xref: /openbmc/linux/drivers/net/ethernet/sfc/efx.c (revision c4ee0af3)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29 
30 #include "mcdi.h"
31 #include "workarounds.h"
32 
33 /**************************************************************************
34  *
35  * Type name strings
36  *
37  **************************************************************************
38  */
39 
40 /* Loopback mode names (see LOOPBACK_MODE()) */
41 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42 const char *const efx_loopback_mode_names[] = {
43 	[LOOPBACK_NONE]		= "NONE",
44 	[LOOPBACK_DATA]		= "DATAPATH",
45 	[LOOPBACK_GMAC]		= "GMAC",
46 	[LOOPBACK_XGMII]	= "XGMII",
47 	[LOOPBACK_XGXS]		= "XGXS",
48 	[LOOPBACK_XAUI]		= "XAUI",
49 	[LOOPBACK_GMII]		= "GMII",
50 	[LOOPBACK_SGMII]	= "SGMII",
51 	[LOOPBACK_XGBR]		= "XGBR",
52 	[LOOPBACK_XFI]		= "XFI",
53 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
54 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
55 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
56 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 	[LOOPBACK_GPHY]		= "GPHY",
58 	[LOOPBACK_PHYXS]	= "PHYXS",
59 	[LOOPBACK_PCS]		= "PCS",
60 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 	[LOOPBACK_XPORT]	= "XPORT",
62 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
65 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66 	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 	[LOOPBACK_XFI_WS]	= "XFI_WS",
68 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 };
71 
72 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73 const char *const efx_reset_type_names[] = {
74 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
75 	[RESET_TYPE_ALL]                = "ALL",
76 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
77 	[RESET_TYPE_WORLD]              = "WORLD",
78 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
79 	[RESET_TYPE_DISABLE]            = "DISABLE",
80 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
81 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
82 	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
83 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
84 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
85 	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
86 };
87 
88 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
89  * queued onto this work queue. This is not a per-nic work queue, because
90  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91  */
92 static struct workqueue_struct *reset_workqueue;
93 
94 /**************************************************************************
95  *
96  * Configurable values
97  *
98  *************************************************************************/
99 
100 /*
101  * Use separate channels for TX and RX events
102  *
103  * Set this to 1 to use separate channels for TX and RX. It allows us
104  * to control interrupt affinity separately for TX and RX.
105  *
106  * This is only used in MSI-X interrupt mode
107  */
108 static bool separate_tx_channels;
109 module_param(separate_tx_channels, bool, 0444);
110 MODULE_PARM_DESC(separate_tx_channels,
111 		 "Use separate channels for TX and RX");
112 
113 /* This is the weight assigned to each of the (per-channel) virtual
114  * NAPI devices.
115  */
116 static int napi_weight = 64;
117 
118 /* This is the time (in jiffies) between invocations of the hardware
119  * monitor.
120  * On Falcon-based NICs, this will:
121  * - Check the on-board hardware monitor;
122  * - Poll the link state and reconfigure the hardware as necessary.
123  * On Siena-based NICs for power systems with EEH support, this will give EEH a
124  * chance to start.
125  */
126 static unsigned int efx_monitor_interval = 1 * HZ;
127 
128 /* Initial interrupt moderation settings.  They can be modified after
129  * module load with ethtool.
130  *
131  * The default for RX should strike a balance between increasing the
132  * round-trip latency and reducing overhead.
133  */
134 static unsigned int rx_irq_mod_usec = 60;
135 
136 /* Initial interrupt moderation settings.  They can be modified after
137  * module load with ethtool.
138  *
139  * This default is chosen to ensure that a 10G link does not go idle
140  * while a TX queue is stopped after it has become full.  A queue is
141  * restarted when it drops below half full.  The time this takes (assuming
142  * worst case 3 descriptors per packet and 1024 descriptors) is
143  *   512 / 3 * 1.2 = 205 usec.
144  */
145 static unsigned int tx_irq_mod_usec = 150;
146 
147 /* This is the first interrupt mode to try out of:
148  * 0 => MSI-X
149  * 1 => MSI
150  * 2 => legacy
151  */
152 static unsigned int interrupt_mode;
153 
154 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
155  * i.e. the number of CPUs among which we may distribute simultaneous
156  * interrupt handling.
157  *
158  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
159  * The default (0) means to assign an interrupt to each core.
160  */
161 static unsigned int rss_cpus;
162 module_param(rss_cpus, uint, 0444);
163 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
164 
165 static bool phy_flash_cfg;
166 module_param(phy_flash_cfg, bool, 0644);
167 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
168 
169 static unsigned irq_adapt_low_thresh = 8000;
170 module_param(irq_adapt_low_thresh, uint, 0644);
171 MODULE_PARM_DESC(irq_adapt_low_thresh,
172 		 "Threshold score for reducing IRQ moderation");
173 
174 static unsigned irq_adapt_high_thresh = 16000;
175 module_param(irq_adapt_high_thresh, uint, 0644);
176 MODULE_PARM_DESC(irq_adapt_high_thresh,
177 		 "Threshold score for increasing IRQ moderation");
178 
179 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
180 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
181 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
182 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
183 module_param(debug, uint, 0);
184 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
185 
186 /**************************************************************************
187  *
188  * Utility functions and prototypes
189  *
190  *************************************************************************/
191 
192 static int efx_soft_enable_interrupts(struct efx_nic *efx);
193 static void efx_soft_disable_interrupts(struct efx_nic *efx);
194 static void efx_remove_channel(struct efx_channel *channel);
195 static void efx_remove_channels(struct efx_nic *efx);
196 static const struct efx_channel_type efx_default_channel_type;
197 static void efx_remove_port(struct efx_nic *efx);
198 static void efx_init_napi_channel(struct efx_channel *channel);
199 static void efx_fini_napi(struct efx_nic *efx);
200 static void efx_fini_napi_channel(struct efx_channel *channel);
201 static void efx_fini_struct(struct efx_nic *efx);
202 static void efx_start_all(struct efx_nic *efx);
203 static void efx_stop_all(struct efx_nic *efx);
204 
205 #define EFX_ASSERT_RESET_SERIALISED(efx)		\
206 	do {						\
207 		if ((efx->state == STATE_READY) ||	\
208 		    (efx->state == STATE_RECOVERY) ||	\
209 		    (efx->state == STATE_DISABLED))	\
210 			ASSERT_RTNL();			\
211 	} while (0)
212 
213 static int efx_check_disabled(struct efx_nic *efx)
214 {
215 	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
216 		netif_err(efx, drv, efx->net_dev,
217 			  "device is disabled due to earlier errors\n");
218 		return -EIO;
219 	}
220 	return 0;
221 }
222 
223 /**************************************************************************
224  *
225  * Event queue processing
226  *
227  *************************************************************************/
228 
229 /* Process channel's event queue
230  *
231  * This function is responsible for processing the event queue of a
232  * single channel.  The caller must guarantee that this function will
233  * never be concurrently called more than once on the same channel,
234  * though different channels may be being processed concurrently.
235  */
236 static int efx_process_channel(struct efx_channel *channel, int budget)
237 {
238 	int spent;
239 
240 	if (unlikely(!channel->enabled))
241 		return 0;
242 
243 	spent = efx_nic_process_eventq(channel, budget);
244 	if (spent && efx_channel_has_rx_queue(channel)) {
245 		struct efx_rx_queue *rx_queue =
246 			efx_channel_get_rx_queue(channel);
247 
248 		efx_rx_flush_packet(channel);
249 		efx_fast_push_rx_descriptors(rx_queue);
250 	}
251 
252 	return spent;
253 }
254 
255 /* NAPI poll handler
256  *
257  * NAPI guarantees serialisation of polls of the same device, which
258  * provides the guarantee required by efx_process_channel().
259  */
260 static int efx_poll(struct napi_struct *napi, int budget)
261 {
262 	struct efx_channel *channel =
263 		container_of(napi, struct efx_channel, napi_str);
264 	struct efx_nic *efx = channel->efx;
265 	int spent;
266 
267 	netif_vdbg(efx, intr, efx->net_dev,
268 		   "channel %d NAPI poll executing on CPU %d\n",
269 		   channel->channel, raw_smp_processor_id());
270 
271 	spent = efx_process_channel(channel, budget);
272 
273 	if (spent < budget) {
274 		if (efx_channel_has_rx_queue(channel) &&
275 		    efx->irq_rx_adaptive &&
276 		    unlikely(++channel->irq_count == 1000)) {
277 			if (unlikely(channel->irq_mod_score <
278 				     irq_adapt_low_thresh)) {
279 				if (channel->irq_moderation > 1) {
280 					channel->irq_moderation -= 1;
281 					efx->type->push_irq_moderation(channel);
282 				}
283 			} else if (unlikely(channel->irq_mod_score >
284 					    irq_adapt_high_thresh)) {
285 				if (channel->irq_moderation <
286 				    efx->irq_rx_moderation) {
287 					channel->irq_moderation += 1;
288 					efx->type->push_irq_moderation(channel);
289 				}
290 			}
291 			channel->irq_count = 0;
292 			channel->irq_mod_score = 0;
293 		}
294 
295 		efx_filter_rfs_expire(channel);
296 
297 		/* There is no race here; although napi_disable() will
298 		 * only wait for napi_complete(), this isn't a problem
299 		 * since efx_nic_eventq_read_ack() will have no effect if
300 		 * interrupts have already been disabled.
301 		 */
302 		napi_complete(napi);
303 		efx_nic_eventq_read_ack(channel);
304 	}
305 
306 	return spent;
307 }
308 
309 /* Create event queue
310  * Event queue memory allocations are done only once.  If the channel
311  * is reset, the memory buffer will be reused; this guards against
312  * errors during channel reset and also simplifies interrupt handling.
313  */
314 static int efx_probe_eventq(struct efx_channel *channel)
315 {
316 	struct efx_nic *efx = channel->efx;
317 	unsigned long entries;
318 
319 	netif_dbg(efx, probe, efx->net_dev,
320 		  "chan %d create event queue\n", channel->channel);
321 
322 	/* Build an event queue with room for one event per tx and rx buffer,
323 	 * plus some extra for link state events and MCDI completions. */
324 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
325 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
326 	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
327 
328 	return efx_nic_probe_eventq(channel);
329 }
330 
331 /* Prepare channel's event queue */
332 static int efx_init_eventq(struct efx_channel *channel)
333 {
334 	struct efx_nic *efx = channel->efx;
335 	int rc;
336 
337 	EFX_WARN_ON_PARANOID(channel->eventq_init);
338 
339 	netif_dbg(efx, drv, efx->net_dev,
340 		  "chan %d init event queue\n", channel->channel);
341 
342 	rc = efx_nic_init_eventq(channel);
343 	if (rc == 0) {
344 		efx->type->push_irq_moderation(channel);
345 		channel->eventq_read_ptr = 0;
346 		channel->eventq_init = true;
347 	}
348 	return rc;
349 }
350 
351 /* Enable event queue processing and NAPI */
352 static void efx_start_eventq(struct efx_channel *channel)
353 {
354 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
355 		  "chan %d start event queue\n", channel->channel);
356 
357 	/* Make sure the NAPI handler sees the enabled flag set */
358 	channel->enabled = true;
359 	smp_wmb();
360 
361 	napi_enable(&channel->napi_str);
362 	efx_nic_eventq_read_ack(channel);
363 }
364 
365 /* Disable event queue processing and NAPI */
366 static void efx_stop_eventq(struct efx_channel *channel)
367 {
368 	if (!channel->enabled)
369 		return;
370 
371 	napi_disable(&channel->napi_str);
372 	channel->enabled = false;
373 }
374 
375 static void efx_fini_eventq(struct efx_channel *channel)
376 {
377 	if (!channel->eventq_init)
378 		return;
379 
380 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
381 		  "chan %d fini event queue\n", channel->channel);
382 
383 	efx_nic_fini_eventq(channel);
384 	channel->eventq_init = false;
385 }
386 
387 static void efx_remove_eventq(struct efx_channel *channel)
388 {
389 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
390 		  "chan %d remove event queue\n", channel->channel);
391 
392 	efx_nic_remove_eventq(channel);
393 }
394 
395 /**************************************************************************
396  *
397  * Channel handling
398  *
399  *************************************************************************/
400 
401 /* Allocate and initialise a channel structure. */
402 static struct efx_channel *
403 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
404 {
405 	struct efx_channel *channel;
406 	struct efx_rx_queue *rx_queue;
407 	struct efx_tx_queue *tx_queue;
408 	int j;
409 
410 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
411 	if (!channel)
412 		return NULL;
413 
414 	channel->efx = efx;
415 	channel->channel = i;
416 	channel->type = &efx_default_channel_type;
417 
418 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
419 		tx_queue = &channel->tx_queue[j];
420 		tx_queue->efx = efx;
421 		tx_queue->queue = i * EFX_TXQ_TYPES + j;
422 		tx_queue->channel = channel;
423 	}
424 
425 	rx_queue = &channel->rx_queue;
426 	rx_queue->efx = efx;
427 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
428 		    (unsigned long)rx_queue);
429 
430 	return channel;
431 }
432 
433 /* Allocate and initialise a channel structure, copying parameters
434  * (but not resources) from an old channel structure.
