1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/pci.h> 10 #include <linux/netdevice.h> 11 #include <linux/etherdevice.h> 12 #include <linux/delay.h> 13 #include <linux/notifier.h> 14 #include <linux/ip.h> 15 #include <linux/tcp.h> 16 #include <linux/in.h> 17 #include <linux/ethtool.h> 18 #include <linux/topology.h> 19 #include <linux/gfp.h> 20 #include <linux/aer.h> 21 #include <linux/interrupt.h> 22 #include "net_driver.h" 23 #include <net/gre.h> 24 #include <net/udp_tunnel.h> 25 #include "efx.h" 26 #include "efx_common.h" 27 #include "efx_channels.h" 28 #include "ef100.h" 29 #include "rx_common.h" 30 #include "tx_common.h" 31 #include "nic.h" 32 #include "io.h" 33 #include "selftest.h" 34 #include "sriov.h" 35 36 #include "mcdi.h" 37 #include "mcdi_pcol.h" 38 #include "workarounds.h" 39 40 /************************************************************************** 41 * 42 * Configurable values 43 * 44 *************************************************************************/ 45 46 module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444); 47 MODULE_PARM_DESC(interrupt_mode, 48 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 49 50 module_param(rss_cpus, uint, 0444); 51 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 52 53 /* 54 * Use separate channels for TX and RX events 55 * 56 * Set this to 1 to use separate channels for TX and RX. It allows us 57 * to control interrupt affinity separately for TX and RX. 58 * 59 * This is only used in MSI-X interrupt mode 60 */ 61 bool efx_separate_tx_channels; 62 module_param(efx_separate_tx_channels, bool, 0444); 63 MODULE_PARM_DESC(efx_separate_tx_channels, 64 "Use separate channels for TX and RX"); 65 66 /* Initial interrupt moderation settings. They can be modified after 67 * module load with ethtool. 68 * 69 * The default for RX should strike a balance between increasing the 70 * round-trip latency and reducing overhead. 71 */ 72 static unsigned int rx_irq_mod_usec = 60; 73 74 /* Initial interrupt moderation settings. They can be modified after 75 * module load with ethtool. 76 * 77 * This default is chosen to ensure that a 10G link does not go idle 78 * while a TX queue is stopped after it has become full. A queue is 79 * restarted when it drops below half full. The time this takes (assuming 80 * worst case 3 descriptors per packet and 1024 descriptors) is 81 * 512 / 3 * 1.2 = 205 usec. 82 */ 83 static unsigned int tx_irq_mod_usec = 150; 84 85 static bool phy_flash_cfg; 86 module_param(phy_flash_cfg, bool, 0644); 87 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 88 89 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 90 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 91 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 92 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 93 module_param(debug, uint, 0); 94 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 95 96 /************************************************************************** 97 * 98 * Utility functions and prototypes 99 * 100 *************************************************************************/ 101 102 static void efx_remove_port(struct efx_nic *efx); 103 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog); 104 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp); 105 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, 106 u32 flags); 107 108 #define EFX_ASSERT_RESET_SERIALISED(efx) \ 109 do { \ 110 if ((efx->state == STATE_READY) || \ 111 (efx->state == STATE_RECOVERY) || \ 112 (efx->state == STATE_DISABLED)) \ 113 ASSERT_RTNL(); \ 114 } while (0) 115 116 /************************************************************************** 117 * 118 * Port handling 119 * 120 **************************************************************************/ 121 122 static void efx_fini_port(struct efx_nic *efx); 123 124 static int efx_probe_port(struct efx_nic *efx) 125 { 126 int rc; 127 128 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 129 130 if (phy_flash_cfg) 131 efx->phy_mode = PHY_MODE_SPECIAL; 132 133 /* Connect up MAC/PHY operations table */ 134 rc = efx->type->probe_port(efx); 135 if (rc) 136 return rc; 137 138 /* Initialise MAC address to permanent address */ 139 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); 140 141 return 0; 142 } 143 144 static int efx_init_port(struct efx_nic *efx) 145 { 146 int rc; 147 148 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 149 150 mutex_lock(&efx->mac_lock); 151 152 rc = efx->phy_op->init(efx); 153 if (rc) 154 goto fail1; 155 156 efx->port_initialized = true; 157 158 /* Ensure the PHY advertises the correct flow control settings */ 159 rc = efx->phy_op->reconfigure(efx); 160 if (rc && rc != -EPERM) 161 goto fail2; 162 163 mutex_unlock(&efx->mac_lock); 164 return 0; 165 166 fail2: 167 efx->phy_op->fini(efx); 168 fail1: 169 mutex_unlock(&efx->mac_lock); 