1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/pci.h> 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/delay.h> 16 #include <linux/notifier.h> 17 #include <linux/ip.h> 18 #include <linux/tcp.h> 19 #include <linux/in.h> 20 #include <linux/ethtool.h> 21 #include <linux/topology.h> 22 #include <linux/gfp.h> 23 #include <linux/aer.h> 24 #include <linux/interrupt.h> 25 #include "net_driver.h" 26 #include "efx.h" 27 #include "nic.h" 28 #include "selftest.h" 29 30 #include "mcdi.h" 31 #include "workarounds.h" 32 33 /************************************************************************** 34 * 35 * Type name strings 36 * 37 ************************************************************************** 38 */ 39 40 /* Loopback mode names (see LOOPBACK_MODE()) */ 41 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; 42 const char *const efx_loopback_mode_names[] = { 43 [LOOPBACK_NONE] = "NONE", 44 [LOOPBACK_DATA] = "DATAPATH", 45 [LOOPBACK_GMAC] = "GMAC", 46 [LOOPBACK_XGMII] = "XGMII", 47 [LOOPBACK_XGXS] = "XGXS", 48 [LOOPBACK_XAUI] = "XAUI", 49 [LOOPBACK_GMII] = "GMII", 50 [LOOPBACK_SGMII] = "SGMII", 51 [LOOPBACK_XGBR] = "XGBR", 52 [LOOPBACK_XFI] = "XFI", 53 [LOOPBACK_XAUI_FAR] = "XAUI_FAR", 54 [LOOPBACK_GMII_FAR] = "GMII_FAR", 55 [LOOPBACK_SGMII_FAR] = "SGMII_FAR", 56 [LOOPBACK_XFI_FAR] = "XFI_FAR", 57 [LOOPBACK_GPHY] = "GPHY", 58 [LOOPBACK_PHYXS] = "PHYXS", 59 [LOOPBACK_PCS] = "PCS", 60 [LOOPBACK_PMAPMD] = "PMA/PMD", 61 [LOOPBACK_XPORT] = "XPORT", 62 [LOOPBACK_XGMII_WS] = "XGMII_WS", 63 [LOOPBACK_XAUI_WS] = "XAUI_WS", 64 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", 65 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", 66 [LOOPBACK_GMII_WS] = "GMII_WS", 67 [LOOPBACK_XFI_WS] = "XFI_WS", 68 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", 69 [LOOPBACK_PHYXS_WS] = "PHYXS_WS", 70 }; 71 72 const unsigned int efx_reset_type_max = RESET_TYPE_MAX; 73 const char *const efx_reset_type_names[] = { 74 [RESET_TYPE_INVISIBLE] = "INVISIBLE", 75 [RESET_TYPE_ALL] = "ALL", 76 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", 77 [RESET_TYPE_WORLD] = "WORLD", 78 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", 79 [RESET_TYPE_DISABLE] = "DISABLE", 80 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", 81 [RESET_TYPE_INT_ERROR] = "INT_ERROR", 82 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", 83 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", 84 [RESET_TYPE_TX_SKIP] = "TX_SKIP", 85 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", 86 [RESET_TYPE_MC_BIST] = "MC_BIST", 87 }; 88 89 /* Reset workqueue. If any NIC has a hardware failure then a reset will be 90 * queued onto this work queue. This is not a per-nic work queue, because 91 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. 92 */ 93 static struct workqueue_struct *reset_workqueue; 94 95 /* How often and how many times to poll for a reset while waiting for a 96 * BIST that another function started to complete. 97 */ 98 #define BIST_WAIT_DELAY_MS 100 99 #define BIST_WAIT_DELAY_COUNT 100 100 101 /************************************************************************** 102 * 103 * Configurable values 104 * 105 *************************************************************************/ 106 107 /* 108 * Use separate channels for TX and RX events 109 * 110 * Set this to 1 to use separate channels for TX and RX. It allows us 111 * to control interrupt affinity separately for TX and RX. 112 * 113 * This is only used in MSI-X interrupt mode 114 */ 115 static bool separate_tx_channels; 116 module_param(separate_tx_channels, bool, 0444); 117 MODULE_PARM_DESC(separate_tx_channels, 118 "Use separate channels for TX and RX"); 119 120 /* This is the weight assigned to each of the (per-channel) virtual 121 * NAPI devices. 122 */ 123 static int napi_weight = 64; 124 125 /* This is the time (in jiffies) between invocations of the hardware 126 * monitor. 127 * On Falcon-based NICs, this will: 128 * - Check the on-board hardware monitor; 129 * - Poll the link state and reconfigure the hardware as necessary. 130 * On Siena-based NICs for power systems with EEH support, this will give EEH a 131 * chance to start. 132 */ 133 static unsigned int efx_monitor_interval = 1 * HZ; 134 135 /* Initial interrupt moderation settings. They can be modified after 136 * module load with ethtool. 137 * 138 * The default for RX should strike a balance between increasing the 139 * round-trip latency and reducing overhead. 140 */ 141 static unsigned int rx_irq_mod_usec = 60; 142 143 /* Initial interrupt moderation settings. They can be modified after 144 * module load with ethtool. 145 * 146 * This default is chosen to ensure that a 10G link does not go idle 147 * while a TX queue is stopped after it has become full. A queue is 148 * restarted when it drops below half full. The time this takes (assuming 149 * worst case 3 descriptors per packet and 1024 descriptors) is 150 * 512 / 3 * 1.2 = 205 usec. 151 */ 152 static unsigned int tx_irq_mod_usec = 150; 153 154 /* This is the first interrupt mode to try out of: 155 * 0 => MSI-X 156 * 1 => MSI 157 * 2 => legacy 158 */ 159 static unsigned int interrupt_mode; 160 161 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), 162 * i.e. the number of CPUs among which we may distribute simultaneous 163 * interrupt handling. 164 * 165 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. 166 * The default (0) means to assign an interrupt to each core. 167 */ 168 static unsigned int rss_cpus; 169 module_param(rss_cpus, uint, 0444); 170 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 171 172 static bool phy_flash_cfg; 173 module_param(phy_flash_cfg, bool, 0644); 174 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 175 176 static unsigned irq_adapt_low_thresh = 8000; 177 module_param(irq_adapt_low_thresh, uint, 0644); 178 MODULE_PARM_DESC(irq_adapt_low_thresh, 179 "Threshold score for reducing IRQ moderation"); 180 181 static unsigned irq_adapt_high_thresh = 16000; 182 module_param(irq_adapt_high_thresh, uint, 0644); 183 MODULE_PARM_DESC(irq_adapt_high_thresh, 184 "Threshold score for increasing IRQ moderation"); 185 186 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 187 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 188 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 189 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 190 module_param(debug, uint, 0); 191 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 192 193 /************************************************************************** 194 * 195 * Utility functions and prototypes 196 * 197 *************************************************************************/ 198 199 static int efx_soft_enable_interrupts(struct efx_nic *efx); 200 static void efx_soft_disable_interrupts(struct efx_nic *efx); 201 static void efx_remove_channel(struct efx_channel *channel); 202 static void efx_remove_channels(struct efx_nic *efx); 203 static const struct efx_channel_type efx_default_channel_type; 204 static void efx_remove_port(struct efx_nic *efx); 205 static void efx_init_napi_channel(struct efx_channel *channel); 206 static void efx_fini_napi(struct efx_nic *efx); 207 static void efx_fini_napi_channel(struct efx_channel *channel); 208 static void efx_fini_struct(struct efx_nic *efx); 209 static void efx_start_all(struct efx_nic *efx); 210 static void efx_stop_all(struct efx_nic *efx); 211 212 #define EFX_ASSERT_RESET_SERIALISED(efx) \ 213 do { \ 214 if ((efx->state == STATE_READY) || \ 215 (efx->state == STATE_RECOVERY) || \ 216 (efx->state == STATE_DISABLED)) \ 217 ASSERT_RTNL(); \ 218 } while (0) 219 220 static int efx_check_disabled(struct efx_nic *efx) 221 { 222 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { 223 netif_err(efx, drv, efx->net_dev, 224 "device is disabled due to earlier errors\n"); 225 return -EIO; 226 } 227 return 0; 228 } 229 230 /************************************************************************** 231 * 232 * Event queue processing 233 * 234 *************************************************************************/ 235 236 /* Process channel's event queue 237 * 238 * This function is responsible for processing the event queue of a 239 * single channel. The caller must guarantee that this function will 240 * never be concurrently called more than once on the same channel, 241 * though different channels may be being processed concurrently. 242 */ 243 static int efx_process_channel(struct efx_channel *channel, int budget) 244 { 245 int spent; 246 247 if (unlikely(!channel->enabled)) 248 return 0; 249 250 spent = efx_nic_process_eventq(channel, budget); 251 if (spent && efx_channel_has_rx_queue(channel)) { 252 struct efx_rx_queue *rx_queue = 253 efx_channel_get_rx_queue(channel); 254 255 efx_rx_flush_packet(channel); 256 efx_fast_push_rx_descriptors(rx_queue, true); 257 } 258 259 return spent; 260 } 261 262 /* NAPI poll handler 263 * 264 * NAPI guarantees serialisation of polls of the same device, which 265 * provides the guarantee required by efx_process_channel(). 266 */ 267 static int efx_poll(struct napi_struct *napi, int budget) 268 { 269 struct efx_channel *channel = 270 container_of(napi, struct efx_channel, napi_str); 271 struct efx_nic *efx = channel->efx; 272 int spent; 273 274 netif_vdbg(efx, intr, efx->net_dev, 275 "channel %d NAPI poll executing on CPU %d\n", 276 channel->channel, raw_smp_processor_id()); 277 278 spent = efx_process_channel(channel, budget); 279 280 if (spent < budget) { 281 if (efx_channel_has_rx_queue(channel) && 282 efx->irq_rx_adaptive && 283 unlikely(++channel->irq_count == 1000)) { 284 if (unlikely(channel->irq_mod_score < 285 irq_adapt_low_thresh)) { 286 if (channel->irq_moderation > 1) { 287 channel->irq_moderation -= 1; 288 efx->type->push_irq_moderation(channel); 289 } 290 } else if (unlikely(channel->irq_mod_score > 291 irq_adapt_high_thresh)) { 292 if (channel->irq_moderation < 293 efx->irq_rx_moderation) { 294 channel->irq_moderation += 1; 295 efx->type->push_irq_moderation(channel); 296 } 297 } 298 channel->irq_count = 0; 299 channel->irq_mod_score = 0; 300 } 301 302 efx_filter_rfs_expire(channel); 303 304 /* There is no race here; although napi_disable() will 305 * only wait for napi_complete(), this isn't a problem 306 * since efx_nic_eventq_read_ack() will have no effect if 307 * interrupts have already been disabled. 308 */ 309 napi_complete(napi); 310 efx_nic_eventq_read_ack(channel); 311 } 312 313 return spent; 314 } 315 316 /* Create event queue 317 * Event queue memory allocations are done only once. If the channel 318 * is reset, the memory buffer will be reused; this guards against 319 * errors during channel reset and also simplifies interrupt handling. 