435  */
436 static struct efx_channel *
437 efx_copy_channel(const struct efx_channel *old_channel)
438 {
439 	struct efx_channel *channel;
440 	struct efx_rx_queue *rx_queue;
441 	struct efx_tx_queue *tx_queue;
442 	int j;
443 
444 	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
445 	if (!channel)
446 		return NULL;
447 
448 	*channel = *old_channel;
449 
450 	channel->napi_dev = NULL;
451 	memset(&channel->eventq, 0, sizeof(channel->eventq));
452 
453 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
454 		tx_queue = &channel->tx_queue[j];
455 		if (tx_queue->channel)
456 			tx_queue->channel = channel;
457 		tx_queue->buffer = NULL;
458 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
459 	}
460 
461 	rx_queue = &channel->rx_queue;
462 	rx_queue->buffer = NULL;
463 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
464 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
465 		    (unsigned long)rx_queue);
466 
467 	return channel;
468 }
469 
470 static int efx_probe_channel(struct efx_channel *channel)
471 {
472 	struct efx_tx_queue *tx_queue;
473 	struct efx_rx_queue *rx_queue;
474 	int rc;
475 
476 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
477 		  "creating channel %d\n", channel->channel);
478 
479 	rc = channel->type->pre_probe(channel);
480 	if (rc)
481 		goto fail;
482 
483 	rc = efx_probe_eventq(channel);
484 	if (rc)
485 		goto fail;
486 
487 	efx_for_each_channel_tx_queue(tx_queue, channel) {
488 		rc = efx_probe_tx_queue(tx_queue);
489 		if (rc)
490 			goto fail;
491 	}
492 
493 	efx_for_each_channel_rx_queue(rx_queue, channel) {
494 		rc = efx_probe_rx_queue(rx_queue);
495 		if (rc)
496 			goto fail;
497 	}
498 
499 	channel->n_rx_frm_trunc = 0;
500 
501 	return 0;
502 
503 fail:
504 	efx_remove_channel(channel);
505 	return rc;
506 }
507 
508 static void
509 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
510 {
511 	struct efx_nic *efx = channel->efx;
512 	const char *type;
513 	int number;
514 
515 	number = channel->channel;
516 	if (efx->tx_channel_offset == 0) {
517 		type = "";
518 	} else if (channel->channel < efx->tx_channel_offset) {
519 		type = "-rx";
520 	} else {
521 		type = "-tx";
522 		number -= efx->tx_channel_offset;
523 	}
524 	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
525 }
526 
527 static void efx_set_channel_names(struct efx_nic *efx)
528 {
529 	struct efx_channel *channel;
530 
531 	efx_for_each_channel(channel, efx)
532 		channel->type->get_name(channel,
533 					efx->msi_context[channel->channel].name,
534 					sizeof(efx->msi_context[0].name));
535 }
536 
537 static int efx_probe_channels(struct efx_nic *efx)
538 {
539 	struct efx_channel *channel;
540 	int rc;
541 
542 	/* Restart special buffer allocation */
543 	efx->next_buffer_table = 0;
544 
545 	/* Probe channels in reverse, so that any 'extra' channels
546 	 * use the start of the buffer table. This allows the traffic
547 	 * channels to be resized without moving them or wasting the
548 	 * entries before them.
549 	 */
550 	efx_for_each_channel_rev(channel, efx) {
551 		rc = efx_probe_channel(channel);
552 		if (rc) {
553 			netif_err(efx, probe, efx->net_dev,
554 				  "failed to create channel %d\n",
555 				  channel->channel);
556 			goto fail;
557 		}
558 	}
559 	efx_set_channel_names(efx);
560 
561 	return 0;
562 
563 fail:
564 	efx_remove_channels(efx);
565 	return rc;
566 }
567 
568 /* Channels are shutdown and reinitialised whilst the NIC is running
569  * to propagate configuration changes (mtu, checksum offload), or
570  * to clear hardware error conditions
571  */
572 static void efx_start_datapath(struct efx_nic *efx)
573 {
574 	bool old_rx_scatter = efx->rx_scatter;
575 	struct efx_tx_queue *tx_queue;
576 	struct efx_rx_queue *rx_queue;
577 	struct efx_channel *channel;
578 	size_t rx_buf_len;
579 
580 	/* Calculate the rx buffer allocation parameters required to
581 	 * support the current MTU, including padding for header
582 	 * alignment and overruns.
583 	 */
584 	efx->rx_dma_len = (efx->rx_prefix_size +
585 			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
586 			   efx->type->rx_buffer_padding);
587 	rx_buf_len = (sizeof(struct efx_rx_page_state) +
588 		      efx->rx_ip_align + efx->rx_dma_len);
589 	if (rx_buf_len <= PAGE_SIZE) {
590 		efx->rx_scatter = efx->type->always_rx_scatter;
591 		efx->rx_buffer_order = 0;
592 	} else if (efx->type->can_rx_scatter) {
593 		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
594 		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
595 			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
596 				       EFX_RX_BUF_ALIGNMENT) >
597 			     PAGE_SIZE);
598 		efx->rx_scatter = true;
599 		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
600 		efx->rx_buffer_order = 0;
601 	} else {
602 		efx->rx_scatter = false;
603 		efx->rx_buffer_order = get_order(rx_buf_len);
604 	}
605 
606 	efx_rx_config_page_split(efx);
607 	if (efx->rx_buffer_order)
608 		netif_dbg(efx, drv, efx->net_dev,
609 			  "RX buf len=%u; page order=%u batch=%u\n",
610 			  efx->rx_dma_len, efx->rx_buffer_order,
611 			  efx->rx_pages_per_batch);
612 	else
613 		netif_dbg(efx, drv, efx->net_dev,
614 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
615 			  efx->rx_dma_len, efx->rx_page_buf_step,
616 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
617 
618 	/* RX filters may also have scatter-enabled flags */
619 	if (efx->rx_scatter != old_rx_scatter)
620 		efx->type->filter_update_rx_scatter(efx);
621 
622 	/* We must keep at least one descriptor in a TX ring empty.
623 	 * We could avoid this when the queue size does not exactly
624 	 * match the hardware ring size, but it's not that important.
625 	 * Therefore we stop the queue when one more skb might fill
626 	 * the ring completely.  We wake it when half way back to
627 	 * empty.
628 	 */
629 	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
630 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
631 
632 	/* Initialise the channels */
633 	efx_for_each_channel(channel, efx) {
634 		efx_for_each_channel_tx_queue(tx_queue, channel) {
635 			efx_init_tx_queue(tx_queue);
636 			atomic_inc(&efx->active_queues);
637 		}
638 
639 		efx_for_each_channel_rx_queue(rx_queue, channel) {
640 			efx_init_rx_queue(rx_queue);
641 			atomic_inc(&efx->active_queues);
642 			efx_nic_generate_fill_event(rx_queue);
643 		}
644 
645 		WARN_ON(channel->rx_pkt_n_frags);
646 	}
647 
648 	efx_ptp_start_datapath(efx);
649 
650 	if (netif_device_present(efx->net_dev))
651 		netif_tx_wake_all_queues(efx->net_dev);
652 }
653 
654 static void efx_stop_datapath(struct efx_nic *efx)
655 {
656 	struct efx_channel *channel;
657 	struct efx_tx_queue *tx_queue;
658 	struct efx_rx_queue *rx_queue;
659 	int rc;
660 
661 	EFX_ASSERT_RESET_SERIALISED(efx);
662 	BUG_ON(efx->port_enabled);
663 
664 	efx_ptp_stop_datapath(efx);
665 
666 	/* Stop RX refill */
667 	efx_for_each_channel(channel, efx) {
668 		efx_for_each_channel_rx_queue(rx_queue, channel)
669 			rx_queue->refill_enabled = false;
670 	}
671 
672 	efx_for_each_channel(channel, efx) {
673 		/* RX packet processing is pipelined, so wait for the
674 		 * NAPI handler to complete.  At least event queue 0
675 		 * might be kept active by non-data events, so don't
676 		 * use napi_synchronize() but actually disable NAPI
677 		 * temporarily.
678 		 */
679 		if (efx_channel_has_rx_queue(channel)) {
680 			efx_stop_eventq(channel);
681 			efx_start_eventq(channel);
682 		}
683 	}
684 
685 	rc = efx->type->fini_dmaq(efx);
686 	if (rc && EFX_WORKAROUND_7803(efx)) {
687 		/* Schedule a reset to recover from the flush failure. The
688 		 * descriptor caches reference memory we're about to free,
689 		 * but falcon_reconfigure_mac_wrapper() won't reconnect
690 		 * the MACs because of the pending reset.
691 		 */
692 		netif_err(efx, drv, efx->net_dev,
693 			  "Resetting to recover from flush failure\n");
694 		efx_schedule_reset(efx, RESET_TYPE_ALL);
695 	} else if (rc) {
696 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
697 	} else {
698 		netif_dbg(efx, drv, efx->net_dev,
699 			  "successfully flushed all queues\n");
700 	}
701 
702 	efx_for_each_channel(channel, efx) {
703 		efx_for_each_channel_rx_queue(rx_queue, channel)
704 			efx_fini_rx_queue(rx_queue);
705 		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
706 			efx_fini_tx_queue(tx_queue);
707 	}
708 }
709 
710 static void efx_remove_channel(struct efx_channel *channel)
711 {
712 	struct efx_tx_queue *tx_queue;
713 	struct efx_rx_queue *rx_queue;
714 
715 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
716 		  "destroy chan %d\n", channel->channel);
717 
718 	efx_for_each_channel_rx_queue(rx_queue, channel)
719 		efx_remove_rx_queue(rx_queue);
720 	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
721 		efx_remove_tx_queue(tx_queue);
722 	efx_remove_eventq(channel);
723 	channel->type->post_remove(channel);
724 }
725 
726 static void efx_remove_channels(struct efx_nic *efx)
727 {
728 	struct efx_channel *channel;
729 
730 	efx_for_each_channel(channel, efx)
731 		efx_remove_channel(channel);
732 }
733 
734 int
735 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
736 {
737 	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
738 	u32 old_rxq_entries, old_txq_entries;
739 	unsigned i, next_buffer_table = 0;
740 	int rc, rc2;
741 
742 	rc = efx_check_disabled(efx);
743 	if (rc)
744 		return rc;
745 
746 	/* Not all channels should be reallocated. We must avoid
747 	 * reallocating their buffer table entries.