170 return rc; 171 } 172 173 static void efx_fini_port(struct efx_nic *efx) 174 { 175 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 176 177 if (!efx->port_initialized) 178 return; 179 180 efx->phy_op->fini(efx); 181 efx->port_initialized = false; 182 183 efx->link_state.up = false; 184 efx_link_status_changed(efx); 185 } 186 187 static void efx_remove_port(struct efx_nic *efx) 188 { 189 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 190 191 efx->type->remove_port(efx); 192 } 193 194 /************************************************************************** 195 * 196 * NIC handling 197 * 198 **************************************************************************/ 199 200 static LIST_HEAD(efx_primary_list); 201 static LIST_HEAD(efx_unassociated_list); 202 203 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right) 204 { 205 return left->type == right->type && 206 left->vpd_sn && right->vpd_sn && 207 !strcmp(left->vpd_sn, right->vpd_sn); 208 } 209 210 static void efx_associate(struct efx_nic *efx) 211 { 212 struct efx_nic *other, *next; 213 214 if (efx->primary == efx) { 215 /* Adding primary function; look for secondaries */ 216 217 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 218 list_add_tail(&efx->node, &efx_primary_list); 219 220 list_for_each_entry_safe(other, next, &efx_unassociated_list, 221 node) { 222 if (efx_same_controller(efx, other)) { 223 list_del(&other->node); 224 netif_dbg(other, probe, other->net_dev, 225 "moving to secondary list of %s %s\n", 226 pci_name(efx->pci_dev), 227 efx->net_dev->name); 228 list_add_tail(&other->node, 229 &efx->secondary_list); 230 other->primary = efx; 231 } 232 } 233 } else { 234 /* Adding secondary function; look for primary */ 235 236 list_for_each_entry(other, &efx_primary_list, node) { 237 if (efx_same_controller(efx, other)) { 238 netif_dbg(efx, probe, efx->net_dev, 239 "adding to secondary list of %s %s\n", 240 pci_name(other->pci_dev), 241 other->net_dev->name); 242 list_add_tail(&efx->node, 243 &other->secondary_list); 244 efx->primary = other; 245 return; 246 } 247 } 248 249 netif_dbg(efx, probe, efx->net_dev, 250 "adding to unassociated list\n"); 251 list_add_tail(&efx->node, &efx_unassociated_list); 252 } 253 } 254 255 static void efx_dissociate(struct efx_nic *efx) 256 { 257 struct efx_nic *other, *next; 258 259 list_del(&efx->node); 260 efx->primary = NULL; 261 262 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 263 list_del(&other->node); 264 netif_dbg(other, probe, other->net_dev, 265 "moving to unassociated list\n"); 266 list_add_tail(&other->node, &efx_unassociated_list); 267 other->primary = NULL; 268 } 269 } 270 271 static int efx_probe_nic(struct efx_nic *efx) 272 { 273 int rc; 274 275 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 276 277 /* Carry out hardware-type specific initialisation */ 278 rc = efx->type->probe(efx); 279 if (rc) 280 return rc; 281 282 do { 283 if (!efx->max_channels || !efx->max_tx_channels) { 284 netif_err(efx, drv, efx->net_dev, 285 "Insufficient resources to allocate" 286 " any channels\n"); 287 rc = -ENOSPC; 288 goto fail1; 289 } 290 291 /* Determine the number of channels and queues by trying 292 * to hook in MSI-X interrupts. 293 */ 294 rc = efx_probe_interrupts(efx); 295 if (rc) 296 goto fail1; 297 298 rc = efx_set_channels(efx); 299 if (rc) 300 goto fail1; 301 302 /* dimension_resources can fail with EAGAIN */ 303 rc = efx->type->dimension_resources(efx); 304 if (rc != 0 && rc != -EAGAIN) 305 goto fail2; 306 307 if (rc == -EAGAIN) 308 /* try again with new max_channels */ 309 efx_remove_interrupts(efx); 310 311 } while (rc == -EAGAIN); 312 313 if (efx->n_channels > 1) 314 netdev_rss_key_fill(efx->rss_context.rx_hash_key, 315 sizeof(efx->rss_context.rx_hash_key)); 316 efx_set_default_rx_indir_table(efx, &efx->rss_context); 317 318 /* Initialise the interrupt moderation settings */ 319 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); 320 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 321 true); 322 323 return 0; 324 325 fail2: 326 efx_remove_interrupts(efx); 327 fail1: 328 efx->type->remove(efx); 329 return rc; 330 } 331 332 static void efx_remove_nic(struct efx_nic *efx) 333 { 334 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 335 336 efx_remove_interrupts(efx); 337 efx->type->remove(efx); 338 } 339 340 /************************************************************************** 341 * 342 * NIC startup/shutdown 343 * 344 *************************************************************************/ 345 346 static int efx_probe_all(struct efx_nic *efx) 347 { 348 int rc; 349 350 rc = efx_probe_nic(efx); 351 if (rc) { 352 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 353 goto fail1; 354 } 355 356 rc = efx_probe_port(efx); 357 if (rc) { 358 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 359 goto fail2; 360 } 361 362 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); 363 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { 364 rc = -EINVAL; 365 goto fail3; 366 } 367 368 #ifdef CONFIG_SFC_SRIOV 369 rc = efx->type->vswitching_probe(efx); 370 if (rc) /* not fatal; the PF will still work fine */ 371 netif_warn(efx, probe, efx->net_dev, 372 "failed to setup vswitching rc=%d;" 373 " VFs may not function\n", rc); 374 #endif 375 376 rc = efx_probe_filters(efx); 377 if (rc) { 378 netif_err(efx, probe, efx->net_dev, 379 "failed to create filter tables\n"); 380 goto fail4; 381 } 382 383 rc = efx_probe_channels(efx); 384 if (rc) 385 goto fail5; 386 387 return 0; 388 389 fail5: 390 efx_remove_filters(efx); 391 fail4: 392 #ifdef CONFIG_SFC_SRIOV 393 efx->type->vswitching_remove(efx); 394 #endif 395 fail3: 396 efx_remove_port(efx); 397 fail2: 398 efx_remove_nic(efx); 399 fail1: 400 return rc; 401 } 402 403 static void efx_remove_all(struct efx_nic *efx) 404 { 405 rtnl_lock(); 406 efx_xdp_setup_prog(efx, NULL); 407 rtnl_unlock(); 408 409 efx_remove_channels(efx); 410 efx_remove_filters(efx); 411 #ifdef CONFIG_SFC_SRIOV 412 efx->type->vswitching_remove(efx); 413 #endif 414 efx_remove_port(efx); 415 efx_remove_nic(efx); 416 } 417 418 /************************************************************************** 419 * 420 * Interrupt moderation 421 * 422 **************************************************************************/ 423 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs) 424 { 425 if (usecs == 0) 426 return 0; 427 if (usecs * 1000 < efx->timer_quantum_ns) 428 return 1; /* never round down to 0 */ 429 return usecs * 1000 / efx->timer_quantum_ns; 430 } 431 432 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks) 433 { 434 /* We must round up when converting ticks to microseconds 435 * because we round down when converting the other way. 436 */ 437 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000); 438 } 439 440 /* Set interrupt moderation parameters */ 441 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, 442 unsigned int rx_usecs, bool rx_adaptive, 443 bool rx_may_override_tx) 444 { 445 struct efx_channel *channel; 446 unsigned int timer_max_us; 447 448 EFX_ASSERT_RESET_SERIALISED(efx); 449 450 timer_max_us = efx->timer_max_ns / 1000; 451 452 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) 453 return -EINVAL; 454 455 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && 456 !rx_may_override_tx) { 457 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 458 "RX and TX IRQ moderation must be equal\n"); 459 return -EINVAL; 460 } 461 462 efx->irq_rx_adaptive = rx_adaptive; 463 efx->irq_rx_moderation_us = rx_usecs; 464 efx_for_each_channel(channel, efx) { 465 if (efx_channel_has_rx_queue(channel)) 466 channel->irq_moderation_us = rx_usecs; 467 else if (efx_channel_has_tx_queues(channel)) 468 channel->irq_moderation_us = tx_usecs; 469 else if (efx_channel_is_xdp_tx(channel)) 470 channel->irq_moderation_us = tx_usecs; 471 } 472 473 return 0; 474 } 475 476 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, 477 unsigned int *rx_usecs, bool *rx_adaptive) 478 { 479 *rx_adaptive = efx->irq_rx_adaptive; 480 *rx_usecs = efx->irq_rx_moderation_us; 481 482 /* If channels are shared between RX and TX, so is IRQ 483 * moderation. Otherwise, IRQ moderation is the same for all 484 * TX channels and is not adaptive. 485 */ 486 if (efx->tx_channel_offset == 0) { 487 *tx_usecs = *rx_usecs; 488 } else { 489 struct efx_channel *tx_channel; 490 491 tx_channel = efx->channel[efx->tx_channel_offset]; 492 *tx_usecs = tx_channel->irq_moderation_us; 493 } 494 } 495 496 /************************************************************************** 497 * 498 * ioctls 499 * 500 *************************************************************************/ 501 502 /* Net device ioctl 503 * Context: process, rtnl_lock() held. 504 */ 505 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 506 { 507 struct efx_nic *efx = netdev_priv(net_dev); 508 struct mii_ioctl_data *data = if_mii(ifr); 509 510 if (cmd == SIOCSHWTSTAMP) 511 return efx_ptp_set_ts_config(efx, ifr); 512 if (cmd == SIOCGHWTSTAMP) 513 return efx_ptp_get_ts_config(efx, ifr); 514 515 /* Convert phy_id from older PRTAD/DEVAD format */ 516 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 517 (data->phy_id & 0xfc00) == 0x0400) 518 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 519 520 return mdio_mii_ioctl(&efx->mdio, data, cmd); 521 } 522 523 /************************************************************************** 524 * 525 * Kernel net device interface 526 * 527 *************************************************************************/ 528 529 /* Context: process, rtnl_lock() held. */ 530 int efx_net_open(struct net_device *net_dev) 531 { 532 struct efx_nic *efx = netdev_priv(net_dev); 533 int rc; 534 535 