320 */ 321 static int efx_probe_eventq(struct efx_channel *channel) 322 { 323 struct efx_nic *efx = channel->efx; 324 unsigned long entries; 325 326 netif_dbg(efx, probe, efx->net_dev, 327 "chan %d create event queue\n", channel->channel); 328 329 /* Build an event queue with room for one event per tx and rx buffer, 330 * plus some extra for link state events and MCDI completions. */ 331 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); 332 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); 333 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; 334 335 return efx_nic_probe_eventq(channel); 336 } 337 338 /* Prepare channel's event queue */ 339 static int efx_init_eventq(struct efx_channel *channel) 340 { 341 struct efx_nic *efx = channel->efx; 342 int rc; 343 344 EFX_WARN_ON_PARANOID(channel->eventq_init); 345 346 netif_dbg(efx, drv, efx->net_dev, 347 "chan %d init event queue\n", channel->channel); 348 349 rc = efx_nic_init_eventq(channel); 350 if (rc == 0) { 351 efx->type->push_irq_moderation(channel); 352 channel->eventq_read_ptr = 0; 353 channel->eventq_init = true; 354 } 355 return rc; 356 } 357 358 /* Enable event queue processing and NAPI */ 359 static void efx_start_eventq(struct efx_channel *channel) 360 { 361 netif_dbg(channel->efx, ifup, channel->efx->net_dev, 362 "chan %d start event queue\n", channel->channel); 363 364 /* Make sure the NAPI handler sees the enabled flag set */ 365 channel->enabled = true; 366 smp_wmb(); 367 368 napi_enable(&channel->napi_str); 369 efx_nic_eventq_read_ack(channel); 370 } 371 372 /* Disable event queue processing and NAPI */ 373 static void efx_stop_eventq(struct efx_channel *channel) 374 { 375 if (!channel->enabled) 376 return; 377 378 napi_disable(&channel->napi_str); 379 channel->enabled = false; 380 } 381 382 static void efx_fini_eventq(struct efx_channel *channel) 383 { 384 if (!channel->eventq_init) 385 return; 386 387 netif_dbg(channel->efx, drv, channel->efx->net_dev, 388 "chan %d fini event queue\n", channel->channel); 389 390 efx_nic_fini_eventq(channel); 391 channel->eventq_init = false; 392 } 393 394 static void efx_remove_eventq(struct efx_channel *channel) 395 { 396 netif_dbg(channel->efx, drv, channel->efx->net_dev, 397 "chan %d remove event queue\n", channel->channel); 398 399 efx_nic_remove_eventq(channel); 400 } 401 402 /************************************************************************** 403 * 404 * Channel handling 405 * 406 *************************************************************************/ 407 408 /* Allocate and initialise a channel structure. */ 409 static struct efx_channel * 410 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) 411 { 412 struct efx_channel *channel; 413 struct efx_rx_queue *rx_queue; 414 struct efx_tx_queue *tx_queue; 415 int j; 416 417 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 418 if (!channel) 419 return NULL; 420 421 channel->efx = efx; 422 channel->channel = i; 423 channel->type = &efx_default_channel_type; 424 425 for (j = 0; j < EFX_TXQ_TYPES; j++) { 426 tx_queue = &channel->tx_queue[j]; 427 tx_queue->efx = efx; 428 tx_queue->queue = i * EFX_TXQ_TYPES + j; 429 tx_queue->channel = channel; 430 } 431 432 rx_queue = &channel->rx_queue; 433 rx_queue->efx = efx; 434 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, 435 (unsigned long)rx_queue); 436 437 return channel; 438 } 439 440 /* Allocate and initialise a channel structure, copying parameters 441 * (but not resources) from an old channel structure. 442 */ 443 static struct efx_channel * 444 efx_copy_channel(const struct efx_channel *old_channel) 445 { 446 struct efx_channel *channel; 447 struct efx_rx_queue *rx_queue; 448 struct efx_tx_queue *tx_queue; 449 int j; 450 451 channel = kmalloc(sizeof(*channel), GFP_KERNEL); 452 if (!channel) 453 return NULL; 454 455 *channel = *old_channel; 456 457 channel->napi_dev = NULL; 458 memset(&channel->eventq, 0, sizeof(channel->eventq)); 459 460 for (j = 0; j < EFX_TXQ_TYPES; j++) { 461 tx_queue = &channel->tx_queue[j]; 462 if (tx_queue->channel) 463 tx_queue->channel = channel; 464 tx_queue->buffer = NULL; 465 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); 466 } 467 468 rx_queue = &channel->rx_queue; 469 rx_queue->buffer = NULL; 470 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); 471 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, 472 (unsigned long)rx_queue); 473 474 return channel; 475 } 476 477 static int efx_probe_channel(struct efx_channel *channel) 478 { 479 struct efx_tx_queue *tx_queue; 480 struct efx_rx_queue *rx_queue; 481 int rc; 482 483 netif_dbg(channel->efx, probe, channel->efx->net_dev, 484 "creating channel %d\n", channel->channel); 485 486 rc = channel->type->pre_probe(channel); 487 if (rc) 488 goto fail; 489 490 rc = efx_probe_eventq(channel); 491 if (rc) 492 goto fail; 493 494 efx_for_each_channel_tx_queue(tx_queue, channel) { 495 rc = efx_probe_tx_queue(tx_queue); 496 if (rc) 497 goto fail; 498 } 499 500 efx_for_each_channel_rx_queue(rx_queue, channel) { 501 rc = efx_probe_rx_queue(rx_queue); 502 if (rc) 503 goto fail; 504 } 505 506 return 0; 507 508 fail: 509 efx_remove_channel(channel); 510 return rc; 511 } 512 513 static void 514 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len) 515 { 516 struct efx_nic *efx = channel->efx; 517 const char *type; 518 int number; 519 520 number = channel->channel; 521 if (efx->tx_channel_offset == 0) { 522 type = ""; 523 } else if (channel->channel < efx->tx_channel_offset) { 524 type = "-rx"; 525 } else { 526 type = "-tx"; 527 number -= efx->tx_channel_offset; 528 } 529 snprintf(buf, len, "%s%s-%d", efx->name, type, number); 530 } 531 532 static void efx_set_channel_names(struct efx_nic *efx) 533 { 534 struct efx_channel *channel; 535 536 efx_for_each_channel(channel, efx) 537 channel->type->get_name(channel, 538 efx->msi_context[channel->channel].name, 539 sizeof(efx->msi_context[0].name)); 540 } 541 542 static int efx_probe_channels(struct efx_nic *efx) 543 { 544 struct efx_channel *channel; 545 int rc; 546 547 /* Restart special buffer allocation */ 548 efx->next_buffer_table = 0; 549 550 /* Probe channels in reverse, so that any 'extra' channels 551 * use the start of the buffer table. This allows the traffic 552 * channels to be resized without moving them or wasting the 553 * entries before them. 554 */ 555 efx_for_each_channel_rev(channel, efx) { 556 rc = efx_probe_channel(channel); 557 if (rc) { 558 netif_err(efx, probe, efx->net_dev, 559 "failed to create channel %d\n", 560 channel->channel); 561 goto fail; 562 } 563 } 564 efx_set_channel_names(efx); 565 566 return 0; 567 568 fail: 569 efx_remove_channels(efx); 570 return rc; 571 } 572 573 /* Channels are shutdown and reinitialised whilst the NIC is running 574 * to propagate configuration changes (mtu, checksum offload), or 575 * to clear hardware error conditions 576 */ 577 static void efx_start_datapath(struct efx_nic *efx) 578 { 579 bool old_rx_scatter = efx->rx_scatter; 580 struct efx_tx_queue *tx_queue; 581 struct efx_rx_queue *rx_queue; 582 struct efx_channel *channel; 583 size_t rx_buf_len; 584 585 /* Calculate the rx buffer allocation parameters required to 586 * support the current MTU, including padding for header 587 * alignment and overruns. 588 */ 589 efx->rx_dma_len = (efx->rx_prefix_size + 590 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + 591 efx->type->rx_buffer_padding); 592 rx_buf_len = (sizeof(struct efx_rx_page_state) + 593 efx->rx_ip_align + efx->rx_dma_len); 594 if (rx_buf_len <= PAGE_SIZE) { 595 efx->rx_scatter = efx->type->always_rx_scatter; 596 efx->rx_buffer_order = 0; 597 } else if (efx->type->can_rx_scatter) { 598 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES); 599 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) + 600 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE, 601 EFX_RX_BUF_ALIGNMENT) > 602 PAGE_SIZE); 603 efx->rx_scatter = true; 604 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE; 605 efx->rx_buffer_order = 0; 606 } else { 607 efx->rx_scatter = false; 608 efx->rx_buffer_order = get_order(rx_buf_len); 609 } 610 611 efx_rx_config_page_split(efx); 612 if (efx->rx_buffer_order) 613 netif_dbg(efx, drv, efx->net_dev, 614 "RX buf len=%u; page order=%u batch=%u\n", 615 efx->rx_dma_len, efx->rx_buffer_order, 616 efx->rx_pages_per_batch); 617 else 618 netif_dbg(efx, drv, efx->net_dev, 619 "RX buf len=%u step=%u bpp=%u; page batch=%u\n", 620 efx->rx_dma_len, efx->rx_page_buf_step, 621 efx->rx_bufs_per_page, efx->rx_pages_per_batch); 622 623 /* RX filters may also have scatter-enabled flags */ 624 if (efx->rx_scatter != old_rx_scatter) 625 efx->type->filter_update_rx_scatter(efx); 626 627 /* We must keep at least one descriptor in a TX ring empty. 628 * We could avoid this when the queue size does not exactly 629 * match the hardware ring size, but it's not that important. 630 * Therefore we stop the queue when one more skb might fill 631 * the ring completely. We wake it when half way back to 632 * empty. 633 */ 634 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx); 635 efx->txq_wake_thresh = efx->txq_stop_thresh / 2; 636 637 /* Initialise the channels */ 638 efx_for_each_channel(channel, efx) { 639 efx_for_each_channel_tx_queue(tx_queue, channel) { 640 efx_init_tx_queue(tx_queue); 641 atomic_inc(&efx->active_queues); 642 } 643 644 efx_for_each_channel_rx_queue(rx_queue, channel) { 645 efx_init_rx_queue(rx_queue); 646 atomic_inc(&efx->active_queues); 647 efx_stop_eventq(channel); 648 efx_fast_push_rx_descriptors(rx_queue, false); 649 efx_start_eventq(channel); 650 } 651 652 WARN_ON(channel->rx_pkt_n_frags); 653 } 654 655 efx_ptp_start_datapath(efx); 656 657 if (netif_device_present(efx->net_dev)) 658 netif_tx_wake_all_queues(efx->net_dev); 659 } 660 661 static void efx_stop_datapath(struct efx_nic *efx) 662 { 663 struct efx_channel *channel; 664 struct efx_tx_queue *tx_queue; 665 struct efx_rx_queue *rx_queue; 666 int rc; 667 668 EFX_ASSERT_RESET_SERIALISED(efx); 669 BUG_ON(efx->port_enabled); 670 671 efx_ptp_stop_datapath(efx); 672 673 /* Stop RX refill */ 674 efx_for_each_channel(channel, efx) { 675 efx_for_each_channel_rx_queue(rx_queue, channel) 676 rx_queue->refill_enabled = false; 677 } 678 679 efx_for_each_channel(channel, efx) { 680 /* RX packet processing is pipelined, so wait for the 681 * NAPI handler to complete. At least event queue 0 682 * might be kept active by non-data events, so don't 683 * use napi_synchronize() but actually disable NAPI 684 * temporarily. 685 */ 686 if (efx_channel_has_rx_queue(channel)) { 687 efx_stop_eventq(channel); 688 efx_start_eventq(channel); 689 } 690 } 691 692 rc = efx->type->fini_dmaq(efx); 693 if (rc && EFX_WORKAROUND_7803(efx)) { 694 /* Schedule a reset to recover from the flush failure. The 695 * descriptor caches reference memory we're about to free, 696 * but falcon_reconfigure_mac_wrapper() won't reconnect 697 * the MACs because of the pending reset. 