748 	 */
749 	efx_for_each_channel(channel, efx) {
750 		struct efx_rx_queue *rx_queue;
751 		struct efx_tx_queue *tx_queue;
752 
753 		if (channel->type->copy)
754 			continue;
755 		next_buffer_table = max(next_buffer_table,
756 					channel->eventq.index +
757 					channel->eventq.entries);
758 		efx_for_each_channel_rx_queue(rx_queue, channel)
759 			next_buffer_table = max(next_buffer_table,
760 						rx_queue->rxd.index +
761 						rx_queue->rxd.entries);
762 		efx_for_each_channel_tx_queue(tx_queue, channel)
763 			next_buffer_table = max(next_buffer_table,
764 						tx_queue->txd.index +
765 						tx_queue->txd.entries);
766 	}
767 
768 	efx_device_detach_sync(efx);
769 	efx_stop_all(efx);
770 	efx_soft_disable_interrupts(efx);
771 
772 	/* Clone channels (where possible) */
773 	memset(other_channel, 0, sizeof(other_channel));
774 	for (i = 0; i < efx->n_channels; i++) {
775 		channel = efx->channel[i];
776 		if (channel->type->copy)
777 			channel = channel->type->copy(channel);
778 		if (!channel) {
779 			rc = -ENOMEM;
780 			goto out;
781 		}
782 		other_channel[i] = channel;
783 	}
784 
785 	/* Swap entry counts and channel pointers */
786 	old_rxq_entries = efx->rxq_entries;
787 	old_txq_entries = efx->txq_entries;
788 	efx->rxq_entries = rxq_entries;
789 	efx->txq_entries = txq_entries;
790 	for (i = 0; i < efx->n_channels; i++) {
791 		channel = efx->channel[i];
792 		efx->channel[i] = other_channel[i];
793 		other_channel[i] = channel;
794 	}
795 
796 	/* Restart buffer table allocation */
797 	efx->next_buffer_table = next_buffer_table;
798 
799 	for (i = 0; i < efx->n_channels; i++) {
800 		channel = efx->channel[i];
801 		if (!channel->type->copy)
802 			continue;
803 		rc = efx_probe_channel(channel);
804 		if (rc)
805 			goto rollback;
806 		efx_init_napi_channel(efx->channel[i]);
807 	}
808 
809 out:
810 	/* Destroy unused channel structures */
811 	for (i = 0; i < efx->n_channels; i++) {
812 		channel = other_channel[i];
813 		if (channel && channel->type->copy) {
814 			efx_fini_napi_channel(channel);
815 			efx_remove_channel(channel);
816 			kfree(channel);
817 		}
818 	}
819 
820 	rc2 = efx_soft_enable_interrupts(efx);
821 	if (rc2) {
822 		rc = rc ? rc : rc2;
823 		netif_err(efx, drv, efx->net_dev,
824 			  "unable to restart interrupts on channel reallocation\n");
825 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
826 	} else {
827 		efx_start_all(efx);
828 		netif_device_attach(efx->net_dev);
829 	}
830 	return rc;
831 
832 rollback:
833 	/* Swap back */
834 	efx->rxq_entries = old_rxq_entries;
835 	efx->txq_entries = old_txq_entries;
836 	for (i = 0; i < efx->n_channels; i++) {
837 		channel = efx->channel[i];
838 		efx->channel[i] = other_channel[i];
839 		other_channel[i] = channel;
840 	}
841 	goto out;
842 }
843 
844 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
845 {
846 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
847 }
848 
849 static const struct efx_channel_type efx_default_channel_type = {
850 	.pre_probe		= efx_channel_dummy_op_int,
851 	.post_remove		= efx_channel_dummy_op_void,
852 	.get_name		= efx_get_channel_name,
853 	.copy			= efx_copy_channel,
854 	.keep_eventq		= false,
855 };
856 
857 int efx_channel_dummy_op_int(struct efx_channel *channel)
858 {
859 	return 0;
860 }
861 
862 void efx_channel_dummy_op_void(struct efx_channel *channel)
863 {
864 }
865 
866 /**************************************************************************
867  *
868  * Port handling
869  *
870  **************************************************************************/
871 
872 /* This ensures that the kernel is kept informed (via
873  * netif_carrier_on/off) of the link status, and also maintains the
874  * link status's stop on the port's TX queue.
875  */
876 void efx_link_status_changed(struct efx_nic *efx)
877 {
878 	struct efx_link_state *link_state = &efx->link_state;
879 
880 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
881 	 * that no events are triggered between unregister_netdev() and the
882 	 * driver unloading. A more general condition is that NETDEV_CHANGE
883 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
884 	if (!netif_running(efx->net_dev))
885 		return;
886 
887 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
888 		efx->n_link_state_changes++;
889 
890 		if (link_state->up)
891 			netif_carrier_on(efx->net_dev);
892 		else
893 			netif_carrier_off(efx->net_dev);
894 	}
895 
896 	/* Status message for kernel log */
897 	if (link_state->up)
898 		netif_info(efx, link, efx->net_dev,
899 			   "link up at %uMbps %s-duplex (MTU %d)\n",
900 			   link_state->speed, link_state->fd ? "full" : "half",
901 			   efx->net_dev->mtu);
902 	else
903 		netif_info(efx, link, efx->net_dev, "link down\n");
904 }
905 
906 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
907 {
908 	efx->link_advertising = advertising;
909 	if (advertising) {
910 		if (advertising & ADVERTISED_Pause)
911 			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
912 		else
913 			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
914 		if (advertising & ADVERTISED_Asym_Pause)
915 			efx->wanted_fc ^= EFX_FC_TX;
916 	}
917 }
918 
919 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
920 {
921 	efx->wanted_fc = wanted_fc;
922 	if (efx->link_advertising) {
923 		if (wanted_fc & EFX_FC_RX)
924 			efx->link_advertising |= (ADVERTISED_Pause |
925 						  ADVERTISED_Asym_Pause);
926 		else
927 			efx->link_advertising &= ~(ADVERTISED_Pause |
928 						   ADVERTISED_Asym_Pause);
929 		if (wanted_fc & EFX_FC_TX)
930 			efx->link_advertising ^= ADVERTISED_Asym_Pause;
931 	}
932 }
933 
934 static void efx_fini_port(struct efx_nic *efx);
935 
936 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
937  * the MAC appropriately. All other PHY configuration changes are pushed
938  * through phy_op->set_settings(), and pushed asynchronously to the MAC
939  * through efx_monitor().
940  *
941  * Callers must hold the mac_lock
942  */
943 int __efx_reconfigure_port(struct efx_nic *efx)
944 {
945 	enum efx_phy_mode phy_mode;
946 	int rc;
947 
948 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
949 
950 	/* Disable PHY transmit in mac level loopbacks */
951 	phy_mode = efx->phy_mode;
952 	if (LOOPBACK_INTERNAL(efx))
953 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
954 	else
955 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
956 
957 	rc = efx->type->reconfigure_port(efx);
958 
959 	if (rc)
960 		efx->phy_mode = phy_mode;
961 
962 	return rc;
963 }
964 
965 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
966  * disabled. */
967 int efx_reconfigure_port(struct efx_nic *efx)
968 {
969 	int rc;
970 
971 	EFX_ASSERT_RESET_SERIALISED(efx);
972 
973 	mutex_lock(&efx->mac_lock);
974 	rc = __efx_reconfigure_port(efx);
975 	mutex_unlock(&efx->mac_lock);
976 
977 	return rc;
978 }
979 
980 /* Asynchronous work item for changing MAC promiscuity and multicast
981  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
982  * MAC directly. */
983 static void efx_mac_work(struct work_struct *data)
984 {
985 	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
986 
987 	mutex_lock(&efx->mac_lock);
988 	if (efx->port_enabled)
989 		efx->type->reconfigure_mac(efx);
990 	mutex_unlock(&efx->mac_lock);
991 }
992 
993 static int efx_probe_port(struct efx_nic *efx)
994 {
995 	int rc;
996 
997 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
998 
999 	if (phy_flash_cfg)
1000 		efx->phy_mode = PHY_MODE_SPECIAL;
1001 
1002 	/* Connect up MAC/PHY operations table */
1003 	rc = efx->type->probe_port(efx);
1004 	if (rc)
1005 		return rc;
1006 
1007 	/* Initialise MAC address to permanent address */
1008 	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1009 
1010 	return 0;
1011 }
1012 
1013 static int efx_init_port(struct efx_nic *efx)
1014 {
1015 	int rc;
1016 
1017 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1018 
1019 	mutex_lock(&efx->mac_lock);
1020 
1021 	rc = efx->phy_op->init(efx);
1022 	if (rc)
1023 		goto fail1;
1024 
1025 	efx->port_initialized = true;
1026 
1027 	/* Reconfigure the MAC before creating dma queues (required for
1028 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1029 	efx->type->reconfigure_mac(efx);
1030 
1031 	/* Ensure the PHY advertises the correct flow control settings */
1032 	rc = efx->phy_op->reconfigure(efx);
1033 	if (rc)
1034 		goto fail2;
1035 
1036 	mutex_unlock(&efx->mac_lock);
1037 	return 0;
1038 
1039 fail2:
1040 	efx->phy_op->fini(efx);
1041 fail1:
1042 	mutex_unlock(&efx->mac_lock);
1043 	return rc;
1044 }
1045 
1046 static void efx_start_port(struct efx_nic *efx)
1047 {
1048 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1049 	BUG_ON(efx->port_enabled);
1050 
1051 	mutex_lock(&efx->mac_lock);
1052 	efx->port_enabled = true;
1053 
1054 	/* efx_mac_work() might have been scheduled after efx_stop_port(),
1055 	 * and then cancelled by efx_flush_all() */
1056 	efx->type->reconfigure_mac(efx);
1057 
1058 	mutex_unlock(&efx->mac_lock);
1059 }
1060 
1061 /* Prevent efx_mac_work() and efx_monitor() from working */
1062 static void efx_stop_port(struct efx_nic *efx)
1063 {
1064 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1065 
1066 	mutex_lock(&efx->mac_lock);
1067 	efx->port_enabled = false;
1068 	mutex_unlock(&efx->mac_lock);
1069 
1070 	/* Serialise against efx_set_multicast_list() */
1071 	netif_addr_lock_bh(efx->net_dev);
1072 	netif_addr_unlock_bh(efx->net_dev);
1073 }
1074 
1075 static void efx_fini_port(struct efx_nic *efx)
1076 {
1077 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1078 
1079 	if (!efx->port_initialized)
1080 		return;
1081 
1082 	efx->phy_op->fini(efx);
1083 	efx->port_initialized = false;
1084 
1085 	efx->link_state.up = false;
1086 	efx_link_status_changed(efx);
1087 }
1088 
1089 static void efx_remove_port(struct efx_nic *efx)
1090 {
1091 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1092 
1093 	efx->type->remove_port(efx);
1094 }
1095 
1096 /**************************************************************************
1097  *
1098  * NIC handling
1099  *
1100  **************************************************************************/
1101 
1102 /* This configures the PCI device to enable I/O and DMA. */
1103 static int efx_init_io(struct efx_nic *efx)
1104 {
1105 	struct pci_dev *pci_dev = efx->pci_dev;
1106 	dma_addr_t dma_mask = efx->type->max_dma_mask;
1107 	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1108 	int rc;
1109 
1110 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1111 
1112 	rc = pci_enable_device(pci_dev);
1113 	if (rc) {
1114 		netif_err(efx, probe, efx->net_dev,
1115 			  "failed to enable PCI device\n");
1116 		goto fail1;
1117 	}
1118 
1119 	pci_set_master(pci_dev);
1120 
1121 	/* Set the PCI DMA mask.  Try all possibilities from our
1122 	 * genuine mask down to 32 bits, because some architectures
1123 	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1124 	 * masks event though they reject 46 bit masks.
1125 	 */
1126 	while (dma_mask > 0x7fffffffUL) {
1127 		if (dma_supported(&pci_dev->dev, dma_mask)) {
1128 			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1129 			if (rc == 0)
1130 				break;
1131 		}
1132 		dma_mask >>= 1;
1133 	}
1134 	if (rc) {
1135 		netif_err(efx, probe, efx->net_dev,
1136 			  "could not find a suitable DMA mask\n");
1137 		goto fail2;
1138 	}
1139 	netif_dbg(efx, probe, efx->net_dev,
1140 		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1141 
1142 	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1143 	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1144 	if (rc) {
1145 		netif_err(efx, probe, efx->net_dev,
1146 			  "request for memory BAR failed\n");
1147 		rc = -EIO;
1148 		goto fail3;
1149 	}
1150 	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1151 	if (!efx->membase) {
1152 		netif_err(efx, probe, efx->net_dev,
1153 			  "could not map memory BAR at %llx+%x\n",
1154 			  (unsigned long long)efx->membase_phys, mem_map_size);
1155 		rc = -ENOMEM;
1156 		goto fail4;
1157 	}
1158 	netif_dbg(efx, probe, efx->net_dev,
1159 		  "memory BAR at %llx+%x (virtual %p)\n",
1160 		  (unsigned long long)efx->membase_phys, mem_map_size,
1161 		  efx->membase);
1162 
1163 	return 0;
1164 
1165  fail4:
1166 	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1167  fail3:
1168 	efx->membase_phys = 0;
1169  fail2:
1170 	pci_disable_device(efx->pci_dev);
1171  fail1:
1172 	return rc;
1173 }
1174 
1175 static void efx_fini_io(struct efx_nic *efx)
1176 {
1177 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1178 
1179 	if (efx->membase) {
1180 		iounmap(efx->membase);
1181 		efx->membase = NULL;
1182 	}
1183 
1184 	if (efx->membase_phys) {
1185 		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1186 		efx->membase_phys = 0;
1187 	}
1188 
1189 	pci_disable_device(efx->pci_dev);
1190 }
1191 
1192 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1193 {
1194 	cpumask_var_t thread_mask;
1195 	unsigned int count;
1196 	int cpu;
1197 
1198 	if (rss_cpus) {
1199 		count = rss_cpus;
1200 	} else {
1201 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1202 			netif_warn(efx, probe, efx->net_dev,
1203 				   "RSS disabled due to allocation failure\n");
1204 			return 1;
1205 		}
1206 
1207 		count = 0;
1208 		for_each_online_cpu(cpu) {
1209 			if (!cpumask_test_cpu(cpu, thread_mask)) {
1210 				++count;
1211 				cpumask_or(thread_mask, thread_mask,
1212 					   topology_thread_cpumask(cpu));
1213 			}
1214 		}
1215 
1216 		free_cpumask_var(thread_mask);
1217 	}
1218 
1219 	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1220 	 * table entries that are inaccessible to VFs
1221 	 */
1222 	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1223 	    count > efx_vf_size(efx)) {
1224 		netif_warn(efx, probe, efx->net_dev,
1225 			   "Reducing number of RSS channels from %u to %u for "
1226 			   "VF support. Increase vf-msix-limit to use more "
1227 			   "channels on the PF.\n",
1228 			   count, efx_vf_size(efx));
1229 		count = efx_vf_size(efx);
1230 	}
1231 
1232 	return count;
1233 }
1234 
1235 /* Probe the number and type of interrupts we are able to obtain, and
1236  * the resulting numbers of channels and RX queues.
