABLED) 1468 return; 1469 1470 efx_mcdi_mode_poll(efx); 1471 1472 efx->irq_soft_enabled = false; 1473 smp_wmb(); 1474 1475 if (efx->legacy_irq) 1476 synchronize_irq(efx->legacy_irq); 1477 1478 efx_for_each_channel(channel, efx) { 1479 if (channel->irq) 1480 synchronize_irq(channel->irq); 1481 1482 efx_stop_eventq(channel); 1483 if (!channel->type->keep_eventq) 1484 efx_fini_eventq(channel); 1485 } 1486 1487 /* Flush the asynchronous MCDI request queue */ 1488 efx_mcdi_flush_async(efx); 1489 } 1490 1491 static int efx_enable_interrupts(struct efx_nic *efx) 1492 { 1493 struct efx_channel *channel, *end_channel; 1494 int rc; 1495 1496 BUG_ON(efx->state == STATE_DISABLED); 1497 1498 if (efx->eeh_disabled_legacy_irq) { 1499 enable_irq(efx->legacy_irq); 1500 efx->eeh_disabled_legacy_irq = false; 1501 } 1502 1503 efx->type->irq_enable_master(efx); 1504 1505 efx_for_each_channel(channel, efx) { 1506 if (channel->type->keep_eventq) { 1507 rc = efx_init_eventq(channel); 1508 if (rc) 1509 goto fail; 1510 } 1511 } 1512 1513 rc = efx_soft_enable_interrupts(efx); 1514 if (rc) 1515 goto fail; 1516 1517 return 0; 1518 1519 fail: 1520 end_channel = channel; 1521 efx_for_each_channel(channel, efx) { 1522 if (channel == end_channel) 1523 break; 1524 if (channel->type->keep_eventq) 1525 efx_fini_eventq(channel); 1526 } 1527 1528 efx->type->irq_disable_non_ev(efx); 1529 1530 return rc; 1531 } 1532 1533 static void efx_disable_interrupts(struct efx_nic *efx) 1534 { 1535 struct efx_channel *channel; 1536 1537 efx_soft_disable_interrupts(efx); 1538 1539 efx_for_each_channel(channel, efx) { 1540 if (channel->type->keep_eventq) 1541 efx_fini_eventq(channel); 1542 } 1543 1544 efx->type->irq_disable_non_ev(efx); 1545 } 1546 1547 static void efx_remove_interrupts(struct efx_nic *efx) 1548 { 1549 struct efx_channel *channel; 1550 1551 /* Remove MSI/MSI-X interrupts */ 1552 efx_for_each_channel(channel, efx) 1553 channel->irq = 0; 1554 pci_disable_msi(efx->pci_dev); 1555 pci_disable_msix(efx->pci_dev); 1556 1557 /* Remove legacy interrupt */ 1558 efx->legacy_irq = 0; 1559 } 1560 1561 static void efx_set_channels(struct efx_nic *efx) 1562 { 1563 struct efx_channel *channel; 1564 struct efx_tx_queue *tx_queue; 1565 1566 efx->tx_channel_offset = 1567 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0; 1568 1569 /* We need to mark which channels really have RX and TX 1570 * queues, and adjust the TX queue numbers if we have separate 1571 * RX-only and TX-only channels. 1572 */ 1573 efx_for_each_channel(channel, efx) { 1574 if (channel->channel < efx->n_rx_channels) 1575 channel->rx_queue.core_index = channel->channel; 1576 else 1577 channel->rx_queue.core_index = -1; 1578 1579 efx_for_each_channel_tx_queue(tx_queue, channel) 1580 tx_queue->queue -= (efx->tx_channel_offset * 1581 EFX_TXQ_TYPES); 1582 } 1583 } 1584 1585 static int efx_probe_nic(struct efx_nic *efx) 1586 { 1587 size_t i; 1588 int rc; 1589 1590 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 1591 1592 /* Carry out hardware-type specific initialisation */ 1593 rc = efx->type->probe(efx); 1594 if (rc) 1595 return rc; 1596 1597 /* Determine the number of channels and queues by trying to hook 1598 * in MSI-X interrupts. */ 1599 rc = efx_probe_interrupts(efx); 1600 if (rc) 1601 goto fail1; 1602 1603 efx_set_channels(efx); 1604 1605 rc = efx->type->dimension_resources(efx); 1606 if (rc) 1607 goto fail2; 1608 1609 if (efx->n_channels > 1) 1610 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key)); 1611 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) 1612 efx->rx_indir_table[i] = 1613 ethtool_rxfh_indir_default(i, efx->rss_spread); 1614 1615 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); 1616 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); 1617 1618 /* Initialise the interrupt moderation settings */ 1619 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 1620 true); 1621 1622 return 0; 1623 1624 fail2: 1625 efx_remove_interrupts(efx); 1626 fail1: 1627 efx->type->remove(efx); 1628 return rc; 1629 } 1630 1631 static void efx_remove_nic(struct efx_nic *efx) 1632 { 1633 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 1634 1635 efx_remove_interrupts(efx); 1636 efx->type->remove(efx); 1637 } 1638 1639 static int efx_probe_filters(struct efx_nic *efx) 1640 { 1641 int rc; 1642 1643 spin_lock_init(&efx->filter_lock); 1644 1645 rc = efx->type->filter_table_probe(efx); 1646 if (rc) 1647 return rc; 1648 1649 #ifdef CONFIG_RFS_ACCEL 1650 if (efx->type->offload_features & NETIF_F_NTUPLE) { 1651 efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters, 1652 sizeof(*efx->rps_flow_id), 1653 GFP_KERNEL); 1654 if (!efx->rps_flow_id) { 1655 efx->type->filter_table_remove(efx); 1656 return -ENOMEM; 1657 } 1658 } 1659 #endif 1660 1661 return 0; 1662 } 1663 1664 static void efx_remove_filters(struct efx_nic *efx) 1665 { 1666 #ifdef CONFIG_RFS_ACCEL 1667 kfree(efx->rps_flow_id); 1668 #endif 1669 efx->type->filter_table_remove(efx); 1670 } 1671 1672 static void efx_restore_filters(struct efx_nic *efx) 1673 { 1674 efx->type->filter_table_restore(efx); 1675 } 1676 1677 /************************************************************************** 1678 * 1679 * NIC startup/shutdown 1680 * 1681 *************************************************************************/ 1682 1683 static int efx_probe_all(struct efx_nic *efx) 1684 { 1685 int rc; 1686 1687 rc = efx_probe_nic(efx); 1688 if (rc) { 1689 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 1690 goto fail1; 1691 } 1692 1693 rc = efx_probe_port(efx); 1694 if (rc) { 1695 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 1696 goto fail2; 1697 } 1698 1699 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); 1700 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { 1701 rc = -EINVAL; 1702 goto fail3; 1703 } 1704 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; 1705 1706 rc = efx_probe_filters(efx); 1707 if (rc) { 1708 netif_err(efx, probe, efx->net_dev, 1709 "failed to create filter tables\n"); 1710 goto fail3; 1711 } 1712 1713 rc = efx_probe_channels(efx); 1714 if (rc) 1715 goto fail4; 1716 1717 return 0; 1718 1719 fail4: 1720 efx_remove_filters(efx); 1721 fail3: 1722 efx_remove_port(efx); 1723 fail2: 1724 efx_remove_nic(efx); 1725 fail1: 1726 return rc; 1727 } 1728 1729 /* If the interface is supposed to be running but is not, start 1730 * the hardware and software data path, regular activity for the port 1731 * (MAC statistics, link polling, etc.) and schedule the port to be 1732 * reconfigured. Interrupts must already be enabled. This function 1733 * is safe to call multiple times, so long as the NIC is not disabled. 