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 536 raw_smp_processor_id()); 537 538 rc = efx_check_disabled(efx); 539 if (rc) 540 return rc; 541 if (efx->phy_mode & PHY_MODE_SPECIAL) 542 return -EBUSY; 543 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) 544 return -EIO; 545 546 /* Notify the kernel of the link state polled during driver load, 547 * before the monitor starts running */ 548 efx_link_status_changed(efx); 549 550 efx_start_all(efx); 551 if (efx->state == STATE_DISABLED || efx->reset_pending) 552 netif_device_detach(efx->net_dev); 553 efx_selftest_async_start(efx); 554 return 0; 555 } 556 557 /* Context: process, rtnl_lock() held. 558 * Note that the kernel will ignore our return code; this method 559 * should really be a void. 560 */ 561 int efx_net_stop(struct net_device *net_dev) 562 { 563 struct efx_nic *efx = netdev_priv(net_dev); 564 565 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 566 raw_smp_processor_id()); 567 568 /* Stop the device and flush all the channels */ 569 efx_stop_all(efx); 570 571 return 0; 572 } 573 574 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid) 575 { 576 struct efx_nic *efx = netdev_priv(net_dev); 577 578 if (efx->type->vlan_rx_add_vid) 579 return efx->type->vlan_rx_add_vid(efx, proto, vid); 580 else 581 return -EOPNOTSUPP; 582 } 583 584 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid) 585 { 586 struct efx_nic *efx = netdev_priv(net_dev); 587 588 if (efx->type->vlan_rx_kill_vid) 589 return efx->type->vlan_rx_kill_vid(efx, proto, vid); 590 else 591 return -EOPNOTSUPP; 592 } 593 594 static const struct net_device_ops efx_netdev_ops = { 595 .ndo_open = efx_net_open, 596 .ndo_stop = efx_net_stop, 597 .ndo_get_stats64 = efx_net_stats, 598 .ndo_tx_timeout = efx_watchdog, 599 .ndo_start_xmit = efx_hard_start_xmit, 600 .ndo_validate_addr = eth_validate_addr, 601 .ndo_do_ioctl = efx_ioctl, 602 .ndo_change_mtu = efx_change_mtu, 603 .ndo_set_mac_address = efx_set_mac_address, 604 .ndo_set_rx_mode = efx_set_rx_mode, 605 .ndo_set_features = efx_set_features, 606 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid, 607 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid, 608 #ifdef CONFIG_SFC_SRIOV 609 .ndo_set_vf_mac = efx_sriov_set_vf_mac, 610 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, 611 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, 612 .ndo_get_vf_config = efx_sriov_get_vf_config, 613 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state, 614 #endif 615 .ndo_get_phys_port_id = efx_get_phys_port_id, 616 .ndo_get_phys_port_name = efx_get_phys_port_name, 617 .ndo_setup_tc = efx_setup_tc, 618 #ifdef CONFIG_RFS_ACCEL 619 .ndo_rx_flow_steer = efx_filter_rfs, 620 #endif 621 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port, 622 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port, 623 .ndo_xdp_xmit = efx_xdp_xmit, 624 .ndo_bpf = efx_xdp 625 }; 626 627 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog) 628 { 629 struct bpf_prog *old_prog; 630 631 if (efx->xdp_rxq_info_failed) { 632 netif_err(efx, drv, efx->net_dev, 633 "Unable to bind XDP program due to previous failure of rxq_info\n"); 634 return -EINVAL; 635 } 636 637 if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) { 638 netif_err(efx, drv, efx->net_dev, 639 "Unable to configure XDP with MTU of %d (max: %d)\n", 640 efx->net_dev->mtu, efx_xdp_max_mtu(efx)); 641 return -EINVAL; 642 } 643 644 old_prog = rtnl_dereference(efx->xdp_prog); 645 rcu_assign_pointer(efx->xdp_prog, prog); 646 /* Release the reference that was originally passed by the caller. */ 647 if (old_prog) 648 bpf_prog_put(old_prog); 649 650 return 0; 651 } 652 653 /* Context: process, rtnl_lock() held. */ 654 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp) 655 { 656 struct efx_nic *efx = netdev_priv(dev); 657 struct bpf_prog *xdp_prog; 658 659 switch (xdp->command) { 660 case XDP_SETUP_PROG: 661 return efx_xdp_setup_prog(efx, xdp->prog); 662 case XDP_QUERY_PROG: 663 xdp_prog = rtnl_dereference(efx->xdp_prog); 664 xdp->prog_id = xdp_prog ? xdp_prog->aux->id : 0; 665 return 0; 666 default: 667 return -EINVAL; 668 } 669 } 670 671 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, 672 u32 flags) 673 { 674 struct efx_nic *efx = netdev_priv(dev); 675 676 if (!netif_running(dev)) 677 return -EINVAL; 678 679 return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH); 680 } 681 682 static void efx_update_name(struct efx_nic *efx) 683 { 684 strcpy(efx->name, efx->net_dev->name); 685 efx_mtd_rename(efx); 686 efx_set_channel_names(efx); 687 } 688 689 static int efx_netdev_event(struct notifier_block *this, 690 unsigned long event, void *ptr) 691 { 692 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 693 694 if ((net_dev->netdev_ops == &efx_netdev_ops) && 695 event == NETDEV_CHANGENAME) 696 efx_update_name(netdev_priv(net_dev)); 697 