1237  */
1238 static int efx_probe_interrupts(struct efx_nic *efx)
1239 {
1240 	unsigned int extra_channels = 0;
1241 	unsigned int i, j;
1242 	int rc;
1243 
1244 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1245 		if (efx->extra_channel_type[i])
1246 			++extra_channels;
1247 
1248 	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1249 		struct msix_entry xentries[EFX_MAX_CHANNELS];
1250 		unsigned int n_channels;
1251 
1252 		n_channels = efx_wanted_parallelism(efx);
1253 		if (separate_tx_channels)
1254 			n_channels *= 2;
1255 		n_channels += extra_channels;
1256 		n_channels = min(n_channels, efx->max_channels);
1257 
1258 		for (i = 0; i < n_channels; i++)
1259 			xentries[i].entry = i;
1260 		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1261 		if (rc > 0) {
1262 			netif_err(efx, drv, efx->net_dev,
1263 				  "WARNING: Insufficient MSI-X vectors"
1264 				  " available (%d < %u).\n", rc, n_channels);
1265 			netif_err(efx, drv, efx->net_dev,
1266 				  "WARNING: Performance may be reduced.\n");
1267 			EFX_BUG_ON_PARANOID(rc >= n_channels);
1268 			n_channels = rc;
1269 			rc = pci_enable_msix(efx->pci_dev, xentries,
1270 					     n_channels);
1271 		}
1272 
1273 		if (rc == 0) {
1274 			efx->n_channels = n_channels;
1275 			if (n_channels > extra_channels)
1276 				n_channels -= extra_channels;
1277 			if (separate_tx_channels) {
1278 				efx->n_tx_channels = max(n_channels / 2, 1U);
1279 				efx->n_rx_channels = max(n_channels -
1280 							 efx->n_tx_channels,
1281 							 1U);
1282 			} else {
1283 				efx->n_tx_channels = n_channels;
1284 				efx->n_rx_channels = n_channels;
1285 			}
1286 			for (i = 0; i < efx->n_channels; i++)
1287 				efx_get_channel(efx, i)->irq =
1288 					xentries[i].vector;
1289 		} else {
1290 			/* Fall back to single channel MSI */
1291 			efx->interrupt_mode = EFX_INT_MODE_MSI;
1292 			netif_err(efx, drv, efx->net_dev,
1293 				  "could not enable MSI-X\n");
1294 		}
1295 	}
1296 
1297 	/* Try single interrupt MSI */
1298 	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1299 		efx->n_channels = 1;
1300 		efx->n_rx_channels = 1;
1301 		efx->n_tx_channels = 1;
1302 		rc = pci_enable_msi(efx->pci_dev);
1303 		if (rc == 0) {
1304 			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1305 		} else {
1306 			netif_err(efx, drv, efx->net_dev,
1307 				  "could not enable MSI\n");
1308 			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1309 		}
1310 	}
1311 
1312 	/* Assume legacy interrupts */
1313 	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1314 		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1315 		efx->n_rx_channels = 1;
1316 		efx->n_tx_channels = 1;
1317 		efx->legacy_irq = efx->pci_dev->irq;
1318 	}
1319 
1320 	/* Assign extra channels if possible */
1321 	j = efx->n_channels;
1322 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1323 		if (!efx->extra_channel_type[i])
1324 			continue;
1325 		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1326 		    efx->n_channels <= extra_channels) {
1327 			efx->extra_channel_type[i]->handle_no_channel(efx);
1328 		} else {
1329 			--j;
1330 			efx_get_channel(efx, j)->type =
1331 				efx->extra_channel_type[i];
1332 		}
1333 	}
1334 
1335 	/* RSS might be usable on VFs even if it is disabled on the PF */
1336 	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1337 			   efx->n_rx_channels : efx_vf_size(efx));
1338 
1339 	return 0;
1340 }
1341 
1342 static int efx_soft_enable_interrupts(struct efx_nic *efx)
1343 {
1344 	struct efx_channel *channel, *end_channel;
1345 	int rc;
1346 
1347 	BUG_ON(efx->state == STATE_DISABLED);
1348 
1349 	efx->irq_soft_enabled = true;
1350 	smp_wmb();
1351 
1352 	efx_for_each_channel(channel, efx) {
1353 		if (!channel->type->keep_eventq) {
1354 			rc = efx_init_eventq(channel);
1355 			if (rc)
1356 				goto fail;
1357 		}
1358 		efx_start_eventq(channel);
1359 	}
1360 
1361 	efx_mcdi_mode_event(efx);
1362 
1363 	return 0;
1364 fail:
1365 	end_channel = channel;
1366 	efx_for_each_channel(channel, efx) {
1367 		if (channel == end_channel)
1368 			break;
1369 		efx_stop_eventq(channel);
1370 		if (!channel->type->keep_eventq)
1371 			efx_fini_eventq(channel);
1372 	}
1373 
1374 	return rc;
1375 }
1376 
1377 static void efx_soft_disable_interrupts(struct efx_nic *efx)
1378 {
1379 	struct efx_channel *channel;
1380 
1381 	if (efx->state == STATE_DISABLED)
1382 		return;
1383 
1384 	efx_mcdi_mode_poll(efx);
1385 
1386 	efx->irq_soft_enabled = false;
1387 	smp_wmb();
1388 
1389 	if (efx->legacy_irq)
1390 		synchronize_irq(efx->legacy_irq);
1391 
1392 	efx_for_each_channel(channel, efx) {
1393 		if (channel->irq)
1394 			synchronize_irq(channel->irq);
1395 
1396 		efx_stop_eventq(channel);
1397 		if (!channel->type->keep_eventq)
1398 			efx_fini_eventq(channel);
1399 	}
1400 
1401 	/* Flush the asynchronous MCDI request queue */
1402 	efx_mcdi_flush_async(efx);
1403 }
1404 
1405 static int efx_enable_interrupts(struct efx_nic *efx)
1406 {
1407 	struct efx_channel *channel, *end_channel;
1408 	int rc;
1409 
1410 	BUG_ON(efx->state == STATE_DISABLED);
1411 
1412 	if (efx->eeh_disabled_legacy_irq) {
1413 		enable_irq(efx->legacy_irq);
1414 		efx->eeh_disabled_legacy_irq = false;
1415 	}
1416 
1417 	efx->type->irq_enable_master(efx);
1418 
1419 	efx_for_each_channel(channel, efx) {
1420 		if (channel->type->keep_eventq) {
1421 			rc = efx_init_eventq(channel);
1422 			if (rc)
1423 				goto fail;
1424 		}
1425 	}
1426 
1427 	rc = efx_soft_enable_interrupts(efx);
1428 	if (rc)
1429 		goto fail;
1430 
1431 	return 0;
1432 
1433 fail:
1434 	end_channel = channel;
1435 	efx_for_each_channel(channel, efx) {
1436 		if (channel == end_channel)
1437 			break;
1438 		if (channel->type->keep_eventq)
1439 			efx_fini_eventq(channel);
1440 	}
1441 
1442 	efx->type->irq_disable_non_ev(efx);
1443 
1444 	return rc;
1445 }
1446 
1447 static void efx_disable_interrupts(struct efx_nic *efx)
1448 {
1449 	struct efx_channel *channel;
1450 
1451 	efx_soft_disable_interrupts(efx);
1452 
1453 	efx_for_each_channel(channel, efx) {
1454 		if (channel->type->keep_eventq)
1455 			efx_fini_eventq(channel);
1456 	}
1457 
1458 	efx->type->irq_disable_non_ev(efx);
1459 }
1460 
1461 static void efx_remove_interrupts(struct efx_nic *efx)
1462 {
1463 	struct efx_channel *channel;
1464 
1465 	/* Remove MSI/MSI-X interrupts */
1466 	efx_for_each_channel(channel, efx)
1467 		channel->irq = 0;
1468 	pci_disable_msi(efx->pci_dev);
1469 	pci_disable_msix(efx->pci_dev);
1470 
1471 	/* Remove legacy interrupt */
1472 	efx->legacy_irq = 0;
1473 }
1474 
1475 static void efx_set_channels(struct efx_nic *efx)
1476 {
1477 	struct efx_channel *channel;
1478 	struct efx_tx_queue *tx_queue;
1479 
1480 	efx->tx_channel_offset =
1481 		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1482 
1483 	/* We need to mark which channels really have RX and TX
1484 	 * queues, and adjust the TX queue numbers if we have separate
1485 	 * RX-only and TX-only channels.
1486 	 */
1487 	efx_for_each_channel(channel, efx) {
1488 		if (channel->channel < efx->n_rx_channels)
1489 			channel->rx_queue.core_index = channel->channel;
1490 		else
1491 			channel->rx_queue.core_index = -1;
1492 
1493 		efx_for_each_channel_tx_queue(tx_queue, channel)
1494 			tx_queue->queue -= (efx->tx_channel_offset *
1495 					    EFX_TXQ_TYPES);
1496 	}
1497 }
1498 
1499 static int efx_probe_nic(struct efx_nic *efx)
1500 {
1501 	size_t i;
1502 	int rc;
1503 
1504 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1505 
1506 	/* Carry out hardware-type specific initialisation */
1507 	rc = efx->type->probe(efx);
1508 	if (rc)
1509 		return rc;
1510 
1511 	/* Determine the number of channels and queues by trying to hook
1512 	 * in MSI-X interrupts. */
1513 	rc = efx_probe_interrupts(efx);
1514 	if (rc)
1515 		goto fail1;
1516 
1517 	rc = efx->type->dimension_resources(efx);
1518 	if (rc)
1519 		goto fail2;
1520 
1521 	if (efx->n_channels > 1)
1522 		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1523 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1524 		efx->rx_indir_table[i] =
1525 			ethtool_rxfh_indir_default(i, efx->rss_spread);
1526 
1527 	efx_set_channels(efx);
1528 	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1529 	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1530 
1531 	/* Initialise the interrupt moderation settings */
1532 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1533 				true);
1534 
1535 	return 0;
1536 
1537 fail2:
1538 	efx_remove_interrupts(efx);
1539 fail1:
1540 	efx->type->remove(efx);
1541 	return rc;
1542 }
1543 
1544 static void efx_remove_nic(struct efx_nic *efx)
1545 {
1546 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1547 
1548 	efx_remove_interrupts(efx);
1549 	efx->type->remove(efx);
1550 }
1551 
1552 static int efx_probe_filters(struct efx_nic *efx)
1553 {
1554 	int rc;
1555 
1556 	spin_lock_init(&efx->filter_lock);
1557 
1558 	rc = efx->type->filter_table_probe(efx);
1559 	if (rc)
1560 		return rc;
1561 
1562 #ifdef CONFIG_RFS_ACCEL
1563 	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1564 		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1565 					   sizeof(*efx->rps_flow_id),
1566 					   GFP_KERNEL);
1567 		if (!efx->rps_flow_id) {
1568 			efx->type->filter_table_remove(efx);
1569 			return -ENOMEM;
1570 		}
1571 	}
1572 #endif
1573 
1574 	return 0;
1575 }
1576 
1577 static void efx_remove_filters(struct efx_nic *efx)
1578 {
1579 #ifdef CONFIG_RFS_ACCEL
1580 	kfree(efx->rps_flow_id);
1581 #endif
1582 	efx->type->filter_table_remove(efx);
1583 }
1584 
1585 static void efx_restore_filters(struct efx_nic *efx)
1586 {
1587 	efx->type->filter_table_restore(efx);
1588 }
1589 
1590 /**************************************************************************
1591  *
1592  * NIC startup/shutdown
1593  *
1594  *************************************************************************/
1595 
1596 static int efx_probe_all(struct efx_nic *efx)
1597 {
1598 	int rc;
1599 
1600 	rc = efx_probe_nic(efx);
1601 	if (rc) {
1602 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1603 		goto fail1;
1604 	}
1605 
1606 	rc = efx_probe_port(efx);
1607 	if (rc) {
1608 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1609 		goto fail2;
1610 	}
1611 
1612 	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1613 	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1614 		rc = -EINVAL;
1615 		goto fail3;
1616 	}
1617 	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1618 
1619 	rc = efx_probe_filters(efx);
1620 	if (rc) {
1621 		netif_err(efx, probe, efx->net_dev,
1622 			  "failed to create filter tables\n");
1623 		goto fail3;
1624 	}
1625 
1626 	rc = efx_probe_channels(efx);
1627 	if (rc)
1628 		goto fail4;
1629 
1630 	return 0;
1631 
1632  fail4:
1633 	efx_remove_filters(efx);
1634  fail3:
1635 	efx_remove_port(efx);
1636  fail2:
1637 	efx_remove_nic(efx);
1638  fail1:
1639 	return rc;
1640 }
1641 
1642 /* If the interface is supposed to be running but is not, start
1643  * the hardware and software data path, regular activity for the port
1644  * (MAC statistics, link polling, etc.) and schedule the port to be
1645  * reconfigured.  Interrupts must already be enabled.  This function
1646  * is safe to call multiple times, so long as the NIC is not disabled.