1734 * Requires the RTNL lock. 1735 */ 1736 static void efx_start_all(struct efx_nic *efx) 1737 { 1738 EFX_ASSERT_RESET_SERIALISED(efx); 1739 BUG_ON(efx->state == STATE_DISABLED); 1740 1741 /* Check that it is appropriate to restart the interface. All 1742 * of these flags are safe to read under just the rtnl lock */ 1743 if (efx->port_enabled || !netif_running(efx->net_dev) || 1744 efx->reset_pending) 1745 return; 1746 1747 efx_start_port(efx); 1748 efx_start_datapath(efx); 1749 1750 /* Start the hardware monitor if there is one */ 1751 if (efx->type->monitor != NULL) 1752 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1753 efx_monitor_interval); 1754 1755 /* If link state detection is normally event-driven, we have 1756 * to poll now because we could have missed a change 1757 */ 1758 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { 1759 mutex_lock(&efx->mac_lock); 1760 if (efx->phy_op->poll(efx)) 1761 efx_link_status_changed(efx); 1762 mutex_unlock(&efx->mac_lock); 1763 } 1764 1765 efx->type->start_stats(efx); 1766 efx->type->pull_stats(efx); 1767 spin_lock_bh(&efx->stats_lock); 1768 efx->type->update_stats(efx, NULL, NULL); 1769 spin_unlock_bh(&efx->stats_lock); 1770 } 1771 1772 /* Quiesce the hardware and software data path, and regular activity 1773 * for the port without bringing the link down. Safe to call multiple 1774 * times with the NIC in almost any state, but interrupts should be 1775 * enabled. Requires the RTNL lock. 1776 */ 1777 static void efx_stop_all(struct efx_nic *efx) 1778 { 1779 EFX_ASSERT_RESET_SERIALISED(efx); 1780 1781 /* port_enabled can be read safely under the rtnl lock */ 1782 if (!efx->port_enabled) 1783 return; 1784 1785 /* update stats before we go down so we can accurately count 1786 * rx_nodesc_drops 1787 */ 1788 efx->type->pull_stats(efx); 1789 spin_lock_bh(&efx->stats_lock); 1790 efx->type->update_stats(efx, NULL, NULL); 1791 spin_unlock_bh(&efx->stats_lock); 1792 efx->type->stop_stats(efx); 1793 efx_stop_port(efx); 1794 1795 /* Stop the kernel transmit interface. This is only valid if 1796 * the device is stopped or detached; otherwise the watchdog 1797 * may fire immediately. 1798 */ 1799 WARN_ON(netif_running(efx->net_dev) && 1800 netif_device_present(efx->net_dev)); 1801 netif_tx_disable(efx->net_dev); 1802 1803 efx_stop_datapath(efx); 1804 } 1805 1806 static void efx_remove_all(struct efx_nic *efx) 1807 { 1808 efx_remove_channels(efx); 1809 efx_remove_filters(efx); 1810 efx_remove_port(efx); 1811 efx_remove_nic(efx); 1812 } 1813 1814 /************************************************************************** 1815 * 1816 * Interrupt moderation 1817 * 1818 **************************************************************************/ 1819 1820 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns) 1821 { 1822 if (usecs == 0) 1823 return 0; 1824 if (usecs * 1000 < quantum_ns) 1825 return 1; /* never round down to 0 */ 1826 return usecs * 1000 / quantum_ns; 1827 } 1828 1829 /* Set interrupt moderation parameters */ 1830 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, 1831 unsigned int rx_usecs, bool rx_adaptive, 1832 bool rx_may_override_tx) 1833 { 1834 struct efx_channel *channel; 1835 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max * 1836 efx->timer_quantum_ns, 1837 1000); 1838 unsigned int tx_ticks; 1839 unsigned int rx_ticks; 1840 1841 EFX_ASSERT_RESET_SERIALISED(efx); 1842 1843 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max) 1844 return -EINVAL; 1845 1846 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns); 1847 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns); 1848 1849 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 && 1850 !rx_may_override_tx) { 1851 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 1852 "RX and TX IRQ moderation must be equal\n"); 1853 return -EINVAL; 1854 } 1855 1856 efx->irq_rx_adaptive = rx_adaptive; 1857 efx->irq_rx_moderation = rx_ticks; 1858 efx_for_each_channel(channel, efx) { 1859 if (efx_channel_has_rx_queue(channel)) 1860 channel->irq_moderation = rx_ticks; 1861 else if (efx_channel_has_tx_queues(channel)) 1862 channel->irq_moderation = tx_ticks; 1863 } 1864 1865 return 0; 1866 } 1867 1868 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, 1869 unsigned int *rx_usecs, bool *rx_adaptive) 1870 { 1871 /* We must round up when converting ticks to microseconds 1872 * because we round down when converting the other way. 1873 */ 1874 1875 *rx_adaptive = efx->irq_rx_adaptive; 1876 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation * 1877 efx->timer_quantum_ns, 1878 1000); 1879 1880 /* If channels are shared between RX and TX, so is IRQ 1881 * moderation. Otherwise, IRQ moderation is the same for all 1882 * TX channels and is not adaptive. 1883 */ 1884 if (efx->tx_channel_offset == 0) 1885 *tx_usecs = *rx_usecs; 1886 else 1887 *tx_usecs = DIV_ROUND_UP( 1888 efx->channel[efx->tx_channel_offset]->irq_moderation * 1889 efx->timer_quantum_ns, 1890 1000); 1891 } 1892 1893 /************************************************************************** 1894 * 1895 * Hardware monitor 1896 * 1897 **************************************************************************/ 1898 1899 /* Run periodically off the general workqueue */ 1900 static void efx_monitor(struct work_struct *data) 1901 { 1902 struct efx_nic *efx = container_of(data, struct efx_nic, 1903 monitor_work.work); 1904 1905 netif_vdbg(efx, timer, efx->net_dev, 1906 "hardware monitor executing on CPU %d\n", 1907 raw_smp_processor_id()); 1908 BUG_ON(efx->type->monitor == NULL); 1909 1910 /* If the mac_lock is already held then it is likely a port 1911 * reconfiguration is already in place, which will likely do 1912 * most of the work of monitor() anyway. */ 1913 if (mutex_trylock(&efx->mac_lock)) { 1914 if (efx->port_enabled) 1915 efx->type->monitor(efx); 1916 mutex_unlock(&efx->mac_lock); 1917 } 1918 1919 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1920 efx_monitor_interval); 1921 } 1922 1923 /************************************************************************** 1924 * 1925 * ioctls 1926 * 1927 *************************************************************************/ 1928 1929 /* Net device ioctl 1930 * Context: process, rtnl_lock() held. 1931 */ 1932 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 