xref: /openbmc/linux/drivers/net/ethernet/sfc/efx.c (revision b34e08d5)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29 
30 #include "mcdi.h"
31 #include "workarounds.h"
32 
33 /**************************************************************************
34  *
35  * Type name strings
36  *
37  **************************************************************************
38  */
39 
40 /* Loopback mode names (see LOOPBACK_MODE()) */
41 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42 const char *const efx_loopback_mode_names[] = {
43 	[LOOPBACK_NONE]		= "NONE",
44 	[LOOPBACK_DATA]		= "DATAPATH",
45 	[LOOPBACK_GMAC]		= "GMAC",
46 	[LOOPBACK_XGMII]	= "XGMII",
47 	[LOOPBACK_XGXS]		= "XGXS",
48 	[LOOPBACK_XAUI]		= "XAUI",
49 	[LOOPBACK_GMII]		= "GMII",
50 	[LOOPBACK_SGMII]	= "SGMII",
51 	[LOOPBACK_XGBR]		= "XGBR",
52 	[LOOPBACK_XFI]		= "XFI",
53 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
54 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
55 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
56 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 	[LOOPBACK_GPHY]		= "GPHY",
58 	[LOOPBACK_PHYXS]	= "PHYXS",
59 	[LOOPBACK_PCS]		= "PCS",
60 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 	[LOOPBACK_XPORT]	= "XPORT",
62 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
65 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66 	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 	[LOOPBACK_XFI_WS]	= "XFI_WS",
68 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 };
71 
72 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73 const char *const efx_reset_type_names[] = {
74 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
75 	[RESET_TYPE_ALL]                = "ALL",
76 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
77 	[RESET_TYPE_WORLD]              = "WORLD",
78 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
79 	[RESET_TYPE_DISABLE]            = "DISABLE",
80 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
81 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
82 	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
83 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
84 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
85 	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
86 	[RESET_TYPE_MC_BIST]		= "MC_BIST",
87 };
88 
89 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
90  * queued onto this work queue. This is not a per-nic work queue, because
91  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
92  */
93 static struct workqueue_struct *reset_workqueue;
94 
95 /* How often and how many times to poll for a reset while waiting for a
96  * BIST that another function started to complete.
97  */
98 #define BIST_WAIT_DELAY_MS	100
99 #define BIST_WAIT_DELAY_COUNT	100
100 
101 /**************************************************************************
102  *
103  * Configurable values
104  *
105  *************************************************************************/
106 
107 /*
108  * Use separate channels for TX and RX events
109  *
110  * Set this to 1 to use separate channels for TX and RX. It allows us
111  * to control interrupt affinity separately for TX and RX.
112  *
113  * This is only used in MSI-X interrupt mode
114  */
115 static bool separate_tx_channels;
116 module_param(separate_tx_channels, bool, 0444);
117 MODULE_PARM_DESC(separate_tx_channels,
118 		 "Use separate channels for TX and RX");
119 
120 /* This is the weight assigned to each of the (per-channel) virtual
121  * NAPI devices.
122  */
123 static int napi_weight = 64;
124 
125 /* This is the time (in jiffies) between invocations of the hardware
126  * monitor.
127  * On Falcon-based NICs, this will:
128  * - Check the on-board hardware monitor;
129  * - Poll the link state and reconfigure the hardware as necessary.
130  * On Siena-based NICs for power systems with EEH support, this will give EEH a
131  * chance to start.
132  */
133 static unsigned int efx_monitor_interval = 1 * HZ;
134 
135 /* Initial interrupt moderation settings.  They can be modified after
136  * module load with ethtool.
137  *
138  * The default for RX should strike a balance between increasing the
139  * round-trip latency and reducing overhead.
140  */
141 static unsigned int rx_irq_mod_usec = 60;
142 
143 /* Initial interrupt moderation settings.  They can be modified after
144  * module load with ethtool.
145  *
146  * This default is chosen to ensure that a 10G link does not go idle
147  * while a TX queue is stopped after it has become full.  A queue is
148  * restarted when it drops below half full.  The time this takes (assuming
149  * worst case 3 descriptors per packet and 1024 descriptors) is
150  *   512 / 3 * 1.2 = 205 usec.
151  */
152 static unsigned int tx_irq_mod_usec = 150;
153 
154 /* This is the first interrupt mode to try out of:
155  * 0 => MSI-X
156  * 1 => MSI
157  * 2 => legacy
158  */
159 static unsigned int interrupt_mode;
160 
161 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
162  * i.e. the number of CPUs among which we may distribute simultaneous
163  * interrupt handling.
164  *
165  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
166  * The default (0) means to assign an interrupt to each core.
167  */
168 static unsigned int rss_cpus;
169 module_param(rss_cpus, uint, 0444);
170 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
171 
172 static bool phy_flash_cfg;
173 module_param(phy_flash_cfg, bool, 0644);
174 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
175 
176 static unsigned irq_adapt_low_thresh = 8000;
177 module_param(irq_adapt_low_thresh, uint, 0644);
178 MODULE_PARM_DESC(irq_adapt_low_thresh,
179 		 "Threshold score for reducing IRQ moderation");
180 
181 static unsigned irq_adapt_high_thresh = 16000;
182 module_param(irq_adapt_high_thresh, uint, 0644);
183 MODULE_PARM_DESC(irq_adapt_high_thresh,
184 		 "Threshold score for increasing IRQ moderation");
185 
186 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
187 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
188 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
189 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
190 module_param(debug, uint, 0);
191 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
192 
193 /**************************************************************************
194  *
195  * Utility functions and prototypes
196  *
197  *************************************************************************/
198 
199 static int efx_soft_enable_interrupts(struct efx_nic *efx);
200 static void efx_soft_disable_interrupts(struct efx_nic *efx);
201 static void efx_remove_channel(struct efx_channel *channel);
202 static void efx_remove_channels(struct efx_nic *efx);
203 static const struct efx_channel_type efx_default_channel_type;
204 static void efx_remove_port(struct efx_nic *efx);
205 static void efx_init_napi_channel(struct efx_channel *channel);
206 static void efx_fini_napi(struct efx_nic *efx);
207 static void efx_fini_napi_channel(struct efx_channel *channel);
208 static void efx_fini_struct(struct efx_nic *efx);
209 static void efx_start_all(struct efx_nic *efx);
210 static void efx_stop_all(struct efx_nic *efx);
211 
212 #define EFX_ASSERT_RESET_SERIALISED(efx)		\
213 	do {						\
214 		if ((efx->state == STATE_READY) ||	\
215 		    (efx->state == STATE_RECOVERY) ||	\
216 		    (efx->state == STATE_DISABLED))	\
217 			ASSERT_RTNL();			\
218 	} while (0)
219 
220 static int efx_check_disabled(struct efx_nic *efx)
221 {
222 	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
223 		netif_err(efx, drv, efx->net_dev,
224 			  "device is disabled due to earlier errors\n");
225 		return -EIO;
226 	}
227 	return 0;
228 }
229 
230 /**************************************************************************
231  *
232  * Event queue processing
233  *
234  *************************************************************************/
235 
236 /* Process channel's event queue
237  *
238  * This function is responsible for processing the event queue of a
239  * single channel.  The caller must guarantee that this function will
240  * never be concurrently called more than once on the same channel,
241  * though different channels may be being processed concurrently.
242  */
243 static int efx_process_channel(struct efx_channel *channel, int budget)
244 {
245 	int spent;
246 
247 	if (unlikely(!channel->enabled))
248 		return 0;
249 
250 	spent = efx_nic_process_eventq(channel, budget);
251 	if (spent && efx_channel_has_rx_queue(channel)) {
252 		struct efx_rx_queue *rx_queue =
253 			efx_channel_get_rx_queue(channel);
254 
255 		efx_rx_flush_packet(channel);
256 		efx_fast_push_rx_descriptors(rx_queue, true);
257 	}
258 
259 	return spent;
260 }
261 
262 /* NAPI poll handler
263  *
264  * NAPI guarantees serialisation of polls of the same device, which
265  * provides the guarantee required by efx_process_channel().
266  */
267 static int efx_poll(struct napi_struct *napi, int budget)
268 {
269 	struct efx_channel *channel =
270 		container_of(napi, struct efx_channel, napi_str);
271 	struct efx_nic *efx = channel->efx;
272 	int spent;
273 
274 	netif_vdbg(efx, intr, efx->net_dev,
275 		   "channel %d NAPI poll executing on CPU %d\n",
276 		   channel->channel, raw_smp_processor_id());
277 
278 	spent = efx_process_channel(channel, budget);
279 
280 	if (spent < budget) {
281 		if (efx_channel_has_rx_queue(channel) &&
282 		    efx->irq_rx_adaptive &&
283 		    unlikely(++channel->irq_count == 1000)) {
284 			if (unlikely(channel->irq_mod_score <
285 				     irq_adapt_low_thresh)) {
286 				if (channel->irq_moderation > 1) {
287 					channel->irq_moderation -= 1;
288 					efx->type->push_irq_moderation(channel);
289 				}
290 			} else if (unlikely(channel->irq_mod_score >
291 					    irq_adapt_high_thresh)) {
292 				if (channel->irq_moderation <
293 				    efx->irq_rx_moderation) {
294 					channel->irq_moderation += 1;
295 					efx->type->push_irq_moderation(channel);
296 				}
297 			}
298 			channel->irq_count = 0;
299 			channel->irq_mod_score = 0;
300 		}
301 
302 		efx_filter_rfs_expire(channel);
303 
304 		/* There is no race here; although napi_disable() will
305 		 * only wait for napi_complete(), this isn't a problem
306 		 * since efx_nic_eventq_read_ack() will have no effect if
307 		 * interrupts have already been disabled.
308 		 */
309 		napi_complete(napi);
310 		efx_nic_eventq_read_ack(channel);
311 	}
312 
313 	return spent;
314 }
315 
316 /* Create event queue
317  * Event queue memory allocations are done only once.  If the channel
318  * is reset, the memory buffer will be reused; this guards against
319  * errors during channel reset and also simplifies interrupt handling.
320  */
321 static int efx_probe_eventq(struct efx_channel *channel)
322 {
323 	struct efx_nic *efx = channel->efx;
324 	unsigned long entries;
325 
326 	netif_dbg(efx, probe, efx->net_dev,
327 		  "chan %d create event queue\n", channel->channel);
328 
329 	/* Build an event queue with room for one event per tx and rx buffer,
330 	 * plus some extra for link state events and MCDI completions. */
331 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
332 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
333 	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
334 
335 	return efx_nic_probe_eventq(channel);
336 }
337 
338 /* Prepare channel's event queue */
339 static int efx_init_eventq(struct efx_channel *channel)
340 {
341 	struct efx_nic *efx = channel->efx;
342 	int rc;
343 
344 	EFX_WARN_ON_PARANOID(channel->eventq_init);
345 
346 	netif_dbg(efx, drv, efx->net_dev,
347 		  "chan %d init event queue\n", channel->channel);
348 
349 	rc = efx_nic_init_eventq(channel);
350 	if (rc == 0) {
351 		efx->type->push_irq_moderation(channel);
352 		channel->eventq_read_ptr = 0;
353 		channel->eventq_init = true;
354 	}
355 	return rc;
356 }
357 
358 /* Enable event queue processing and NAPI */
359 static void efx_start_eventq(struct efx_channel *channel)
360 {
361 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
362 		  "chan %d start event queue\n", channel->channel);
363 
364 	/* Make sure the NAPI handler sees the enabled flag set */
365 	channel->enabled = true;
366 	smp_wmb();
367 
368 	napi_enable(&channel->napi_str);
369 	efx_nic_eventq_read_ack(channel);
370 }
371 
372 /* Disable event queue processing and NAPI */
373 static void efx_stop_eventq(struct efx_channel *channel)
374 {
375 	if (!channel->enabled)
376 		return;
377 
378 	napi_disable(&channel->napi_str);
379 	channel->enabled = false;
380 }
381 
382 static void efx_fini_eventq(struct efx_channel *channel)
383 {
384 	if (!channel->eventq_init)
385 		return;
386 
387 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
388 		  "chan %d fini event queue\n", channel->channel);
389 
390 	efx_nic_fini_eventq(channel);
391 	channel->eventq_init = false;
392 }
393 
394 static void efx_remove_eventq(struct efx_channel *channel)
395 {
396 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
397 		  "chan %d remove event queue\n", channel->channel);
398 
399 	efx_nic_remove_eventq(channel);
400 }
401 
402 /**************************************************************************
403  *
404  * Channel handling
405  *
406  *************************************************************************/
407 
408 /* Allocate and initialise a channel structure. */
409 static struct efx_channel *
410 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
411 {
412 	struct efx_channel *channel;
413 	struct efx_rx_queue *rx_queue;
414 	struct efx_tx_queue *tx_queue;
415 	int j;
416 
417 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
418 	if (!channel)
419 		return NULL;
420 
421 	channel->efx = efx;
422 	channel->channel = i;
423 	channel->type = &efx_default_channel_type;
424 
425 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
426 		tx_queue = &channel->tx_queue[j];
427 		tx_queue->efx = efx;
428 		tx_queue->queue = i * EFX_TXQ_TYPES + j;
429 		tx_queue->channel = channel;
430 	}
431 
432 	rx_queue = &channel->rx_queue;
433 	rx_queue->efx = efx;
434 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
435 		    (unsigned long)rx_queue);
436 
437 	return channel;
438 }
439 
440 /* Allocate and initialise a channel structure, copying parameters
441  * (but not resources) from an old channel structure.