1647  * Requires the RTNL lock.
1648  */
1649 static void efx_start_all(struct efx_nic *efx)
1650 {
1651 	EFX_ASSERT_RESET_SERIALISED(efx);
1652 	BUG_ON(efx->state == STATE_DISABLED);
1653 
1654 	/* Check that it is appropriate to restart the interface. All
1655 	 * of these flags are safe to read under just the rtnl lock */
1656 	if (efx->port_enabled || !netif_running(efx->net_dev))
1657 		return;
1658 
1659 	efx_start_port(efx);
1660 	efx_start_datapath(efx);
1661 
1662 	/* Start the hardware monitor if there is one */
1663 	if (efx->type->monitor != NULL)
1664 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1665 				   efx_monitor_interval);
1666 
1667 	/* If link state detection is normally event-driven, we have
1668 	 * to poll now because we could have missed a change
1669 	 */
1670 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1671 		mutex_lock(&efx->mac_lock);
1672 		if (efx->phy_op->poll(efx))
1673 			efx_link_status_changed(efx);
1674 		mutex_unlock(&efx->mac_lock);
1675 	}
1676 
1677 	efx->type->start_stats(efx);
1678 }
1679 
1680 /* Flush all delayed work. Should only be called when no more delayed work
1681  * will be scheduled. This doesn't flush pending online resets (efx_reset),
1682  * since we're holding the rtnl_lock at this point. */
1683 static void efx_flush_all(struct efx_nic *efx)
1684 {
1685 	/* Make sure the hardware monitor and event self-test are stopped */
1686 	cancel_delayed_work_sync(&efx->monitor_work);
1687 	efx_selftest_async_cancel(efx);
1688 	/* Stop scheduled port reconfigurations */
1689 	cancel_work_sync(&efx->mac_work);
1690 }
1691 
1692 /* Quiesce the hardware and software data path, and regular activity
1693  * for the port without bringing the link down.  Safe to call multiple
1694  * times with the NIC in almost any state, but interrupts should be
1695  * enabled.  Requires the RTNL lock.
1696  */
1697 static void efx_stop_all(struct efx_nic *efx)
1698 {
1699 	EFX_ASSERT_RESET_SERIALISED(efx);
1700 
1701 	/* port_enabled can be read safely under the rtnl lock */
1702 	if (!efx->port_enabled)
1703 		return;
1704 
1705 	efx->type->stop_stats(efx);
1706 	efx_stop_port(efx);
1707 
1708 	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1709 	efx_flush_all(efx);
1710 
1711 	/* Stop the kernel transmit interface.  This is only valid if
1712 	 * the device is stopped or detached; otherwise the watchdog
1713 	 * may fire immediately.
1714 	 */
1715 	WARN_ON(netif_running(efx->net_dev) &&
1716 		netif_device_present(efx->net_dev));
1717 	netif_tx_disable(efx->net_dev);
1718 
1719 	efx_stop_datapath(efx);
1720 }
1721 
1722 static void efx_remove_all(struct efx_nic *efx)
1723 {
1724 	efx_remove_channels(efx);
1725 	efx_remove_filters(efx);
1726 	efx_remove_port(efx);
1727 	efx_remove_nic(efx);
1728 }
1729 
1730 /**************************************************************************
1731  *
1732  * Interrupt moderation
1733  *
1734  **************************************************************************/
1735 
1736 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1737 {
1738 	if (usecs == 0)
1739 		return 0;
1740 	if (usecs * 1000 < quantum_ns)
1741 		return 1; /* never round down to 0 */
1742 	return usecs * 1000 / quantum_ns;
1743 }
1744 
1745 /* Set interrupt moderation parameters */
1746 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1747 			    unsigned int rx_usecs, bool rx_adaptive,
1748 			    bool rx_may_override_tx)
1749 {
1750 	struct efx_channel *channel;
1751 	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1752 						efx->timer_quantum_ns,
1753 						1000);
1754 	unsigned int tx_ticks;
1755 	unsigned int rx_ticks;
1756 
1757 	EFX_ASSERT_RESET_SERIALISED(efx);
1758 
1759 	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1760 		return -EINVAL;
1761 
1762 	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1763 	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1764 
1765 	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1766 	    !rx_may_override_tx) {
1767 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1768 			  "RX and TX IRQ moderation must be equal\n");
1769 		return -EINVAL;
1770 	}
1771 
1772 	efx->irq_rx_adaptive = rx_adaptive;
1773 	efx->irq_rx_moderation = rx_ticks;
1774 	efx_for_each_channel(channel, efx) {
1775 		if (efx_channel_has_rx_queue(channel))
1776 			channel->irq_moderation = rx_ticks;
1777 		else if (efx_channel_has_tx_queues(channel))
1778 			channel->irq_moderation = tx_ticks;
1779 	}
1780 
1781 	return 0;
1782 }
1783 
1784 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1785 			    unsigned int *rx_usecs, bool *rx_adaptive)
1786 {
1787 	/* We must round up when converting ticks to microseconds
1788 	 * because we round down when converting the other way.
1789 	 */
1790 
1791 	*rx_adaptive = efx->irq_rx_adaptive;
1792 	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1793 				 efx->timer_quantum_ns,
1794 				 1000);
1795 
1796 	/* If channels are shared between RX and TX, so is IRQ
1797 	 * moderation.  Otherwise, IRQ moderation is the same for all
1798 	 * TX channels and is not adaptive.
1799 	 */
1800 	if (efx->tx_channel_offset == 0)
1801 		*tx_usecs = *rx_usecs;
1802 	else
1803 		*tx_usecs = DIV_ROUND_UP(
1804 			efx->channel[efx->tx_channel_offset]->irq_moderation *
1805 			efx->timer_quantum_ns,
1806 			1000);
1807 }
1808 
1809 /**************************************************************************
1810  *
1811  * Hardware monitor
1812  *
1813  **************************************************************************/
1814 
1815 /* Run periodically off the general workqueue */
1816 static void efx_monitor(struct work_struct *data)
1817 {
1818 	struct efx_nic *efx = container_of(data, struct efx_nic,
1819 					   monitor_work.work);
1820 
1821 	netif_vdbg(efx, timer, efx->net_dev,
1822 		   "hardware monitor executing on CPU %d\n",
1823 		   raw_smp_processor_id());
1824 	BUG_ON(efx->type->monitor == NULL);
1825 
1826 	/* If the mac_lock is already held then it is likely a port
1827 	 * reconfiguration is already in place, which will likely do
1828 	 * most of the work of monitor() anyway. */
1829 	if (mutex_trylock(&efx->mac_lock)) {
1830 		if (efx->port_enabled)
1831 			efx->type->monitor(efx);
1832 		mutex_unlock(&efx->mac_lock);
1833 	}
1834 
1835 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1836 			   efx_monitor_interval);
1837 }
1838 
1839 /**************************************************************************
1840  *
1841  * ioctls
1842  *
1843  *************************************************************************/
1844 
1845 /* Net device ioctl
1846  * Context: process, rtnl_lock() held.
1847  */
1848 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1849 {
1850 	struct efx_nic *efx = netdev_priv(net_dev);
1851 	struct mii_ioctl_data *data = if_mii(ifr);
1852 
1853 	if (cmd == SIOCSHWTSTAMP)
1854 		return efx_ptp_ioctl(efx, ifr, cmd);
1855 
1856 	/* Convert phy_id from older PRTAD/DEVAD format */
1857 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1858 	    (data->phy_id & 0xfc00) == 0x0400)
1859 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1860 
1861 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1862 }
1863 
1864 /**************************************************************************
1865  *
1866  * NAPI interface
1867  *
1868  **************************************************************************/
1869 
1870 static void efx_init_napi_channel(struct efx_channel *channel)
1871 {
1872 	struct efx_nic *efx = channel->efx;
1873 
1874 	channel->napi_dev = efx->net_dev;
1875 	netif_napi_add(channel->napi_dev, &channel->napi_str,
1876 		       efx_poll, napi_weight);
1877 }
1878 
1879 static void efx_init_napi(struct efx_nic *efx)
1880 {
1881 	struct efx_channel *channel;
1882 
1883 	efx_for_each_channel(channel, efx)
1884 		efx_init_napi_channel(channel);
1885 }
1886 
1887 static void efx_fini_napi_channel(struct efx_channel *channel)
1888 {
1889 	if (channel->napi_dev)
1890 		netif_napi_del(&channel->napi_str);
1891 	channel->napi_dev = NULL;
1892 }
1893 
1894 static void efx_fini_napi(struct efx_nic *efx)
1895 {
1896 	struct efx_channel *channel;
1897 
1898 	efx_for_each_channel(channel, efx)
1899 		efx_fini_napi_channel(channel);
1900 }
1901 
1902 /**************************************************************************
1903  *
1904  * Kernel netpoll interface
1905  *
1906  *************************************************************************/
1907 
1908 #ifdef CONFIG_NET_POLL_CONTROLLER
1909 
1910 /* Although in the common case interrupts will be disabled, this is not
1911  * guaranteed. However, all our work happens inside the NAPI callback,
1912  * so no locking is required.
1913  */
1914 static void efx_netpoll(struct net_device *net_dev)
1915 {
1916 	struct efx_nic *efx = netdev_priv(net_dev);
1917 	struct efx_channel *channel;
1918 
1919 	efx_for_each_channel(channel, efx)
1920 		efx_schedule_channel(channel);
1921 }
1922 
1923 #endif
1924 
1925 /**************************************************************************
1926  *
1927  * Kernel net device interface
1928  *
1929  *************************************************************************/
1930 
1931 /* Context: process, rtnl_lock() held. */
1932 static int efx_net_open(struct net_device *net_dev)
1933 {
1934 	struct efx_nic *efx = netdev_priv(net_dev);
1935 	int rc;
1936 
1937 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1938 		  raw_smp_processor_id());
1939 
1940 	rc = efx_check_disabled(efx);
1941 	if (rc)
1942 		return rc;
1943 	if (efx->phy_mode & PHY_MODE_SPECIAL)
1944 		return -EBUSY;
1945 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1946 		return -EIO;
1947 
1948 	/* Notify the kernel of the link state polled during driver load,
1949 	 * before the monitor starts running */
1950 	efx_link_status_changed(efx);
1951 
1952 	efx_start_all(efx);
1953 	efx_selftest_async_start(efx);
1954 	return 0;
1955 }
1956 
1957 /* Context: process, rtnl_lock() held.
1958  * Note that the kernel will ignore our return code; this method
1959  * should really be a void.