1933 { 1934 struct efx_nic *efx = netdev_priv(net_dev); 1935 struct mii_ioctl_data *data = if_mii(ifr); 1936 1937 if (cmd == SIOCSHWTSTAMP) 1938 return efx_ptp_set_ts_config(efx, ifr); 1939 if (cmd == SIOCGHWTSTAMP) 1940 return efx_ptp_get_ts_config(efx, ifr); 1941 1942 /* Convert phy_id from older PRTAD/DEVAD format */ 1943 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 1944 (data->phy_id & 0xfc00) == 0x0400) 1945 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 1946 1947 return mdio_mii_ioctl(&efx->mdio, data, cmd); 1948 } 1949 1950 /************************************************************************** 1951 * 1952 * NAPI interface 1953 * 1954 **************************************************************************/ 1955 1956 static void efx_init_napi_channel(struct efx_channel *channel) 1957 { 1958 struct efx_nic *efx = channel->efx; 1959 1960 channel->napi_dev = efx->net_dev; 1961 netif_napi_add(channel->napi_dev, &channel->napi_str, 1962 efx_poll, napi_weight); 1963 } 1964 1965 static void efx_init_napi(struct efx_nic *efx) 1966 { 1967 struct efx_channel *channel; 1968 1969 efx_for_each_channel(channel, efx) 1970 efx_init_napi_channel(channel); 1971 } 1972 1973 static void efx_fini_napi_channel(struct efx_channel *channel) 1974 { 1975 if (channel->napi_dev) 1976 netif_napi_del(&channel->napi_str); 1977 channel->napi_dev = NULL; 1978 } 1979 1980 static void efx_fini_napi(struct efx_nic *efx) 1981 { 1982 struct efx_channel *channel; 1983 1984 efx_for_each_channel(channel, efx) 1985 efx_fini_napi_channel(channel); 1986 } 1987 1988 /************************************************************************** 1989 * 1990 * Kernel netpoll interface 1991 * 1992 *************************************************************************/ 1993 1994 #ifdef CONFIG_NET_POLL_CONTROLLER 1995 1996 /* Although in the common case interrupts will be disabled, this is not 1997 * guaranteed. However, all our work happens inside the NAPI callback, 1998 * so no locking is required. 1999 */ 2000 static void efx_netpoll(struct net_device *net_dev) 2001 { 2002 struct efx_nic *efx = netdev_priv(net_dev); 2003 struct efx_channel *channel; 2004 2005 efx_for_each_channel(channel, efx) 2006 efx_schedule_channel(channel); 2007 } 2008 2009 #endif 2010 2011 /************************************************************************** 2012 * 2013 * Kernel net device interface 2014 * 2015 *************************************************************************/ 2016 2017 /* Context: process, rtnl_lock() held. */ 2018 static int efx_net_open(struct net_device *net_dev) 2019 { 2020 struct efx_nic *efx = netdev_priv(net_dev); 2021 int rc; 2022 2023 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 2024 raw_smp_processor_id()); 2025 2026 rc = efx_check_disabled(efx); 2027 if (rc) 2028 return rc; 2029 if (efx->phy_mode & PHY_MODE_SPECIAL) 2030 return -EBUSY; 2031 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) 2032 return -EIO; 2033 2034 /* Notify the kernel of the link state polled during driver load, 2035 * before the monitor starts running */ 2036 efx_link_status_changed(efx); 2037 2038 efx_start_all(efx); 2039 efx_selftest_async_start(efx); 2040 return 0; 2041 } 2042 2043 /* Context: process, rtnl_lock() held. 2044 * Note that the kernel will ignore our return code; this method 2045 * should really be a void. 2046 */ 2047 static int efx_net_stop(struct net_device *net_dev) 2048 { 2049 struct efx_nic *efx = netdev_priv(net_dev); 2050 2051 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 2052 raw_smp_processor_id()); 2053 2054 /* Stop the device and flush all the channels */ 2055 efx_stop_all(efx); 2056 2057 return 0; 2058 } 2059 2060 /* Context: process, dev_base_lock or RTNL held, non-blocking. */ 2061 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, 2062 struct rtnl_link_stats64 *stats) 2063 { 2064 struct efx_nic *efx = netdev_priv(net_dev); 2065 2066 spin_lock_bh(&efx->stats_lock); 2067 efx->type->update_stats(efx, NULL, stats); 2068 spin_unlock_bh(&efx->stats_lock); 2069 2070 return stats; 2071 } 2072 2073 /* Context: netif_tx_lock held, BHs disabled. */ 2074 static void efx_watchdog(struct net_device *net_dev) 2075 { 2076 struct efx_nic *efx = netdev_priv(net_dev); 2077 2078 netif_err(efx, tx_err, efx->net_dev, 2079 "TX stuck with port_enabled=%d: resetting channels\n", 2080 efx->port_enabled); 2081 2082 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 2083 } 2084 2085 2086 /* Context: process, rtnl_lock() held. */ 2087 static int efx_change_mtu(struct net_device *net_dev, int new_mtu) 2088 { 2089 struct efx_nic *efx = netdev_priv(net_dev); 2090 int rc; 2091 2092 rc = efx_check_disabled(efx); 2093 if (rc) 2094 return rc; 2095 if (new_mtu > EFX_MAX_MTU) 2096 return -EINVAL; 2097 2098 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); 2099 2100 efx_device_detach_sync(efx); 2101 efx_stop_all(efx); 2102 2103 mutex_lock(&efx->mac_lock); 2104 net_dev->mtu = new_mtu; 2105 efx->type->reconfigure_mac(efx); 2106 mutex_unlock(&efx->mac_lock); 2107 2108 efx_start_all(efx); 2109 netif_device_attach(efx->net_dev); 2110 return 0; 2111 } 2112 2113 static int efx_set_mac_address(struct net_device *net_dev, void *data) 2114 { 2115 struct efx_nic *efx = netdev_priv(net_dev); 2116 struct sockaddr *addr = data; 2117 u8 *new_addr = addr->sa_data; 2118 2119 if (!is_valid_ether_addr(new_addr)) { 2120 netif_err(efx, drv, efx->net_dev, 2121 "invalid ethernet MAC address requested: %pM\n", 2122 new_addr); 2123 return -EADDRNOTAVAIL; 2124 } 2125 2126 ether_addr_copy(net_dev->dev_addr, new_addr); 2127 efx_sriov_mac_address_changed(efx); 2128 2129 /* Reconfigure the MAC */ 2130 mutex_lock(&efx->mac_lock); 2131 efx->type->reconfigure_mac(efx); 2132 mutex_unlock(&efx->mac_lock); 2133 2134 return 0; 2135 } 2136 2137 /* Context: netif_addr_lock held, BHs disabled. */ 2138 static void efx_set_rx_mode(struct net_device *net_dev) 2139 { 2140 struct efx_nic *efx = netdev_priv(net_dev); 2141 2142 if (efx->port_enabled) 2143 queue_work(efx->workqueue, &efx->mac_work); 2144 /* Otherwise efx_start_port() will do this */ 2145 } 2146 2147 static int efx_set_features(struct net_device *net_dev, netdev_features_t data) 2148 { 2149 struct efx_nic *efx = netdev_priv(net_dev); 2150 2151 /* If disabling RX n-tuple filtering, clear existing filters */ 2152 if (net_dev->features & ~data & NETIF_F_NTUPLE) 2153 return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); 2154 2155 return 0; 