698 */ 699 netif_err(efx, drv, efx->net_dev, 700 "Resetting to recover from flush failure\n"); 701 efx_schedule_reset(efx, RESET_TYPE_ALL); 702 } else if (rc) { 703 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); 704 } else { 705 netif_dbg(efx, drv, efx->net_dev, 706 "successfully flushed all queues\n"); 707 } 708 709 efx_for_each_channel(channel, efx) { 710 efx_for_each_channel_rx_queue(rx_queue, channel) 711 efx_fini_rx_queue(rx_queue); 712 efx_for_each_possible_channel_tx_queue(tx_queue, channel) 713 efx_fini_tx_queue(tx_queue); 714 } 715 } 716 717 static void efx_remove_channel(struct efx_channel *channel) 718 { 719 struct efx_tx_queue *tx_queue; 720 struct efx_rx_queue *rx_queue; 721 722 netif_dbg(channel->efx, drv, channel->efx->net_dev, 723 "destroy chan %d\n", channel->channel); 724 725 efx_for_each_channel_rx_queue(rx_queue, channel) 726 efx_remove_rx_queue(rx_queue); 727 efx_for_each_possible_channel_tx_queue(tx_queue, channel) 728 efx_remove_tx_queue(tx_queue); 729 efx_remove_eventq(channel); 730 channel->type->post_remove(channel); 731 } 732 733 static void efx_remove_channels(struct efx_nic *efx) 734 { 735 struct efx_channel *channel; 736 737 efx_for_each_channel(channel, efx) 738 efx_remove_channel(channel); 739 } 740 741 int 742 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) 743 { 744 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; 745 u32 old_rxq_entries, old_txq_entries; 746 unsigned i, next_buffer_table = 0; 747 int rc, rc2; 748 749 rc = efx_check_disabled(efx); 750 if (rc) 751 return rc; 752 753 /* Not all channels should be reallocated. We must avoid 754 * reallocating their buffer table entries. 755 */ 756 efx_for_each_channel(channel, efx) { 757 struct efx_rx_queue *rx_queue; 758 struct efx_tx_queue *tx_queue; 759 760 if (channel->type->copy) 761 continue; 762 next_buffer_table = max(next_buffer_table, 763 channel->eventq.index + 764 channel->eventq.entries); 765 efx_for_each_channel_rx_queue(rx_queue, channel) 766 next_buffer_table = max(next_buffer_table, 767 rx_queue->rxd.index + 768 rx_queue->rxd.entries); 769 efx_for_each_channel_tx_queue(tx_queue, channel) 770 next_buffer_table = max(next_buffer_table, 771 tx_queue->txd.index + 772 tx_queue->txd.entries); 773 } 774 775 efx_device_detach_sync(efx); 776 efx_stop_all(efx); 777 efx_soft_disable_interrupts(efx); 778 779 /* Clone channels (where possible) */ 780 memset(other_channel, 0, sizeof(other_channel)); 781 for (i = 0; i < efx->n_channels; i++) { 782 channel = efx->channel[i]; 783 if (channel->type->copy) 784 channel = channel->type->copy(channel); 785 if (!channel) { 786 rc = -ENOMEM; 787 goto out; 788 } 789 other_channel[i] = channel; 790 } 791 792 /* Swap entry counts and channel pointers */ 793 old_rxq_entries = efx->rxq_entries; 794 old_txq_entries = efx->txq_entries; 795 efx->rxq_entries = rxq_entries; 796 efx->txq_entries = txq_entries; 797 for (i = 0; i < efx->n_channels; i++) { 798 channel = efx->channel[i]; 799 efx->channel[i] = other_channel[i]; 800 other_channel[i] = channel; 801 } 802 803 /* Restart buffer table allocation */ 804 efx->next_buffer_table = next_buffer_table; 805 806 for (i = 0; i < efx->n_channels; i++) { 807 channel = efx->channel[i]; 808 if (!channel->type->copy) 809 continue; 810 rc = efx_probe_channel(channel); 811 if (rc) 812 goto rollback; 813 efx_init_napi_channel(efx->channel[i]); 814 } 815 816 out: 817 /* Destroy unused channel structures */ 818 for (i = 0; i < efx->n_channels; i++) { 819 channel = other_channel[i]; 820 if (channel && channel->type->copy) { 821 efx_fini_napi_channel(channel); 822 efx_remove_channel(channel); 823 kfree(channel); 824 } 825 } 826 827 rc2 = efx_soft_enable_interrupts(efx); 828 if (rc2) { 829 rc = rc ? rc : rc2; 830 netif_err(efx, drv, efx->net_dev, 831 "unable to restart interrupts on channel reallocation\n"); 832 efx_schedule_reset(efx, RESET_TYPE_DISABLE); 833 } else { 834 efx_start_all(efx); 835 netif_device_attach(efx->net_dev); 836 } 837 return rc; 838 839 rollback: 840 /* Swap back */ 841 efx->rxq_entries = old_rxq_entries; 842 efx->txq_entries = old_txq_entries; 843 for (i = 0; i < efx->n_channels; i++) { 844 channel = efx->channel[i]; 845 efx->channel[i] = other_channel[i]; 846 other_channel[i] = channel; 847 } 848 goto out; 849 } 850 851 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) 852 { 853 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); 854 } 855 856 static const struct efx_channel_type efx_default_channel_type = { 857 .pre_probe = efx_channel_dummy_op_int, 858 .post_remove = efx_channel_dummy_op_void, 859 .get_name = efx_get_channel_name, 860 .copy = efx_copy_channel, 861 .keep_eventq = false, 862 }; 863 864 int efx_channel_dummy_op_int(struct efx_channel *channel) 865 { 866 return 0; 867 } 868 869 void efx_channel_dummy_op_void(struct efx_channel *channel) 870 { 871 } 872 873 /************************************************************************** 874 * 875 * Port handling 876 * 877 **************************************************************************/ 878 879 /* This ensures that the kernel is kept informed (via 880 * netif_carrier_on/off) of the link status, and also maintains the 881 * link status's stop on the port's TX queue. 882 */ 883 void efx_link_status_changed(struct efx_nic *efx) 884 { 885 struct efx_link_state *link_state = &efx->link_state; 886 887 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure 888 * that no events are triggered between unregister_netdev() and the 889 * driver unloading. A more general condition is that NETDEV_CHANGE 890 * can only be generated between NETDEV_UP and NETDEV_DOWN */ 891 if (!netif_running(efx->net_dev)) 892 return; 893 894 if (link_state->up != netif_carrier_ok(efx->net_dev)) { 895 efx->n_link_state_changes++; 896 897 if (link_state->up) 898 netif_carrier_on(efx->net_dev); 899 else 900 netif_carrier_off(efx->net_dev); 901 } 902 903 /* Status message for kernel log */ 904 if (link_state->up) 905 netif_info(efx, link, efx->net_dev, 906 "link up at %uMbps %s-duplex (MTU %d)\n", 907 link_state->speed, link_state->fd ? "full" : "half", 908 efx->net_dev->mtu); 909 else 910 netif_info(efx, link, efx->net_dev, "link down\n"); 911 } 912 913 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising) 914 { 915 efx->link_advertising = advertising; 916 if (advertising) { 917 if (advertising & ADVERTISED_Pause) 918 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); 919 else 920 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); 921 if (advertising & ADVERTISED_Asym_Pause) 922 efx->wanted_fc ^= EFX_FC_TX; 923 } 924 } 925 926 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) 927 { 928 efx->wanted_fc = wanted_fc; 929 if (efx->link_advertising) { 930 if (wanted_fc & EFX_FC_RX) 931 efx->link_advertising |= (ADVERTISED_Pause | 932 ADVERTISED_Asym_Pause); 933 else 934 efx->link_advertising &= ~(ADVERTISED_Pause | 935 ADVERTISED_Asym_Pause); 936 if (wanted_fc & EFX_FC_TX) 937 efx->link_advertising ^= ADVERTISED_Asym_Pause; 938 } 939 } 940 941 static void efx_fini_port(struct efx_nic *efx); 942 943 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure 944 * the MAC appropriately. All other PHY configuration changes are pushed 945 * through phy_op->set_settings(), and pushed asynchronously to the MAC 946 * through efx_monitor(). 947 * 948 * Callers must hold the mac_lock 949 */ 950 int __efx_reconfigure_port(struct efx_nic *efx) 951 { 952 enum efx_phy_mode phy_mode; 953 int rc; 954 955 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 956 957 /* Disable PHY transmit in mac level loopbacks */ 958 phy_mode = efx->phy_mode; 959 if (LOOPBACK_INTERNAL(efx)) 960 efx->phy_mode |= PHY_MODE_TX_DISABLED; 961 else 962 efx->phy_mode &= ~PHY_MODE_TX_DISABLED; 963 964 rc = efx->type->reconfigure_port(efx); 965 966 if (rc) 967 efx->phy_mode = phy_mode; 968 969 return rc; 970 } 971 972 /* Reinitialise the MAC to pick up new PHY settings, even if the port is 973 * disabled. */ 974 int efx_reconfigure_port(struct efx_nic *efx) 975 { 976 int rc; 977 978 EFX_ASSERT_RESET_SERIALISED(efx); 979 980 mutex_lock(&efx->mac_lock); 981 rc = __efx_reconfigure_port(efx); 982 mutex_unlock(&efx->mac_lock); 983 984 return rc; 985 } 986 987 /* Asynchronous work item for changing MAC promiscuity and multicast 988 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current 989 * MAC directly. */ 990 static void efx_mac_work(struct work_struct *data) 991 { 992 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); 993 994 mutex_lock(&efx->mac_lock); 995 if (efx->port_enabled) 996 efx->type->reconfigure_mac(efx); 997 mutex_unlock(&efx->mac_lock); 998 } 999 1000 static int efx_probe_port(struct efx_nic *efx) 1001 { 1002 int rc; 1003 1004 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 1005 1006 if (phy_flash_cfg) 1007 efx->phy_mode = PHY_MODE_SPECIAL; 1008 1009 /* Connect up MAC/PHY operations table */ 1010 rc = efx->type->probe_port(efx); 1011 if (rc) 1012 return rc; 1013 1014 /* Initialise MAC address to permanent address */ 1015 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); 1016 1017 return 0; 1018 } 1019 1020 static int efx_init_port(struct efx_nic *efx) 1021 { 1022 int rc; 1023 1024 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 1025 1026 mutex_lock(&efx->mac_lock); 1027 1028 rc = efx->phy_op->init(efx); 1029 if (rc) 1030 goto fail1; 1031 1032 efx->port_initialized = true; 1033 1034 /* Reconfigure the MAC before creating dma queues (required for 1035 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ 1036 efx->type->reconfigure_mac(efx); 1037 1038 /* Ensure the PHY advertises the correct flow control settings */ 1039 rc = efx->phy_op->reconfigure(efx); 1040 if (rc) 1041 goto fail2; 1042 1043 mutex_unlock(&efx->mac_lock); 1044 return 0; 1045 1046 fail2: 1047 efx->phy_op->fini(efx); 1048 fail1: 1049 mutex_unlock(&efx->mac_lock); 1050 return rc; 1051 } 1052 1053 static void efx_start_port(struct efx_nic *efx) 1054 { 1055 netif_dbg(efx, ifup, efx->net_dev, "start port\n"); 1056 BUG_ON(efx->port_enabled); 1057 1058 mutex_lock(&efx->mac_lock); 1059 efx->port_enabled = true; 1060 1061 /* Ensure MAC ingress/egress is enabled */ 1062 efx->type->reconfigure_mac(efx); 1063 1064 mutex_unlock(&efx->mac_lock); 1065 } 1066 1067 /* Cancel work for MAC reconfiguration, periodic hardware monitoring 1068 * and the async self-test, wait for them to finish and prevent them 1069 * being scheduled again. This doesn't cover online resets, which 1070 * should only be cancelled when removing the device. 