442  */
443 static struct efx_channel *
444 efx_copy_channel(const struct efx_channel *old_channel)
445 {
446 	struct efx_channel *channel;
447 	struct efx_rx_queue *rx_queue;
448 	struct efx_tx_queue *tx_queue;
449 	int j;
450 
451 	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
452 	if (!channel)
453 		return NULL;
454 
455 	*channel = *old_channel;
456 
457 	channel->napi_dev = NULL;
458 	memset(&channel->eventq, 0, sizeof(channel->eventq));
459 
460 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
461 		tx_queue = &channel->tx_queue[j];
462 		if (tx_queue->channel)
463 			tx_queue->channel = channel;
464 		tx_queue->buffer = NULL;
465 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
466 	}
467 
468 	rx_queue = &channel->rx_queue;
469 	rx_queue->buffer = NULL;
470 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
471 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
472 		    (unsigned long)rx_queue);
473 
474 	return channel;
475 }
476 
477 static int efx_probe_channel(struct efx_channel *channel)
478 {
479 	struct efx_tx_queue *tx_queue;
480 	struct efx_rx_queue *rx_queue;
481 	int rc;
482 
483 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
484 		  "creating channel %d\n", channel->channel);
485 
486 	rc = channel->type->pre_probe(channel);
487 	if (rc)
488 		goto fail;
489 
490 	rc = efx_probe_eventq(channel);
491 	if (rc)
492 		goto fail;
493 
494 	efx_for_each_channel_tx_queue(tx_queue, channel) {
495 		rc = efx_probe_tx_queue(tx_queue);
496 		if (rc)
497 			goto fail;
498 	}
499 
500 	efx_for_each_channel_rx_queue(rx_queue, channel) {
501 		rc = efx_probe_rx_queue(rx_queue);
502 		if (rc)
503 			goto fail;
504 	}
505 
506 	return 0;
507 
508 fail:
509 	efx_remove_channel(channel);
510 	return rc;
511 }
512 
513 static void
514 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
515 {
516 	struct efx_nic *efx = channel->efx;
517 	const char *type;
518 	int number;
519 
520 	number = channel->channel;
521 	if (efx->tx_channel_offset == 0) {
522 		type = "";
523 	} else if (channel->channel < efx->tx_channel_offset) {
524 		type = "-rx";
525 	} else {
526 		type = "-tx";
527 		number -= efx->tx_channel_offset;
528 	}
529 	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
530 }
531 
532 static void efx_set_channel_names(struct efx_nic *efx)
533 {
534 	struct efx_channel *channel;
535 
536 	efx_for_each_channel(channel, efx)
537 		channel->type->get_name(channel,
538 					efx->msi_context[channel->channel].name,
539 					sizeof(efx->msi_context[0].name));
540 }
541 
542 static int efx_probe_channels(struct efx_nic *efx)
543 {
544 	struct efx_channel *channel;
545 	int rc;
546 
547 	/* Restart special buffer allocation */
548 	efx->next_buffer_table = 0;
549 
550 	/* Probe channels in reverse, so that any 'extra' channels
551 	 * use the start of the buffer table. This allows the traffic
552 	 * channels to be resized without moving them or wasting the
553 	 * entries before them.
554 	 */
555 	efx_for_each_channel_rev(channel, efx) {
556 		rc = efx_probe_channel(channel);
557 		if (rc) {
558 			netif_err(efx, probe, efx->net_dev,
559 				  "failed to create channel %d\n",
560 				  channel->channel);
561 			goto fail;
562 		}
563 	}
564 	efx_set_channel_names(efx);
565 
566 	return 0;
567 
568 fail:
569 	efx_remove_channels(efx);
570 	return rc;
571 }
572 
573 /* Channels are shutdown and reinitialised whilst the NIC is running
574  * to propagate configuration changes (mtu, checksum offload), or
575  * to clear hardware error conditions
576  */
577 static void efx_start_datapath(struct efx_nic *efx)
578 {
579 	bool old_rx_scatter = efx->rx_scatter;
580 	struct efx_tx_queue *tx_queue;
581 	struct efx_rx_queue *rx_queue;
582 	struct efx_channel *channel;
583 	size_t rx_buf_len;
584 
585 	/* Calculate the rx buffer allocation parameters required to
586 	 * support the current MTU, including padding for header
587 	 * alignment and overruns.
588 	 */
589 	efx->rx_dma_len = (efx->rx_prefix_size +
590 			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
591 			   efx->type->rx_buffer_padding);
592 	rx_buf_len = (sizeof(struct efx_rx_page_state) +
593 		      efx->rx_ip_align + efx->rx_dma_len);
594 	if (rx_buf_len <= PAGE_SIZE) {
595 		efx->rx_scatter = efx->type->always_rx_scatter;
596 		efx->rx_buffer_order = 0;
597 	} else if (efx->type->can_rx_scatter) {
598 		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
599 		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
600 			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
601 				       EFX_RX_BUF_ALIGNMENT) >
602 			     PAGE_SIZE);
603 		efx->rx_scatter = true;
604 		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
605 		efx->rx_buffer_order = 0;
606 	} else {
607 		efx->rx_scatter = false;
608 		efx->rx_buffer_order = get_order(rx_buf_len);
609 	}
610 
611 	efx_rx_config_page_split(efx);
612 	if (efx->rx_buffer_order)
613 		netif_dbg(efx, drv, efx->net_dev,
614 			  "RX buf len=%u; page order=%u batch=%u\n",
615 			  efx->rx_dma_len, efx->rx_buffer_order,
616 			  efx->rx_pages_per_batch);
617 	else
618 		netif_dbg(efx, drv, efx->net_dev,
619 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
620 			  efx->rx_dma_len, efx->rx_page_buf_step,
621 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
622 
623 	/* RX filters may also have scatter-enabled flags */
624 	if (efx->rx_scatter != old_rx_scatter)
625 		efx->type->filter_update_rx_scatter(efx);
626 
627 	/* We must keep at least one descriptor in a TX ring empty.
628 	 * We could avoid this when the queue size does not exactly
629 	 * match the hardware ring size, but it's not that important.
630 	 * Therefore we stop the queue when one more skb might fill
631 	 * the ring completely.  We wake it when half way back to
632 	 * empty.
633 	 */
634 	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
635 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
636 
637 	/* Initialise the channels */
638 	efx_for_each_channel(channel, efx) {
639 		efx_for_each_channel_tx_queue(tx_queue, channel) {
640 			efx_init_tx_queue(tx_queue);
641 			atomic_inc(&efx->active_queues);
642 		}
643 
644 		efx_for_each_channel_rx_queue(rx_queue, channel) {
645 			efx_init_rx_queue(rx_queue);
646 			atomic_inc(&efx->active_queues);
647 			efx_stop_eventq(channel);
648 			efx_fast_push_rx_descriptors(rx_queue, false);
649 			efx_start_eventq(channel);
650 		}
651 
652 		WARN_ON(channel->rx_pkt_n_frags);
653 	}
654 
655 	efx_ptp_start_datapath(efx);
656 
657 	if (netif_device_present(efx->net_dev))
658 		netif_tx_wake_all_queues(efx->net_dev);
659 }
660 
661 static void efx_stop_datapath(struct efx_nic *efx)
662 {
663 	struct efx_channel *channel;
664 	struct efx_tx_queue *tx_queue;
665 	struct efx_rx_queue *rx_queue;
666 	int rc;
667 
668 	EFX_ASSERT_RESET_SERIALISED(efx);
669 	BUG_ON(efx->port_enabled);
670 
671 	efx_ptp_stop_datapath(efx);
672 
673 	/* Stop RX refill */
674 	efx_for_each_channel(channel, efx) {
675 		efx_for_each_channel_rx_queue(rx_queue, channel)
676 			rx_queue->refill_enabled = false;
677 	}
678 
679 	efx_for_each_channel(channel, efx) {
680 		/* RX packet processing is pipelined, so wait for the
681 		 * NAPI handler to complete.  At least event queue 0
682 		 * might be kept active by non-data events, so don't
683 		 * use napi_synchronize() but actually disable NAPI
684 		 * temporarily.
685 		 */
686 		if (efx_channel_has_rx_queue(channel)) {
687 			efx_stop_eventq(channel);
688 			efx_start_eventq(channel);
689 		}
690 	}
691 
692 	rc = efx->type->fini_dmaq(efx);
693 	if (rc && EFX_WORKAROUND_7803(efx)) {
694 		/* Schedule a reset to recover from the flush failure. The
695 		 * descriptor caches reference memory we're about to free,
696 		 * but falcon_reconfigure_mac_wrapper() won't reconnect
697 		 * the MACs because of the pending reset.
698 		 */
699 		netif_err(efx, drv, efx->net_dev,
700 			  "Resetting to recover from flush failure\n");
701 		efx_schedule_reset(efx, RESET_TYPE_ALL);
702 	} else if (rc) {
703 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
704 	} else {
705 		netif_dbg(efx, drv, efx->net_dev,
706 			  "successfully flushed all queues\n");
707 	}
708 
709 	efx_for_each_channel(channel, efx) {
710 		efx_for_each_channel_rx_queue(rx_queue, channel)
711 			efx_fini_rx_queue(rx_queue);
712 		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
713 			efx_fini_tx_queue(tx_queue);
714 	}
715 }
716 
717 static void efx_remove_channel(struct efx_channel *channel)
718 {
719 	struct efx_tx_queue *tx_queue;
720 	struct efx_rx_queue *rx_queue;
721 
722 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
723 		  "destroy chan %d\n", channel->channel);
724 
725 	efx_for_each_channel_rx_queue(rx_queue, channel)
726 		efx_remove_rx_queue(rx_queue);
727 	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
728 		efx_remove_tx_queue(tx_queue);
729 	efx_remove_eventq(channel);
730 	channel->type->post_remove(channel);
731 }
732 
733 static void efx_remove_channels(struct efx_nic *efx)
734 {
735 	struct efx_channel *channel;
736 
737 	efx_for_each_channel(channel, efx)
738 		efx_remove_channel(channel);
739 }
740 
741 int
742 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
743 {
744 	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
745 	u32 old_rxq_entries, old_txq_entries;
746 	unsigned i, next_buffer_table = 0;
747 	int rc, rc2;
748 
749 	rc = efx_check_disabled(efx);
750 	if (rc)
751 		return rc;
752 
753 	/* Not all channels should be reallocated. We must avoid
754 	 * reallocating their buffer table entries.
755 	 */
756 	efx_for_each_channel(channel, efx) {
757 		struct efx_rx_queue *rx_queue;
758 		struct efx_tx_queue *tx_queue;
759 
760 		if (channel->type->copy)
761 			continue;
762 		next_buffer_table = max(next_buffer_table,
763 					channel->eventq.index +
764 					channel->eventq.entries);
765 		efx_for_each_channel_rx_queue(rx_queue, channel)
766 			next_buffer_table = max(next_buffer_table,
767 						rx_queue->rxd.index +
768 						rx_queue->rxd.entries);
769 		efx_for_each_channel_tx_queue(tx_queue, channel)
770 			next_buffer_table = max(next_buffer_table,
771 						tx_queue->txd.index +
772 						tx_queue->txd.entries);
773 	}
774 
775 	efx_device_detach_sync(efx);
776 	efx_stop_all(efx);
777 	efx_soft_disable_interrupts(efx);
778 
779 	/* Clone channels (where possible) */
780 	memset(other_channel, 0, sizeof(other_channel));
781 	for (i = 0; i < efx->n_channels; i++) {
782 		channel = efx->channel[i];
783 		if (channel->type->copy)
784 			channel = channel->type->copy(channel);
785 		if (!channel) {
786 			rc = -ENOMEM;
787 			goto out;
788 		}
789 		other_channel[i] = channel;
790 	}
791 
792 	/* Swap entry counts and channel pointers */
793 	old_rxq_entries = efx->rxq_entries;
794 	old_txq_entries = efx->txq_entries;
795 	efx->rxq_entries = rxq_entries;
796 	efx->txq_entries = txq_entries;
797 	for (i = 0; i < efx->n_channels; i++) {
798 		channel = efx->channel[i];
799 		efx->channel[i] = other_channel[i];
800 		other_channel[i] = channel;
801 	}
802 
803 	/* Restart buffer table allocation */
804 	efx->next_buffer_table = next_buffer_table;
805 
806 	for (i = 0; i < efx->n_channels; i++) {
807 		channel = efx->channel[i];
808 		if (!channel->type->copy)
809 			continue;
810 		rc = efx_probe_channel(channel);
811 		if (rc)
812 			goto rollback;
813 		efx_init_napi_channel(efx->channel[i]);
814 	}
815 
816 out:
817 	/* Destroy unused channel structures */
818 	for (i = 0; i < efx->n_channels; i++) {
819 		channel = other_channel[i];
820 		if (channel && channel->type->copy) {
821 			efx_fini_napi_channel(channel);
822 			efx_remove_channel(channel);
823 			kfree(channel);
824 		}
825 	}
826 
827 	rc2 = efx_soft_enable_interrupts(efx);
828 	if (rc2) {
829 		rc = rc ? rc : rc2;
830 		netif_err(efx, drv, efx->net_dev,
831 			  "unable to restart interrupts on channel reallocation\n");
832 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
833 	} else {
834 		efx_start_all(efx);
835 		netif_device_attach(efx->net_dev);
836 	}
837 	return rc;
838 
839 rollback:
840 	/* Swap back */
841 	efx->rxq_entries = old_rxq_entries;
842 	efx->txq_entries = old_txq_entries;
843 	for (i = 0; i < efx->n_channels; i++) {
844 		channel = efx->channel[i];
845 		efx->channel[i] = other_channel[i];
846 		other_channel[i] = channel;
847 	}
848 	goto out;
849 }
850 
851 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
852 {
853 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
854 }
855 
856 static const struct efx_channel_type efx_default_channel_type = {
857 	.pre_probe		= efx_channel_dummy_op_int,
858 	.post_remove		= efx_channel_dummy_op_void,
859 	.get_name		= efx_get_channel_name,
860 	.copy			= efx_copy_channel,
861 	.keep_eventq		= false,
862 };
863 
864 int efx_channel_dummy_op_int(struct efx_channel *channel)
865 {
866 	return 0;
867 }
868 
869 void efx_channel_dummy_op_void(struct efx_channel *channel)
870 {
871 }
872 
873 /**************************************************************************
874  *
875  * Port handling
876  *
877  **************************************************************************/
878 
879 /* This ensures that the kernel is kept informed (via
880  * netif_carrier_on/off) of the link status, and also maintains the
881  * link status's stop on the port's TX queue.