2156 } 2157 2158 static const struct net_device_ops efx_farch_netdev_ops = { 2159 .ndo_open = efx_net_open, 2160 .ndo_stop = efx_net_stop, 2161 .ndo_get_stats64 = efx_net_stats, 2162 .ndo_tx_timeout = efx_watchdog, 2163 .ndo_start_xmit = efx_hard_start_xmit, 2164 .ndo_validate_addr = eth_validate_addr, 2165 .ndo_do_ioctl = efx_ioctl, 2166 .ndo_change_mtu = efx_change_mtu, 2167 .ndo_set_mac_address = efx_set_mac_address, 2168 .ndo_set_rx_mode = efx_set_rx_mode, 2169 .ndo_set_features = efx_set_features, 2170 #ifdef CONFIG_SFC_SRIOV 2171 .ndo_set_vf_mac = efx_sriov_set_vf_mac, 2172 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, 2173 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, 2174 .ndo_get_vf_config = efx_sriov_get_vf_config, 2175 #endif 2176 #ifdef CONFIG_NET_POLL_CONTROLLER 2177 .ndo_poll_controller = efx_netpoll, 2178 #endif 2179 .ndo_setup_tc = efx_setup_tc, 2180 #ifdef CONFIG_RFS_ACCEL 2181 .ndo_rx_flow_steer = efx_filter_rfs, 2182 #endif 2183 }; 2184 2185 static const struct net_device_ops efx_ef10_netdev_ops = { 2186 .ndo_open = efx_net_open, 2187 .ndo_stop = efx_net_stop, 2188 .ndo_get_stats64 = efx_net_stats, 2189 .ndo_tx_timeout = efx_watchdog, 2190 .ndo_start_xmit = efx_hard_start_xmit, 2191 .ndo_validate_addr = eth_validate_addr, 2192 .ndo_do_ioctl = efx_ioctl, 2193 .ndo_change_mtu = efx_change_mtu, 2194 .ndo_set_mac_address = efx_set_mac_address, 2195 .ndo_set_rx_mode = efx_set_rx_mode, 2196 .ndo_set_features = efx_set_features, 2197 #ifdef CONFIG_NET_POLL_CONTROLLER 2198 .ndo_poll_controller = efx_netpoll, 2199 #endif 2200 #ifdef CONFIG_RFS_ACCEL 2201 .ndo_rx_flow_steer = efx_filter_rfs, 2202 #endif 2203 }; 2204 2205 static void efx_update_name(struct efx_nic *efx) 2206 { 2207 strcpy(efx->name, efx->net_dev->name); 2208 efx_mtd_rename(efx); 2209 efx_set_channel_names(efx); 2210 } 2211 2212 static int efx_netdev_event(struct notifier_block *this, 2213 unsigned long event, void *ptr) 2214 { 2215 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 2216 2217 if ((net_dev->netdev_ops == &efx_farch_netdev_ops || 2218 net_dev->netdev_ops == &efx_ef10_netdev_ops) && 2219 event == NETDEV_CHANGENAME) 2220 efx_update_name(netdev_priv(net_dev)); 2221 2222 return NOTIFY_DONE; 2223 } 2224 2225 static struct notifier_block efx_netdev_notifier = { 2226 .notifier_call = efx_netdev_event, 2227 }; 2228 2229 static ssize_t 2230 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) 2231 { 2232 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2233 return sprintf(buf, "%d\n", efx->phy_type); 2234 } 2235 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); 2236 2237 static int efx_register_netdev(struct efx_nic *efx) 2238 { 2239 struct net_device *net_dev = efx->net_dev; 2240 struct efx_channel *channel; 2241 int rc; 2242 2243 net_dev->watchdog_timeo = 5 * HZ; 2244 net_dev->irq = efx->pci_dev->irq; 2245 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) { 2246 net_dev->netdev_ops = &efx_ef10_netdev_ops; 2247 net_dev->priv_flags |= IFF_UNICAST_FLT; 2248 } else { 2249 net_dev->netdev_ops = &efx_farch_netdev_ops; 2250 } 2251 net_dev->ethtool_ops = &efx_ethtool_ops; 2252 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS; 2253 2254 rtnl_lock(); 2255 2256 /* Enable resets to be scheduled and check whether any were 2257 * already requested. If so, the NIC is probably hosed so we 2258 * abort. 2259 */ 2260 efx->state = STATE_READY; 2261 smp_mb(); /* ensure we change state before checking reset_pending */ 2262 if (efx->reset_pending) { 2263 netif_err(efx, probe, efx->net_dev, 2264 "aborting probe due to scheduled reset\n"); 2265 rc = -EIO; 2266 goto fail_locked; 2267 } 2268 2269 rc = dev_alloc_name(net_dev, net_dev->name); 2270 if (rc < 0) 2271 goto fail_locked; 2272 efx_update_name(efx); 2273 2274 /* Always start with carrier off; PHY events will detect the link */ 2275 netif_carrier_off(net_dev); 2276 2277 rc = register_netdevice(net_dev); 2278 if (rc) 2279 goto fail_locked; 2280 2281 efx_for_each_channel(channel, efx) { 2282 struct efx_tx_queue *tx_queue; 2283 efx_for_each_channel_tx_queue(tx_queue, channel) 2284 efx_init_tx_queue_core_txq(tx_queue); 2285 } 2286 2287 efx_associate(efx); 2288 2289 rtnl_unlock(); 2290 2291 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2292 if (rc) { 2293 netif_err(efx, drv, efx->net_dev, 2294 "failed to init net dev attributes\n"); 2295 goto fail_registered; 2296 } 2297 2298 return 0; 2299 2300 fail_registered: 2301 rtnl_lock(); 2302 efx_dissociate(efx); 2303 unregister_netdevice(net_dev); 2304 fail_locked: 2305 efx->state = STATE_UNINIT; 2306 rtnl_unlock(); 2307 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 2308 return rc; 2309 } 2310 2311 static void efx_unregister_netdev(struct efx_nic *efx) 2312 { 2313 if (!efx->net_dev) 2314 return; 2315 2316 BUG_ON(netdev_priv(efx->net_dev) != efx); 2317 2318 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 2319 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2320 2321 rtnl_lock(); 2322 unregister_netdevice(efx->net_dev); 2323 efx->state = STATE_UNINIT; 2324 rtnl_unlock(); 2325 } 2326 2327 /************************************************************************** 2328 * 2329 * Device reset and suspend 2330 * 2331 **************************************************************************/ 2332 2333 /* Tears down the entire software state and most of the hardware state 2334 * before reset. */ 2335 void efx_reset_down(struct efx_nic *efx, enum reset_type method) 2336 { 2337 EFX_ASSERT_RESET_SERIALISED(efx); 2338 2339 if (method == RESET_TYPE_MCDI_TIMEOUT) 2340 efx->type->prepare_flr(efx); 2341 2342 efx_stop_all(efx); 2343 efx_disable_interrupts(efx); 2344 2345 mutex_lock(&efx->mac_lock); 2346 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) 2347 efx->phy_op->fini(efx); 2348 efx->type->fini(efx); 2349 } 2350 2351 /* This function will always ensure that the locks acquired in 2352 * efx_reset_down() are released. A failure return code indicates 2353 * that we were unable to reinitialise the hardware, and the 2354 * driver should be disabled. If ok is false, then the rx and tx 2355 * engines are not restarted, pending a RESET_DISABLE. */ 2356 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) 2357 { 2358 int rc; 2359 2360 EFX_ASSERT_RESET_SERIALISED(efx); 2361 2362 if (method == RESET_TYPE_MCDI_TIMEOUT) 2363 efx->type->finish_flr(efx); 2364 2365 /* Ensure that SRAM is initialised even if we're disabling the device */ 2366 rc = efx->type->init(efx); 2367 if (rc) { 2368 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); 2369 goto fail; 2370 } 2371 2372 if (!ok) 2373 goto fail; 2374 2375 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) { 2376 rc = efx->phy_op->init(efx); 2377 if (rc) 2378 goto fail; 2379 if (efx->phy_op->reconfigure(efx)) 2380 netif_err(efx, drv, efx->net_dev, 2381 "could not restore PHY settings\n"); 2382 } 2383 2384 rc = efx_enable_interrupts(efx); 2385 if (rc) 2386 goto fail; 2387 efx_restore_filters(efx); 2388 efx_sriov_reset(efx); 2389 2390 mutex_unlock(&efx->mac_lock); 2391 2392 efx_start_all(efx); 2393 2394 return 0; 2395 2396 fail: 2397 efx->port_initialized = false; 2398 2399 mutex_unlock(&efx->mac_lock); 2400 2401 return rc; 2402 } 2403 2404 /* Reset the NIC using the specified method. Note that the reset may 2405 * fail, in which case the card will be left in an unusable state. 