1071 */ 1072 static void efx_stop_port(struct efx_nic *efx) 1073 { 1074 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); 1075 1076 EFX_ASSERT_RESET_SERIALISED(efx); 1077 1078 mutex_lock(&efx->mac_lock); 1079 efx->port_enabled = false; 1080 mutex_unlock(&efx->mac_lock); 1081 1082 /* Serialise against efx_set_multicast_list() */ 1083 netif_addr_lock_bh(efx->net_dev); 1084 netif_addr_unlock_bh(efx->net_dev); 1085 1086 cancel_delayed_work_sync(&efx->monitor_work); 1087 efx_selftest_async_cancel(efx); 1088 cancel_work_sync(&efx->mac_work); 1089 } 1090 1091 static void efx_fini_port(struct efx_nic *efx) 1092 { 1093 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 1094 1095 if (!efx->port_initialized) 1096 return; 1097 1098 efx->phy_op->fini(efx); 1099 efx->port_initialized = false; 1100 1101 efx->link_state.up = false; 1102 efx_link_status_changed(efx); 1103 } 1104 1105 static void efx_remove_port(struct efx_nic *efx) 1106 { 1107 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 1108 1109 efx->type->remove_port(efx); 1110 } 1111 1112 /************************************************************************** 1113 * 1114 * NIC handling 1115 * 1116 **************************************************************************/ 1117 1118 static LIST_HEAD(efx_primary_list); 1119 static LIST_HEAD(efx_unassociated_list); 1120 1121 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right) 1122 { 1123 return left->type == right->type && 1124 left->vpd_sn && right->vpd_sn && 1125 !strcmp(left->vpd_sn, right->vpd_sn); 1126 } 1127 1128 static void efx_associate(struct efx_nic *efx) 1129 { 1130 struct efx_nic *other, *next; 1131 1132 if (efx->primary == efx) { 1133 /* Adding primary function; look for secondaries */ 1134 1135 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 1136 list_add_tail(&efx->node, &efx_primary_list); 1137 1138 list_for_each_entry_safe(other, next, &efx_unassociated_list, 1139 node) { 1140 if (efx_same_controller(efx, other)) { 1141 list_del(&other->node); 1142 netif_dbg(other, probe, other->net_dev, 1143 "moving to secondary list of %s %s\n", 1144 pci_name(efx->pci_dev), 1145 efx->net_dev->name); 1146 list_add_tail(&other->node, 1147 &efx->secondary_list); 1148 other->primary = efx; 1149 } 1150 } 1151 } else { 1152 /* Adding secondary function; look for primary */ 1153 1154 list_for_each_entry(other, &efx_primary_list, node) { 1155 if (efx_same_controller(efx, other)) { 1156 netif_dbg(efx, probe, efx->net_dev, 1157 "adding to secondary list of %s %s\n", 1158 pci_name(other->pci_dev), 1159 other->net_dev->name); 1160 list_add_tail(&efx->node, 1161 &other->secondary_list); 1162 efx->primary = other; 1163 return; 1164 } 1165 } 1166 1167 netif_dbg(efx, probe, efx->net_dev, 1168 "adding to unassociated list\n"); 1169 list_add_tail(&efx->node, &efx_unassociated_list); 1170 } 1171 } 1172 1173 static void efx_dissociate(struct efx_nic *efx) 1174 { 1175 struct efx_nic *other, *next; 1176 1177 list_del(&efx->node); 1178 efx->primary = NULL; 1179 1180 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 1181 list_del(&other->node); 1182 netif_dbg(other, probe, other->net_dev, 1183 "moving to unassociated list\n"); 1184 list_add_tail(&other->node, &efx_unassociated_list); 1185 other->primary = NULL; 1186 } 1187 } 1188 1189 /* This configures the PCI device to enable I/O and DMA. */ 1190 static int efx_init_io(struct efx_nic *efx) 1191 { 1192 struct pci_dev *pci_dev = efx->pci_dev; 1193 dma_addr_t dma_mask = efx->type->max_dma_mask; 1194 unsigned int mem_map_size = efx->type->mem_map_size(efx); 1195 int rc; 1196 1197 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); 1198 1199 rc = pci_enable_device(pci_dev); 1200 if (rc) { 1201 netif_err(efx, probe, efx->net_dev, 1202 "failed to enable PCI device\n"); 1203 goto fail1; 1204 } 1205 1206 pci_set_master(pci_dev); 1207 1208 /* Set the PCI DMA mask. Try all possibilities from our 1209 * genuine mask down to 32 bits, because some architectures 1210 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit 1211 * masks event though they reject 46 bit masks. 1212 */ 1213 while (dma_mask > 0x7fffffffUL) { 1214 if (dma_supported(&pci_dev->dev, dma_mask)) { 1215 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); 1216 if (rc == 0) 1217 break; 1218 } 1219 dma_mask >>= 1; 1220 } 1221 if (rc) { 1222 netif_err(efx, probe, efx->net_dev, 1223 "could not find a suitable DMA mask\n"); 1224 goto fail2; 1225 } 1226 netif_dbg(efx, probe, efx->net_dev, 1227 "using DMA mask %llx\n", (unsigned long long) dma_mask); 1228 1229 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR); 1230 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc"); 1231 if (rc) { 1232 netif_err(efx, probe, efx->net_dev, 1233 "request for memory BAR failed\n"); 1234 rc = -EIO; 1235 goto fail3; 1236 } 1237 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size); 1238 if (!efx->membase) { 1239 netif_err(efx, probe, efx->net_dev, 1240 "could not map memory BAR at %llx+%x\n", 1241 (unsigned long long)efx->membase_phys, mem_map_size); 1242 rc = -ENOMEM; 1243 goto fail4; 1244 } 1245 netif_dbg(efx, probe, efx->net_dev, 1246 "memory BAR at %llx+%x (virtual %p)\n", 1247 (unsigned long long)efx->membase_phys, mem_map_size, 1248 efx->membase); 1249 1250 return 0; 1251 1252 fail4: 1253 pci_release_region(efx->pci_dev, EFX_MEM_BAR); 1254 fail3: 1255 efx->membase_phys = 0; 1256 fail2: 1257 pci_disable_device(efx->pci_dev); 1258 fail1: 1259 return rc; 1260 } 1261 1262 static void efx_fini_io(struct efx_nic *efx) 1263 { 1264 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); 1265 1266 if (efx->membase) { 1267 iounmap(efx->membase); 1268 efx->membase = NULL; 1269 } 1270 1271 if (efx->membase_phys) { 1272 pci_release_region(efx->pci_dev, EFX_MEM_BAR); 1273 efx->membase_phys = 0; 1274 } 1275 1276 pci_disable_device(efx->pci_dev); 1277 } 1278 1279 static unsigned int efx_wanted_parallelism(struct efx_nic *efx) 1280 { 1281 cpumask_var_t thread_mask; 1282 unsigned int count; 1283 int cpu; 1284 1285 if (rss_cpus) { 1286 count = rss_cpus; 1287 } else { 1288 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { 1289 netif_warn(efx, probe, efx->net_dev, 1290 "RSS disabled due to allocation failure\n"); 1291 return 1; 1292 } 1293 1294 count = 0; 1295 for_each_online_cpu(cpu) { 1296 if (!cpumask_test_cpu(cpu, thread_mask)) { 1297 ++count; 1298 cpumask_or(thread_mask, thread_mask, 1299 topology_thread_cpumask(cpu)); 1300 } 1301 } 1302 1303 free_cpumask_var(thread_mask); 1304 } 1305 1306 /* If RSS is requested for the PF *and* VFs then we can't write RSS 1307 * table entries that are inaccessible to VFs 1308 */ 1309 if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 && 1310 count > efx_vf_size(efx)) { 1311 netif_warn(efx, probe, efx->net_dev, 1312 "Reducing number of RSS channels from %u to %u for " 1313 "VF support. Increase vf-msix-limit to use more " 1314 "channels on the PF.\n", 1315 count, efx_vf_size(efx)); 1316 count = efx_vf_size(efx); 1317 } 1318 1319 return count; 1320 } 1321 1322 /* Probe the number and type of interrupts we are able to obtain, and 1323 * the resulting numbers of channels and RX queues. 1324 */ 1325 static int efx_probe_interrupts(struct efx_nic *efx) 1326 { 1327 unsigned int extra_channels = 0; 1328 unsigned int i, j; 1329 int rc; 1330 1331 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) 1332 if (efx->extra_channel_type[i]) 1333 ++extra_channels; 1334 1335 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { 1336 struct msix_entry xentries[EFX_MAX_CHANNELS]; 1337 unsigned int n_channels; 1338 1339 n_channels = efx_wanted_parallelism(efx); 1340 if (separate_tx_channels) 1341 n_channels *= 2; 1342 n_channels += extra_channels; 1343 n_channels = min(n_channels, efx->max_channels); 1344 1345 for (i = 0; i < n_channels; i++) 1346 xentries[i].entry = i; 1347 rc = pci_enable_msix_range(efx->pci_dev, 1348 xentries, 1, n_channels); 1349 if (rc < 0) { 1350 /* Fall back to single channel MSI */ 1351 efx->interrupt_mode = EFX_INT_MODE_MSI; 1352 netif_err(efx, drv, efx->net_dev, 1353 "could not enable MSI-X\n"); 1354 } else if (rc < n_channels) { 1355 netif_err(efx, drv, efx->net_dev, 1356 "WARNING: Insufficient MSI-X vectors" 1357 " available (%d < %u).\n", rc, n_channels); 1358 netif_err(efx, drv, efx->net_dev, 1359 "WARNING: Performance may be reduced.\n"); 1360 n_channels = rc; 1361 } 1362 1363 if (rc > 0) { 1364 efx->n_channels = n_channels; 1365 if (n_channels > extra_channels) 1366 n_channels -= extra_channels; 1367 if (separate_tx_channels) { 1368 efx->n_tx_channels = max(n_channels / 2, 1U); 1369 efx->n_rx_channels = max(n_channels - 1370 efx->n_tx_channels, 1371 1U); 1372 } else { 1373 efx->n_tx_channels = n_channels; 1374 efx->n_rx_channels = n_channels; 1375 } 1376 for (i = 0; i < efx->n_channels; i++) 1377 efx_get_channel(efx, i)->irq = 1378 xentries[i].vector; 1379 } 1380 } 1381 1382 /* Try single interrupt MSI */ 1383 if (efx->interrupt_mode == EFX_INT_MODE_MSI) { 1384 efx->n_channels = 1; 1385 efx->n_rx_channels = 1; 1386 efx->n_tx_channels = 1; 1387 rc = pci_enable_msi(efx->pci_dev); 1388 if (rc == 0) { 1389 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; 1390 } else { 1391 netif_err(efx, drv, efx->net_dev, 1392 "could not enable MSI\n"); 1393 efx->interrupt_mode = EFX_INT_MODE_LEGACY; 1394 } 1395 } 1396 1397 /* Assume legacy interrupts */ 1398 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { 1399 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0); 1400 efx->n_rx_channels = 1; 1401 efx->n_tx_channels = 1; 1402 efx->legacy_irq = efx->pci_dev->irq; 1403 } 1404 1405 /* Assign extra channels if possible */ 1406 j = efx->n_channels; 1407 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) { 1408 if (!efx->extra_channel_type[i]) 1409 continue; 1410 if (efx->interrupt_mode != EFX_INT_MODE_MSIX || 1411 efx->n_channels <= extra_channels) { 1412 efx->extra_channel_type[i]->handle_no_channel(efx); 1413 } else { 1414 --j; 1415 efx_get_channel(efx, j)->type = 1416 efx->extra_channel_type[i]; 1417 } 1418 } 1419 1420 /* RSS might be usable on VFs even if it is disabled on the PF */ 1421 efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ? 