882  */
883 void efx_link_status_changed(struct efx_nic *efx)
884 {
885 	struct efx_link_state *link_state = &efx->link_state;
886 
887 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
888 	 * that no events are triggered between unregister_netdev() and the
889 	 * driver unloading. A more general condition is that NETDEV_CHANGE
890 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
891 	if (!netif_running(efx->net_dev))
892 		return;
893 
894 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
895 		efx->n_link_state_changes++;
896 
897 		if (link_state->up)
898 			netif_carrier_on(efx->net_dev);
899 		else
900 			netif_carrier_off(efx->net_dev);
901 	}
902 
903 	/* Status message for kernel log */
904 	if (link_state->up)
905 		netif_info(efx, link, efx->net_dev,
906 			   "link up at %uMbps %s-duplex (MTU %d)\n",
907 			   link_state->speed, link_state->fd ? "full" : "half",
908 			   efx->net_dev->mtu);
909 	else
910 		netif_info(efx, link, efx->net_dev, "link down\n");
911 }
912 
913 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
914 {
915 	efx->link_advertising = advertising;
916 	if (advertising) {
917 		if (advertising & ADVERTISED_Pause)
918 			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
919 		else
920 			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
921 		if (advertising & ADVERTISED_Asym_Pause)
922 			efx->wanted_fc ^= EFX_FC_TX;
923 	}
924 }
925 
926 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
927 {
928 	efx->wanted_fc = wanted_fc;
929 	if (efx->link_advertising) {
930 		if (wanted_fc & EFX_FC_RX)
931 			efx->link_advertising |= (ADVERTISED_Pause |
932 						  ADVERTISED_Asym_Pause);
933 		else
934 			efx->link_advertising &= ~(ADVERTISED_Pause |
935 						   ADVERTISED_Asym_Pause);
936 		if (wanted_fc & EFX_FC_TX)
937 			efx->link_advertising ^= ADVERTISED_Asym_Pause;
938 	}
939 }
940 
941 static void efx_fini_port(struct efx_nic *efx);
942 
943 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
944  * the MAC appropriately. All other PHY configuration changes are pushed
945  * through phy_op->set_settings(), and pushed asynchronously to the MAC
946  * through efx_monitor().
947  *
948  * Callers must hold the mac_lock
949  */
950 int __efx_reconfigure_port(struct efx_nic *efx)
951 {
952 	enum efx_phy_mode phy_mode;
953 	int rc;
954 
955 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
956 
957 	/* Disable PHY transmit in mac level loopbacks */
958 	phy_mode = efx->phy_mode;
959 	if (LOOPBACK_INTERNAL(efx))
960 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
961 	else
962 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
963 
964 	rc = efx->type->reconfigure_port(efx);
965 
966 	if (rc)
967 		efx->phy_mode = phy_mode;
968 
969 	return rc;
970 }
971 
972 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
973  * disabled. */
974 int efx_reconfigure_port(struct efx_nic *efx)
975 {
976 	int rc;
977 
978 	EFX_ASSERT_RESET_SERIALISED(efx);
979 
980 	mutex_lock(&efx->mac_lock);
981 	rc = __efx_reconfigure_port(efx);
982 	mutex_unlock(&efx->mac_lock);
983 
984 	return rc;
985 }
986 
987 /* Asynchronous work item for changing MAC promiscuity and multicast
988  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
989  * MAC directly. */
990 static void efx_mac_work(struct work_struct *data)
991 {
992 	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
993 
994 	mutex_lock(&efx->mac_lock);
995 	if (efx->port_enabled)
996 		efx->type->reconfigure_mac(efx);
997 	mutex_unlock(&efx->mac_lock);
998 }
999 
1000 static int efx_probe_port(struct efx_nic *efx)
1001 {
1002 	int rc;
1003 
1004 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1005 
1006 	if (phy_flash_cfg)
1007 		efx->phy_mode = PHY_MODE_SPECIAL;
1008 
1009 	/* Connect up MAC/PHY operations table */
1010 	rc = efx->type->probe_port(efx);
1011 	if (rc)
1012 		return rc;
1013 
1014 	/* Initialise MAC address to permanent address */
1015 	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1016 
1017 	return 0;
1018 }
1019 
1020 static int efx_init_port(struct efx_nic *efx)
1021 {
1022 	int rc;
1023 
1024 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1025 
1026 	mutex_lock(&efx->mac_lock);
1027 
1028 	rc = efx->phy_op->init(efx);
1029 	if (rc)
1030 		goto fail1;
1031 
1032 	efx->port_initialized = true;
1033 
1034 	/* Reconfigure the MAC before creating dma queues (required for
1035 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1036 	efx->type->reconfigure_mac(efx);
1037 
1038 	/* Ensure the PHY advertises the correct flow control settings */
1039 	rc = efx->phy_op->reconfigure(efx);
1040 	if (rc)
1041 		goto fail2;
1042 
1043 	mutex_unlock(&efx->mac_lock);
1044 	return 0;
1045 
1046 fail2:
1047 	efx->phy_op->fini(efx);
1048 fail1:
1049 	mutex_unlock(&efx->mac_lock);
1050 	return rc;
1051 }
1052 
1053 static void efx_start_port(struct efx_nic *efx)
1054 {
1055 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1056 	BUG_ON(efx->port_enabled);
1057 
1058 	mutex_lock(&efx->mac_lock);
1059 	efx->port_enabled = true;
1060 
1061 	/* Ensure MAC ingress/egress is enabled */
1062 	efx->type->reconfigure_mac(efx);
1063 
1064 	mutex_unlock(&efx->mac_lock);
1065 }
1066 
1067 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1068  * and the async self-test, wait for them to finish and prevent them
1069  * being scheduled again.  This doesn't cover online resets, which
1070  * should only be cancelled when removing the device.
1071  */
1072 static void efx_stop_port(struct efx_nic *efx)
1073 {
1074 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1075 
1076 	EFX_ASSERT_RESET_SERIALISED(efx);
1077 
1078 	mutex_lock(&efx->mac_lock);
1079 	efx->port_enabled = false;
1080 	mutex_unlock(&efx->mac_lock);
1081 
1082 	/* Serialise against efx_set_multicast_list() */
1083 	netif_addr_lock_bh(efx->net_dev);
1084 	netif_addr_unlock_bh(efx->net_dev);
1085 
1086 	cancel_delayed_work_sync(&efx->monitor_work);
1087 	efx_selftest_async_cancel(efx);
1088 	cancel_work_sync(&efx->mac_work);
1089 }
1090 
1091 static void efx_fini_port(struct efx_nic *efx)
1092 {
1093 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1094 
1095 	if (!efx->port_initialized)
1096 		return;
1097 
1098 	efx->phy_op->fini(efx);
1099 	efx->port_initialized = false;
1100 
1101 	efx->link_state.up = false;
1102 	efx_link_status_changed(efx);
1103 }
1104 
1105 static void efx_remove_port(struct efx_nic *efx)
1106 {
1107 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1108 
1109 	efx->type->remove_port(efx);
1110 }
1111 
1112 /**************************************************************************
1113  *
1114  * NIC handling
1115  *
1116  **************************************************************************/
1117 
1118 static LIST_HEAD(efx_primary_list);
1119 static LIST_HEAD(efx_unassociated_list);
1120 
1121 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1122 {
1123 	return left->type == right->type &&
1124 		left->vpd_sn && right->vpd_sn &&
1125 		!strcmp(left->vpd_sn, right->vpd_sn);
1126 }
1127 
1128 static void efx_associate(struct efx_nic *efx)
1129 {
1130 	struct efx_nic *other, *next;
1131 
1132 	if (efx->primary == efx) {
1133 		/* Adding primary function; look for secondaries */
1134 
1135 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1136 		list_add_tail(&efx->node, &efx_primary_list);
1137 
1138 		list_for_each_entry_safe(other, next, &efx_unassociated_list,
1139 					 node) {
1140 			if (efx_same_controller(efx, other)) {
1141 				list_del(&other->node);
1142 				netif_dbg(other, probe, other->net_dev,
1143 					  "moving to secondary list of %s %s\n",
1144 					  pci_name(efx->pci_dev),
1145 					  efx->net_dev->name);
1146 				list_add_tail(&other->node,
1147 					      &efx->secondary_list);
1148 				other->primary = efx;
1149 			}
1150 		}
1151 	} else {
1152 		/* Adding secondary function; look for primary */
1153 
1154 		list_for_each_entry(other, &efx_primary_list, node) {
1155 			if (efx_same_controller(efx, other)) {
1156 				netif_dbg(efx, probe, efx->net_dev,
1157 					  "adding to secondary list of %s %s\n",
1158 					  pci_name(other->pci_dev),
1159 					  other->net_dev->name);
1160 				list_add_tail(&efx->node,
1161 					      &other->secondary_list);
1162 				efx->primary = other;
1163 				return;
1164 			}
1165 		}
1166 
1167 		netif_dbg(efx, probe, efx->net_dev,
1168 			  "adding to unassociated list\n");
1169 		list_add_tail(&efx->node, &efx_unassociated_list);
1170 	}
1171 }
1172 
1173 static void efx_dissociate(struct efx_nic *efx)
1174 {
1175 	struct efx_nic *other, *next;
1176 
1177 	list_del(&efx->node);
1178 	efx->primary = NULL;
1179 
1180 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1181 		list_del(&other->node);
1182 		netif_dbg(other, probe, other->net_dev,
1183 			  "moving to unassociated list\n");
1184 		list_add_tail(&other->node, &efx_unassociated_list);
1185 		other->primary = NULL;
1186 	}
1187 }
1188 
1189 /* This configures the PCI device to enable I/O and DMA. */
1190 static int efx_init_io(struct efx_nic *efx)
1191 {
1192 	struct pci_dev *pci_dev = efx->pci_dev;
1193 	dma_addr_t dma_mask = efx->type->max_dma_mask;
1194 	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1195 	int rc;
1196 
1197 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1198 
1199 	rc = pci_enable_device(pci_dev);
1200 	if (rc) {
1201 		netif_err(efx, probe, efx->net_dev,
1202 			  "failed to enable PCI device\n");
1203 		goto fail1;
1204 	}
1205 
1206 	pci_set_master(pci_dev);
1207 
1208 	/* Set the PCI DMA mask.  Try all possibilities from our
1209 	 * genuine mask down to 32 bits, because some architectures
1210 	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1211 	 * masks event though they reject 46 bit masks.