1960  */
1961 static int efx_net_stop(struct net_device *net_dev)
1962 {
1963 	struct efx_nic *efx = netdev_priv(net_dev);
1964 
1965 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1966 		  raw_smp_processor_id());
1967 
1968 	/* Stop the device and flush all the channels */
1969 	efx_stop_all(efx);
1970 
1971 	return 0;
1972 }
1973 
1974 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1975 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
1976 					       struct rtnl_link_stats64 *stats)
1977 {
1978 	struct efx_nic *efx = netdev_priv(net_dev);
1979 
1980 	spin_lock_bh(&efx->stats_lock);
1981 	efx->type->update_stats(efx, NULL, stats);
1982 	spin_unlock_bh(&efx->stats_lock);
1983 
1984 	return stats;
1985 }
1986 
1987 /* Context: netif_tx_lock held, BHs disabled. */
1988 static void efx_watchdog(struct net_device *net_dev)
1989 {
1990 	struct efx_nic *efx = netdev_priv(net_dev);
1991 
1992 	netif_err(efx, tx_err, efx->net_dev,
1993 		  "TX stuck with port_enabled=%d: resetting channels\n",
1994 		  efx->port_enabled);
1995 
1996 	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1997 }
1998 
1999 
2000 /* Context: process, rtnl_lock() held. */
2001 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2002 {
2003 	struct efx_nic *efx = netdev_priv(net_dev);
2004 	int rc;
2005 
2006 	rc = efx_check_disabled(efx);
2007 	if (rc)
2008 		return rc;
2009 	if (new_mtu > EFX_MAX_MTU)
2010 		return -EINVAL;
2011 
2012 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2013 
2014 	efx_device_detach_sync(efx);
2015 	efx_stop_all(efx);
2016 
2017 	mutex_lock(&efx->mac_lock);
2018 	net_dev->mtu = new_mtu;
2019 	efx->type->reconfigure_mac(efx);
2020 	mutex_unlock(&efx->mac_lock);
2021 
2022 	efx_start_all(efx);
2023 	netif_device_attach(efx->net_dev);
2024 	return 0;
2025 }
2026 
2027 static int efx_set_mac_address(struct net_device *net_dev, void *data)
2028 {
2029 	struct efx_nic *efx = netdev_priv(net_dev);
2030 	struct sockaddr *addr = data;
2031 	char *new_addr = addr->sa_data;
2032 
2033 	if (!is_valid_ether_addr(new_addr)) {
2034 		netif_err(efx, drv, efx->net_dev,
2035 			  "invalid ethernet MAC address requested: %pM\n",
2036 			  new_addr);
2037 		return -EADDRNOTAVAIL;
2038 	}
2039 
2040 	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2041 	efx_sriov_mac_address_changed(efx);
2042 
2043 	/* Reconfigure the MAC */
2044 	mutex_lock(&efx->mac_lock);
2045 	efx->type->reconfigure_mac(efx);
2046 	mutex_unlock(&efx->mac_lock);
2047 
2048 	return 0;
2049 }
2050 
2051 /* Context: netif_addr_lock held, BHs disabled. */
2052 static void efx_set_rx_mode(struct net_device *net_dev)
2053 {
2054 	struct efx_nic *efx = netdev_priv(net_dev);
2055 
2056 	if (efx->port_enabled)
2057 		queue_work(efx->workqueue, &efx->mac_work);
2058 	/* Otherwise efx_start_port() will do this */
2059 }
2060 
2061 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2062 {
2063 	struct efx_nic *efx = netdev_priv(net_dev);
2064 
2065 	/* If disabling RX n-tuple filtering, clear existing filters */
2066 	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2067 		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2068 
2069 	return 0;
2070 }
2071 
2072 static const struct net_device_ops efx_farch_netdev_ops = {
2073 	.ndo_open		= efx_net_open,
2074 	.ndo_stop		= efx_net_stop,
2075 	.ndo_get_stats64	= efx_net_stats,
2076 	.ndo_tx_timeout		= efx_watchdog,
2077 	.ndo_start_xmit		= efx_hard_start_xmit,
2078 	.ndo_validate_addr	= eth_validate_addr,
2079 	.ndo_do_ioctl		= efx_ioctl,
2080 	.ndo_change_mtu		= efx_change_mtu,
2081 	.ndo_set_mac_address	= efx_set_mac_address,
2082 	.ndo_set_rx_mode	= efx_set_rx_mode,
2083 	.ndo_set_features	= efx_set_features,
2084 #ifdef CONFIG_SFC_SRIOV
2085 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2086 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2087 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2088 	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2089 #endif
2090 #ifdef CONFIG_NET_POLL_CONTROLLER
2091 	.ndo_poll_controller = efx_netpoll,
2092 #endif
2093 	.ndo_setup_tc		= efx_setup_tc,
2094 #ifdef CONFIG_RFS_ACCEL
2095 	.ndo_rx_flow_steer	= efx_filter_rfs,
2096 #endif
2097 };
2098 
2099 static const struct net_device_ops efx_ef10_netdev_ops = {
2100 	.ndo_open		= efx_net_open,
2101 	.ndo_stop		= efx_net_stop,
2102 	.ndo_get_stats64	= efx_net_stats,
2103 	.ndo_tx_timeout		= efx_watchdog,
2104 	.ndo_start_xmit		= efx_hard_start_xmit,
2105 	.ndo_validate_addr	= eth_validate_addr,
2106 	.ndo_do_ioctl		= efx_ioctl,
2107 	.ndo_change_mtu		= efx_change_mtu,
2108 	.ndo_set_mac_address	= efx_set_mac_address,
2109 	.ndo_set_rx_mode	= efx_set_rx_mode,
2110 	.ndo_set_features	= efx_set_features,
2111 #ifdef CONFIG_NET_POLL_CONTROLLER
2112 	.ndo_poll_controller	= efx_netpoll,
2113 #endif
2114 #ifdef CONFIG_RFS_ACCEL
2115 	.ndo_rx_flow_steer	= efx_filter_rfs,
2116 #endif
2117 };
2118 
2119 static void efx_update_name(struct efx_nic *efx)
2120 {
2121 	strcpy(efx->name, efx->net_dev->name);
2122 	efx_mtd_rename(efx);
2123 	efx_set_channel_names(efx);
2124 }
2125 
2126 static int efx_netdev_event(struct notifier_block *this,
2127 			    unsigned long event, void *ptr)
2128 {
2129 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2130 
2131 	if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
2132 	     net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2133 	    event == NETDEV_CHANGENAME)
2134 		efx_update_name(netdev_priv(net_dev));
2135 
2136 	return NOTIFY_DONE;
2137 }
2138 
2139 static struct notifier_block efx_netdev_notifier = {
2140 	.notifier_call = efx_netdev_event,
2141 };
2142 
2143 static ssize_t
2144 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2145 {
2146 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2147 	return sprintf(buf, "%d\n", efx->phy_type);
2148 }
2149 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2150 
2151 static int efx_register_netdev(struct efx_nic *efx)
2152 {
2153 	struct net_device *net_dev = efx->net_dev;
2154 	struct efx_channel *channel;
2155 	int rc;
2156 
2157 	net_dev->watchdog_timeo = 5 * HZ;
2158 	net_dev->irq = efx->pci_dev->irq;
2159 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
2160 		net_dev->netdev_ops = &efx_ef10_netdev_ops;
2161 		net_dev->priv_flags |= IFF_UNICAST_FLT;
2162 	} else {
2163 		net_dev->netdev_ops = &efx_farch_netdev_ops;
2164 	}
2165 	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2166 	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2167 
2168 	rtnl_lock();
2169 
2170 	/* Enable resets to be scheduled and check whether any were
2171 	 * already requested.  If so, the NIC is probably hosed so we
2172 	 * abort.
2173 	 */
2174 	efx->state = STATE_READY;
2175 	smp_mb(); /* ensure we change state before checking reset_pending */
2176 	if (efx->reset_pending) {
2177 		netif_err(efx, probe, efx->net_dev,
2178 			  "aborting probe due to scheduled reset\n");
2179 		rc = -EIO;
2180 		goto fail_locked;
2181 	}
2182 
2183 	rc = dev_alloc_name(net_dev, net_dev->name);
2184 	if (rc < 0)
2185 		goto fail_locked;
2186 	efx_update_name(efx);
2187 
2188 	/* Always start with carrier off; PHY events will detect the link */
2189 	netif_carrier_off(net_dev);
2190 
2191 	rc = register_netdevice(net_dev);
2192 	if (rc)
2193 		goto fail_locked;
2194 
2195 	efx_for_each_channel(channel, efx) {
2196 		struct efx_tx_queue *tx_queue;
2197 		efx_for_each_channel_tx_queue(tx_queue, channel)
2198 			efx_init_tx_queue_core_txq(tx_queue);
2199 	}
2200 
2201 	rtnl_unlock();
2202 
2203 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2204 	if (rc) {
2205 		netif_err(efx, drv, efx->net_dev,
2206 			  "failed to init net dev attributes\n");
2207 		goto fail_registered;
2208 	}
2209 
2210 	return 0;
2211 
2212 fail_registered:
2213 	rtnl_lock();
2214 	unregister_netdevice(net_dev);
2215 fail_locked:
2216 	efx->state = STATE_UNINIT;
2217 	rtnl_unlock();
2218 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2219 	return rc;
2220 }
2221 
2222 static void efx_unregister_netdev(struct efx_nic *efx)
2223 {
2224 	if (!efx->net_dev)
2225 		return;
2226 
2227 	BUG_ON(netdev_priv(efx->net_dev) != efx);
2228 
2229 	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2230 	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2231 
2232 	rtnl_lock();
2233 	unregister_netdevice(efx->net_dev);
2234 	efx->state = STATE_UNINIT;
2235 	rtnl_unlock();
2236 }
2237 
2238 /**************************************************************************
2239  *
2240  * Device reset and suspend
2241  *
2242  **************************************************************************/
2243 
2244 /* Tears down the entire software state and most of the hardware state
2245  * before reset.  */
2246 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2247 {
2248 	EFX_ASSERT_RESET_SERIALISED(efx);
2249 
2250 	efx_stop_all(efx);
2251 	efx_disable_interrupts(efx);
2252 
2253 	mutex_lock(&efx->mac_lock);
2254 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2255 		efx->phy_op->fini(efx);
2256 	efx->type->fini(efx);
2257 }
2258 
2259 /* This function will always ensure that the locks acquired in
2260  * efx_reset_down() are released. A failure return code indicates
2261  * that we were unable to reinitialise the hardware, and the
2262  * driver should be disabled. If ok is false, then the rx and tx
2263  * engines are not restarted, pending a RESET_DISABLE. */
2264 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2265 {
2266 	int rc;
2267 
2268 	EFX_ASSERT_RESET_SERIALISED(efx);
2269 
2270 	rc = efx->type->init(efx);
2271 	if (rc) {
2272 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2273 		goto fail;
2274 	}
2275 
2276 	if (!ok)
2277 		goto fail;
2278 
2279 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2280 		rc = efx->phy_op->init(efx);
2281 		if (rc)
2282 			goto fail;
2283 		if (efx->phy_op->reconfigure(efx))
2284 			netif_err(efx, drv, efx->net_dev,
2285 				  "could not restore PHY settings\n");
2286 	}
2287 
2288 	rc = efx_enable_interrupts(efx);
2289 	if (rc)
2290 		goto fail;
2291 	efx_restore_filters(efx);
2292 	efx_sriov_reset(efx);
2293 
2294 	mutex_unlock(&efx->mac_lock);
2295 
2296 	efx_start_all(efx);
2297 
2298 	return 0;
2299 
2300 fail:
2301 	efx->port_initialized = false;
2302 
2303 	mutex_unlock(&efx->mac_lock);
2304 
2305 	return rc;
2306 }
2307 
2308 /* Reset the NIC using the specified method.  Note that the reset may
2309  * fail, in which case the card will be left in an unusable state.
2310  *
2311  * Caller must hold the rtnl_lock.
2312  */
2313 int efx_reset(struct efx_nic *efx, enum reset_type method)
2314 {
2315 	int rc, rc2;
2316 	bool disabled;
2317 
2318 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2319 		   RESET_TYPE(method));
2320 
2321 	efx_device_detach_sync(efx);
2322 	efx_reset_down(efx, method);
2323 
2324 	rc = efx->type->reset(efx, method);
2325 	if (rc) {
2326 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2327 		goto out;
2328 	}
2329 
2330 	/* Clear flags for the scopes we covered.  We assume the NIC and
2331 	 * driver are now quiescent so that there is no race here.
2332 	 */
2333 	efx->reset_pending &= -(1 << (method + 1));
2334 
2335 	/* Reinitialise bus-mastering, which may have been turned off before
2336 	 * the reset was scheduled. This is still appropriate, even in the
2337 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2338 	 * can respond to requests. */
2339 	pci_set_master(efx->pci_dev);
2340 
2341 out:
2342 	/* Leave device stopped if necessary */
2343 	disabled = rc ||
2344 		method == RESET_TYPE_DISABLE ||
2345 		method == RESET_TYPE_RECOVER_OR_DISABLE;
2346 	rc2 = efx_reset_up(efx, method, !disabled);
2347 	if (rc2) {
2348 		disabled = true;
2349 		if (!rc)
2350 			rc = rc2;
2351 	}
2352 
2353 	if (disabled) {
2354 		dev_close(efx->net_dev);
2355 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2356 		efx->state = STATE_DISABLED;
2357 	} else {
2358 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2359 		netif_device_attach(efx->net_dev);
2360 	}
2361 	return rc;
2362 }
2363 
2364 /* Try recovery mechanisms.