1422 efx->n_rx_channels : efx_vf_size(efx)); 1423 1424 return 0; 1425 } 1426 1427 static int efx_soft_enable_interrupts(struct efx_nic *efx) 1428 { 1429 struct efx_channel *channel, *end_channel; 1430 int rc; 1431 1432 BUG_ON(efx->state == STATE_DISABLED); 1433 1434 efx->irq_soft_enabled = true; 1435 smp_wmb(); 1436 1437 efx_for_each_channel(channel, efx) { 1438 if (!channel->type->keep_eventq) { 1439 rc = efx_init_eventq(channel); 1440 if (rc) 1441 goto fail; 1442 } 1443 efx_start_eventq(channel); 1444 } 1445 1446 efx_mcdi_mode_event(efx); 1447 1448 return 0; 1449 fail: 1450 end_channel = channel; 1451 efx_for_each_channel(channel, efx) { 1452 if (channel == end_channel) 1453 break; 1454 efx_stop_eventq(channel); 1455 if (!channel->type->keep_eventq) 1456 efx_fini_eventq(channel); 1457 } 1458 1459 return rc; 1460 } 1461 1462 static void efx_soft_disable_interrupts(struct efx_nic *efx) 1463 { 1464 struct efx_channel *channel; 1465 1466 if (efx->state == STATE_DISABLED) 1467 return; 1468 1469 efx_mcdi_mode_poll(efx); 1470 1471 efx->irq_soft_enabled = false; 1472 smp_wmb(); 1473 1474 if (efx->legacy_irq) 1475 synchronize_irq(efx->legacy_irq); 1476 1477 efx_for_each_channel(channel, efx) { 1478 if (channel->irq) 1479 synchronize_irq(channel->irq); 1480 1481 efx_stop_eventq(channel); 1482 if (!channel->type->keep_eventq) 1483 efx_fini_eventq(channel); 1484 } 1485 1486 /* Flush the asynchronous MCDI request queue */ 1487 efx_mcdi_flush_async(efx); 1488 } 1489 1490 static int efx_enable_interrupts(struct efx_nic *efx) 1491 { 1492 struct efx_channel *channel, *end_channel; 1493 int rc; 1494 1495 BUG_ON(efx->state == STATE_DISABLED); 1496 1497 if (efx->eeh_disabled_legacy_irq) { 1498 enable_irq(efx->legacy_irq); 1499 efx->eeh_disabled_legacy_irq = false; 1500 } 1501 1502 efx->type->irq_enable_master(efx); 1503 1504 efx_for_each_channel(channel, efx) { 1505 if (channel->type->keep_eventq) { 1506 rc = efx_init_eventq(channel); 1507 if (rc) 1508 goto fail; 1509 } 1510 } 1511 1512 rc = efx_soft_enable_interrupts(efx); 1513 if (rc) 1514 goto fail; 1515 1516 return 0; 1517 1518 fail: 1519 end_channel = channel; 1520 efx_for_each_channel(channel, efx) { 1521 if (channel == end_channel) 1522 break; 1523 if (channel->type->keep_eventq) 1524 efx_fini_eventq(channel); 1525 } 1526 1527 efx->type->irq_disable_non_ev(efx); 1528 1529 return rc; 1530 } 1531 1532 static void efx_disable_interrupts(struct efx_nic *efx) 1533 { 1534 struct efx_channel *channel; 1535 1536 efx_soft_disable_interrupts(efx); 1537 1538 efx_for_each_channel(channel, efx) { 1539 if (channel->type->keep_eventq) 1540 efx_fini_eventq(channel); 1541 } 1542 1543 efx->type->irq_disable_non_ev(efx); 1544 } 1545 1546 static void efx_remove_interrupts(struct efx_nic *efx) 1547 { 1548 struct efx_channel *channel; 1549 1550 /* Remove MSI/MSI-X interrupts */ 1551 efx_for_each_channel(channel, efx) 1552 channel->irq = 0; 1553 pci_disable_msi(efx->pci_dev); 1554 pci_disable_msix(efx->pci_dev); 1555 1556 /* Remove legacy interrupt */ 1557 efx->legacy_irq = 0; 1558 } 1559 1560 static void efx_set_channels(struct efx_nic *efx) 1561 { 1562 struct efx_channel *channel; 1563 struct efx_tx_queue *tx_queue; 1564 1565 efx->tx_channel_offset = 1566 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0; 1567 1568 /* We need to mark which channels really have RX and TX 1569 * queues, and adjust the TX queue numbers if we have separate 1570 * RX-only and TX-only channels. 1571 */ 1572 efx_for_each_channel(channel, efx) { 1573 if (channel->channel < efx->n_rx_channels) 1574 channel->rx_queue.core_index = channel->channel; 1575 else 1576 channel->rx_queue.core_index = -1; 1577 1578 efx_for_each_channel_tx_queue(tx_queue, channel) 1579 tx_queue->queue -= (efx->tx_channel_offset * 1580 EFX_TXQ_TYPES); 1581 } 1582 } 1583 1584 static int efx_probe_nic(struct efx_nic *efx) 1585 { 1586 size_t i; 1587 int rc; 1588 1589 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 1590 1591 /* Carry out hardware-type specific initialisation */ 1592 rc = efx->type->probe(efx); 1593 if (rc) 1594 return rc; 1595 1596 /* Determine the number of channels and queues by trying to hook 1597 * in MSI-X interrupts. */ 1598 rc = efx_probe_interrupts(efx); 1599 if (rc) 1600 goto fail1; 1601 1602 efx_set_channels(efx); 1603 1604 rc = efx->type->dimension_resources(efx); 1605 if (rc) 1606 goto fail2; 1607 1608 if (efx->n_channels > 1) 1609 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key)); 1610 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) 1611 efx->rx_indir_table[i] = 1612 ethtool_rxfh_indir_default(i, efx->rss_spread); 1613 1614 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); 1615 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); 1616 1617 /* Initialise the interrupt moderation settings */ 1618 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 1619 true); 1620 1621 return 0; 1622 1623 fail2: 1624 efx_remove_interrupts(efx); 1625 fail1: 1626 efx->type->remove(efx); 1627 return rc; 1628 } 1629 1630 static void efx_remove_nic(struct efx_nic *efx) 1631 { 1632 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 1633 1634 efx_remove_interrupts(efx); 1635 efx->type->remove(efx); 1636 } 1637 1638 static int efx_probe_filters(struct efx_nic *efx) 1639 { 1640 int rc; 1641 1642 spin_lock_init(&efx->filter_lock); 1643 1644 rc = efx->type->filter_table_probe(efx); 1645 if (rc) 1646 return rc; 1647 1648 #ifdef CONFIG_RFS_ACCEL 1649 if (efx->type->offload_features & NETIF_F_NTUPLE) { 1650 efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters, 1651 sizeof(*efx->rps_flow_id), 1652 GFP_KERNEL); 1653 if (!efx->rps_flow_id) { 1654 efx->type->filter_table_remove(efx); 1655 return -ENOMEM; 1656 } 1657 } 1658 #endif 1659 1660 return 0; 1661 } 1662 1663 static void efx_remove_filters(struct efx_nic *efx) 1664 { 1665 #ifdef CONFIG_RFS_ACCEL 1666 kfree(efx->rps_flow_id); 1667 #endif 1668 efx->type->filter_table_remove(efx); 1669 } 1670 1671 static void efx_restore_filters(struct efx_nic *efx) 1672 { 1673 efx->type->filter_table_restore(efx); 1674 } 1675 1676 /************************************************************************** 1677 * 1678 * NIC startup/shutdown 1679 * 1680 *************************************************************************/ 1681 1682 static int efx_probe_all(struct efx_nic *efx) 1683 { 1684 int rc; 1685 1686 rc = efx_probe_nic(efx); 1687 if (rc) { 1688 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 1689 goto fail1; 1690 } 1691 1692 rc = efx_probe_port(efx); 1693 if (rc) { 1694 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 1695 goto fail2; 1696 } 1697 1698 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); 1699 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { 1700 rc = -EINVAL; 1701 goto fail3; 1702 } 1703 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; 1704 1705 rc = efx_probe_filters(efx); 1706 if (rc) { 1707 netif_err(efx, probe, efx->net_dev, 1708 "failed to create filter tables\n"); 1709 goto fail3; 1710 } 1711 1712 rc = efx_probe_channels(efx); 1713 if (rc) 1714 goto fail4; 1715 1716 return 0; 1717 1718 fail4: 1719 efx_remove_filters(efx); 1720 fail3: 1721 efx_remove_port(efx); 1722 fail2: 1723 efx_remove_nic(efx); 1724 fail1: 1725 return rc; 1726 } 1727 1728 /* If the interface is supposed to be running but is not, start 1729 * the hardware and software data path, regular activity for the port 1730 * (MAC statistics, link polling, etc.) and schedule the port to be 1731 * reconfigured. Interrupts must already be enabled. This function 1732 * is safe to call multiple times, so long as the NIC is not disabled. 1733 * Requires the RTNL lock. 1734 */ 1735 static void efx_start_all(struct efx_nic *efx) 1736 { 1737 EFX_ASSERT_RESET_SERIALISED(efx); 1738 BUG_ON(efx->state == STATE_DISABLED); 1739 1740 /* Check that it is appropriate to restart the interface. All 1741 * of these flags are safe to read under just the rtnl lock */ 1742 if (efx->port_enabled || !netif_running(efx->net_dev)) 1743 return; 1744 1745 efx_start_port(efx); 1746 efx_start_datapath(efx); 1747 1748 /* Start the hardware monitor if there is one */ 1749 if (efx->type->monitor != NULL) 1750 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1751 efx_monitor_interval); 1752 1753 /* If link state detection is normally event-driven, we have 1754 * to poll now because we could have missed a change 1755 */ 1756 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { 1757 mutex_lock(&efx->mac_lock); 1758 if (efx->phy_op->poll(efx)) 1759 efx_link_status_changed(efx); 1760 mutex_unlock(&efx->mac_lock); 1761 } 1762 1763 efx->type->start_stats(efx); 1764 efx->type->pull_stats(efx); 1765 spin_lock_bh(&efx->stats_lock); 1766 efx->type->update_stats(efx, NULL, NULL); 1767 spin_unlock_bh(&efx->stats_lock); 1768 } 1769 1770 /* Quiesce the hardware and software data path, and regular activity 1771 * for the port without bringing the link down. Safe to call multiple 1772 * times with the NIC in almost any state, but interrupts should be 1773 * enabled. Requires the RTNL lock. 1774 */ 1775 static void efx_stop_all(struct efx_nic *efx) 1776 { 1777 EFX_ASSERT_RESET_SERIALISED(efx); 1778 1779 /* port_enabled can be read safely under the rtnl lock */ 1780 if (!efx->port_enabled) 1781 return; 1782 1783 /* update stats before we go down so we can accurately count 1784 * rx_nodesc_drops 1785 */ 1786 efx->type->pull_stats(efx); 1787 spin_lock_bh(&efx->stats_lock); 1788 efx->type->update_stats(efx, NULL, NULL); 1789 spin_unlock_bh(&efx->stats_lock); 1790 efx->type->stop_stats(efx); 1791 efx_stop_port(efx); 1792 1793 /* Stop the kernel transmit interface. This is only valid if 1794 * the device is stopped or detached; otherwise the watchdog 1795 * may fire immediately. 1796 */ 1797 WARN_ON(netif_running(efx->net_dev) && 1798 netif_device_present(efx->net_dev)); 1799 netif_tx_disable(efx->net_dev); 1800 1801 efx_stop_datapath(efx); 1802 } 1803 1804 static void efx_remove_all(struct efx_nic *efx) 1805 { 1806 efx_remove_channels(efx); 1807 efx_remove_filters(efx); 1808 efx_remove_port(efx); 1809 efx_remove_nic(efx); 1810 } 1811 1812 /************************************************************************** 1813 * 1814 * Interrupt moderation 1815 * 1816 **************************************************************************/ 1817 1818 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns) 1819 { 1820 if (usecs == 0) 1821 return 0; 1822 if (usecs * 1000 < quantum_ns) 1823 return 1; /* never round down to 0 */ 1824 return usecs * 1000 / quantum_ns; 1825 } 1826 1827 /* Set interrupt moderation parameters */ 1828 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, 1829 unsigned int rx_usecs, bool rx_adaptive, 1830 bool rx_may_override_tx) 1831 { 1832 struct efx_channel *channel; 1833 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max * 1834 efx->timer_quantum_ns, 1835 1000); 1836 unsigned int tx_ticks; 1837 unsigned int rx_ticks; 1838 1839 EFX_ASSERT_RESET_SERIALISED(efx); 1840 1841 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max) 1842 return -EINVAL; 1843 1844 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns); 1845 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns); 1846 1847 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 && 1848 !rx_may_override_tx) { 1849 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 1850 "RX and TX IRQ moderation must be equal\n"); 1851 return -EINVAL; 1852 } 1853 1854 efx->irq_rx_adaptive = rx_adaptive; 1855 efx->irq_rx_moderation = rx_ticks; 1856 efx_for_each_channel(channel, efx) { 1857 if (efx_channel_has_rx_queue(channel)) 1858 channel->irq_moderation = rx_ticks; 1859 else if (efx_channel_has_tx_queues(channel)) 1860 channel->irq_moderation = tx_ticks; 1861 } 1862 1863 return 0; 1864 } 1865 1866 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, 1867 unsigned int *rx_usecs, bool *rx_adaptive) 1868 { 1869 /* We must round up when converting ticks to microseconds 1870 * because we round down when converting the other way. 1871 */ 1872 1873 *rx_adaptive = efx->irq_rx_adaptive; 1874 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation * 1875 efx->timer_quantum_ns, 1876 1000); 1877 1878 /* If channels are shared between RX and TX, so is IRQ 1879 * moderation. Otherwise, IRQ moderation is the same for all 1880 * TX channels and is not adaptive. 