1212 	 */
1213 	while (dma_mask > 0x7fffffffUL) {
1214 		if (dma_supported(&pci_dev->dev, dma_mask)) {
1215 			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1216 			if (rc == 0)
1217 				break;
1218 		}
1219 		dma_mask >>= 1;
1220 	}
1221 	if (rc) {
1222 		netif_err(efx, probe, efx->net_dev,
1223 			  "could not find a suitable DMA mask\n");
1224 		goto fail2;
1225 	}
1226 	netif_dbg(efx, probe, efx->net_dev,
1227 		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1228 
1229 	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1230 	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1231 	if (rc) {
1232 		netif_err(efx, probe, efx->net_dev,
1233 			  "request for memory BAR failed\n");
1234 		rc = -EIO;
1235 		goto fail3;
1236 	}
1237 	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1238 	if (!efx->membase) {
1239 		netif_err(efx, probe, efx->net_dev,
1240 			  "could not map memory BAR at %llx+%x\n",
1241 			  (unsigned long long)efx->membase_phys, mem_map_size);
1242 		rc = -ENOMEM;
1243 		goto fail4;
1244 	}
1245 	netif_dbg(efx, probe, efx->net_dev,
1246 		  "memory BAR at %llx+%x (virtual %p)\n",
1247 		  (unsigned long long)efx->membase_phys, mem_map_size,
1248 		  efx->membase);
1249 
1250 	return 0;
1251 
1252  fail4:
1253 	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1254  fail3:
1255 	efx->membase_phys = 0;
1256  fail2:
1257 	pci_disable_device(efx->pci_dev);
1258  fail1:
1259 	return rc;
1260 }
1261 
1262 static void efx_fini_io(struct efx_nic *efx)
1263 {
1264 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1265 
1266 	if (efx->membase) {
1267 		iounmap(efx->membase);
1268 		efx->membase = NULL;
1269 	}
1270 
1271 	if (efx->membase_phys) {
1272 		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1273 		efx->membase_phys = 0;
1274 	}
1275 
1276 	pci_disable_device(efx->pci_dev);
1277 }
1278 
1279 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1280 {
1281 	cpumask_var_t thread_mask;
1282 	unsigned int count;
1283 	int cpu;
1284 
1285 	if (rss_cpus) {
1286 		count = rss_cpus;
1287 	} else {
1288 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1289 			netif_warn(efx, probe, efx->net_dev,
1290 				   "RSS disabled due to allocation failure\n");
1291 			return 1;
1292 		}
1293 
1294 		count = 0;
1295 		for_each_online_cpu(cpu) {
1296 			if (!cpumask_test_cpu(cpu, thread_mask)) {
1297 				++count;
1298 				cpumask_or(thread_mask, thread_mask,
1299 					   topology_thread_cpumask(cpu));
1300 			}
1301 		}
1302 
1303 		free_cpumask_var(thread_mask);
1304 	}
1305 
1306 	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1307 	 * table entries that are inaccessible to VFs
1308 	 */
1309 	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1310 	    count > efx_vf_size(efx)) {
1311 		netif_warn(efx, probe, efx->net_dev,
1312 			   "Reducing number of RSS channels from %u to %u for "
1313 			   "VF support. Increase vf-msix-limit to use more "
1314 			   "channels on the PF.\n",
1315 			   count, efx_vf_size(efx));
1316 		count = efx_vf_size(efx);
1317 	}
1318 
1319 	return count;
1320 }
1321 
1322 /* Probe the number and type of interrupts we are able to obtain, and
1323  * the resulting numbers of channels and RX queues.
1324  */
1325 static int efx_probe_interrupts(struct efx_nic *efx)
1326 {
1327 	unsigned int extra_channels = 0;
1328 	unsigned int i, j;
1329 	int rc;
1330 
1331 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1332 		if (efx->extra_channel_type[i])
1333 			++extra_channels;
1334 
1335 	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1336 		struct msix_entry xentries[EFX_MAX_CHANNELS];
1337 		unsigned int n_channels;
1338 
1339 		n_channels = efx_wanted_parallelism(efx);
1340 		if (separate_tx_channels)
1341 			n_channels *= 2;
1342 		n_channels += extra_channels;
1343 		n_channels = min(n_channels, efx->max_channels);
1344 
1345 		for (i = 0; i < n_channels; i++)
1346 			xentries[i].entry = i;
1347 		rc = pci_enable_msix_range(efx->pci_dev,
1348 					   xentries, 1, n_channels);
1349 		if (rc < 0) {
1350 			/* Fall back to single channel MSI */
1351 			efx->interrupt_mode = EFX_INT_MODE_MSI;
1352 			netif_err(efx, drv, efx->net_dev,
1353 				  "could not enable MSI-X\n");
1354 		} else if (rc < n_channels) {
1355 			netif_err(efx, drv, efx->net_dev,
1356 				  "WARNING: Insufficient MSI-X vectors"
1357 				  " available (%d < %u).\n", rc, n_channels);
1358 			netif_err(efx, drv, efx->net_dev,
1359 				  "WARNING: Performance may be reduced.\n");
1360 			n_channels = rc;
1361 		}
1362 
1363 		if (rc > 0) {
1364 			efx->n_channels = n_channels;
1365 			if (n_channels > extra_channels)
1366 				n_channels -= extra_channels;
1367 			if (separate_tx_channels) {
1368 				efx->n_tx_channels = max(n_channels / 2, 1U);
1369 				efx->n_rx_channels = max(n_channels -
1370 							 efx->n_tx_channels,
1371 							 1U);
1372 			} else {
1373 				efx->n_tx_channels = n_channels;
1374 				efx->n_rx_channels = n_channels;
1375 			}
1376 			for (i = 0; i < efx->n_channels; i++)
1377 				efx_get_channel(efx, i)->irq =
1378 					xentries[i].vector;
1379 		}
1380 	}
1381 
1382 	/* Try single interrupt MSI */
1383 	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1384 		efx->n_channels = 1;
1385 		efx->n_rx_channels = 1;
1386 		efx->n_tx_channels = 1;
1387 		rc = pci_enable_msi(efx->pci_dev);
1388 		if (rc == 0) {
1389 			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1390 		} else {
1391 			netif_err(efx, drv, efx->net_dev,
1392 				  "could not enable MSI\n");
1393 			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1394 		}
1395 	}
1396 
1397 	/* Assume legacy interrupts */
1398 	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1399 		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1400 		efx->n_rx_channels = 1;
1401 		efx->n_tx_channels = 1;
1402 		efx->legacy_irq = efx->pci_dev->irq;
1403 	}
1404 
1405 	/* Assign extra channels if possible */
1406 	j = efx->n_channels;
1407 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1408 		if (!efx->extra_channel_type[i])
1409 			continue;
1410 		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1411 		    efx->n_channels <= extra_channels) {
1412 			efx->extra_channel_type[i]->handle_no_channel(efx);
1413 		} else {
1414 			--j;
1415 			efx_get_channel(efx, j)->type =
1416 				efx->extra_channel_type[i];
1417 		}
1418 	}
1419 
1420 	/* RSS might be usable on VFs even if it is disabled on the PF */
1421 	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1422 			   efx->n_rx_channels : efx_vf_size(efx));
1423 
1424 	return 0;
1425 }
1426 
1427 static int efx_soft_enable_interrupts(struct efx_nic *efx)
1428 {
1429 	struct efx_channel *channel, *end_channel;
1430 	int rc;
1431 
1432 	BUG_ON(efx->state == STATE_DISABLED);
1433 
1434 	efx->irq_soft_enabled = true;
1435 	smp_wmb();
1436 
1437 	efx_for_each_channel(channel, efx) {
1438 		if (!channel->type->keep_eventq) {
1439 			rc = efx_init_eventq(channel);
1440 			if (rc)
1441 				goto fail;
1442 		}
1443 		efx_start_eventq(channel);
1444 	}
1445 
1446 	efx_mcdi_mode_event(efx);
1447 
1448 	return 0;
1449 fail:
1450 	end_channel = channel;
1451 	efx_for_each_channel(channel, efx) {
1452 		if (channel == end_channel)
1453 			break;
1454 		efx_stop_eventq(channel);
1455 		if (!channel->type->keep_eventq)
1456 			efx_fini_eventq(channel);
1457 	}
1458 
1459 	return rc;
1460 }
1461 
1462 static void efx_soft_disable_interrupts(struct efx_nic *efx)
1463 {
1464 	struct efx_channel *channel;
1465 
1466 	if (efx->state == STATE_DISABLED)
1467 		return;
1468 
1469 	efx_mcdi_mode_poll(efx);
1470 
1471 	efx->irq_soft_enabled = false;
1472 	smp_wmb();
1473 
1474 	if (efx->legacy_irq)
1475 		synchronize_irq(efx->legacy_irq);
1476 
1477 	efx_for_each_channel(channel, efx) {
1478 		if (channel->irq)
1479 			synchronize_irq(channel->irq);
1480 
1481 		efx_stop_eventq(channel);
1482 		if (!channel->type->keep_eventq)
1483 			efx_fini_eventq(channel);
1484 	}
1485 
1486 	/* Flush the asynchronous MCDI request queue */
1487 	efx_mcdi_flush_async(efx);
1488 }
1489 
1490 static int efx_enable_interrupts(struct efx_nic *efx)
1491 {
1492 	struct efx_channel *channel, *end_channel;
1493 	int rc;
1494 
1495 	BUG_ON(efx->state == STATE_DISABLED);
1496 
1497 	if (efx->eeh_disabled_legacy_irq) {
1498 		enable_irq(efx->legacy_irq);
1499 		efx->eeh_disabled_legacy_irq = false;
1500 	}
1501 
1502 	efx->type->irq_enable_master(efx);
1503 
1504 	efx_for_each_channel(channel, efx) {
1505 		if (channel->type->keep_eventq) {
1506 			rc = efx_init_eventq(channel);
1507 			if (rc)
1508 				goto fail;
1509 		}
1510 	}
1511 
1512 	rc = efx_soft_enable_interrupts(efx);
1513 	if (rc)
1514 		goto fail;
1515 
1516 	return 0;
1517 
1518 fail:
1519 	end_channel = channel;
1520 	efx_for_each_channel(channel, efx) {
1521 		if (channel == end_channel)
1522 			break;
1523 		if (channel->type->keep_eventq)
1524 			efx_fini_eventq(channel);
1525 	}
1526 
1527 	efx->type->irq_disable_non_ev(efx);
1528 
1529 	return rc;
1530 }
1531 
1532 static void efx_disable_interrupts(struct efx_nic *efx)
1533 {
1534 	struct efx_channel *channel;
1535 
1536 	efx_soft_disable_interrupts(efx);
1537 
1538 	efx_for_each_channel(channel, efx) {
1539 		if (channel->type->keep_eventq)
1540 			efx_fini_eventq(channel);
1541 	}
1542 
1543 	efx->type->irq_disable_non_ev(efx);
1544 }
1545 
1546 static void efx_remove_interrupts(struct efx_nic *efx)
1547 {
1548 	struct efx_channel *channel;
1549 
1550 	/* Remove MSI/MSI-X interrupts */
1551 	efx_for_each_channel(channel, efx)
1552 		channel->irq = 0;
1553 	pci_disable_msi(efx->pci_dev);
1554 	pci_disable_msix(efx->pci_dev);
1555 
1556 	/* Remove legacy interrupt */
1557 	efx->legacy_irq = 0;
1558 }
1559 
1560 static void efx_set_channels(struct efx_nic *efx)
1561 {
1562 	struct efx_channel *channel;
1563 	struct efx_tx_queue *tx_queue;
1564 
1565 	efx->tx_channel_offset =
1566 		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1567 
1568 	/* We need to mark which channels really have RX and TX
1569 	 * queues, and adjust the TX queue numbers if we have separate
1570 	 * RX-only and TX-only channels.