2406 * 2407 * Caller must hold the rtnl_lock. 2408 */ 2409 int efx_reset(struct efx_nic *efx, enum reset_type method) 2410 { 2411 int rc, rc2; 2412 bool disabled; 2413 2414 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", 2415 RESET_TYPE(method)); 2416 2417 efx_device_detach_sync(efx); 2418 efx_reset_down(efx, method); 2419 2420 rc = efx->type->reset(efx, method); 2421 if (rc) { 2422 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); 2423 goto out; 2424 } 2425 2426 /* Clear flags for the scopes we covered. We assume the NIC and 2427 * driver are now quiescent so that there is no race here. 2428 */ 2429 if (method < RESET_TYPE_MAX_METHOD) 2430 efx->reset_pending &= -(1 << (method + 1)); 2431 else /* it doesn't fit into the well-ordered scope hierarchy */ 2432 __clear_bit(method, &efx->reset_pending); 2433 2434 /* Reinitialise bus-mastering, which may have been turned off before 2435 * the reset was scheduled. This is still appropriate, even in the 2436 * RESET_TYPE_DISABLE since this driver generally assumes the hardware 2437 * can respond to requests. */ 2438 pci_set_master(efx->pci_dev); 2439 2440 out: 2441 /* Leave device stopped if necessary */ 2442 disabled = rc || 2443 method == RESET_TYPE_DISABLE || 2444 method == RESET_TYPE_RECOVER_OR_DISABLE; 2445 rc2 = efx_reset_up(efx, method, !disabled); 2446 if (rc2) { 2447 disabled = true; 2448 if (!rc) 2449 rc = rc2; 2450 } 2451 2452 if (disabled) { 2453 dev_close(efx->net_dev); 2454 netif_err(efx, drv, efx->net_dev, "has been disabled\n"); 2455 efx->state = STATE_DISABLED; 2456 } else { 2457 netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); 2458 netif_device_attach(efx->net_dev); 2459 } 2460 return rc; 2461 } 2462 2463 /* Try recovery mechanisms. 2464 * For now only EEH is supported. 2465 * Returns 0 if the recovery mechanisms are unsuccessful. 2466 * Returns a non-zero value otherwise. 2467 */ 2468 int efx_try_recovery(struct efx_nic *efx) 2469 { 2470 #ifdef CONFIG_EEH 2471 /* A PCI error can occur and not be seen by EEH because nothing 2472 * happens on the PCI bus. In this case the driver may fail and 2473 * schedule a 'recover or reset', leading to this recovery handler. 2474 * Manually call the eeh failure check function. 2475 */ 2476 struct eeh_dev *eehdev = 2477 of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev)); 2478 2479 if (eeh_dev_check_failure(eehdev)) { 2480 /* The EEH mechanisms will handle the error and reset the 2481 * device if necessary. 2482 */ 2483 return 1; 2484 } 2485 #endif 2486 return 0; 2487 } 2488 2489 static void efx_wait_for_bist_end(struct efx_nic *efx) 2490 { 2491 int i; 2492 2493 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) { 2494 if (efx_mcdi_poll_reboot(efx)) 2495 goto out; 2496 msleep(BIST_WAIT_DELAY_MS); 2497 } 2498 2499 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n"); 2500 out: 2501 /* Either way unset the BIST flag. If we found no reboot we probably 2502 * won't recover, but we should try. 2503 */ 2504 efx->mc_bist_for_other_fn = false; 2505 } 2506 2507 /* The worker thread exists so that code that cannot sleep can 2508 * schedule a reset for later. 2509 */ 2510 static void efx_reset_work(struct work_struct *data) 2511 { 2512 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); 2513 unsigned long pending; 2514 enum reset_type method; 2515 2516 pending = ACCESS_ONCE(efx->reset_pending); 2517 method = fls(pending) - 1; 2518 2519 if (method == RESET_TYPE_MC_BIST) 2520 efx_wait_for_bist_end(efx); 2521 2522 if ((method == RESET_TYPE_RECOVER_OR_DISABLE || 2523 method == RESET_TYPE_RECOVER_OR_ALL) && 2524 efx_try_recovery(efx)) 2525 return; 2526 2527 if (!pending) 2528 return; 2529 2530 rtnl_lock(); 2531 2532 /* We checked the state in efx_schedule_reset() but it may 2533 * have changed by now. Now that we have the RTNL lock, 2534 * it cannot change again. 2535 */ 2536 if (efx->state == STATE_READY) 2537 (void)efx_reset(efx, method); 2538 2539 rtnl_unlock(); 2540 } 2541 2542 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) 2543 { 2544 enum reset_type method; 2545 2546 if (efx->state == STATE_RECOVERY) { 2547 netif_dbg(efx, drv, efx->net_dev, 2548 "recovering: skip scheduling %s reset\n", 2549 RESET_TYPE(type)); 2550 return; 2551 } 2552 2553 switch (type) { 2554 case RESET_TYPE_INVISIBLE: 2555 case RESET_TYPE_ALL: 2556 case RESET_TYPE_RECOVER_OR_ALL: 2557 case RESET_TYPE_WORLD: 2558 case RESET_TYPE_DISABLE: 2559 case RESET_TYPE_RECOVER_OR_DISABLE: 2560 case RESET_TYPE_MC_BIST: 2561 case RESET_TYPE_MCDI_TIMEOUT: 2562 method = type; 2563 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", 2564 RESET_TYPE(method)); 2565 break; 2566 default: 2567 method = efx->type->map_reset_reason(type); 2568 netif_dbg(efx, drv, efx->net_dev, 2569 "scheduling %s reset for %s\n", 2570 RESET_TYPE(method), RESET_TYPE(type)); 2571 break; 2572 } 2573 2574 set_bit(method, &efx->reset_pending); 2575 smp_mb(); /* ensure we change reset_pending before checking state */ 2576 2577 /* If we're not READY then just leave the flags set as the cue 2578 * to abort probing or reschedule the reset later. 