2365  * For now only EEH is supported.
2366  * Returns 0 if the recovery mechanisms are unsuccessful.
2367  * Returns a non-zero value otherwise.
2368  */
2369 int efx_try_recovery(struct efx_nic *efx)
2370 {
2371 #ifdef CONFIG_EEH
2372 	/* A PCI error can occur and not be seen by EEH because nothing
2373 	 * happens on the PCI bus. In this case the driver may fail and
2374 	 * schedule a 'recover or reset', leading to this recovery handler.
2375 	 * Manually call the eeh failure check function.
2376 	 */
2377 	struct eeh_dev *eehdev =
2378 		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
2379 
2380 	if (eeh_dev_check_failure(eehdev)) {
2381 		/* The EEH mechanisms will handle the error and reset the
2382 		 * device if necessary.
2383 		 */
2384 		return 1;
2385 	}
2386 #endif
2387 	return 0;
2388 }
2389 
2390 /* The worker thread exists so that code that cannot sleep can
2391  * schedule a reset for later.
2392  */
2393 static void efx_reset_work(struct work_struct *data)
2394 {
2395 	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2396 	unsigned long pending;
2397 	enum reset_type method;
2398 
2399 	pending = ACCESS_ONCE(efx->reset_pending);
2400 	method = fls(pending) - 1;
2401 
2402 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2403 	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2404 	    efx_try_recovery(efx))
2405 		return;
2406 
2407 	if (!pending)
2408 		return;
2409 
2410 	rtnl_lock();
2411 
2412 	/* We checked the state in efx_schedule_reset() but it may
2413 	 * have changed by now.  Now that we have the RTNL lock,
2414 	 * it cannot change again.
2415 	 */
2416 	if (efx->state == STATE_READY)
2417 		(void)efx_reset(efx, method);
2418 
2419 	rtnl_unlock();
2420 }
2421 
2422 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2423 {
2424 	enum reset_type method;
2425 
2426 	if (efx->state == STATE_RECOVERY) {
2427 		netif_dbg(efx, drv, efx->net_dev,
2428 			  "recovering: skip scheduling %s reset\n",
2429 			  RESET_TYPE(type));
2430 		return;
2431 	}
2432 
2433 	switch (type) {
2434 	case RESET_TYPE_INVISIBLE:
2435 	case RESET_TYPE_ALL:
2436 	case RESET_TYPE_RECOVER_OR_ALL:
2437 	case RESET_TYPE_WORLD:
2438 	case RESET_TYPE_DISABLE:
2439 	case RESET_TYPE_RECOVER_OR_DISABLE:
2440 		method = type;
2441 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2442 			  RESET_TYPE(method));
2443 		break;
2444 	default:
2445 		method = efx->type->map_reset_reason(type);
2446 		netif_dbg(efx, drv, efx->net_dev,
2447 			  "scheduling %s reset for %s\n",
2448 			  RESET_TYPE(method), RESET_TYPE(type));
2449 		break;
2450 	}
2451 
2452 	set_bit(method, &efx->reset_pending);
2453 	smp_mb(); /* ensure we change reset_pending before checking state */
2454 
2455 	/* If we're not READY then just leave the flags set as the cue
2456 	 * to abort probing or reschedule the reset later.
2457 	 */
2458 	if (ACCESS_ONCE(efx->state) != STATE_READY)
2459 		return;
2460 
2461 	/* efx_process_channel() will no longer read events once a
2462 	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2463 	efx_mcdi_mode_poll(efx);
2464 
2465 	queue_work(reset_workqueue, &efx->reset_work);
2466 }
2467 
2468 /**************************************************************************
2469  *
2470  * List of NICs we support
2471  *
2472  **************************************************************************/
2473 
2474 /* PCI device ID table */
2475 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2476 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2477 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2478 	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2479 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2480 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2481 	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2482 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2483 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2484 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2485 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2486 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2487 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2488 	{0}			/* end of list */
2489 };
2490 
2491 /**************************************************************************
2492  *
2493  * Dummy PHY/MAC operations
2494  *
2495  * Can be used for some unimplemented operations
2496  * Needed so all function pointers are valid and do not have to be tested
2497  * before use
2498  *
2499  **************************************************************************/
2500 int efx_port_dummy_op_int(struct efx_nic *efx)
2501 {
2502 	return 0;
2503 }
2504 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2505 
2506 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2507 {
2508 	return false;
2509 }
2510 
2511 static const struct efx_phy_operations efx_dummy_phy_operations = {
2512 	.init		 = efx_port_dummy_op_int,
2513 	.reconfigure	 = efx_port_dummy_op_int,
2514 	.poll		 = efx_port_dummy_op_poll,
2515 	.fini		 = efx_port_dummy_op_void,
2516 };
2517 
2518 /**************************************************************************
2519  *
2520  * Data housekeeping
2521  *
2522  **************************************************************************/
2523 
2524 /* This zeroes out and then fills in the invariants in a struct
2525  * efx_nic (including all sub-structures).
2526  */
2527 static int efx_init_struct(struct efx_nic *efx,
2528 			   struct pci_dev *pci_dev, struct net_device *net_dev)
2529 {
2530 	int i;
2531 
2532 	/* Initialise common structures */
2533 	spin_lock_init(&efx->biu_lock);
2534 #ifdef CONFIG_SFC_MTD
2535 	INIT_LIST_HEAD(&efx->mtd_list);
2536 #endif
2537 	INIT_WORK(&efx->reset_work, efx_reset_work);
2538 	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2539 	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2540 	efx->pci_dev = pci_dev;
2541 	efx->msg_enable = debug;
2542 	efx->state = STATE_UNINIT;
2543 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2544 
2545 	efx->net_dev = net_dev;
2546 	efx->rx_prefix_size = efx->type->rx_prefix_size;
2547 	efx->rx_ip_align =
2548 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2549 	efx->rx_packet_hash_offset =
2550 		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2551 	spin_lock_init(&efx->stats_lock);
2552 	mutex_init(&efx->mac_lock);
2553 	efx->phy_op = &efx_dummy_phy_operations;
2554 	efx->mdio.dev = net_dev;
2555 	INIT_WORK(&efx->mac_work, efx_mac_work);
2556 	init_waitqueue_head(&efx->flush_wq);
2557 
2558 	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2559 		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2560 		if (!efx->channel[i])
2561 			goto fail;
2562 		efx->msi_context[i].efx = efx;
2563 		efx->msi_context[i].index = i;
2564 	}
2565 
2566 	/* Higher numbered interrupt modes are less capable! */
2567 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2568 				  interrupt_mode);
2569 
2570 	/* Would be good to use the net_dev name, but we're too early */
2571 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2572 		 pci_name(pci_dev));
2573 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2574 	if (!efx->workqueue)
2575 		goto fail;
2576 
2577 	return 0;
2578 
2579 fail:
2580 	efx_fini_struct(efx);
2581 	return -ENOMEM;
2582 }
2583 
2584 static void efx_fini_struct(struct efx_nic *efx)
2585 {
2586 	int i;
2587 
2588 	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2589 		kfree(efx->channel[i]);
2590 
2591 	if (efx->workqueue) {
2592 		destroy_workqueue(efx->workqueue);
2593 		efx->workqueue = NULL;
2594 	}
2595 }
2596 
2597 /**************************************************************************
2598  *
2599  * PCI interface
2600  *
2601  **************************************************************************/
2602 
2603 /* Main body of final NIC shutdown code
2604  * This is called only at module unload (or hotplug removal).
2605  */
2606 static void efx_pci_remove_main(struct efx_nic *efx)
2607 {
2608 	/* Flush reset_work. It can no longer be scheduled since we
2609 	 * are not READY.
2610 	 */
2611 	BUG_ON(efx->state == STATE_READY);
2612 	cancel_work_sync(&efx->reset_work);
2613 
2614 	efx_disable_interrupts(efx);
2615 	efx_nic_fini_interrupt(efx);
2616 	efx_fini_port(efx);
2617 	efx->type->fini(efx);
2618 	efx_fini_napi(efx);
2619 	efx_remove_all(efx);
2620 }
2621 
2622 /* Final NIC shutdown
2623  * This is called only at module unload (or hotplug removal).
2624  */
2625 static void efx_pci_remove(struct pci_dev *pci_dev)
2626 {
2627 	struct efx_nic *efx;
2628 
2629 	efx = pci_get_drvdata(pci_dev);
2630 	if (!efx)
2631 		return;
2632 
2633 	/* Mark the NIC as fini, then stop the interface */
2634 	rtnl_lock();
2635 	dev_close(efx->net_dev);
2636 	efx_disable_interrupts(efx);
2637 	rtnl_unlock();
2638 
2639 	efx_sriov_fini(efx);
2640 	efx_unregister_netdev(efx);
2641 
2642 	efx_mtd_remove(efx);
2643 
2644 	efx_pci_remove_main(efx);
2645 
2646 	efx_fini_io(efx);
2647 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2648 
2649 	efx_fini_struct(efx);
2650 	pci_set_drvdata(pci_dev, NULL);
2651 	free_netdev(efx->net_dev);
2652 
2653 	pci_disable_pcie_error_reporting(pci_dev);
2654 };
2655 
2656 /* NIC VPD information
2657  * Called during probe to display the part number of the
2658  * installed NIC.  VPD is potentially very large but this should
2659  * always appear within the first 512 bytes.
2660  */
2661 #define SFC_VPD_LEN 512
2662 static void efx_print_product_vpd(struct efx_nic *efx)
2663 {
2664 	struct pci_dev *dev = efx->pci_dev;
2665 	char vpd_data[SFC_VPD_LEN];
2666 	ssize_t vpd_size;
2667 	int i, j;
2668 
2669 	/* Get the vpd data from the device */
2670 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2671 	if (vpd_size <= 0) {
2672 		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2673 		return;
2674 	}
2675 
2676 	/* Get the Read only section */
2677 	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2678 	if (i < 0) {
2679 		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2680 		return;
2681 	}
2682 
2683 	j = pci_vpd_lrdt_size(&vpd_data[i]);
2684 	i += PCI_VPD_LRDT_TAG_SIZE;
2685 	if (i + j > vpd_size)
2686 		j = vpd_size - i;
2687 
2688 	/* Get the Part number */
2689 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2690 	if (i < 0) {
2691 		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2692 		return;
2693 	}
2694 
2695 	j = pci_vpd_info_field_size(&vpd_data[i]);
2696 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2697 	if (i + j > vpd_size) {
2698 		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2699 		return;
2700 	}
2701 
2702 	netif_info(efx, drv, efx->net_dev,
2703 		   "Part Number : %.*s\n", j, &vpd_data[i]);
2704 }
2705 
2706 
2707 /* Main body of NIC initialisation
2708  * This is called at module load (or hotplug insertion, theoretically).
2709  */
2710 static int efx_pci_probe_main(struct efx_nic *efx)
2711 {
2712 	int rc;
2713 
2714 	/* Do start-of-day initialisation */
2715 	rc = efx_probe_all(efx);
2716 	if (rc)
2717 		goto fail1;
2718 
2719 	efx_init_napi(efx);
2720 
2721 	rc = efx->type->init(efx);
2722 	if (rc) {
2723 		netif_err(efx, probe, efx->net_dev,
2724 			  "failed to initialise NIC\n");
2725 		goto fail3;
2726 	}
2727 
2728 	rc = efx_init_port(efx);
2729 	if (rc) {
2730 		netif_err(efx, probe, efx->net_dev,
2731 			  "failed to initialise port\n");
2732 		goto fail4;
2733 	}
2734 
2735 	rc = efx_nic_init_interrupt(efx);
2736 	if (rc)
2737 		goto fail5;
2738 	rc = efx_enable_interrupts(efx);
2739 	if (rc)
2740 		goto fail6;
2741 
2742 	return 0;
2743 
2744  fail6:
2745 	efx_nic_fini_interrupt(efx);
2746  fail5:
2747 	efx_fini_port(efx);
2748  fail4:
2749 	efx->type->fini(efx);
2750  fail3:
2751 	efx_fini_napi(efx);
2752 	efx_remove_all(efx);
2753  fail1:
2754 	return rc;
2755 }
2756 
2757 /* NIC initialisation
2758  *
2759  * This is called at module load (or hotplug insertion,
2760  * theoretically).  It sets up PCI mappings, resets the NIC,
2761  * sets up and registers the network devices with the kernel and hooks
2762  * the interrupt service routine.  It does not prepare the device for
2763  * transmission; this is left to the first time one of the network
2764  * interfaces is brought up (i.e. efx_net_open).