1571 	 */
1572 	efx_for_each_channel(channel, efx) {
1573 		if (channel->channel < efx->n_rx_channels)
1574 			channel->rx_queue.core_index = channel->channel;
1575 		else
1576 			channel->rx_queue.core_index = -1;
1577 
1578 		efx_for_each_channel_tx_queue(tx_queue, channel)
1579 			tx_queue->queue -= (efx->tx_channel_offset *
1580 					    EFX_TXQ_TYPES);
1581 	}
1582 }
1583 
1584 static int efx_probe_nic(struct efx_nic *efx)
1585 {
1586 	size_t i;
1587 	int rc;
1588 
1589 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1590 
1591 	/* Carry out hardware-type specific initialisation */
1592 	rc = efx->type->probe(efx);
1593 	if (rc)
1594 		return rc;
1595 
1596 	/* Determine the number of channels and queues by trying to hook
1597 	 * in MSI-X interrupts. */
1598 	rc = efx_probe_interrupts(efx);
1599 	if (rc)
1600 		goto fail1;
1601 
1602 	efx_set_channels(efx);
1603 
1604 	rc = efx->type->dimension_resources(efx);
1605 	if (rc)
1606 		goto fail2;
1607 
1608 	if (efx->n_channels > 1)
1609 		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1610 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1611 		efx->rx_indir_table[i] =
1612 			ethtool_rxfh_indir_default(i, efx->rss_spread);
1613 
1614 	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1615 	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1616 
1617 	/* Initialise the interrupt moderation settings */
1618 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1619 				true);
1620 
1621 	return 0;
1622 
1623 fail2:
1624 	efx_remove_interrupts(efx);
1625 fail1:
1626 	efx->type->remove(efx);
1627 	return rc;
1628 }
1629 
1630 static void efx_remove_nic(struct efx_nic *efx)
1631 {
1632 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1633 
1634 	efx_remove_interrupts(efx);
1635 	efx->type->remove(efx);
1636 }
1637 
1638 static int efx_probe_filters(struct efx_nic *efx)
1639 {
1640 	int rc;
1641 
1642 	spin_lock_init(&efx->filter_lock);
1643 
1644 	rc = efx->type->filter_table_probe(efx);
1645 	if (rc)
1646 		return rc;
1647 
1648 #ifdef CONFIG_RFS_ACCEL
1649 	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1650 		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1651 					   sizeof(*efx->rps_flow_id),
1652 					   GFP_KERNEL);
1653 		if (!efx->rps_flow_id) {
1654 			efx->type->filter_table_remove(efx);
1655 			return -ENOMEM;
1656 		}
1657 	}
1658 #endif
1659 
1660 	return 0;
1661 }
1662 
1663 static void efx_remove_filters(struct efx_nic *efx)
1664 {
1665 #ifdef CONFIG_RFS_ACCEL
1666 	kfree(efx->rps_flow_id);
1667 #endif
1668 	efx->type->filter_table_remove(efx);
1669 }
1670 
1671 static void efx_restore_filters(struct efx_nic *efx)
1672 {
1673 	efx->type->filter_table_restore(efx);
1674 }
1675 
1676 /**************************************************************************
1677  *
1678  * NIC startup/shutdown
1679  *
1680  *************************************************************************/
1681 
1682 static int efx_probe_all(struct efx_nic *efx)
1683 {
1684 	int rc;
1685 
1686 	rc = efx_probe_nic(efx);
1687 	if (rc) {
1688 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1689 		goto fail1;
1690 	}
1691 
1692 	rc = efx_probe_port(efx);
1693 	if (rc) {
1694 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1695 		goto fail2;
1696 	}
1697 
1698 	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1699 	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1700 		rc = -EINVAL;
1701 		goto fail3;
1702 	}
1703 	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1704 
1705 	rc = efx_probe_filters(efx);
1706 	if (rc) {
1707 		netif_err(efx, probe, efx->net_dev,
1708 			  "failed to create filter tables\n");
1709 		goto fail3;
1710 	}
1711 
1712 	rc = efx_probe_channels(efx);
1713 	if (rc)
1714 		goto fail4;
1715 
1716 	return 0;
1717 
1718  fail4:
1719 	efx_remove_filters(efx);
1720  fail3:
1721 	efx_remove_port(efx);
1722  fail2:
1723 	efx_remove_nic(efx);
1724  fail1:
1725 	return rc;
1726 }
1727 
1728 /* If the interface is supposed to be running but is not, start
1729  * the hardware and software data path, regular activity for the port
1730  * (MAC statistics, link polling, etc.) and schedule the port to be
1731  * reconfigured.  Interrupts must already be enabled.  This function
1732  * is safe to call multiple times, so long as the NIC is not disabled.
1733  * Requires the RTNL lock.
1734  */
1735 static void efx_start_all(struct efx_nic *efx)
1736 {
1737 	EFX_ASSERT_RESET_SERIALISED(efx);
1738 	BUG_ON(efx->state == STATE_DISABLED);
1739 
1740 	/* Check that it is appropriate to restart the interface. All
1741 	 * of these flags are safe to read under just the rtnl lock */
1742 	if (efx->port_enabled || !netif_running(efx->net_dev))
1743 		return;
1744 
1745 	efx_start_port(efx);
1746 	efx_start_datapath(efx);
1747 
1748 	/* Start the hardware monitor if there is one */
1749 	if (efx->type->monitor != NULL)
1750 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1751 				   efx_monitor_interval);
1752 
1753 	/* If link state detection is normally event-driven, we have
1754 	 * to poll now because we could have missed a change
1755 	 */
1756 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1757 		mutex_lock(&efx->mac_lock);
1758 		if (efx->phy_op->poll(efx))
1759 			efx_link_status_changed(efx);
1760 		mutex_unlock(&efx->mac_lock);
1761 	}
1762 
1763 	efx->type->start_stats(efx);
1764 	efx->type->pull_stats(efx);
1765 	spin_lock_bh(&efx->stats_lock);
1766 	efx->type->update_stats(efx, NULL, NULL);
1767 	spin_unlock_bh(&efx->stats_lock);
1768 }
1769 
1770 /* Quiesce the hardware and software data path, and regular activity
1771  * for the port without bringing the link down.  Safe to call multiple
1772  * times with the NIC in almost any state, but interrupts should be
1773  * enabled.  Requires the RTNL lock.
1774  */
1775 static void efx_stop_all(struct efx_nic *efx)
1776 {
1777 	EFX_ASSERT_RESET_SERIALISED(efx);
1778 
1779 	/* port_enabled can be read safely under the rtnl lock */
1780 	if (!efx->port_enabled)
1781 		return;
1782 
1783 	/* update stats before we go down so we can accurately count
1784 	 * rx_nodesc_drops
1785 	 */
1786 	efx->type->pull_stats(efx);
1787 	spin_lock_bh(&efx->stats_lock);
1788 	efx->type->update_stats(efx, NULL, NULL);
1789 	spin_unlock_bh(&efx->stats_lock);
1790 	efx->type->stop_stats(efx);
1791 	efx_stop_port(efx);
1792 
1793 	/* Stop the kernel transmit interface.  This is only valid if
1794 	 * the device is stopped or detached; otherwise the watchdog
1795 	 * may fire immediately.
1796 	 */
1797 	WARN_ON(netif_running(efx->net_dev) &&
1798 		netif_device_present(efx->net_dev));
1799 	netif_tx_disable(efx->net_dev);
1800 
1801 	efx_stop_datapath(efx);
1802 }
1803 
1804 static void efx_remove_all(struct efx_nic *efx)
1805 {
1806 	efx_remove_channels(efx);
1807 	efx_remove_filters(efx);
1808 	efx_remove_port(efx);
1809 	efx_remove_nic(efx);
1810 }
1811 
1812 /**************************************************************************
1813  *
1814  * Interrupt moderation
1815  *
1816  **************************************************************************/
1817 
1818 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1819 {
1820 	if (usecs == 0)
1821 		return 0;
1822 	if (usecs * 1000 < quantum_ns)
1823 		return 1; /* never round down to 0 */
1824 	return usecs * 1000 / quantum_ns;
1825 }
1826 
1827 /* Set interrupt moderation parameters */
1828 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1829 			    unsigned int rx_usecs, bool rx_adaptive,
1830 			    bool rx_may_override_tx)
1831 {
1832 	struct efx_channel *channel;
1833 	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1834 						efx->timer_quantum_ns,
1835 						1000);
1836 	unsigned int tx_ticks;
1837 	unsigned int rx_ticks;
1838 
1839 	EFX_ASSERT_RESET_SERIALISED(efx);
1840 
1841 	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1842 		return -EINVAL;
1843 
1844 	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1845 	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1846 
1847 	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1848 	    !rx_may_override_tx) {
1849 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1850 			  "RX and TX IRQ moderation must be equal\n");
1851 		return -EINVAL;
1852 	}
1853 
1854 	efx->irq_rx_adaptive = rx_adaptive;
1855 	efx->irq_rx_moderation = rx_ticks;
1856 	efx_for_each_channel(channel, efx) {
1857 		if (efx_channel_has_rx_queue(channel))
1858 			channel->irq_moderation = rx_ticks;
1859 		else if (efx_channel_has_tx_queues(channel))
1860 			channel->irq_moderation = tx_ticks;
1861 	}
1862 
1863 	return 0;
1864 }
1865 
1866 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1867 			    unsigned int *rx_usecs, bool *rx_adaptive)
1868 {
1869 	/* We must round up when converting ticks to microseconds
1870 	 * because we round down when converting the other way.
1871 	 */
1872 
1873 	*rx_adaptive = efx->irq_rx_adaptive;
1874 	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1875 				 efx->timer_quantum_ns,
1876 				 1000);
1877 
1878 	/* If channels are shared between RX and TX, so is IRQ
1879 	 * moderation.  Otherwise, IRQ moderation is the same for all
1880 	 * TX channels and is not adaptive.
1881 	 */
1882 	if (efx->tx_channel_offset == 0)
1883 		*tx_usecs = *rx_usecs;
1884 	else
1885 		*tx_usecs = DIV_ROUND_UP(
1886 			efx->channel[efx->tx_channel_offset]->irq_moderation *
1887 			efx->timer_quantum_ns,
1888 			1000);
1889 }
1890 
1891 /**************************************************************************
1892  *
1893  * Hardware monitor
1894  *
1895  **************************************************************************/
1896 
1897 /* Run periodically off the general workqueue */
1898 static void efx_monitor(struct work_struct *data)
1899 {
1900 	struct efx_nic *efx = container_of(data, struct efx_nic,
1901 					   monitor_work.work);
1902 
1903 	netif_vdbg(efx, timer, efx->net_dev,
1904 		   "hardware monitor executing on CPU %d\n",
1905 		   raw_smp_processor_id());
1906 	BUG_ON(efx->type->monitor == NULL);
1907 
1908 	/* If the mac_lock is already held then it is likely a port
1909 	 * reconfiguration is already in place, which will likely do
1910 	 * most of the work of monitor() anyway. */
1911 	if (mutex_trylock(&efx->mac_lock)) {
1912 		if (efx->port_enabled)
1913 			efx->type->monitor(efx);
1914 		mutex_unlock(&efx->mac_lock);
1915 	}
1916 
1917 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1918 			   efx_monitor_interval);
1919 }
1920 
1921 /**************************************************************************
1922  *
1923  * ioctls
1924  *
1925  *************************************************************************/
1926 
1927 /* Net device ioctl
1928  * Context: process, rtnl_lock() held.
1929  */
1930 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1931 {
1932 	struct efx_nic *efx = netdev_priv(net_dev);
1933 	struct mii_ioctl_data *data = if_mii(ifr);
1934 
1935 	if (cmd == SIOCSHWTSTAMP)
1936 		return efx_ptp_set_ts_config(efx, ifr);
1937 	if (cmd == SIOCGHWTSTAMP)
1938 		return efx_ptp_get_ts_config(efx, ifr);
1939 
1940 	/* Convert phy_id from older PRTAD/DEVAD format */
1941 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1942 	    (data->phy_id & 0xfc00) == 0x0400)
1943 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1944 
1945 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1946 }
1947 
1948 /**************************************************************************
1949  *
1950  * NAPI interface
1951  *
1952  **************************************************************************/
1953 
1954 static void efx_init_napi_channel(struct efx_channel *channel)
1955 {
1956 	struct efx_nic *efx = channel->efx;
1957 
1958 	channel->napi_dev = efx->net_dev;
1959 	netif_napi_add(channel->napi_dev, &channel->napi_str,
1960 		       efx_poll, napi_weight);
1961 }
1962 
1963 static void efx_init_napi(struct efx_nic *efx)
1964 {
1965 	struct efx_channel *channel;
1966 
1967 	efx_for_each_channel(channel, efx)
1968 		efx_init_napi_channel(channel);
1969 }
1970 
1971 static void efx_fini_napi_channel(struct efx_channel *channel)
1972 {
1973 	if (channel->napi_dev)
1974 		netif_napi_del(&channel->napi_str);
1975 	channel->napi_dev = NULL;
1976 }
1977 
1978 static void efx_fini_napi(struct efx_nic *efx)
1979 {
1980 	struct efx_channel *channel;
1981 
1982 	efx_for_each_channel(channel, efx)
1983 		efx_fini_napi_channel(channel);
1984 }
1985 
1986 /**************************************************************************
1987  *
1988  * Kernel netpoll interface
1989  *
1990  *************************************************************************/
1991 
1992 #ifdef CONFIG_NET_POLL_CONTROLLER
1993 
1994 /* Although in the common case interrupts will be disabled, this is not
1995  * guaranteed. However, all our work happens inside the NAPI callback,
1996  * so no locking is required.
1997  */
1998 static void efx_netpoll(struct net_device *net_dev)
1999 {
2000 	struct efx_nic *efx = netdev_priv(net_dev);
2001 	struct efx_channel *channel;
2002 
2003 	efx_for_each_channel(channel, efx)
2004 		efx_schedule_channel(channel);
2005 }
2006 
2007 #endif
2008 
2009 /**************************************************************************
2010  *
2011  * Kernel net device interface
2012  *
2013  *************************************************************************/
2014 
2015 /* Context: process, rtnl_lock() held. */
2016 static int efx_net_open(struct net_device *net_dev)
2017 {
2018 	struct efx_nic *efx = netdev_priv(net_dev);
2019 	int rc;
2020 
2021 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2022 		  raw_smp_processor_id());
2023 
2024 	rc = efx_check_disabled(efx);
2025 	if (rc)
2026 		return rc;
2027 	if (efx->phy_mode & PHY_MODE_SPECIAL)
2028 		return -EBUSY;
2029 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2030 		return -EIO;
2031 
2032 	/* Notify the kernel of the link state polled during driver load,
2033 	 * before the monitor starts running */
2034 	efx_link_status_changed(efx);
2035 
2036 	efx_start_all(efx);
2037 	efx_selftest_async_start(efx);
2038 	return 0;
2039 }
2040 
2041 /* Context: process, rtnl_lock() held.
2042  * Note that the kernel will ignore our return code; this method
2043  * should really be a void.