2579 */ 2580 if (ACCESS_ONCE(efx->state) != STATE_READY) 2581 return; 2582 2583 /* efx_process_channel() will no longer read events once a 2584 * reset is scheduled. So switch back to poll'd MCDI completions. */ 2585 efx_mcdi_mode_poll(efx); 2586 2587 queue_work(reset_workqueue, &efx->reset_work); 2588 } 2589 2590 /************************************************************************** 2591 * 2592 * List of NICs we support 2593 * 2594 **************************************************************************/ 2595 2596 /* PCI device ID table */ 2597 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = { 2598 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2599 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), 2600 .driver_data = (unsigned long) &falcon_a1_nic_type}, 2601 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2602 PCI_DEVICE_ID_SOLARFLARE_SFC4000B), 2603 .driver_data = (unsigned long) &falcon_b0_nic_type}, 2604 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ 2605 .driver_data = (unsigned long) &siena_a0_nic_type}, 2606 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ 2607 .driver_data = (unsigned long) &siena_a0_nic_type}, 2608 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */ 2609 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 2610 {0} /* end of list */ 2611 }; 2612 2613 /************************************************************************** 2614 * 2615 * Dummy PHY/MAC operations 2616 * 2617 * Can be used for some unimplemented operations 2618 * Needed so all function pointers are valid and do not have to be tested 2619 * before use 2620 * 2621 **************************************************************************/ 2622 int efx_port_dummy_op_int(struct efx_nic *efx) 2623 { 2624 return 0; 2625 } 2626 void efx_port_dummy_op_void(struct efx_nic *efx) {} 2627 2628 static bool efx_port_dummy_op_poll(struct efx_nic *efx) 2629 { 2630 return false; 2631 } 2632 2633 static const struct efx_phy_operations efx_dummy_phy_operations = { 2634 .init = efx_port_dummy_op_int, 2635 .reconfigure = efx_port_dummy_op_int, 2636 .poll = efx_port_dummy_op_poll, 2637 .fini = efx_port_dummy_op_void, 2638 }; 2639 2640 /************************************************************************** 2641 * 2642 * Data housekeeping 2643 * 2644 **************************************************************************/ 2645 2646 /* This zeroes out and then fills in the invariants in a struct 2647 * efx_nic (including all sub-structures). 2648 */ 2649 static int efx_init_struct(struct efx_nic *efx, 2650 struct pci_dev *pci_dev, struct net_device *net_dev) 2651 { 2652 int i; 2653 2654 /* Initialise common structures */ 2655 INIT_LIST_HEAD(&efx->node); 2656 INIT_LIST_HEAD(&efx->secondary_list); 2657 spin_lock_init(&efx->biu_lock); 2658 #ifdef CONFIG_SFC_MTD 2659 INIT_LIST_HEAD(&efx->mtd_list); 2660 #endif 2661 INIT_WORK(&efx->reset_work, efx_reset_work); 2662 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); 2663 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work); 2664 efx->pci_dev = pci_dev; 2665 efx->msg_enable = debug; 2666 efx->state = STATE_UNINIT; 2667 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); 2668 2669 efx->net_dev = net_dev; 2670 efx->rx_prefix_size = efx->type->rx_prefix_size; 2671 efx->rx_ip_align = 2672 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; 2673 efx->rx_packet_hash_offset = 2674 efx->type->rx_hash_offset - efx->type->rx_prefix_size; 2675 efx->rx_packet_ts_offset = 2676 efx->type->rx_ts_offset - efx->type->rx_prefix_size; 2677 spin_lock_init(&efx->stats_lock); 2678 mutex_init(&efx->mac_lock); 2679 efx->phy_op = &efx_dummy_phy_operations; 2680 efx->mdio.dev = net_dev; 2681 INIT_WORK(&efx->mac_work, efx_mac_work); 2682 init_waitqueue_head(&efx->flush_wq); 2683 2684 for (i = 0; i < EFX_MAX_CHANNELS; i++) { 2685 efx->channel[i] = efx_alloc_channel(efx, i, NULL); 2686 if (!efx->channel[i]) 2687 goto fail; 2688 efx->msi_context[i].efx = efx; 2689 efx->msi_context[i].index = i; 2690 } 2691 2692 /* Higher numbered interrupt modes are less capable! */ 2693 efx->interrupt_mode = max(efx->type->max_interrupt_mode, 2694 interrupt_mode); 2695 2696 /* Would be good to use the net_dev name, but we're too early */ 2697 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", 2698 pci_name(pci_dev)); 2699 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); 2700 if (!efx->workqueue) 2701 goto fail; 2702 2703 return 0; 2704 2705 fail: 2706 efx_fini_struct(efx); 2707 return -ENOMEM; 2708 } 2709 2710 static void efx_fini_struct(struct efx_nic *efx) 2711 { 2712 int i; 2713 2714 for (i = 0; i < EFX_MAX_CHANNELS; i++) 2715 kfree(efx->channel[i]); 2716 2717 kfree(efx->vpd_sn); 2718 2719 if (efx->workqueue) { 2720 destroy_workqueue(efx->workqueue); 2721 efx->workqueue = NULL; 2722 } 2723 } 2724 2725 /************************************************************************** 2726 * 2727 * PCI interface 2728 * 2729 **************************************************************************/ 2730 2731 /* Main body of final NIC shutdown code 2732 * This is called only at module unload (or hotplug removal). 2733 */ 2734 static void efx_pci_remove_main(struct efx_nic *efx) 2735 { 2736 /* Flush reset_work. It can no longer be scheduled since we 2737 * are not READY. 2738 */ 2739 BUG_ON(efx->state == STATE_READY); 2740 cancel_work_sync(&efx->reset_work); 2741 2742 efx_disable_interrupts(efx); 2743 efx_nic_fini_interrupt(efx); 2744 efx_fini_port(efx); 2745 efx->type->fini(efx); 2746 efx_fini_napi(efx); 2747 efx_remove_all(efx); 2748 } 2749 2750 /* Final NIC shutdown 2751 * This is called only at module unload (or hotplug removal). 2752 */ 2753 static void efx_pci_remove(struct pci_dev *pci_dev) 2754 { 2755 struct efx_nic *efx; 2756 2757 efx = pci_get_drvdata(pci_dev); 2758 if (!efx) 2759 return; 2760 2761 /* Mark the NIC as fini, then stop the interface */ 2762 rtnl_lock(); 2763 efx_dissociate(efx); 2764 dev_close(efx->net_dev); 2765 efx_disable_interrupts(efx); 2766 rtnl_unlock(); 2767 2768 efx_sriov_fini(efx); 2769 efx_unregister_netdev(efx); 2770 2771 efx_mtd_remove(efx); 2772 2773 efx_pci_remove_main(efx); 2774 2775 efx_fini_io(efx); 2776 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 2777 2778 efx_fini_struct(efx); 2779 free_netdev(efx->net_dev); 2780 2781 pci_disable_pcie_error_reporting(pci_dev); 2782 }; 2783 2784 /* NIC VPD information 2785 * Called during probe to display the part number of the 2786 * installed NIC. VPD is potentially very large but this should 2787 * always appear within the first 512 bytes. 