2765  */
2766 static int efx_pci_probe(struct pci_dev *pci_dev,
2767 			 const struct pci_device_id *entry)
2768 {
2769 	struct net_device *net_dev;
2770 	struct efx_nic *efx;
2771 	int rc;
2772 
2773 	/* Allocate and initialise a struct net_device and struct efx_nic */
2774 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2775 				     EFX_MAX_RX_QUEUES);
2776 	if (!net_dev)
2777 		return -ENOMEM;
2778 	efx = netdev_priv(net_dev);
2779 	efx->type = (const struct efx_nic_type *) entry->driver_data;
2780 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2781 			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2782 			      NETIF_F_RXCSUM);
2783 	if (efx->type->offload_features & NETIF_F_V6_CSUM)
2784 		net_dev->features |= NETIF_F_TSO6;
2785 	/* Mask for features that also apply to VLAN devices */
2786 	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2787 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2788 				   NETIF_F_RXCSUM);
2789 	/* All offloads can be toggled */
2790 	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2791 	pci_set_drvdata(pci_dev, efx);
2792 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2793 	rc = efx_init_struct(efx, pci_dev, net_dev);
2794 	if (rc)
2795 		goto fail1;
2796 
2797 	netif_info(efx, probe, efx->net_dev,
2798 		   "Solarflare NIC detected\n");
2799 
2800 	efx_print_product_vpd(efx);
2801 
2802 	/* Set up basic I/O (BAR mappings etc) */
2803 	rc = efx_init_io(efx);
2804 	if (rc)
2805 		goto fail2;
2806 
2807 	rc = efx_pci_probe_main(efx);
2808 	if (rc)
2809 		goto fail3;
2810 
2811 	rc = efx_register_netdev(efx);
2812 	if (rc)
2813 		goto fail4;
2814 
2815 	rc = efx_sriov_init(efx);
2816 	if (rc)
2817 		netif_err(efx, probe, efx->net_dev,
2818 			  "SR-IOV can't be enabled rc %d\n", rc);
2819 
2820 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2821 
2822 	/* Try to create MTDs, but allow this to fail */
2823 	rtnl_lock();
2824 	rc = efx_mtd_probe(efx);
2825 	rtnl_unlock();
2826 	if (rc)
2827 		netif_warn(efx, probe, efx->net_dev,
2828 			   "failed to create MTDs (%d)\n", rc);
2829 
2830 	rc = pci_enable_pcie_error_reporting(pci_dev);
2831 	if (rc && rc != -EINVAL)
2832 		netif_warn(efx, probe, efx->net_dev,
2833 			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);
2834 
2835 	return 0;
2836 
2837  fail4:
2838 	efx_pci_remove_main(efx);
2839  fail3:
2840 	efx_fini_io(efx);
2841  fail2:
2842 	efx_fini_struct(efx);
2843  fail1:
2844 	pci_set_drvdata(pci_dev, NULL);
2845 	WARN_ON(rc > 0);
2846 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2847 	free_netdev(net_dev);
2848 	return rc;
2849 }
2850 
2851 static int efx_pm_freeze(struct device *dev)
2852 {
2853 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2854 
2855 	rtnl_lock();
2856 
2857 	if (efx->state != STATE_DISABLED) {
2858 		efx->state = STATE_UNINIT;
2859 
2860 		efx_device_detach_sync(efx);
2861 
2862 		efx_stop_all(efx);
2863 		efx_disable_interrupts(efx);
2864 	}
2865 
2866 	rtnl_unlock();
2867 
2868 	return 0;
2869 }
2870 
2871 static int efx_pm_thaw(struct device *dev)
2872 {
2873 	int rc;
2874 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2875 
2876 	rtnl_lock();
2877 
2878 	if (efx->state != STATE_DISABLED) {
2879 		rc = efx_enable_interrupts(efx);
2880 		if (rc)
2881 			goto fail;
2882 
2883 		mutex_lock(&efx->mac_lock);
2884 		efx->phy_op->reconfigure(efx);
2885 		mutex_unlock(&efx->mac_lock);
2886 
2887 		efx_start_all(efx);
2888 
2889 		netif_device_attach(efx->net_dev);
2890 
2891 		efx->state = STATE_READY;
2892 
2893 		efx->type->resume_wol(efx);
2894 	}
2895 
2896 	rtnl_unlock();
2897 
2898 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2899 	queue_work(reset_workqueue, &efx->reset_work);
2900 
2901 	return 0;
2902 
2903 fail:
2904 	rtnl_unlock();
2905 
2906 	return rc;
2907 }
2908 
2909 static int efx_pm_poweroff(struct device *dev)
2910 {
2911 	struct pci_dev *pci_dev = to_pci_dev(dev);
2912 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2913 
2914 	efx->type->fini(efx);
2915 
2916 	efx->reset_pending = 0;
2917 
2918 	pci_save_state(pci_dev);
2919 	return pci_set_power_state(pci_dev, PCI_D3hot);
2920 }
2921 
2922 /* Used for both resume and restore */
2923 static int efx_pm_resume(struct device *dev)
2924 {
2925 	struct pci_dev *pci_dev = to_pci_dev(dev);
2926 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2927 	int rc;
2928 
2929 	rc = pci_set_power_state(pci_dev, PCI_D0);
2930 	if (rc)
2931 		return rc;
2932 	pci_restore_state(pci_dev);
2933 	rc = pci_enable_device(pci_dev);
2934 	if (rc)
2935 		return rc;
2936 	pci_set_master(efx->pci_dev);
2937 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
2938 	if (rc)
2939 		return rc;
2940 	rc = efx->type->init(efx);
2941 	if (rc)
2942 		return rc;
2943 	rc = efx_pm_thaw(dev);
2944 	return rc;
2945 }
2946 
2947 static int efx_pm_suspend(struct device *dev)
2948 {
2949 	int rc;
2950 
2951 	efx_pm_freeze(dev);
2952 	rc = efx_pm_poweroff(dev);
2953 	if (rc)
2954 		efx_pm_resume(dev);
2955 	return rc;
2956 }
2957 
2958 static const struct dev_pm_ops efx_pm_ops = {
2959 	.suspend	= efx_pm_suspend,
2960 	.resume		= efx_pm_resume,
2961 	.freeze		= efx_pm_freeze,
2962 	.thaw		= efx_pm_thaw,
2963 	.poweroff	= efx_pm_poweroff,
2964 	.restore	= efx_pm_resume,
2965 };
2966 
2967 /* A PCI error affecting this device was detected.
2968  * At this point MMIO and DMA may be disabled.
2969  * Stop the software path and request a slot reset.
2970  */
2971 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
2972 					      enum pci_channel_state state)
2973 {
2974 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
2975 	struct efx_nic *efx = pci_get_drvdata(pdev);
2976 
2977 	if (state == pci_channel_io_perm_failure)
2978 		return PCI_ERS_RESULT_DISCONNECT;
2979 
2980 	rtnl_lock();
2981 
2982 	if (efx->state != STATE_DISABLED) {
2983 		efx->state = STATE_RECOVERY;
2984 		efx->reset_pending = 0;
2985 
2986 		efx_device_detach_sync(efx);
2987 
2988 		efx_stop_all(efx);
2989 		efx_disable_interrupts(efx);
2990 
2991 		status = PCI_ERS_RESULT_NEED_RESET;
2992 	} else {
2993 		/* If the interface is disabled we don't want to do anything
2994 		 * with it.
2995 		 */
2996 		status = PCI_ERS_RESULT_RECOVERED;
2997 	}
2998 
2999 	rtnl_unlock();
3000 
3001 	pci_disable_device(pdev);
3002 
3003 	return status;
3004 }
3005 
3006 /* Fake a successfull reset, which will be performed later in efx_io_resume. */
3007 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3008 {
3009 	struct efx_nic *efx = pci_get_drvdata(pdev);
3010 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3011 	int rc;
3012 
3013 	if (pci_enable_device(pdev)) {
3014 		netif_err(efx, hw, efx->net_dev,
3015 			  "Cannot re-enable PCI device after reset.\n");
3016 		status =  PCI_ERS_RESULT_DISCONNECT;
3017 	}
3018 
3019 	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3020 	if (rc) {
3021 		netif_err(efx, hw, efx->net_dev,
3022 		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3023 		/* Non-fatal error. Continue. */
3024 	}
3025 
3026 	return status;
3027 }
3028 
3029 /* Perform the actual reset and resume I/O operations. */
3030 static void efx_io_resume(struct pci_dev *pdev)
3031 {
3032 	struct efx_nic *efx = pci_get_drvdata(pdev);
3033 	int rc;
3034 
3035 	rtnl_lock();
3036 
3037 	if (efx->state == STATE_DISABLED)
3038 		goto out;
3039 
3040 	rc = efx_reset(efx, RESET_TYPE_ALL);
3041 	if (rc) {
3042 		netif_err(efx, hw, efx->net_dev,
3043 			  "efx_reset failed after PCI error (%d)\n", rc);
3044 	} else {
3045 		efx->state = STATE_READY;
3046 		netif_dbg(efx, hw, efx->net_dev,
3047 			  "Done resetting and resuming IO after PCI error.\n");
3048 	}
3049 
3050 out:
3051 	rtnl_unlock();
3052 }
3053 
3054 /* For simplicity and reliability, we always require a slot reset and try to
3055  * reset the hardware when a pci error affecting the device is detected.
3056  * We leave both the link_reset and mmio_enabled callback unimplemented:
3057  * with our request for slot reset the mmio_enabled callback will never be
3058  * called, and the link_reset callback is not used by AER or EEH mechanisms.
3059  */
3060 static struct pci_error_handlers efx_err_handlers = {
3061 	.error_detected = efx_io_error_detected,
3062 	.slot_reset	= efx_io_slot_reset,
3063 	.resume		= efx_io_resume,
3064 };
3065 
3066 static struct pci_driver efx_pci_driver = {
3067 	.name		= KBUILD_MODNAME,
3068 	.id_table	= efx_pci_table,
3069 	.probe		= efx_pci_probe,
3070 	.remove		= efx_pci_remove,
3071 	.driver.pm	= &efx_pm_ops,
3072 	.err_handler	= &efx_err_handlers,
3073 };
3074 
3075 /**************************************************************************
3076  *
3077  * Kernel module interface
3078  *
3079  *************************************************************************/
3080 
3081 module_param(interrupt_mode, uint, 0444);
3082 MODULE_PARM_DESC(interrupt_mode,
3083 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3084 
3085 static int __init efx_init_module(void)
3086 {
3087 	int rc;
3088 
3089 	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3090 
3091 	rc = register_netdevice_notifier(&efx_netdev_notifier);
3092 	if (rc)
3093 		goto err_notifier;
3094 
3095 	rc = efx_init_sriov();
3096 	if (rc)
3097 		goto err_sriov;
3098 
3099 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3100 	if (!reset_workqueue) {
3101 		rc = -ENOMEM;
3102 		goto err_reset;
3103 	}
3104 
3105 	rc = pci_register_driver(&efx_pci_driver);
3106 	if (rc < 0)
3107 		goto err_pci;
3108 
3109 	return 0;
3110 
3111  err_pci:
3112 	destroy_workqueue(reset_workqueue);
3113  err_reset:
3114 	efx_fini_sriov();
3115  err_sriov:
3116 	unregister_netdevice_notifier(&efx_netdev_notifier);
3117  err_notifier:
3118 	return rc;
3119 }
3120 
3121 static void __exit efx_exit_module(void)
3122 {
3123 	printk(KERN_INFO "Solarflare NET driver unloading\n");
3124 
3125 	pci_unregister_driver(&efx_pci_driver);
3126 	destroy_workqueue(reset_workqueue);
3127 	efx_fini_sriov();
3128 	unregister_netdevice_notifier(&efx_netdev_notifier);
3129 
3130 }
3131 
3132 module_init(efx_init_module);
3133 module_exit(efx_exit_module);
3134 
3135 MODULE_AUTHOR("Solarflare Communications and "
3136 	      "Michael Brown <mbrown@fensystems.co.uk>");
3137 MODULE_DESCRIPTION("Solarflare Communications network driver");
3138 MODULE_LICENSE("GPL");
3139 MODULE_DEVICE_TABLE(pci, efx_pci_table);
3140