2044  */
2045 static int efx_net_stop(struct net_device *net_dev)
2046 {
2047 	struct efx_nic *efx = netdev_priv(net_dev);
2048 
2049 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2050 		  raw_smp_processor_id());
2051 
2052 	/* Stop the device and flush all the channels */
2053 	efx_stop_all(efx);
2054 
2055 	return 0;
2056 }
2057 
2058 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2059 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2060 					       struct rtnl_link_stats64 *stats)
2061 {
2062 	struct efx_nic *efx = netdev_priv(net_dev);
2063 
2064 	spin_lock_bh(&efx->stats_lock);
2065 	efx->type->update_stats(efx, NULL, stats);
2066 	spin_unlock_bh(&efx->stats_lock);
2067 
2068 	return stats;
2069 }
2070 
2071 /* Context: netif_tx_lock held, BHs disabled. */
2072 static void efx_watchdog(struct net_device *net_dev)
2073 {
2074 	struct efx_nic *efx = netdev_priv(net_dev);
2075 
2076 	netif_err(efx, tx_err, efx->net_dev,
2077 		  "TX stuck with port_enabled=%d: resetting channels\n",
2078 		  efx->port_enabled);
2079 
2080 	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2081 }
2082 
2083 
2084 /* Context: process, rtnl_lock() held. */
2085 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2086 {
2087 	struct efx_nic *efx = netdev_priv(net_dev);
2088 	int rc;
2089 
2090 	rc = efx_check_disabled(efx);
2091 	if (rc)
2092 		return rc;
2093 	if (new_mtu > EFX_MAX_MTU)
2094 		return -EINVAL;
2095 
2096 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2097 
2098 	efx_device_detach_sync(efx);
2099 	efx_stop_all(efx);
2100 
2101 	mutex_lock(&efx->mac_lock);
2102 	net_dev->mtu = new_mtu;
2103 	efx->type->reconfigure_mac(efx);
2104 	mutex_unlock(&efx->mac_lock);
2105 
2106 	efx_start_all(efx);
2107 	netif_device_attach(efx->net_dev);
2108 	return 0;
2109 }
2110 
2111 static int efx_set_mac_address(struct net_device *net_dev, void *data)
2112 {
2113 	struct efx_nic *efx = netdev_priv(net_dev);
2114 	struct sockaddr *addr = data;
2115 	u8 *new_addr = addr->sa_data;
2116 
2117 	if (!is_valid_ether_addr(new_addr)) {
2118 		netif_err(efx, drv, efx->net_dev,
2119 			  "invalid ethernet MAC address requested: %pM\n",
2120 			  new_addr);
2121 		return -EADDRNOTAVAIL;
2122 	}
2123 
2124 	ether_addr_copy(net_dev->dev_addr, new_addr);
2125 	efx_sriov_mac_address_changed(efx);
2126 
2127 	/* Reconfigure the MAC */
2128 	mutex_lock(&efx->mac_lock);
2129 	efx->type->reconfigure_mac(efx);
2130 	mutex_unlock(&efx->mac_lock);
2131 
2132 	return 0;
2133 }
2134 
2135 /* Context: netif_addr_lock held, BHs disabled. */
2136 static void efx_set_rx_mode(struct net_device *net_dev)
2137 {
2138 	struct efx_nic *efx = netdev_priv(net_dev);
2139 
2140 	if (efx->port_enabled)
2141 		queue_work(efx->workqueue, &efx->mac_work);
2142 	/* Otherwise efx_start_port() will do this */
2143 }
2144 
2145 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2146 {
2147 	struct efx_nic *efx = netdev_priv(net_dev);
2148 
2149 	/* If disabling RX n-tuple filtering, clear existing filters */
2150 	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2151 		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2152 
2153 	return 0;
2154 }
2155 
2156 static const struct net_device_ops efx_farch_netdev_ops = {
2157 	.ndo_open		= efx_net_open,
2158 	.ndo_stop		= efx_net_stop,
2159 	.ndo_get_stats64	= efx_net_stats,
2160 	.ndo_tx_timeout		= efx_watchdog,
2161 	.ndo_start_xmit		= efx_hard_start_xmit,
2162 	.ndo_validate_addr	= eth_validate_addr,
2163 	.ndo_do_ioctl		= efx_ioctl,
2164 	.ndo_change_mtu		= efx_change_mtu,
2165 	.ndo_set_mac_address	= efx_set_mac_address,
2166 	.ndo_set_rx_mode	= efx_set_rx_mode,
2167 	.ndo_set_features	= efx_set_features,
2168 #ifdef CONFIG_SFC_SRIOV
2169 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2170 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2171 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2172 	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2173 #endif
2174 #ifdef CONFIG_NET_POLL_CONTROLLER
2175 	.ndo_poll_controller = efx_netpoll,
2176 #endif
2177 	.ndo_setup_tc		= efx_setup_tc,
2178 #ifdef CONFIG_RFS_ACCEL
2179 	.ndo_rx_flow_steer	= efx_filter_rfs,
2180 #endif
2181 };
2182 
2183 static const struct net_device_ops efx_ef10_netdev_ops = {
2184 	.ndo_open		= efx_net_open,
2185 	.ndo_stop		= efx_net_stop,
2186 	.ndo_get_stats64	= efx_net_stats,
2187 	.ndo_tx_timeout		= efx_watchdog,
2188 	.ndo_start_xmit		= efx_hard_start_xmit,
2189 	.ndo_validate_addr	= eth_validate_addr,
2190 	.ndo_do_ioctl		= efx_ioctl,
2191 	.ndo_change_mtu		= efx_change_mtu,
2192 	.ndo_set_mac_address	= efx_set_mac_address,
2193 	.ndo_set_rx_mode	= efx_set_rx_mode,
2194 	.ndo_set_features	= efx_set_features,
2195 #ifdef CONFIG_NET_POLL_CONTROLLER
2196 	.ndo_poll_controller	= efx_netpoll,
2197 #endif
2198 #ifdef CONFIG_RFS_ACCEL
2199 	.ndo_rx_flow_steer	= efx_filter_rfs,
2200 #endif
2201 };
2202 
2203 static void efx_update_name(struct efx_nic *efx)
2204 {
2205 	strcpy(efx->name, efx->net_dev->name);
2206 	efx_mtd_rename(efx);
2207 	efx_set_channel_names(efx);
2208 }
2209 
2210 static int efx_netdev_event(struct notifier_block *this,
2211 			    unsigned long event, void *ptr)
2212 {
2213 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2214 
2215 	if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
2216 	     net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2217 	    event == NETDEV_CHANGENAME)
2218 		efx_update_name(netdev_priv(net_dev));
2219 
2220 	return NOTIFY_DONE;
2221 }
2222 
2223 static struct notifier_block efx_netdev_notifier = {
2224 	.notifier_call = efx_netdev_event,
2225 };
2226 
2227 static ssize_t
2228 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2229 {
2230 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2231 	return sprintf(buf, "%d\n", efx->phy_type);
2232 }
2233 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2234 
2235 static int efx_register_netdev(struct efx_nic *efx)
2236 {
2237 	struct net_device *net_dev = efx->net_dev;
2238 	struct efx_channel *channel;
2239 	int rc;
2240 
2241 	net_dev->watchdog_timeo = 5 * HZ;
2242 	net_dev->irq = efx->pci_dev->irq;
2243 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
2244 		net_dev->netdev_ops = &efx_ef10_netdev_ops;
2245 		net_dev->priv_flags |= IFF_UNICAST_FLT;
2246 	} else {
2247 		net_dev->netdev_ops = &efx_farch_netdev_ops;
2248 	}
2249 	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2250 	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2251 
2252 	rtnl_lock();
2253 
2254 	/* Enable resets to be scheduled and check whether any were
2255 	 * already requested.  If so, the NIC is probably hosed so we
2256 	 * abort.
2257 	 */
2258 	efx->state = STATE_READY;
2259 	smp_mb(); /* ensure we change state before checking reset_pending */
2260 	if (efx->reset_pending) {
2261 		netif_err(efx, probe, efx->net_dev,
2262 			  "aborting probe due to scheduled reset\n");
2263 		rc = -EIO;
2264 		goto fail_locked;
2265 	}
2266 
2267 	rc = dev_alloc_name(net_dev, net_dev->name);
2268 	if (rc < 0)
2269 		goto fail_locked;
2270 	efx_update_name(efx);
2271 
2272 	/* Always start with carrier off; PHY events will detect the link */
2273 	netif_carrier_off(net_dev);
2274 
2275 	rc = register_netdevice(net_dev);
2276 	if (rc)
2277 		goto fail_locked;
2278 
2279 	efx_for_each_channel(channel, efx) {
2280 		struct efx_tx_queue *tx_queue;
2281 		efx_for_each_channel_tx_queue(tx_queue, channel)
2282 			efx_init_tx_queue_core_txq(tx_queue);
2283 	}
2284 
2285 	efx_associate(efx);
2286 
2287 	rtnl_unlock();
2288 
2289 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2290 	if (rc) {
2291 		netif_err(efx, drv, efx->net_dev,
2292 			  "failed to init net dev attributes\n");
2293 		goto fail_registered;
2294 	}
2295 
2296 	return 0;
2297 
2298 fail_registered:
2299 	rtnl_lock();
2300 	efx_dissociate(efx);
2301 	unregister_netdevice(net_dev);
2302 fail_locked:
2303 	efx->state = STATE_UNINIT;
2304 	rtnl_unlock();
2305 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2306 	return rc;
2307 }
2308 
2309 static void efx_unregister_netdev(struct efx_nic *efx)
2310 {
2311 	if (!efx->net_dev)
2312 		return;
2313 
2314 	BUG_ON(netdev_priv(efx->net_dev) != efx);
2315 
2316 	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2317 	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2318 
2319 	rtnl_lock();
2320 	unregister_netdevice(efx->net_dev);
2321 	efx->state = STATE_UNINIT;
2322 	rtnl_unlock();
2323 }
2324 
2325 /**************************************************************************
2326  *
2327  * Device reset and suspend
2328  *
2329  **************************************************************************/
2330 
2331 /* Tears down the entire software state and most of the hardware state
2332  * before reset.  */
2333 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2334 {
2335 	EFX_ASSERT_RESET_SERIALISED(efx);
2336 
2337 	efx_stop_all(efx);
2338 	efx_disable_interrupts(efx);
2339 
2340 	mutex_lock(&efx->mac_lock);
2341 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2342 		efx->phy_op->fini(efx);
2343 	efx->type->fini(efx);
2344 }
2345 
2346 /* This function will always ensure that the locks acquired in
2347  * efx_reset_down() are released. A failure return code indicates
2348  * that we were unable to reinitialise the hardware, and the
2349  * driver should be disabled. If ok is false, then the rx and tx
2350  * engines are not restarted, pending a RESET_DISABLE. */
2351 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2352 {
2353 	int rc;
2354 
2355 	EFX_ASSERT_RESET_SERIALISED(efx);
2356 
2357 	rc = efx->type->init(efx);
2358 	if (rc) {
2359 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2360 		goto fail;
2361 	}
2362 
2363 	if (!ok)
2364 		goto fail;
2365 
2366 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2367 		rc = efx->phy_op->init(efx);
2368 		if (rc)
2369 			goto fail;
2370 		if (efx->phy_op->reconfigure(efx))
2371 			netif_err(efx, drv, efx->net_dev,
2372 				  "could not restore PHY settings\n");
2373 	}
2374 
2375 	rc = efx_enable_interrupts(efx);
2376 	if (rc)
2377 		goto fail;
2378 	efx_restore_filters(efx);
2379 	efx_sriov_reset(efx);
2380 
2381 	mutex_unlock(&efx->mac_lock);
2382 
2383 	efx_start_all(efx);
2384 
2385 	return 0;
2386 
2387 fail:
2388 	efx->port_initialized = false;
2389 
2390 	mutex_unlock(&efx->mac_lock);
2391 
2392 	return rc;
2393 }
2394 
2395 /* Reset the NIC using the specified method.  Note that the reset may
2396  * fail, in which case the card will be left in an unusable state.
2397  *
2398  * Caller must hold the rtnl_lock.
2399  */
2400 int efx_reset(struct efx_nic *efx, enum reset_type method)
2401 {
2402 	int rc, rc2;
2403 	bool disabled;
2404 
2405 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2406 		   RESET_TYPE(method));
2407 
2408 	efx_device_detach_sync(efx);
2409 	efx_reset_down(efx, method);
2410 
2411 	rc = efx->type->reset(efx, method);
2412 	if (rc) {
2413 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2414 		goto out;
2415 	}
2416 
2417 	/* Clear flags for the scopes we covered.  We assume the NIC and
2418 	 * driver are now quiescent so that there is no race here.
2419 	 */
2420 	efx->reset_pending &= -(1 << (method + 1));
2421 
2422 	/* Reinitialise bus-mastering, which may have been turned off before
2423 	 * the reset was scheduled. This is still appropriate, even in the
2424 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2425 	 * can respond to requests. */
2426 	pci_set_master(efx->pci_dev);
2427 
2428 out:
2429 	/* Leave device stopped if necessary */
2430 	disabled = rc ||
2431 		method == RESET_TYPE_DISABLE ||
2432 		method == RESET_TYPE_RECOVER_OR_DISABLE;
2433 	rc2 = efx_reset_up(efx, method, !disabled);
2434 	if (rc2) {
2435 		disabled = true;
2436 		if (!rc)
2437 			rc = rc2;
2438 	}
2439 
2440 	if (disabled) {
2441 		dev_close(efx->net_dev);
2442 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2443 		efx->state = STATE_DISABLED;
2444 	} else {
2445 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2446 		netif_device_attach(efx->net_dev);
2447 	}
2448 	return rc;
2449 }
2450 
2451 /* Try recovery mechanisms.