698 return NOTIFY_DONE; 699 } 700 701 static struct notifier_block efx_netdev_notifier = { 702 .notifier_call = efx_netdev_event, 703 }; 704 705 static ssize_t 706 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) 707 { 708 struct efx_nic *efx = dev_get_drvdata(dev); 709 return sprintf(buf, "%d\n", efx->phy_type); 710 } 711 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); 712 713 static int efx_register_netdev(struct efx_nic *efx) 714 { 715 struct net_device *net_dev = efx->net_dev; 716 struct efx_channel *channel; 717 int rc; 718 719 net_dev->watchdog_timeo = 5 * HZ; 720 net_dev->irq = efx->pci_dev->irq; 721 net_dev->netdev_ops = &efx_netdev_ops; 722 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) 723 net_dev->priv_flags |= IFF_UNICAST_FLT; 724 net_dev->ethtool_ops = &efx_ethtool_ops; 725 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS; 726 net_dev->min_mtu = EFX_MIN_MTU; 727 net_dev->max_mtu = EFX_MAX_MTU; 728 729 rtnl_lock(); 730 731 /* Enable resets to be scheduled and check whether any were 732 * already requested. If so, the NIC is probably hosed so we 733 * abort. 734 */ 735 efx->state = STATE_READY; 736 smp_mb(); /* ensure we change state before checking reset_pending */ 737 if (efx->reset_pending) { 738 netif_err(efx, probe, efx->net_dev, 739 "aborting probe due to scheduled reset\n"); 740 rc = -EIO; 741 goto fail_locked; 742 } 743 744 rc = dev_alloc_name(net_dev, net_dev->name); 745 if (rc < 0) 746 goto fail_locked; 747 efx_update_name(efx); 748 749 /* Always start with carrier off; PHY events will detect the link */ 750 netif_carrier_off(net_dev); 751 752 rc = register_netdevice(net_dev); 753 if (rc) 754 goto fail_locked; 755 756 efx_for_each_channel(channel, efx) { 757 struct efx_tx_queue *tx_queue; 758 efx_for_each_channel_tx_queue(tx_queue, channel) 759 efx_init_tx_queue_core_txq(tx_queue); 760 } 761 762 efx_associate(efx); 763 764 rtnl_unlock(); 765 766 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 767 if (rc) { 768 netif_err(efx, drv, efx->net_dev, 769 "failed to init net dev attributes\n"); 770 goto fail_registered; 771 } 772 773 efx_init_mcdi_logging(efx); 774 775 return 0; 776 777 fail_registered: 778 rtnl_lock(); 779 efx_dissociate(efx); 780 unregister_netdevice(net_dev); 781 fail_locked: 782 efx->state = STATE_UNINIT; 783 rtnl_unlock(); 784 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 785 return rc; 786 } 787 788 static void efx_unregister_netdev(struct efx_nic *efx) 789 { 790 if (!efx->net_dev) 791 return; 792 793 BUG_ON(netdev_priv(efx->net_dev) != efx); 794 795 if (efx_dev_registered(efx)) { 796 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 797 efx_fini_mcdi_logging(efx); 798 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 799 unregister_netdev(efx->net_dev); 800 } 801 } 802 803 /************************************************************************** 804 * 805 * List of NICs we support 806 * 807 **************************************************************************/ 808 809 /* PCI device ID table */ 810 static const struct pci_device_id efx_pci_table[] = { 811 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ 812 .driver_data = (unsigned long) &siena_a0_nic_type}, 813 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ 814 .driver_data = (unsigned long) &siena_a0_nic_type}, 815 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */ 816 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 817 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */ 818 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 819 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */ 820 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 821 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */ 822 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 823 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */ 824 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 825 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */ 826 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 827 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */ 828 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 829 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */ 830 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 831 {0} /* end of list */ 832 }; 833 834 /************************************************************************** 835 * 836 * Data housekeeping 837 * 838 **************************************************************************/ 839 840 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats) 841 { 842 u64 n_rx_nodesc_trunc = 0; 843 struct efx_channel *channel; 844 845 efx_for_each_channel(channel, efx) 846 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; 847 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; 848 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); 849 } 850 851 /************************************************************************** 852 * 853 * PCI interface 854 * 855 **************************************************************************/ 856 857 /* Main body of final NIC shutdown code 858 * This is called only at module unload (or hotplug removal). 