2788 */ 2789 #define SFC_VPD_LEN 512 2790 static void efx_probe_vpd_strings(struct efx_nic *efx) 2791 { 2792 struct pci_dev *dev = efx->pci_dev; 2793 char vpd_data[SFC_VPD_LEN]; 2794 ssize_t vpd_size; 2795 int ro_start, ro_size, i, j; 2796 2797 /* Get the vpd data from the device */ 2798 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); 2799 if (vpd_size <= 0) { 2800 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); 2801 return; 2802 } 2803 2804 /* Get the Read only section */ 2805 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 2806 if (ro_start < 0) { 2807 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); 2808 return; 2809 } 2810 2811 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 2812 j = ro_size; 2813 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 2814 if (i + j > vpd_size) 2815 j = vpd_size - i; 2816 2817 /* Get the Part number */ 2818 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); 2819 if (i < 0) { 2820 netif_err(efx, drv, efx->net_dev, "Part number not found\n"); 2821 return; 2822 } 2823 2824 j = pci_vpd_info_field_size(&vpd_data[i]); 2825 i += PCI_VPD_INFO_FLD_HDR_SIZE; 2826 if (i + j > vpd_size) { 2827 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); 2828 return; 2829 } 2830 2831 netif_info(efx, drv, efx->net_dev, 2832 "Part Number : %.*s\n", j, &vpd_data[i]); 2833 2834 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 2835 j = ro_size; 2836 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); 2837 if (i < 0) { 2838 netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); 2839 return; 2840 } 2841 2842 j = pci_vpd_info_field_size(&vpd_data[i]); 2843 i += PCI_VPD_INFO_FLD_HDR_SIZE; 2844 if (i + j > vpd_size) { 2845 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); 2846 return; 2847 } 2848 2849 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); 2850 if (!efx->vpd_sn) 2851 return; 2852 2853 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); 2854 } 2855 2856 2857 /* Main body of NIC initialisation 2858 * This is called at module load (or hotplug insertion, theoretically). 2859 */ 2860 static int efx_pci_probe_main(struct efx_nic *efx) 2861 { 2862 int rc; 2863 2864 /* Do start-of-day initialisation */ 2865 rc = efx_probe_all(efx); 2866 if (rc) 2867 goto fail1; 2868 2869 efx_init_napi(efx); 2870 2871 rc = efx->type->init(efx); 2872 if (rc) { 2873 netif_err(efx, probe, efx->net_dev, 2874 "failed to initialise NIC\n"); 2875 goto fail3; 2876 } 2877 2878 rc = efx_init_port(efx); 2879 if (rc) { 2880 netif_err(efx, probe, efx->net_dev, 2881 "failed to initialise port\n"); 2882 goto fail4; 2883 } 2884 2885 rc = efx_nic_init_interrupt(efx); 2886 if (rc) 2887 goto fail5; 2888 rc = efx_enable_interrupts(efx); 2889 if (rc) 2890 goto fail6; 2891 2892 return 0; 2893 2894 fail6: 2895 efx_nic_fini_interrupt(efx); 2896 fail5: 2897 efx_fini_port(efx); 2898 fail4: 2899 efx->type->fini(efx); 2900 fail3: 2901 efx_fini_napi(efx); 2902 efx_remove_all(efx); 2903 fail1: 2904 return rc; 2905 } 2906 2907 /* NIC initialisation 2908 * 2909 * This is called at module load (or hotplug insertion, 2910 * theoretically). It sets up PCI mappings, resets the NIC, 2911 * sets up and registers the network devices with the kernel and hooks 2912 * the interrupt service routine. It does not prepare the device for 2913 * transmission; this is left to the first time one of the network 2914 * interfaces is brought up (i.e. efx_net_open). 2915 */ 2916 static int efx_pci_probe(struct pci_dev *pci_dev, 2917 const struct pci_device_id *entry) 2918 { 2919 struct net_device *net_dev; 2920 struct efx_nic *efx; 2921 int rc; 2922 2923 /* Allocate and initialise a struct net_device and struct efx_nic */ 2924 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, 2925 EFX_MAX_RX_QUEUES); 2926 if (!net_dev) 2927 return -ENOMEM; 2928 efx = netdev_priv(net_dev); 2929 efx->type = (const struct efx_nic_type *) entry->driver_data; 2930 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 2931 NETIF_F_HIGHDMA | NETIF_F_TSO | 2932 NETIF_F_RXCSUM); 2933 if (efx->type->offload_features & NETIF_F_V6_CSUM) 2934 net_dev->features |= NETIF_F_TSO6; 2935 /* Mask for features that also apply to VLAN devices */ 2936 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG | 2937 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | 2938 NETIF_F_RXCSUM); 2939 /* All offloads can be toggled */ 2940 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA; 2941 pci_set_drvdata(pci_dev, efx); 2942 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 2943 rc = efx_init_struct(efx, pci_dev, net_dev); 2944 if (rc) 2945 goto fail1; 2946 2947 netif_info(efx, probe, efx->net_dev, 2948 "Solarflare NIC detected\n"); 2949 2950 efx_probe_vpd_strings(efx); 2951 2952 /* Set up basic I/O (BAR mappings etc) */ 2953 rc = efx_init_io(efx); 2954 if (rc) 2955 goto fail2; 2956 2957 rc = efx_pci_probe_main(efx); 2958 if (rc) 2959 goto fail3; 2960 2961 rc = efx_register_netdev(efx); 2962 if (rc) 2963 goto fail4; 2964 2965 rc = efx_sriov_init(efx); 2966 if (rc) 2967 netif_err(efx, probe, efx->net_dev, 2968 "SR-IOV can't be enabled rc %d\n", rc); 2969 2970 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 2971 2972 /* Try to create MTDs, but allow this to fail */ 2973 rtnl_lock(); 2974 rc = efx_mtd_probe(efx); 2975 rtnl_unlock(); 2976 if (rc) 2977 netif_warn(efx, probe, efx->net_dev, 2978 "failed to create MTDs (%d)\n", rc); 2979 2980 rc = pci_enable_pcie_error_reporting(pci_dev); 2981 if (rc && rc != -EINVAL) 2982 netif_warn(efx, probe, efx->net_dev, 2983 "pci_enable_pcie_error_reporting failed (%d)\n", rc); 2984 2985 return 0; 2986 2987 fail4: 2988 efx_pci_remove_main(efx); 2989 fail3: 2990 efx_fini_io(efx); 2991 fail2: 2992 efx_fini_struct(efx); 2993 fail1: 2994 WARN_ON(rc > 0); 2995 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 2996 free_netdev(net_dev); 2997 return rc; 2998 } 2999 3000 static int efx_pm_freeze(struct device *dev) 3001 { 3002 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 3003 3004 rtnl_lock(); 3005 3006 if (efx->state != STATE_DISABLED) { 3007 efx->state = STATE_UNINIT; 3008 3009 efx_device_detach_sync(efx); 3010 3011 efx_stop_all(efx); 3012 efx_disable_interrupts(efx); 3013 } 3014 3015 rtnl_unlock(); 3016 3017 return 0; 3018 } 3019 3020 static int efx_pm_thaw(struct device *dev) 3021 { 3022 int rc; 3023 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 3024 3025 rtnl_lock(); 3026 3027 if (efx->state != STATE_DISABLED) { 3028 rc = efx_enable_interrupts(efx); 3029 if (rc) 3030 goto fail; 3031 3032 mutex_lock(&efx->mac_lock); 3033 efx->phy_op->reconfigure(efx); 3034 mutex_unlock(&efx->mac_lock); 3035 3036 efx_start_all(efx); 3037 3038 netif_device_attach(efx->net_dev); 3039 3040 efx->state = STATE_READY; 3041 3042 efx->type->resume_wol(efx); 3043 } 3044 3045 rtnl_unlock(); 3046 3047 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ 3048 queue_work(reset_workqueue, &efx->reset_work); 3049 3050 return 0; 3051 3052 fail: 3053 rtnl_unlock(); 3054 3055 return rc; 3056 } 3057 3058 static int efx_pm_poweroff(struct device *dev) 3059 { 3060 struct pci_dev *pci_dev = to_pci_dev(dev); 3061 struct efx_nic *efx = pci_get_drvdata(pci_dev); 3062 3063 efx->type->fini(efx); 3064 3065 efx->reset_pending = 0; 3066 3067 pci_save_state(pci_dev); 3068 return pci_set_power_state(pci_dev, PCI_D3hot); 3069 } 3070 3071 /* Used for both resume and restore */ 3072 static int efx_pm_resume(struct device *dev) 3073 { 3074 struct pci_dev *pci_dev = to_pci_dev(dev); 3075 struct efx_nic *efx = pci_get_drvdata(pci_dev); 3076 int rc; 3077 3078 rc = pci_set_power_state(pci_dev, PCI_D0); 3079 if (rc) 3080 return rc; 3081 pci_restore_state(pci_dev); 3082 rc = pci_enable_device(pci_dev); 3083 if (rc) 3084 return rc; 3085 pci_set_master(efx->pci_dev); 3086 rc = efx->type->reset(efx, RESET_TYPE_ALL); 3087 if (rc) 3088 return rc; 3089 rc = efx->type->init(efx); 3090 if (rc) 3091 return rc; 3092 rc = efx_pm_thaw(dev); 3093 return rc; 3094 } 3095 3096 static int efx_pm_suspend(struct device *dev) 3097 { 3098 int rc; 3099 3100 efx_pm_freeze(dev); 3101 rc = efx_pm_poweroff(dev); 3102 if (rc) 3103 efx_pm_resume(dev); 3104 return rc; 3105 } 3106 3107 static const struct dev_pm_ops efx_pm_ops = { 3108 .suspend = efx_pm_suspend, 3109 .resume = efx_pm_resume, 3110 .freeze = efx_pm_freeze, 3111 .thaw = efx_pm_thaw, 3112 .poweroff = efx_pm_poweroff, 3113 .restore = efx_pm_resume, 3114 }; 3115 3116 /* A PCI error affecting this device was detected. 3117 * At this point MMIO and DMA may be disabled. 3118 * Stop the software path and request a slot reset. 3119 */ 3120 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev, 3121 enum pci_channel_state state) 3122 { 3123 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3124 struct efx_nic *efx = pci_get_drvdata(pdev); 3125 3126 if (state == pci_channel_io_perm_failure) 3127 return PCI_ERS_RESULT_DISCONNECT; 3128 3129 rtnl_lock(); 3130 3131 if (efx->state != STATE_DISABLED) { 3132 efx->state = STATE_RECOVERY; 3133 efx->reset_pending = 0; 3134 3135 efx_device_detach_sync(efx); 3136 3137 efx_stop_all(efx); 3138 efx_disable_interrupts(efx); 3139 3140 status = PCI_ERS_RESULT_NEED_RESET; 3141 } else { 3142 /* If the interface is disabled we don't want to do anything 3143 * with it. 3144 */ 3145 status = PCI_ERS_RESULT_RECOVERED; 3146 } 3147 3148 rtnl_unlock(); 3149 3150 pci_disable_device(pdev); 3151 3152 return status; 3153 } 3154 3155 /* Fake a successfull reset, which will be performed later in efx_io_resume. */ 3156 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev) 3157 { 3158 struct efx_nic *efx = pci_get_drvdata(pdev); 3159 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3160 int rc; 3161 3162 if (pci_enable_device(pdev)) { 3163 netif_err(efx, hw, efx->net_dev, 3164 "Cannot re-enable PCI device after reset.\n"); 3165 status = PCI_ERS_RESULT_DISCONNECT; 3166 } 3167 3168 rc = pci_cleanup_aer_uncorrect_error_status(pdev); 3169 if (rc) { 3170 netif_err(efx, hw, efx->net_dev, 3171 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc); 3172 /* Non-fatal error. Continue. */ 3173 } 3174 3175 return status; 3176 } 3177 3178 /* Perform the actual reset and resume I/O operations. */ 3179 static void efx_io_resume(struct pci_dev *pdev) 3180 { 3181 struct efx_nic *efx = pci_get_drvdata(pdev); 3182 int rc; 3183 3184 rtnl_lock(); 3185 3186 if (efx->state == STATE_DISABLED) 3187 goto out; 3188 3189 rc = efx_reset(efx, RESET_TYPE_ALL); 3190 if (rc) { 3191 netif_err(efx, hw, efx->net_dev, 3192 "efx_reset failed after PCI error (%d)\n", rc); 3193 } else { 3194 efx->state = STATE_READY; 3195 netif_dbg(efx, hw, efx->net_dev, 3196 "Done resetting and resuming IO after PCI error.\n"); 3197 } 3198 3199 out: 3200 rtnl_unlock(); 3201 } 3202 3203 /* For simplicity and reliability, we always require a slot reset and try to 3204 * reset the hardware when a pci error affecting the device is detected. 3205 * We leave both the link_reset and mmio_enabled callback unimplemented: 3206 * with our request for slot reset the mmio_enabled callback will never be 3207 * called, and the link_reset callback is not used by AER or EEH mechanisms. 3208 */ 3209 static struct pci_error_handlers efx_err_handlers = { 3210 .error_detected = efx_io_error_detected, 3211 .slot_reset = efx_io_slot_reset, 3212 .resume = efx_io_resume, 3213 }; 3214 3215 static struct pci_driver efx_pci_driver = { 3216 .name = KBUILD_MODNAME, 3217 .id_table = efx_pci_table, 3218 .probe = efx_pci_probe, 3219 .remove = efx_pci_remove, 3220 .driver.pm = &efx_pm_ops, 3221 .err_handler = &efx_err_handlers, 3222 }; 3223 3224 /************************************************************************** 3225 * 3226 * Kernel module interface 3227 * 3228 *************************************************************************/ 3229 3230 module_param(interrupt_mode, uint, 0444); 3231 MODULE_PARM_DESC(interrupt_mode, 3232 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 3233 3234 static int __init efx_init_module(void) 3235 { 3236 int rc; 3237 3238 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); 3239 3240 rc = register_netdevice_notifier(&efx_netdev_notifier); 3241 if (rc) 3242 goto err_notifier; 3243 3244 rc = efx_init_sriov(); 3245 if (rc) 3246 goto err_sriov; 3247 3248 reset_workqueue = create_singlethread_workqueue("sfc_reset"); 3249 if (!reset_workqueue) { 3250 rc = -ENOMEM; 3251 goto err_reset; 3252 } 3253 3254 rc = pci_register_driver(&efx_pci_driver); 3255 if (rc < 0) 3256 goto err_pci; 3257 3258 return 0; 3259 3260 err_pci: 3261 destroy_workqueue(reset_workqueue); 3262 err_reset: 3263 efx_fini_sriov(); 3264 err_sriov: 3265 unregister_netdevice_notifier(&efx_netdev_notifier); 3266 err_notifier: 3267 return rc; 3268 } 3269 3270 static void __exit efx_exit_module(void) 3271 { 3272 printk(KERN_INFO "Solarflare NET driver unloading\n"); 3273 3274 pci_unregister_driver(&efx_pci_driver); 3275 destroy_workqueue(reset_workqueue); 3276 efx_fini_sriov(); 3277 unregister_netdevice_notifier(&efx_netdev_notifier); 3278 3279 } 3280 3281 module_init(efx_init_module); 3282 module_exit(efx_exit_module); 3283 3284 MODULE_AUTHOR("Solarflare Communications and " 3285 "Michael Brown <mbrown@fensystems.co.uk>"); 3286 MODULE_DESCRIPTION("Solarflare network driver"); 3287 MODULE_LICENSE("GPL"); 3288 MODULE_DEVICE_TABLE(pci, efx_pci_table); 3289