1881 */ 1882 if (efx->tx_channel_offset == 0) 1883 *tx_usecs = *rx_usecs; 1884 else 1885 *tx_usecs = DIV_ROUND_UP( 1886 efx->channel[efx->tx_channel_offset]->irq_moderation * 1887 efx->timer_quantum_ns, 1888 1000); 1889 } 1890 1891 /************************************************************************** 1892 * 1893 * Hardware monitor 1894 * 1895 **************************************************************************/ 1896 1897 /* Run periodically off the general workqueue */ 1898 static void efx_monitor(struct work_struct *data) 1899 { 1900 struct efx_nic *efx = container_of(data, struct efx_nic, 1901 monitor_work.work); 1902 1903 netif_vdbg(efx, timer, efx->net_dev, 1904 "hardware monitor executing on CPU %d\n", 1905 raw_smp_processor_id()); 1906 BUG_ON(efx->type->monitor == NULL); 1907 1908 /* If the mac_lock is already held then it is likely a port 1909 * reconfiguration is already in place, which will likely do 1910 * most of the work of monitor() anyway. */ 1911 if (mutex_trylock(&efx->mac_lock)) { 1912 if (efx->port_enabled) 1913 efx->type->monitor(efx); 1914 mutex_unlock(&efx->mac_lock); 1915 } 1916 1917 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1918 efx_monitor_interval); 1919 } 1920 1921 /************************************************************************** 1922 * 1923 * ioctls 1924 * 1925 *************************************************************************/ 1926 1927 /* Net device ioctl 1928 * Context: process, rtnl_lock() held. 1929 */ 1930 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 1931 { 1932 struct efx_nic *efx = netdev_priv(net_dev); 1933 struct mii_ioctl_data *data = if_mii(ifr); 1934 1935 if (cmd == SIOCSHWTSTAMP) 1936 return efx_ptp_set_ts_config(efx, ifr); 1937 if (cmd == SIOCGHWTSTAMP) 1938 return efx_ptp_get_ts_config(efx, ifr); 1939 1940 /* Convert phy_id from older PRTAD/DEVAD format */ 1941 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 1942 (data->phy_id & 0xfc00) == 0x0400) 1943 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 1944 1945 return mdio_mii_ioctl(&efx->mdio, data, cmd); 1946 } 1947 1948 /************************************************************************** 1949 * 1950 * NAPI interface 1951 * 1952 **************************************************************************/ 1953 1954 static void efx_init_napi_channel(struct efx_channel *channel) 1955 { 1956 struct efx_nic *efx = channel->efx; 1957 1958 channel->napi_dev = efx->net_dev; 1959 netif_napi_add(channel->napi_dev, &channel->napi_str, 1960 efx_poll, napi_weight); 1961 } 1962 1963 static void efx_init_napi(struct efx_nic *efx) 1964 { 1965 struct efx_channel *channel; 1966 1967 efx_for_each_channel(channel, efx) 1968 efx_init_napi_channel(channel); 1969 } 1970 1971 static void efx_fini_napi_channel(struct efx_channel *channel) 1972 { 1973 if (channel->napi_dev) 1974 netif_napi_del(&channel->napi_str); 1975 channel->napi_dev = NULL; 1976 } 1977 1978 static void efx_fini_napi(struct efx_nic *efx) 1979 { 1980 struct efx_channel *channel; 1981 1982 efx_for_each_channel(channel, efx) 1983 efx_fini_napi_channel(channel); 1984 } 1985 1986 /************************************************************************** 1987 * 1988 * Kernel netpoll interface 1989 * 1990 *************************************************************************/ 1991 1992 #ifdef CONFIG_NET_POLL_CONTROLLER 1993 1994 /* Although in the common case interrupts will be disabled, this is not 1995 * guaranteed. However, all our work happens inside the NAPI callback, 1996 * so no locking is required. 1997 */ 1998 static void efx_netpoll(struct net_device *net_dev) 1999 { 2000 struct efx_nic *efx = netdev_priv(net_dev); 2001 struct efx_channel *channel; 2002 2003 efx_for_each_channel(channel, efx) 2004 efx_schedule_channel(channel); 2005 } 2006 2007 #endif 2008 2009 /************************************************************************** 2010 * 2011 * Kernel net device interface 2012 * 2013 *************************************************************************/ 2014 2015 /* Context: process, rtnl_lock() held. */ 2016 static int efx_net_open(struct net_device *net_dev) 2017 { 2018 struct efx_nic *efx = netdev_priv(net_dev); 2019 int rc; 2020 2021 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 2022 raw_smp_processor_id()); 2023 2024 rc = efx_check_disabled(efx); 2025 if (rc) 2026 return rc; 2027 if (efx->phy_mode & PHY_MODE_SPECIAL) 2028 return -EBUSY; 2029 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) 2030 return -EIO; 2031 2032 /* Notify the kernel of the link state polled during driver load, 2033 * before the monitor starts running */ 2034 efx_link_status_changed(efx); 2035 2036 efx_start_all(efx); 2037 efx_selftest_async_start(efx); 2038 return 0; 2039 } 2040 2041 /* Context: process, rtnl_lock() held. 2042 * Note that the kernel will ignore our return code; this method 2043 * should really be a void. 2044 */ 2045 static int efx_net_stop(struct net_device *net_dev) 2046 { 2047 struct efx_nic *efx = netdev_priv(net_dev); 2048 2049 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 2050 raw_smp_processor_id()); 2051 2052 /* Stop the device and flush all the channels */ 2053 efx_stop_all(efx); 2054 2055 return 0; 2056 } 2057 2058 /* Context: process, dev_base_lock or RTNL held, non-blocking. */ 2059 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, 2060 struct rtnl_link_stats64 *stats) 2061 { 2062 struct efx_nic *efx = netdev_priv(net_dev); 2063 2064 spin_lock_bh(&efx->stats_lock); 2065 efx->type->update_stats(efx, NULL, stats); 2066 spin_unlock_bh(&efx->stats_lock); 2067 2068 return stats; 2069 } 2070 2071 /* Context: netif_tx_lock held, BHs disabled. */ 2072 static void efx_watchdog(struct net_device *net_dev) 2073 { 2074 struct efx_nic *efx = netdev_priv(net_dev); 2075 2076 netif_err(efx, tx_err, efx->net_dev, 2077 "TX stuck with port_enabled=%d: resetting channels\n", 2078 efx->port_enabled); 2079 2080 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 2081 } 2082 2083 2084 /* Context: process, rtnl_lock() held. */ 2085 static int efx_change_mtu(struct net_device *net_dev, int new_mtu) 2086 { 2087 struct efx_nic *efx = netdev_priv(net_dev); 2088 int rc; 2089 2090 rc = efx_check_disabled(efx); 2091 if (rc) 2092 return rc; 2093 if (new_mtu > EFX_MAX_MTU) 2094 return -EINVAL; 2095 2096 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); 2097 2098 efx_device_detach_sync(efx); 2099 efx_stop_all(efx); 2100 2101 mutex_lock(&efx->mac_lock); 2102 net_dev->mtu = new_mtu; 2103 efx->type->reconfigure_mac(efx); 2104 mutex_unlock(&efx->mac_lock); 2105 2106 efx_start_all(efx); 2107 netif_device_attach(efx->net_dev); 2108 return 0; 2109 } 2110 2111 static int efx_set_mac_address(struct net_device *net_dev, void *data) 2112 { 2113 struct efx_nic *efx = netdev_priv(net_dev); 2114 struct sockaddr *addr = data; 2115 u8 *new_addr = addr->sa_data; 2116 2117 if (!is_valid_ether_addr(new_addr)) { 2118 netif_err(efx, drv, efx->net_dev, 2119 "invalid ethernet MAC address requested: %pM\n", 2120 new_addr); 2121 return -EADDRNOTAVAIL; 2122 } 2123 2124 ether_addr_copy(net_dev->dev_addr, new_addr); 2125 efx_sriov_mac_address_changed(efx); 2126 2127 /* Reconfigure the MAC */ 2128 mutex_lock(&efx->mac_lock); 2129 efx->type->reconfigure_mac(efx); 2130 mutex_unlock(&efx->mac_lock); 2131 2132 return 0; 2133 } 2134 2135 /* Context: netif_addr_lock held, BHs disabled. */ 2136 static void efx_set_rx_mode(struct net_device *net_dev) 2137 { 2138 struct efx_nic *efx = netdev_priv(net_dev); 2139 2140 if (efx->port_enabled) 2141 queue_work(efx->workqueue, &efx->mac_work); 2142 /* Otherwise efx_start_port() will do this */ 2143 } 2144 2145 static int efx_set_features(struct net_device *net_dev, netdev_features_t data) 2146 { 2147 struct efx_nic *efx = netdev_priv(net_dev); 2148 2149 /* If disabling RX n-tuple filtering, clear existing filters */ 2150 if (net_dev->features & ~data & NETIF_F_NTUPLE) 2151 return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); 2152 2153 return 0; 2154 } 2155 2156 static const struct net_device_ops efx_farch_netdev_ops = { 2157 .ndo_open = efx_net_open, 2158 .ndo_stop = efx_net_stop, 2159 .ndo_get_stats64 = efx_net_stats, 2160 .ndo_tx_timeout = efx_watchdog, 2161 .ndo_start_xmit = efx_hard_start_xmit, 2162 .ndo_validate_addr = eth_validate_addr, 2163 .ndo_do_ioctl = efx_ioctl, 2164 .ndo_change_mtu = efx_change_mtu, 2165 .ndo_set_mac_address = efx_set_mac_address, 2166 .ndo_set_rx_mode = efx_set_rx_mode, 2167 .ndo_set_features = efx_set_features, 2168 #ifdef CONFIG_SFC_SRIOV 2169 .ndo_set_vf_mac = efx_sriov_set_vf_mac, 2170 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, 2171 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, 2172 .ndo_get_vf_config = efx_sriov_get_vf_config, 2173 #endif 2174 #ifdef CONFIG_NET_POLL_CONTROLLER 2175 .ndo_poll_controller = efx_netpoll, 2176 #endif 2177 .ndo_setup_tc = efx_setup_tc, 2178 #ifdef CONFIG_RFS_ACCEL 2179 .ndo_rx_flow_steer = efx_filter_rfs, 2180 #endif 2181 }; 2182 2183 static const struct net_device_ops efx_ef10_netdev_ops = { 2184 .ndo_open = efx_net_open, 2185 .ndo_stop = efx_net_stop, 2186 .ndo_get_stats64 = efx_net_stats, 2187 .ndo_tx_timeout = efx_watchdog, 2188 .ndo_start_xmit = efx_hard_start_xmit, 2189 .ndo_validate_addr = eth_validate_addr, 2190 .ndo_do_ioctl = efx_ioctl, 2191 .ndo_change_mtu = efx_change_mtu, 2192 .ndo_set_mac_address = efx_set_mac_address, 2193 .ndo_set_rx_mode = efx_set_rx_mode, 2194 .ndo_set_features = efx_set_features, 2195 #ifdef CONFIG_NET_POLL_CONTROLLER 2196 .ndo_poll_controller = efx_netpoll, 2197 #endif 2198 #ifdef CONFIG_RFS_ACCEL 2199 .ndo_rx_flow_steer = efx_filter_rfs, 2200 #endif 2201 }; 2202 2203 static void efx_update_name(struct efx_nic *efx) 2204 { 2205 strcpy(efx->name, efx->net_dev->name); 2206 efx_mtd_rename(efx); 2207 efx_set_channel_names(efx); 2208 } 2209 2210 static int efx_netdev_event(struct notifier_block *this, 2211 unsigned long event, void *ptr) 2212 { 2213 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 2214 2215 if ((net_dev->netdev_ops == &efx_farch_netdev_ops || 2216 net_dev->netdev_ops == &efx_ef10_netdev_ops) && 2217 event == NETDEV_CHANGENAME) 2218 efx_update_name(netdev_priv(net_dev)); 2219 2220 return NOTIFY_DONE; 2221 } 2222 2223 static struct notifier_block efx_netdev_notifier = { 2224 .notifier_call = efx_netdev_event, 2225 }; 2226 2227 static ssize_t 2228 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) 2229 { 2230 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2231 return sprintf(buf, "%d\n", efx->phy_type); 2232 } 2233 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); 2234 2235 static int efx_register_netdev(struct efx_nic *efx) 2236 { 2237 struct net_device *net_dev = efx->net_dev; 2238 struct efx_channel *channel; 2239 int rc; 2240 2241 net_dev->watchdog_timeo = 5 * HZ; 2242 net_dev->irq = efx->pci_dev->irq; 2243 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) { 2244 net_dev->netdev_ops = &efx_ef10_netdev_ops; 2245 net_dev->priv_flags |= IFF_UNICAST_FLT; 2246 } else { 2247 net_dev->netdev_ops = &efx_farch_netdev_ops; 2248 } 2249 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops); 2250 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS; 2251 2252 rtnl_lock(); 2253 2254 /* Enable resets to be scheduled and check whether any were 2255 * already requested. If so, the NIC is probably hosed so we 2256 * abort. 