859 */ 860 static void efx_pci_remove_main(struct efx_nic *efx) 861 { 862 /* Flush reset_work. It can no longer be scheduled since we 863 * are not READY. 864 */ 865 BUG_ON(efx->state == STATE_READY); 866 efx_flush_reset_workqueue(efx); 867 868 efx_disable_interrupts(efx); 869 efx_clear_interrupt_affinity(efx); 870 efx_nic_fini_interrupt(efx); 871 efx_fini_port(efx); 872 efx->type->fini(efx); 873 efx_fini_napi(efx); 874 efx_remove_all(efx); 875 } 876 877 /* Final NIC shutdown 878 * This is called only at module unload (or hotplug removal). A PF can call 879 * this on its VFs to ensure they are unbound first. 880 */ 881 static void efx_pci_remove(struct pci_dev *pci_dev) 882 { 883 struct efx_nic *efx; 884 885 efx = pci_get_drvdata(pci_dev); 886 if (!efx) 887 return; 888 889 /* Mark the NIC as fini, then stop the interface */ 890 rtnl_lock(); 891 efx_dissociate(efx); 892 dev_close(efx->net_dev); 893 efx_disable_interrupts(efx); 894 efx->state = STATE_UNINIT; 895 rtnl_unlock(); 896 897 if (efx->type->sriov_fini) 898 efx->type->sriov_fini(efx); 899 900 efx_unregister_netdev(efx); 901 902 efx_mtd_remove(efx); 903 904 efx_pci_remove_main(efx); 905 906 efx_fini_io(efx); 907 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 908 909 efx_fini_struct(efx); 910 free_netdev(efx->net_dev); 911 912 pci_disable_pcie_error_reporting(pci_dev); 913 }; 914 915 /* NIC VPD information 916 * Called during probe to display the part number of the 917 * installed NIC. VPD is potentially very large but this should 918 * always appear within the first 512 bytes. 919 */ 920 #define SFC_VPD_LEN 512 921 static void efx_probe_vpd_strings(struct efx_nic *efx) 922 { 923 struct pci_dev *dev = efx->pci_dev; 924 char vpd_data[SFC_VPD_LEN]; 925 ssize_t vpd_size; 926 int ro_start, ro_size, i, j; 927 928 /* Get the vpd data from the device */ 929 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); 930 if (vpd_size <= 0) { 931 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); 932 return; 933 } 934 935 /* Get the Read only section */ 936 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 937 if (ro_start < 0) { 938 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); 939 return; 940 } 941 942 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 943 j = ro_size; 944 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 945 if (i + j > vpd_size) 946 j = vpd_size - i; 947 948 /* Get the Part number */ 949 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); 950 if (i < 0) { 951 netif_err(efx, drv, efx->net_dev, "Part number not found\n"); 952 return; 953 } 954 955 j = pci_vpd_info_field_size(&vpd_data[i]); 956 i += PCI_VPD_INFO_FLD_HDR_SIZE; 957 if (i + j > vpd_size) { 958 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); 959 return; 960 } 961 962 netif_info(efx, drv, efx->net_dev, 963 "Part Number : %.*s\n", j, &vpd_data[i]); 964 965 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 966 j = ro_size; 967 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); 968 if (i < 0) { 969 netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); 970 return; 971 } 972 973 j = pci_vpd_info_field_size(&vpd_data[i]); 974 i += PCI_VPD_INFO_FLD_HDR_SIZE; 975 if (i + j > vpd_size) { 976 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); 977 return; 978 } 979 980 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); 981 if (!efx->vpd_sn) 982 return; 983 984 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); 985 } 986 987 988 /* Main body of NIC initialisation 989 * This is called at module load (or hotplug insertion, theoretically). 990 */ 991 static int efx_pci_probe_main(struct efx_nic *efx) 992 { 993 int rc; 994 995 /* Do start-of-day initialisation */ 996 rc = efx_probe_all(efx); 997 if (rc) 998 goto fail1; 999 1000 efx_init_napi(efx); 1001 1002 down_write(&efx->filter_sem); 1003 rc = efx->type->init(efx); 1004 up_write(&efx->filter_sem); 1005 if (rc) { 1006 netif_err(efx, probe, efx->net_dev, 1007 "failed to initialise NIC\n"); 1008 goto fail3; 1009 } 1010 1011 rc = efx_init_port(efx); 1012 if (rc) { 1013 netif_err(efx, probe, efx->net_dev, 1014 "failed to initialise port\n"); 1015 goto fail4; 1016 } 1017 1018 rc = efx_nic_init_interrupt(efx); 1019 if (rc) 1020 goto fail5; 1021 1022 efx_set_interrupt_affinity(efx); 1023 rc = efx_enable_interrupts(efx); 1024 if (rc) 1025 goto fail6; 1026 1027 return 0; 1028 1029 fail6: 1030 efx_clear_interrupt_affinity(efx); 1031 efx_nic_fini_interrupt(efx); 1032 fail5: 1033 efx_fini_port(efx); 1034 fail4: 1035 efx->type->fini(efx); 1036 fail3: 