2452  * For now only EEH is supported.
2453  * Returns 0 if the recovery mechanisms are unsuccessful.
2454  * Returns a non-zero value otherwise.
2455  */
2456 int efx_try_recovery(struct efx_nic *efx)
2457 {
2458 #ifdef CONFIG_EEH
2459 	/* A PCI error can occur and not be seen by EEH because nothing
2460 	 * happens on the PCI bus. In this case the driver may fail and
2461 	 * schedule a 'recover or reset', leading to this recovery handler.
2462 	 * Manually call the eeh failure check function.
2463 	 */
2464 	struct eeh_dev *eehdev =
2465 		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
2466 
2467 	if (eeh_dev_check_failure(eehdev)) {
2468 		/* The EEH mechanisms will handle the error and reset the
2469 		 * device if necessary.
2470 		 */
2471 		return 1;
2472 	}
2473 #endif
2474 	return 0;
2475 }
2476 
2477 static void efx_wait_for_bist_end(struct efx_nic *efx)
2478 {
2479 	int i;
2480 
2481 	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2482 		if (efx_mcdi_poll_reboot(efx))
2483 			goto out;
2484 		msleep(BIST_WAIT_DELAY_MS);
2485 	}
2486 
2487 	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2488 out:
2489 	/* Either way unset the BIST flag. If we found no reboot we probably
2490 	 * won't recover, but we should try.
2491 	 */
2492 	efx->mc_bist_for_other_fn = false;
2493 }
2494 
2495 /* The worker thread exists so that code that cannot sleep can
2496  * schedule a reset for later.
2497  */
2498 static void efx_reset_work(struct work_struct *data)
2499 {
2500 	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2501 	unsigned long pending;
2502 	enum reset_type method;
2503 
2504 	pending = ACCESS_ONCE(efx->reset_pending);
2505 	method = fls(pending) - 1;
2506 
2507 	if (method == RESET_TYPE_MC_BIST)
2508 		efx_wait_for_bist_end(efx);
2509 
2510 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2511 	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2512 	    efx_try_recovery(efx))
2513 		return;
2514 
2515 	if (!pending)
2516 		return;
2517 
2518 	rtnl_lock();
2519 
2520 	/* We checked the state in efx_schedule_reset() but it may
2521 	 * have changed by now.  Now that we have the RTNL lock,
2522 	 * it cannot change again.
2523 	 */
2524 	if (efx->state == STATE_READY)
2525 		(void)efx_reset(efx, method);
2526 
2527 	rtnl_unlock();
2528 }
2529 
2530 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2531 {
2532 	enum reset_type method;
2533 
2534 	if (efx->state == STATE_RECOVERY) {
2535 		netif_dbg(efx, drv, efx->net_dev,
2536 			  "recovering: skip scheduling %s reset\n",
2537 			  RESET_TYPE(type));
2538 		return;
2539 	}
2540 
2541 	switch (type) {
2542 	case RESET_TYPE_INVISIBLE:
2543 	case RESET_TYPE_ALL:
2544 	case RESET_TYPE_RECOVER_OR_ALL:
2545 	case RESET_TYPE_WORLD:
2546 	case RESET_TYPE_DISABLE:
2547 	case RESET_TYPE_RECOVER_OR_DISABLE:
2548 	case RESET_TYPE_MC_BIST:
2549 		method = type;
2550 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2551 			  RESET_TYPE(method));
2552 		break;
2553 	default:
2554 		method = efx->type->map_reset_reason(type);
2555 		netif_dbg(efx, drv, efx->net_dev,
2556 			  "scheduling %s reset for %s\n",
2557 			  RESET_TYPE(method), RESET_TYPE(type));
2558 		break;
2559 	}
2560 
2561 	set_bit(method, &efx->reset_pending);
2562 	smp_mb(); /* ensure we change reset_pending before checking state */
2563 
2564 	/* If we're not READY then just leave the flags set as the cue
2565 	 * to abort probing or reschedule the reset later.
2566 	 */
2567 	if (ACCESS_ONCE(efx->state) != STATE_READY)
2568 		return;
2569 
2570 	/* efx_process_channel() will no longer read events once a
2571 	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2572 	efx_mcdi_mode_poll(efx);
2573 
2574 	queue_work(reset_workqueue, &efx->reset_work);
2575 }
2576 
2577 /**************************************************************************
2578  *
2579  * List of NICs we support
2580  *
2581  **************************************************************************/
2582 
2583 /* PCI device ID table */
2584 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2585 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2586 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2587 	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2588 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2589 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2590 	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2591 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2592 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2593 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2594 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2595 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2596 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2597 	{0}			/* end of list */
2598 };
2599 
2600 /**************************************************************************
2601  *
2602  * Dummy PHY/MAC operations
2603  *
2604  * Can be used for some unimplemented operations
2605  * Needed so all function pointers are valid and do not have to be tested
2606  * before use
2607  *
2608  **************************************************************************/
2609 int efx_port_dummy_op_int(struct efx_nic *efx)
2610 {
2611 	return 0;
2612 }
2613 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2614 
2615 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2616 {
2617 	return false;
2618 }
2619 
2620 static const struct efx_phy_operations efx_dummy_phy_operations = {
2621 	.init		 = efx_port_dummy_op_int,
2622 	.reconfigure	 = efx_port_dummy_op_int,
2623 	.poll		 = efx_port_dummy_op_poll,
2624 	.fini		 = efx_port_dummy_op_void,
2625 };
2626 
2627 /**************************************************************************
2628  *
2629  * Data housekeeping
2630  *
2631  **************************************************************************/
2632 
2633 /* This zeroes out and then fills in the invariants in a struct
2634  * efx_nic (including all sub-structures).
2635  */
2636 static int efx_init_struct(struct efx_nic *efx,
2637 			   struct pci_dev *pci_dev, struct net_device *net_dev)
2638 {
2639 	int i;
2640 
2641 	/* Initialise common structures */
2642 	INIT_LIST_HEAD(&efx->node);
2643 	INIT_LIST_HEAD(&efx->secondary_list);
2644 	spin_lock_init(&efx->biu_lock);
2645 #ifdef CONFIG_SFC_MTD
2646 	INIT_LIST_HEAD(&efx->mtd_list);
2647 #endif
2648 	INIT_WORK(&efx->reset_work, efx_reset_work);
2649 	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2650 	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2651 	efx->pci_dev = pci_dev;
2652 	efx->msg_enable = debug;
2653 	efx->state = STATE_UNINIT;
2654 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2655 
2656 	efx->net_dev = net_dev;
2657 	efx->rx_prefix_size = efx->type->rx_prefix_size;
2658 	efx->rx_ip_align =
2659 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2660 	efx->rx_packet_hash_offset =
2661 		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2662 	efx->rx_packet_ts_offset =
2663 		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2664 	spin_lock_init(&efx->stats_lock);
2665 	mutex_init(&efx->mac_lock);
2666 	efx->phy_op = &efx_dummy_phy_operations;
2667 	efx->mdio.dev = net_dev;
2668 	INIT_WORK(&efx->mac_work, efx_mac_work);
2669 	init_waitqueue_head(&efx->flush_wq);
2670 
2671 	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2672 		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2673 		if (!efx->channel[i])
2674 			goto fail;
2675 		efx->msi_context[i].efx = efx;
2676 		efx->msi_context[i].index = i;
2677 	}
2678 
2679 	/* Higher numbered interrupt modes are less capable! */
2680 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2681 				  interrupt_mode);
2682 
2683 	/* Would be good to use the net_dev name, but we're too early */
2684 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2685 		 pci_name(pci_dev));
2686 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2687 	if (!efx->workqueue)
2688 		goto fail;
2689 
2690 	return 0;
2691 
2692 fail:
2693 	efx_fini_struct(efx);
2694 	return -ENOMEM;
2695 }
2696 
2697 static void efx_fini_struct(struct efx_nic *efx)
2698 {
2699 	int i;
2700 
2701 	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2702 		kfree(efx->channel[i]);
2703 
2704 	kfree(efx->vpd_sn);
2705 
2706 	if (efx->workqueue) {
2707 		destroy_workqueue(efx->workqueue);
2708 		efx->workqueue = NULL;
2709 	}
2710 }
2711 
2712 /**************************************************************************
2713  *
2714  * PCI interface
2715  *
2716  **************************************************************************/
2717 
2718 /* Main body of final NIC shutdown code
2719  * This is called only at module unload (or hotplug removal).
2720  */
2721 static void efx_pci_remove_main(struct efx_nic *efx)
2722 {
2723 	/* Flush reset_work. It can no longer be scheduled since we
2724 	 * are not READY.
2725 	 */
2726 	BUG_ON(efx->state == STATE_READY);
2727 	cancel_work_sync(&efx->reset_work);
2728 
2729 	efx_disable_interrupts(efx);
2730 	efx_nic_fini_interrupt(efx);
2731 	efx_fini_port(efx);
2732 	efx->type->fini(efx);
2733 	efx_fini_napi(efx);
2734 	efx_remove_all(efx);
2735 }
2736 
2737 /* Final NIC shutdown
2738  * This is called only at module unload (or hotplug removal).
2739  */
2740 static void efx_pci_remove(struct pci_dev *pci_dev)
2741 {
2742 	struct efx_nic *efx;
2743 
2744 	efx = pci_get_drvdata(pci_dev);
2745 	if (!efx)
2746 		return;
2747 
2748 	/* Mark the NIC as fini, then stop the interface */
2749 	rtnl_lock();
2750 	efx_dissociate(efx);
2751 	dev_close(efx->net_dev);
2752 	efx_disable_interrupts(efx);
2753 	rtnl_unlock();
2754 
2755 	efx_sriov_fini(efx);
2756 	efx_unregister_netdev(efx);
2757 
2758 	efx_mtd_remove(efx);
2759 
2760 	efx_pci_remove_main(efx);
2761 
2762 	efx_fini_io(efx);
2763 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2764 
2765 	efx_fini_struct(efx);
2766 	free_netdev(efx->net_dev);
2767 
2768 	pci_disable_pcie_error_reporting(pci_dev);
2769 };
2770 
2771 /* NIC VPD information
2772  * Called during probe to display the part number of the
2773  * installed NIC.  VPD is potentially very large but this should
2774  * always appear within the first 512 bytes.
2775  */
2776 #define SFC_VPD_LEN 512
2777 static void efx_probe_vpd_strings(struct efx_nic *efx)
2778 {
2779 	struct pci_dev *dev = efx->pci_dev;
2780 	char vpd_data[SFC_VPD_LEN];
2781 	ssize_t vpd_size;
2782 	int ro_start, ro_size, i, j;
2783 
2784 	/* Get the vpd data from the device */
2785 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2786 	if (vpd_size <= 0) {
2787 		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2788 		return;
2789 	}
2790 
2791 	/* Get the Read only section */
2792 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2793 	if (ro_start < 0) {
2794 		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2795 		return;
2796 	}
2797 
2798 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2799 	j = ro_size;
2800 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2801 	if (i + j > vpd_size)
2802 		j = vpd_size - i;
2803 
2804 	/* Get the Part number */
2805 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2806 	if (i < 0) {
2807 		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2808 		return;
2809 	}
2810 
2811 	j = pci_vpd_info_field_size(&vpd_data[i]);
2812 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2813 	if (i + j > vpd_size) {
2814 		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2815 		return;
2816 	}
2817 
2818 	netif_info(efx, drv, efx->net_dev,
2819 		   "Part Number : %.*s\n", j, &vpd_data[i]);
2820 
2821 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2822 	j = ro_size;
2823 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
2824 	if (i < 0) {
2825 		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
2826 		return;
2827 	}
2828 
2829 	j = pci_vpd_info_field_size(&vpd_data[i]);
2830 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2831 	if (i + j > vpd_size) {
2832 		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
2833 		return;
2834 	}
2835 
2836 	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
2837 	if (!efx->vpd_sn)
2838 		return;
2839 
2840 	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2841 }
2842 
2843 
2844 /* Main body of NIC initialisation
2845  * This is called at module load (or hotplug insertion, theoretically).