2257 */ 2258 efx->state = STATE_READY; 2259 smp_mb(); /* ensure we change state before checking reset_pending */ 2260 if (efx->reset_pending) { 2261 netif_err(efx, probe, efx->net_dev, 2262 "aborting probe due to scheduled reset\n"); 2263 rc = -EIO; 2264 goto fail_locked; 2265 } 2266 2267 rc = dev_alloc_name(net_dev, net_dev->name); 2268 if (rc < 0) 2269 goto fail_locked; 2270 efx_update_name(efx); 2271 2272 /* Always start with carrier off; PHY events will detect the link */ 2273 netif_carrier_off(net_dev); 2274 2275 rc = register_netdevice(net_dev); 2276 if (rc) 2277 goto fail_locked; 2278 2279 efx_for_each_channel(channel, efx) { 2280 struct efx_tx_queue *tx_queue; 2281 efx_for_each_channel_tx_queue(tx_queue, channel) 2282 efx_init_tx_queue_core_txq(tx_queue); 2283 } 2284 2285 efx_associate(efx); 2286 2287 rtnl_unlock(); 2288 2289 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2290 if (rc) { 2291 netif_err(efx, drv, efx->net_dev, 2292 "failed to init net dev attributes\n"); 2293 goto fail_registered; 2294 } 2295 2296 return 0; 2297 2298 fail_registered: 2299 rtnl_lock(); 2300 efx_dissociate(efx); 2301 unregister_netdevice(net_dev); 2302 fail_locked: 2303 efx->state = STATE_UNINIT; 2304 rtnl_unlock(); 2305 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 2306 return rc; 2307 } 2308 2309 static void efx_unregister_netdev(struct efx_nic *efx) 2310 { 2311 if (!efx->net_dev) 2312 return; 2313 2314 BUG_ON(netdev_priv(efx->net_dev) != efx); 2315 2316 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 2317 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2318 2319 rtnl_lock(); 2320 unregister_netdevice(efx->net_dev); 2321 efx->state = STATE_UNINIT; 2322 rtnl_unlock(); 2323 } 2324 2325 /************************************************************************** 2326 * 2327 * Device reset and suspend 2328 * 2329 **************************************************************************/ 2330 2331 /* Tears down the entire software state and most of the hardware state 2332 * before reset. */ 2333 void efx_reset_down(struct efx_nic *efx, enum reset_type method) 2334 { 2335 EFX_ASSERT_RESET_SERIALISED(efx); 2336 2337 efx_stop_all(efx); 2338 efx_disable_interrupts(efx); 2339 2340 mutex_lock(&efx->mac_lock); 2341 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) 2342 efx->phy_op->fini(efx); 2343 efx->type->fini(efx); 2344 } 2345 2346 /* This function will always ensure that the locks acquired in 2347 * efx_reset_down() are released. A failure return code indicates 2348 * that we were unable to reinitialise the hardware, and the 2349 * driver should be disabled. If ok is false, then the rx and tx 2350 * engines are not restarted, pending a RESET_DISABLE. */ 2351 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) 2352 { 2353 int rc; 2354 2355 EFX_ASSERT_RESET_SERIALISED(efx); 2356 2357 rc = efx->type->init(efx); 2358 if (rc) { 2359 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); 2360 goto fail; 2361 } 2362 2363 if (!ok) 2364 goto fail; 2365 2366 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) { 2367 rc = efx->phy_op->init(efx); 2368 if (rc) 2369 goto fail; 2370 if (efx->phy_op->reconfigure(efx)) 2371 netif_err(efx, drv, efx->net_dev, 2372 "could not restore PHY settings\n"); 2373 } 2374 2375 rc = efx_enable_interrupts(efx); 2376 if (rc) 2377 goto fail; 2378 efx_restore_filters(efx); 2379 efx_sriov_reset(efx); 2380 2381 mutex_unlock(&efx->mac_lock); 2382 2383 efx_start_all(efx); 2384 2385 return 0; 2386 2387 fail: 2388 efx->port_initialized = false; 2389 2390 mutex_unlock(&efx->mac_lock); 2391 2392 return rc; 2393 } 2394 2395 /* Reset the NIC using the specified method. Note that the reset may 2396 * fail, in which case the card will be left in an unusable state. 2397 * 2398 * Caller must hold the rtnl_lock. 2399 */ 2400 int efx_reset(struct efx_nic *efx, enum reset_type method) 2401 { 2402 int rc, rc2; 2403 bool disabled; 2404 2405 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", 2406 RESET_TYPE(method)); 2407 2408 efx_device_detach_sync(efx); 2409 efx_reset_down(efx, method); 2410 2411 rc = efx->type->reset(efx, method); 2412 if (rc) { 2413 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); 2414 goto out; 2415 } 2416 2417 /* Clear flags for the scopes we covered. We assume the NIC and 2418 * driver are now quiescent so that there is no race here. 2419 */ 2420 efx->reset_pending &= -(1 << (method + 1)); 2421 2422 /* Reinitialise bus-mastering, which may have been turned off before 2423 * the reset was scheduled. This is still appropriate, even in the 2424 * RESET_TYPE_DISABLE since this driver generally assumes the hardware 2425 * can respond to requests. */ 2426 pci_set_master(efx->pci_dev); 2427 2428 out: 2429 /* Leave device stopped if necessary */ 2430 disabled = rc || 2431 method == RESET_TYPE_DISABLE || 2432 method == RESET_TYPE_RECOVER_OR_DISABLE; 2433 rc2 = efx_reset_up(efx, method, !disabled); 2434 if (rc2) { 2435 disabled = true; 2436 if (!rc) 2437 rc = rc2; 2438 } 2439 2440 if (disabled) { 2441 dev_close(efx->net_dev); 2442 netif_err(efx, drv, efx->net_dev, "has been disabled\n"); 2443 efx->state = STATE_DISABLED; 2444 } else { 2445 netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); 2446 netif_device_attach(efx->net_dev); 2447 } 2448 return rc; 2449 } 2450 2451 /* Try recovery mechanisms. 2452 * For now only EEH is supported. 2453 * Returns 0 if the recovery mechanisms are unsuccessful. 2454 * Returns a non-zero value otherwise. 2455 */ 2456 int efx_try_recovery(struct efx_nic *efx) 2457 { 2458 #ifdef CONFIG_EEH 2459 /* A PCI error can occur and not be seen by EEH because nothing 2460 * happens on the PCI bus. In this case the driver may fail and 2461 * schedule a 'recover or reset', leading to this recovery handler. 2462 * Manually call the eeh failure check function. 2463 */ 2464 struct eeh_dev *eehdev = 2465 of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev)); 2466 2467 if (eeh_dev_check_failure(eehdev)) { 2468 /* The EEH mechanisms will handle the error and reset the 2469 * device if necessary. 2470 */ 2471 return 1; 2472 } 2473 #endif 2474 return 0; 2475 } 2476 2477 static void efx_wait_for_bist_end(struct efx_nic *efx) 2478 { 2479 int i; 2480 2481 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) { 2482 if (efx_mcdi_poll_reboot(efx)) 2483 goto out; 2484 msleep(BIST_WAIT_DELAY_MS); 2485 } 2486 2487 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n"); 2488 out: 2489 /* Either way unset the BIST flag. If we found no reboot we probably 2490 * won't recover, but we should try. 2491 */ 2492 efx->mc_bist_for_other_fn = false; 2493 } 2494 2495 /* The worker thread exists so that code that cannot sleep can 2496 * schedule a reset for later. 2497 */ 2498 static void efx_reset_work(struct work_struct *data) 2499 { 2500 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); 2501 unsigned long pending; 2502 enum reset_type method; 2503 2504 pending = ACCESS_ONCE(efx->reset_pending); 2505 method = fls(pending) - 1; 2506 2507 if (method == RESET_TYPE_MC_BIST) 2508 efx_wait_for_bist_end(efx); 2509 2510 if ((method == RESET_TYPE_RECOVER_OR_DISABLE || 2511 method == RESET_TYPE_RECOVER_OR_ALL) && 2512 efx_try_recovery(efx)) 2513 return; 2514 2515 if (!pending) 2516 return; 2517 2518 rtnl_lock(); 2519 2520 /* We checked the state in efx_schedule_reset() but it may 2521 * have changed by now. Now that we have the RTNL lock, 2522 * it cannot change again. 2523 */ 2524 if (efx->state == STATE_READY) 2525 (void)efx_reset(efx, method); 2526 2527 rtnl_unlock(); 2528 } 2529 2530 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) 2531 { 2532 enum reset_type method; 2533 2534 if (efx->state == STATE_RECOVERY) { 2535 netif_dbg(efx, drv, efx->net_dev, 2536 "recovering: skip scheduling %s reset\n", 2537 RESET_TYPE(type)); 2538 return; 2539 } 2540 2541 switch (type) { 2542 case RESET_TYPE_INVISIBLE: 2543 case RESET_TYPE_ALL: 2544 case RESET_TYPE_RECOVER_OR_ALL: 2545 case RESET_TYPE_WORLD: 2546 case RESET_TYPE_DISABLE: 2547 case RESET_TYPE_RECOVER_OR_DISABLE: 2548 case RESET_TYPE_MC_BIST: 2549 method = type; 2550 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", 2551 RESET_TYPE(method)); 2552 break; 2553 default: 2554 method = efx->type->map_reset_reason(type); 2555 netif_dbg(efx, drv, efx->net_dev, 2556 "scheduling %s reset for %s\n", 2557 RESET_TYPE(method), RESET_TYPE(type)); 2558 break; 2559 } 2560 2561 set_bit(method, &efx->reset_pending); 2562 smp_mb(); /* ensure we change reset_pending before checking state */ 2563 2564 /* If we're not READY then just leave the flags set as the cue 2565 * to abort probing or reschedule the reset later. 