1037 efx_fini_napi(efx); 1038 efx_remove_all(efx); 1039 fail1: 1040 return rc; 1041 } 1042 1043 static int efx_pci_probe_post_io(struct efx_nic *efx) 1044 { 1045 struct net_device *net_dev = efx->net_dev; 1046 int rc = efx_pci_probe_main(efx); 1047 1048 if (rc) 1049 return rc; 1050 1051 if (efx->type->sriov_init) { 1052 rc = efx->type->sriov_init(efx); 1053 if (rc) 1054 netif_err(efx, probe, efx->net_dev, 1055 "SR-IOV can't be enabled rc %d\n", rc); 1056 } 1057 1058 /* Determine netdevice features */ 1059 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 1060 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL); 1061 if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM)) 1062 net_dev->features |= NETIF_F_TSO6; 1063 /* Check whether device supports TSO */ 1064 if (!efx->type->tso_versions || !efx->type->tso_versions(efx)) 1065 net_dev->features &= ~NETIF_F_ALL_TSO; 1066 /* Mask for features that also apply to VLAN devices */ 1067 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | 1068 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | 1069 NETIF_F_RXCSUM); 1070 1071 net_dev->hw_features |= net_dev->features & ~efx->fixed_features; 1072 1073 /* Disable receiving frames with bad FCS, by default. */ 1074 net_dev->features &= ~NETIF_F_RXALL; 1075 1076 /* Disable VLAN filtering by default. It may be enforced if 1077 * the feature is fixed (i.e. VLAN filters are required to 1078 * receive VLAN tagged packets due to vPort restrictions). 1079 */ 1080 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 1081 net_dev->features |= efx->fixed_features; 1082 1083 rc = efx_register_netdev(efx); 1084 if (!rc) 1085 return 0; 1086 1087 efx_pci_remove_main(efx); 1088 return rc; 1089 } 1090 1091 /* NIC initialisation 1092 * 1093 * This is called at module load (or hotplug insertion, 1094 * theoretically). It sets up PCI mappings, resets the NIC, 1095 * sets up and registers the network devices with the kernel and hooks 1096 * the interrupt service routine. It does not prepare the device for 1097 * transmission; this is left to the first time one of the network 1098 * interfaces is brought up (i.e. efx_net_open). 1099 */ 1100 static int efx_pci_probe(struct pci_dev *pci_dev, 1101 const struct pci_device_id *entry) 1102 { 1103 struct net_device *net_dev; 1104 struct efx_nic *efx; 1105 int rc; 1106 1107 /* Allocate and initialise a struct net_device and struct efx_nic */ 1108 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, 1109 EFX_MAX_RX_QUEUES); 1110 if (!net_dev) 1111 return -ENOMEM; 1112 efx = netdev_priv(net_dev); 1113 efx->type = (const struct efx_nic_type *) entry->driver_data; 1114 efx->fixed_features |= NETIF_F_HIGHDMA; 1115 1116 pci_set_drvdata(pci_dev, efx); 1117 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 1118 rc = efx_init_struct(efx, pci_dev, net_dev); 1119 if (rc) 1120 goto fail1; 1121 1122 netif_info(efx, probe, efx->net_dev, 1123 "Solarflare NIC detected\n"); 1124 1125 if (!efx->type->is_vf) 1126 efx_probe_vpd_strings(efx); 1127 1128 /* Set up basic I/O (BAR mappings etc) */ 1129 rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask, 1130 efx->type->mem_map_size(efx)); 1131 if (rc) 1132 goto fail2; 1133 1134 rc = efx_pci_probe_post_io(efx); 1135 if (rc) { 1136 /* On failure, retry once immediately. 1137 * If we aborted probe due to a scheduled reset, dismiss it. 1138 */ 1139 efx->reset_pending = 0; 1140 rc = efx_pci_probe_post_io(efx); 1141 if (rc) { 1142 /* On another failure, retry once more 1143 * after a 50-305ms delay. 1144 */ 1145 unsigned char r; 1146 1147 get_random_bytes(&r, 1); 1148 msleep((unsigned int)r + 50); 1149 efx->reset_pending = 0; 1150 rc = efx_pci_probe_post_io(efx); 1151 } 1152 } 1153 if (rc) 1154 goto fail3; 1155 1156 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 1157 1158 /* Try to create MTDs, but allow this to fail */ 1159 rtnl_lock(); 1160 rc = efx_mtd_probe(efx); 1161 rtnl_unlock(); 1162 if (rc && rc != -EPERM) 1163 netif_warn(efx, probe, efx->net_dev, 1164 "failed to create MTDs (%d)\n", rc); 1165 1166 (void)pci_enable_pcie_error_reporting(pci_dev); 1167 1168 if (efx->type->udp_tnl_push_ports) 1169 efx->type->udp_tnl_push_ports(efx); 1170 1171 return 0; 1172 1173 fail3: 1174 efx_fini_io(efx); 1175 fail2: 1176 efx_fini_struct(efx); 1177 fail1: 1178 WARN_ON(rc > 0); 1179 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 1180 free_netdev(net_dev); 1181 return rc; 1182 } 1183 1184 /* efx_pci_sriov_configure returns the actual number of Virtual Functions 1185 * enabled on success 1186 */ 1187 #ifdef CONFIG_SFC_SRIOV 1188 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 1189 { 1190 int rc; 1191 struct efx_nic *efx = pci_get_drvdata(dev); 1192 1193 if (efx->type->sriov_configure) { 1194 rc = efx->type->sriov_configure(efx, num_vfs); 1195 if (rc) 1196 return rc; 1197 else 1198 return num_vfs; 1199 } else 1200 return -EOPNOTSUPP; 1201 } 1202 #endif 1203 1204 static int efx_pm_freeze(struct device *dev) 1205 { 1206 struct efx_nic *efx = dev_get_drvdata(dev); 1207 1208 rtnl_lock(); 1209 1210 if (efx->state != STATE_DISABLED) { 1211 efx->state = STATE_UNINIT; 1212 1213 efx_device_detach_sync(efx); 1214 1215 efx_stop_all(efx); 1216 efx_disable_interrupts(efx); 1217 } 1218 1219 rtnl_unlock(); 1220 1221 return 0; 1222 } 1223 1224 static int efx_pm_thaw(struct device *dev) 1225 { 1226 int rc; 1227 struct efx_nic *efx = dev_get_drvdata(dev); 1228 1229 rtnl_lock(); 1230 1231 if (efx->state != STATE_DISABLED) { 1232 rc = efx_enable_interrupts(efx); 1233 if (rc) 1234 goto fail; 1235 1236 mutex_lock(&efx->mac_lock); 1237 efx->phy_op->reconfigure(efx); 1238 mutex_unlock(&efx->mac_lock); 1239 1240 efx_start_all(efx); 1241 1242 efx_device_attach_if_not_resetting(efx); 1243 1244 efx->state = STATE_READY; 1245 1246 efx->type->resume_wol(efx); 1247 } 1248 1249 rtnl_unlock(); 1250 1251 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ 1252 efx_queue_reset_work(efx); 1253 1254 return 0; 1255 1256 fail: 1257 rtnl_unlock(); 1258 1259 return rc; 1260 } 1261 1262 static int efx_pm_poweroff(struct device *dev) 1263 { 1264 struct pci_dev *pci_dev = to_pci_dev(dev); 1265 struct efx_nic *efx = pci_get_drvdata(pci_dev); 1266 1267 efx->type->fini(efx); 1268 1269 efx->reset_pending = 0; 1270 1271 pci_save_state(pci_dev); 1272 return pci_set_power_state(pci_dev, PCI_D3hot); 1273 } 1274 1275 /* Used for both resume and restore */ 1276 static int efx_pm_resume(struct device *dev) 1277 { 1278 struct pci_dev *pci_dev = to_pci_dev(dev); 1279 struct efx_nic *efx = pci_get_drvdata(pci_dev); 1280 int rc; 1281 1282 rc = pci_set_power_state(pci_dev, PCI_D0); 1283 if (rc) 1284 return rc; 1285 pci_restore_state(pci_dev); 1286 rc = pci_enable_device(pci_dev); 1287 if (rc) 1288 return rc; 1289 pci_set_master(efx->pci_dev); 1290 rc = efx->type->reset(efx, RESET_TYPE_ALL); 1291 if (rc) 1292 return rc; 1293 down_write(&efx->filter_sem); 1294 rc = efx->type->init(efx); 1295 up_write(&efx->filter_sem); 1296 if (rc) 1297 return rc; 1298 rc = efx_pm_thaw(dev); 1299 return rc; 1300 } 1301 1302 static int efx_pm_suspend(struct device *dev) 1303 { 1304 int rc; 1305 1306 efx_pm_freeze(dev); 1307 rc = efx_pm_poweroff(dev); 1308 if (rc) 1309 efx_pm_resume(dev); 1310 return rc; 1311 } 1312 1313 static const struct dev_pm_ops efx_pm_ops = { 1314 .suspend = efx_pm_suspend, 1315 .resume = efx_pm_resume, 1316 .freeze = efx_pm_freeze, 1317 .thaw = efx_pm_thaw, 1318 .poweroff = efx_pm_poweroff, 1319 .restore = efx_pm_resume, 1320 }; 1321 1322 static struct pci_driver efx_pci_driver = { 1323 .name = KBUILD_MODNAME, 1324 .id_table = efx_pci_table, 1325 .probe = efx_pci_probe, 1326 .remove = efx_pci_remove, 1327 .driver.pm = &efx_pm_ops, 1328 .err_handler = &efx_err_handlers, 1329 #ifdef CONFIG_SFC_SRIOV 1330 .sriov_configure = efx_pci_sriov_configure, 1331 #endif 1332 }; 1333 1334 /************************************************************************** 1335 * 1336 * Kernel module interface 1337 * 1338 *************************************************************************/ 1339 1340 static int __init efx_init_module(void) 1341 { 1342 int rc; 1343 1344 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); 1345 1346 rc = register_netdevice_notifier(&efx_netdev_notifier); 1347 if (rc) 1348 goto err_notifier; 1349 1350 #ifdef CONFIG_SFC_SRIOV 1351 rc = efx_init_sriov(); 1352 if (rc) 1353 goto err_sriov; 1354 #endif 1355 1356 rc = efx_create_reset_workqueue(); 1357 if (rc) 1358 goto err_reset; 1359 1360 rc = pci_register_driver(&efx_pci_driver); 1361 if (rc < 0) 1362 goto err_pci; 1363 1364 rc = pci_register_driver(&ef100_pci_driver); 1365 if (rc < 0) 1366 goto err_pci_ef100; 1367 1368 return 0; 1369 1370 err_pci_ef100: 1371 pci_unregister_driver(&efx_pci_driver); 1372 err_pci: 1373 efx_destroy_reset_workqueue(); 1374 err_reset: 1375 #ifdef CONFIG_SFC_SRIOV 1376 efx_fini_sriov(); 1377 err_sriov: 1378 #endif 1379 unregister_netdevice_notifier(&efx_netdev_notifier); 1380 err_notifier: 1381 return rc; 1382 } 1383 1384 static void __exit efx_exit_module(void) 1385 { 1386 printk(KERN_INFO "Solarflare NET driver unloading\n"); 1387 1388 pci_unregister_driver(&ef100_pci_driver); 1389 pci_unregister_driver(&efx_pci_driver); 1390 efx_destroy_reset_workqueue(); 1391 #ifdef CONFIG_SFC_SRIOV 1392 efx_fini_sriov(); 1393 #endif 1394 unregister_netdevice_notifier(&efx_netdev_notifier); 1395 1396 } 1397 1398 module_init(efx_init_module); 1399 module_exit(efx_exit_module); 1400 1401 MODULE_AUTHOR("Solarflare Communications and " 1402 "Michael Brown <mbrown@fensystems.co.uk>"); 1403 MODULE_DESCRIPTION("Solarflare network driver"); 1404 MODULE_LICENSE("GPL"); 1405 MODULE_DEVICE_TABLE(pci, efx_pci_table); 1406 MODULE_VERSION(EFX_DRIVER_VERSION); 1407