2846  */
2847 static int efx_pci_probe_main(struct efx_nic *efx)
2848 {
2849 	int rc;
2850 
2851 	/* Do start-of-day initialisation */
2852 	rc = efx_probe_all(efx);
2853 	if (rc)
2854 		goto fail1;
2855 
2856 	efx_init_napi(efx);
2857 
2858 	rc = efx->type->init(efx);
2859 	if (rc) {
2860 		netif_err(efx, probe, efx->net_dev,
2861 			  "failed to initialise NIC\n");
2862 		goto fail3;
2863 	}
2864 
2865 	rc = efx_init_port(efx);
2866 	if (rc) {
2867 		netif_err(efx, probe, efx->net_dev,
2868 			  "failed to initialise port\n");
2869 		goto fail4;
2870 	}
2871 
2872 	rc = efx_nic_init_interrupt(efx);
2873 	if (rc)
2874 		goto fail5;
2875 	rc = efx_enable_interrupts(efx);
2876 	if (rc)
2877 		goto fail6;
2878 
2879 	return 0;
2880 
2881  fail6:
2882 	efx_nic_fini_interrupt(efx);
2883  fail5:
2884 	efx_fini_port(efx);
2885  fail4:
2886 	efx->type->fini(efx);
2887  fail3:
2888 	efx_fini_napi(efx);
2889 	efx_remove_all(efx);
2890  fail1:
2891 	return rc;
2892 }
2893 
2894 /* NIC initialisation
2895  *
2896  * This is called at module load (or hotplug insertion,
2897  * theoretically).  It sets up PCI mappings, resets the NIC,
2898  * sets up and registers the network devices with the kernel and hooks
2899  * the interrupt service routine.  It does not prepare the device for
2900  * transmission; this is left to the first time one of the network
2901  * interfaces is brought up (i.e. efx_net_open).
2902  */
2903 static int efx_pci_probe(struct pci_dev *pci_dev,
2904 			 const struct pci_device_id *entry)
2905 {
2906 	struct net_device *net_dev;
2907 	struct efx_nic *efx;
2908 	int rc;
2909 
2910 	/* Allocate and initialise a struct net_device and struct efx_nic */
2911 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2912 				     EFX_MAX_RX_QUEUES);
2913 	if (!net_dev)
2914 		return -ENOMEM;
2915 	efx = netdev_priv(net_dev);
2916 	efx->type = (const struct efx_nic_type *) entry->driver_data;
2917 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2918 			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2919 			      NETIF_F_RXCSUM);
2920 	if (efx->type->offload_features & NETIF_F_V6_CSUM)
2921 		net_dev->features |= NETIF_F_TSO6;
2922 	/* Mask for features that also apply to VLAN devices */
2923 	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2924 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2925 				   NETIF_F_RXCSUM);
2926 	/* All offloads can be toggled */
2927 	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2928 	pci_set_drvdata(pci_dev, efx);
2929 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2930 	rc = efx_init_struct(efx, pci_dev, net_dev);
2931 	if (rc)
2932 		goto fail1;
2933 
2934 	netif_info(efx, probe, efx->net_dev,
2935 		   "Solarflare NIC detected\n");
2936 
2937 	efx_probe_vpd_strings(efx);
2938 
2939 	/* Set up basic I/O (BAR mappings etc) */
2940 	rc = efx_init_io(efx);
2941 	if (rc)
2942 		goto fail2;
2943 
2944 	rc = efx_pci_probe_main(efx);
2945 	if (rc)
2946 		goto fail3;
2947 
2948 	rc = efx_register_netdev(efx);
2949 	if (rc)
2950 		goto fail4;
2951 
2952 	rc = efx_sriov_init(efx);
2953 	if (rc)
2954 		netif_err(efx, probe, efx->net_dev,
2955 			  "SR-IOV can't be enabled rc %d\n", rc);
2956 
2957 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2958 
2959 	/* Try to create MTDs, but allow this to fail */
2960 	rtnl_lock();
2961 	rc = efx_mtd_probe(efx);
2962 	rtnl_unlock();
2963 	if (rc)
2964 		netif_warn(efx, probe, efx->net_dev,
2965 			   "failed to create MTDs (%d)\n", rc);
2966 
2967 	rc = pci_enable_pcie_error_reporting(pci_dev);
2968 	if (rc && rc != -EINVAL)
2969 		netif_warn(efx, probe, efx->net_dev,
2970 			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);
2971 
2972 	return 0;
2973 
2974  fail4:
2975 	efx_pci_remove_main(efx);
2976  fail3:
2977 	efx_fini_io(efx);
2978  fail2:
2979 	efx_fini_struct(efx);
2980  fail1:
2981 	WARN_ON(rc > 0);
2982 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2983 	free_netdev(net_dev);
2984 	return rc;
2985 }
2986 
2987 static int efx_pm_freeze(struct device *dev)
2988 {
2989 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2990 
2991 	rtnl_lock();
2992 
2993 	if (efx->state != STATE_DISABLED) {
2994 		efx->state = STATE_UNINIT;
2995 
2996 		efx_device_detach_sync(efx);
2997 
2998 		efx_stop_all(efx);
2999 		efx_disable_interrupts(efx);
3000 	}
3001 
3002 	rtnl_unlock();
3003 
3004 	return 0;
3005 }
3006 
3007 static int efx_pm_thaw(struct device *dev)
3008 {
3009 	int rc;
3010 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3011 
3012 	rtnl_lock();
3013 
3014 	if (efx->state != STATE_DISABLED) {
3015 		rc = efx_enable_interrupts(efx);
3016 		if (rc)
3017 			goto fail;
3018 
3019 		mutex_lock(&efx->mac_lock);
3020 		efx->phy_op->reconfigure(efx);
3021 		mutex_unlock(&efx->mac_lock);
3022 
3023 		efx_start_all(efx);
3024 
3025 		netif_device_attach(efx->net_dev);
3026 
3027 		efx->state = STATE_READY;
3028 
3029 		efx->type->resume_wol(efx);
3030 	}
3031 
3032 	rtnl_unlock();
3033 
3034 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3035 	queue_work(reset_workqueue, &efx->reset_work);
3036 
3037 	return 0;
3038 
3039 fail:
3040 	rtnl_unlock();
3041 
3042 	return rc;
3043 }
3044 
3045 static int efx_pm_poweroff(struct device *dev)
3046 {
3047 	struct pci_dev *pci_dev = to_pci_dev(dev);
3048 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3049 
3050 	efx->type->fini(efx);
3051 
3052 	efx->reset_pending = 0;
3053 
3054 	pci_save_state(pci_dev);
3055 	return pci_set_power_state(pci_dev, PCI_D3hot);
3056 }
3057 
3058 /* Used for both resume and restore */
3059 static int efx_pm_resume(struct device *dev)
3060 {
3061 	struct pci_dev *pci_dev = to_pci_dev(dev);
3062 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3063 	int rc;
3064 
3065 	rc = pci_set_power_state(pci_dev, PCI_D0);
3066 	if (rc)
3067 		return rc;
3068 	pci_restore_state(pci_dev);
3069 	rc = pci_enable_device(pci_dev);
3070 	if (rc)
3071 		return rc;
3072 	pci_set_master(efx->pci_dev);
3073 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3074 	if (rc)
3075 		return rc;
3076 	rc = efx->type->init(efx);
3077 	if (rc)
3078 		return rc;
3079 	rc = efx_pm_thaw(dev);
3080 	return rc;
3081 }
3082 
3083 static int efx_pm_suspend(struct device *dev)
3084 {
3085 	int rc;
3086 
3087 	efx_pm_freeze(dev);
3088 	rc = efx_pm_poweroff(dev);
3089 	if (rc)
3090 		efx_pm_resume(dev);
3091 	return rc;
3092 }
3093 
3094 static const struct dev_pm_ops efx_pm_ops = {
3095 	.suspend	= efx_pm_suspend,
3096 	.resume		= efx_pm_resume,
3097 	.freeze		= efx_pm_freeze,
3098 	.thaw		= efx_pm_thaw,
3099 	.poweroff	= efx_pm_poweroff,
3100 	.restore	= efx_pm_resume,
3101 };
3102 
3103 /* A PCI error affecting this device was detected.
3104  * At this point MMIO and DMA may be disabled.
3105  * Stop the software path and request a slot reset.
3106  */
3107 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3108 					      enum pci_channel_state state)
3109 {
3110 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3111 	struct efx_nic *efx = pci_get_drvdata(pdev);
3112 
3113 	if (state == pci_channel_io_perm_failure)
3114 		return PCI_ERS_RESULT_DISCONNECT;
3115 
3116 	rtnl_lock();
3117 
3118 	if (efx->state != STATE_DISABLED) {
3119 		efx->state = STATE_RECOVERY;
3120 		efx->reset_pending = 0;
3121 
3122 		efx_device_detach_sync(efx);
3123 
3124 		efx_stop_all(efx);
3125 		efx_disable_interrupts(efx);
3126 
3127 		status = PCI_ERS_RESULT_NEED_RESET;
3128 	} else {
3129 		/* If the interface is disabled we don't want to do anything
3130 		 * with it.
3131 		 */
3132 		status = PCI_ERS_RESULT_RECOVERED;
3133 	}
3134 
3135 	rtnl_unlock();
3136 
3137 	pci_disable_device(pdev);
3138 
3139 	return status;
3140 }
3141 
3142 /* Fake a successfull reset, which will be performed later in efx_io_resume. */
3143 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3144 {
3145 	struct efx_nic *efx = pci_get_drvdata(pdev);
3146 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3147 	int rc;
3148 
3149 	if (pci_enable_device(pdev)) {
3150 		netif_err(efx, hw, efx->net_dev,
3151 			  "Cannot re-enable PCI device after reset.\n");
3152 		status =  PCI_ERS_RESULT_DISCONNECT;
3153 	}
3154 
3155 	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3156 	if (rc) {
3157 		netif_err(efx, hw, efx->net_dev,
3158 		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3159 		/* Non-fatal error. Continue. */
3160 	}
3161 
3162 	return status;
3163 }
3164 
3165 /* Perform the actual reset and resume I/O operations. */
3166 static void efx_io_resume(struct pci_dev *pdev)
3167 {
3168 	struct efx_nic *efx = pci_get_drvdata(pdev);
3169 	int rc;
3170 
3171 	rtnl_lock();
3172 
3173 	if (efx->state == STATE_DISABLED)
3174 		goto out;
3175 
3176 	rc = efx_reset(efx, RESET_TYPE_ALL);
3177 	if (rc) {
3178 		netif_err(efx, hw, efx->net_dev,
3179 			  "efx_reset failed after PCI error (%d)\n", rc);
3180 	} else {
3181 		efx->state = STATE_READY;
3182 		netif_dbg(efx, hw, efx->net_dev,
3183 			  "Done resetting and resuming IO after PCI error.\n");
3184 	}
3185 
3186 out:
3187 	rtnl_unlock();
3188 }
3189 
3190 /* For simplicity and reliability, we always require a slot reset and try to
3191  * reset the hardware when a pci error affecting the device is detected.
3192  * We leave both the link_reset and mmio_enabled callback unimplemented:
3193  * with our request for slot reset the mmio_enabled callback will never be
3194  * called, and the link_reset callback is not used by AER or EEH mechanisms.
3195  */
3196 static struct pci_error_handlers efx_err_handlers = {
3197 	.error_detected = efx_io_error_detected,
3198 	.slot_reset	= efx_io_slot_reset,
3199 	.resume		= efx_io_resume,
3200 };
3201 
3202 static struct pci_driver efx_pci_driver = {
3203 	.name		= KBUILD_MODNAME,
3204 	.id_table	= efx_pci_table,
3205 	.probe		= efx_pci_probe,
3206 	.remove		= efx_pci_remove,
3207 	.driver.pm	= &efx_pm_ops,
3208 	.err_handler	= &efx_err_handlers,
3209 };
3210 
3211 /**************************************************************************
3212  *
3213  * Kernel module interface
3214  *
3215  *************************************************************************/
3216 
3217 module_param(interrupt_mode, uint, 0444);
3218 MODULE_PARM_DESC(interrupt_mode,
3219 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3220 
3221 static int __init efx_init_module(void)
3222 {
3223 	int rc;
3224 
3225 	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3226 
3227 	rc = register_netdevice_notifier(&efx_netdev_notifier);
3228 	if (rc)
3229 		goto err_notifier;
3230 
3231 	rc = efx_init_sriov();
3232 	if (rc)
3233 		goto err_sriov;
3234 
3235 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3236 	if (!reset_workqueue) {
3237 		rc = -ENOMEM;
3238 		goto err_reset;
3239 	}
3240 
3241 	rc = pci_register_driver(&efx_pci_driver);
3242 	if (rc < 0)
3243 		goto err_pci;
3244 
3245 	return 0;
3246 
3247  err_pci:
3248 	destroy_workqueue(reset_workqueue);
3249  err_reset:
3250 	efx_fini_sriov();
3251  err_sriov:
3252 	unregister_netdevice_notifier(&efx_netdev_notifier);
3253  err_notifier:
3254 	return rc;
3255 }
3256 
3257 static void __exit efx_exit_module(void)
3258 {
3259 	printk(KERN_INFO "Solarflare NET driver unloading\n");
3260 
3261 	pci_unregister_driver(&efx_pci_driver);
3262 	destroy_workqueue(reset_workqueue);
3263 	efx_fini_sriov();
3264 	unregister_netdevice_notifier(&efx_netdev_notifier);
3265 
3266 }
3267 
3268 module_init(efx_init_module);
3269 module_exit(efx_exit_module);
3270 
3271 MODULE_AUTHOR("Solarflare Communications and "
3272 	      "Michael Brown <mbrown@fensystems.co.uk>");
3273 MODULE_DESCRIPTION("Solarflare network driver");
3274 MODULE_LICENSE("GPL");
3275 MODULE_DEVICE_TABLE(pci, efx_pci_table);
3276