2566 */ 2567 if (ACCESS_ONCE(efx->state) != STATE_READY) 2568 return; 2569 2570 /* efx_process_channel() will no longer read events once a 2571 * reset is scheduled. So switch back to poll'd MCDI completions. */ 2572 efx_mcdi_mode_poll(efx); 2573 2574 queue_work(reset_workqueue, &efx->reset_work); 2575 } 2576 2577 /************************************************************************** 2578 * 2579 * List of NICs we support 2580 * 2581 **************************************************************************/ 2582 2583 /* PCI device ID table */ 2584 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = { 2585 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2586 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), 2587 .driver_data = (unsigned long) &falcon_a1_nic_type}, 2588 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2589 PCI_DEVICE_ID_SOLARFLARE_SFC4000B), 2590 .driver_data = (unsigned long) &falcon_b0_nic_type}, 2591 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ 2592 .driver_data = (unsigned long) &siena_a0_nic_type}, 2593 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ 2594 .driver_data = (unsigned long) &siena_a0_nic_type}, 2595 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */ 2596 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 2597 {0} /* end of list */ 2598 }; 2599 2600 /************************************************************************** 2601 * 2602 * Dummy PHY/MAC operations 2603 * 2604 * Can be used for some unimplemented operations 2605 * Needed so all function pointers are valid and do not have to be tested 2606 * before use 2607 * 2608 **************************************************************************/ 2609 int efx_port_dummy_op_int(struct efx_nic *efx) 2610 { 2611 return 0; 2612 } 2613 void efx_port_dummy_op_void(struct efx_nic *efx) {} 2614 2615 static bool efx_port_dummy_op_poll(struct efx_nic *efx) 2616 { 2617 return false; 2618 } 2619 2620 static const struct efx_phy_operations efx_dummy_phy_operations = { 2621 .init = efx_port_dummy_op_int, 2622 .reconfigure = efx_port_dummy_op_int, 2623 .poll = efx_port_dummy_op_poll, 2624 .fini = efx_port_dummy_op_void, 2625 }; 2626 2627 /************************************************************************** 2628 * 2629 * Data housekeeping 2630 * 2631 **************************************************************************/ 2632 2633 /* This zeroes out and then fills in the invariants in a struct 2634 * efx_nic (including all sub-structures). 2635 */ 2636 static int efx_init_struct(struct efx_nic *efx, 2637 struct pci_dev *pci_dev, struct net_device *net_dev) 2638 { 2639 int i; 2640 2641 /* Initialise common structures */ 2642 INIT_LIST_HEAD(&efx->node); 2643 INIT_LIST_HEAD(&efx->secondary_list); 2644 spin_lock_init(&efx->biu_lock); 2645 #ifdef CONFIG_SFC_MTD 2646 INIT_LIST_HEAD(&efx->mtd_list); 2647 #endif 2648 INIT_WORK(&efx->reset_work, efx_reset_work); 2649 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); 2650 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work); 2651 efx->pci_dev = pci_dev; 2652 efx->msg_enable = debug; 2653 efx->state = STATE_UNINIT; 2654 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); 2655 2656 efx->net_dev = net_dev; 2657 efx->rx_prefix_size = efx->type->rx_prefix_size; 2658 efx->rx_ip_align = 2659 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; 2660 efx->rx_packet_hash_offset = 2661 efx->type->rx_hash_offset - efx->type->rx_prefix_size; 2662 efx->rx_packet_ts_offset = 2663 efx->type->rx_ts_offset - efx->type->rx_prefix_size; 2664 spin_lock_init(&efx->stats_lock); 2665 mutex_init(&efx->mac_lock); 2666 efx->phy_op = &efx_dummy_phy_operations; 2667 efx->mdio.dev = net_dev; 2668 INIT_WORK(&efx->mac_work, efx_mac_work); 2669 init_waitqueue_head(&efx->flush_wq); 2670 2671 for (i = 0; i < EFX_MAX_CHANNELS; i++) { 2672 efx->channel[i] = efx_alloc_channel(efx, i, NULL); 2673 if (!efx->channel[i]) 2674 goto fail; 2675 efx->msi_context[i].efx = efx; 2676 efx->msi_context[i].index = i; 2677 } 2678 2679 /* Higher numbered interrupt modes are less capable! */ 2680 efx->interrupt_mode = max(efx->type->max_interrupt_mode, 2681 interrupt_mode); 2682 2683 /* Would be good to use the net_dev name, but we're too early */ 2684 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", 2685 pci_name(pci_dev)); 2686 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); 2687 if (!efx->workqueue) 2688 goto fail; 2689 2690 return 0; 2691 2692 fail: 2693 efx_fini_struct(efx); 2694 return -ENOMEM; 2695 } 2696 2697 static void efx_fini_struct(struct efx_nic *efx) 2698 { 2699 int i; 2700 2701 for (i = 0; i < EFX_MAX_CHANNELS; i++) 2702 kfree(efx->channel[i]); 2703 2704 kfree(efx->vpd_sn); 2705 2706 if (efx->workqueue) { 2707 destroy_workqueue(efx->workqueue); 2708 efx->workqueue = NULL; 2709 } 2710 } 2711 2712 /************************************************************************** 2713 * 2714 * PCI interface 2715 * 2716 **************************************************************************/ 2717 2718 /* Main body of final NIC shutdown code 2719 * This is called only at module unload (or hotplug removal). 2720 */ 2721 static void efx_pci_remove_main(struct efx_nic *efx) 2722 { 2723 /* Flush reset_work. It can no longer be scheduled since we 2724 * are not READY. 2725 */ 2726 BUG_ON(efx->state == STATE_READY); 2727 cancel_work_sync(&efx->reset_work); 2728 2729 efx_disable_interrupts(efx); 2730 efx_nic_fini_interrupt(efx); 2731 efx_fini_port(efx); 2732 efx->type->fini(efx); 2733 efx_fini_napi(efx); 2734 efx_remove_all(efx); 2735 } 2736 2737 /* Final NIC shutdown 2738 * This is called only at module unload (or hotplug removal). 2739 */ 2740 static void efx_pci_remove(struct pci_dev *pci_dev) 2741 { 2742 struct efx_nic *efx; 2743 2744 efx = pci_get_drvdata(pci_dev); 2745 if (!efx) 2746 return; 2747 2748 /* Mark the NIC as fini, then stop the interface */ 2749 rtnl_lock(); 2750 efx_dissociate(efx); 2751 dev_close(efx->net_dev); 2752 efx_disable_interrupts(efx); 2753 rtnl_unlock(); 2754 2755 efx_sriov_fini(efx); 2756 efx_unregister_netdev(efx); 2757 2758 efx_mtd_remove(efx); 2759 2760 efx_pci_remove_main(efx); 2761 2762 efx_fini_io(efx); 2763 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 2764 2765 efx_fini_struct(efx); 2766 free_netdev(efx->net_dev); 2767 2768 pci_disable_pcie_error_reporting(pci_dev); 2769 }; 2770 2771 /* NIC VPD information 2772 * Called during probe to display the part number of the 2773 * installed NIC. VPD is potentially very large but this should 2774 * always appear within the first 512 bytes. 2775 */ 2776 #define SFC_VPD_LEN 512 2777 static void efx_probe_vpd_strings(struct efx_nic *efx) 2778 { 2779 struct pci_dev *dev = efx->pci_dev; 2780 char vpd_data[SFC_VPD_LEN]; 2781 ssize_t vpd_size; 2782 int ro_start, ro_size, i, j; 2783 2784 /* Get the vpd data from the device */ 2785 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); 2786 if (vpd_size <= 0) { 2787 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); 2788 return; 2789 } 2790 2791 /* Get the Read only section */ 2792 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 2793 if (ro_start < 0) { 2794 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); 2795 return; 2796 } 2797 2798 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 2799 j = ro_size; 2800 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 2801 if (i + j > vpd_size) 2802 j = vpd_size - i; 2803 2804 /* Get the Part number */ 2805 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); 2806 if (i < 0) { 2807 netif_err(efx, drv, efx->net_dev, "Part number not found\n"); 2808 return; 2809 } 2810 2811 j = pci_vpd_info_field_size(&vpd_data[i]); 2812 i += PCI_VPD_INFO_FLD_HDR_SIZE; 2813 if (i + j > vpd_size) { 2814 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); 2815 return; 2816 } 2817 2818 netif_info(efx, drv, efx->net_dev, 2819 "Part Number : %.*s\n", j, &vpd_data[i]); 2820 2821 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 2822 j = ro_size; 2823 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); 2824 if (i < 0) { 2825 netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); 2826 return; 2827 } 2828 2829 j = pci_vpd_info_field_size(&vpd_data[i]); 2830 i += PCI_VPD_INFO_FLD_HDR_SIZE; 2831 if (i + j > vpd_size) { 2832 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); 2833 return; 2834 } 2835 2836 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); 2837 if (!efx->vpd_sn) 2838 return; 2839 2840 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); 2841 } 2842 2843 2844 /* Main body of NIC initialisation 2845 * This is called at module load (or hotplug insertion, theoretically). 2846 */ 2847 static int efx_pci_probe_main(struct efx_nic *efx) 2848 { 2849 int rc; 2850 2851 /* Do start-of-day initialisation */ 2852 rc = efx_probe_all(efx); 2853 if (rc) 2854 goto fail1; 2855 2856 efx_init_napi(efx); 2857 2858 rc = efx->type->init(efx); 2859 if (rc) { 2860 netif_err(efx, probe, efx->net_dev, 2861 "failed to initialise NIC\n"); 2862 goto fail3; 2863 } 2864 2865 rc = efx_init_port(efx); 2866 if (rc) { 2867 netif_err(efx, probe, efx->net_dev, 2868 "failed to initialise port\n"); 2869 goto fail4; 2870 } 2871 2872 rc = efx_nic_init_interrupt(efx); 2873 if (rc) 2874 goto fail5; 2875 rc = efx_enable_interrupts(efx); 2876 if (rc) 2877 goto fail6; 2878 2879 return 0; 2880 2881 fail6: 2882 efx_nic_fini_interrupt(efx); 2883 fail5: 2884 efx_fini_port(efx); 2885 fail4: 2886 efx->type->fini(efx); 2887 fail3: 2888 efx_fini_napi(efx); 2889 efx_remove_all(efx); 2890 fail1: 2891 return rc; 2892 } 2893 2894 /* NIC initialisation 2895 * 2896 * This is called at module load (or hotplug insertion, 2897 * theoretically). It sets up PCI mappings, resets the NIC, 2898 * sets up and registers the network devices with the kernel and hooks 2899 * the interrupt service routine. It does not prepare the device for 2900 * transmission; this is left to the first time one of the network 2901 * interfaces is brought up (i.e. efx_net_open). 2902 */ 2903 static int efx_pci_probe(struct pci_dev *pci_dev, 2904 const struct pci_device_id *entry) 2905 { 2906 struct net_device *net_dev; 2907 struct efx_nic *efx; 2908 int rc; 2909 2910 /* Allocate and initialise a struct net_device and struct efx_nic */ 2911 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, 2912 EFX_MAX_RX_QUEUES); 2913 if (!net_dev) 2914 return -ENOMEM; 2915 efx = netdev_priv(net_dev); 2916 efx->type = (const struct efx_nic_type *) entry->driver_data; 2917 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 2918 NETIF_F_HIGHDMA | NETIF_F_TSO | 2919 NETIF_F_RXCSUM); 2920 if (efx->type->offload_features & NETIF_F_V6_CSUM) 2921 net_dev->features |= NETIF_F_TSO6; 2922 /* Mask for features that also apply to VLAN devices */ 2923 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG | 2924 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | 2925 NETIF_F_RXCSUM); 2926 /* All offloads can be toggled */ 2927 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA; 2928 pci_set_drvdata(pci_dev, efx); 2929 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 2930 rc = efx_init_struct(efx, pci_dev, net_dev); 2931 if (rc) 2932 goto fail1; 2933 2934 netif_info(efx, probe, efx->net_dev, 2935 "Solarflare NIC detected\n"); 2936 2937 efx_probe_vpd_strings(efx); 2938 2939 /* Set up basic I/O (BAR mappings etc) */ 2940 rc = efx_init_io(efx); 2941 if (rc) 2942 goto fail2; 2943 2944 rc = efx_pci_probe_main(efx); 2945 if (rc) 2946 goto fail3; 2947 2948 rc = efx_register_netdev(efx); 2949 if (rc) 2950 goto fail4; 2951 2952 rc = efx_sriov_init(efx); 2953 if (rc) 2954 netif_err(efx, probe, efx->net_dev, 2955 "SR-IOV can't be enabled rc %d\n", rc); 2956 2957 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 2958 2959 /* Try to create MTDs, but allow this to fail */ 2960 rtnl_lock(); 2961 rc = efx_mtd_probe(efx); 2962 rtnl_unlock(); 2963 if (rc) 2964 netif_warn(efx, probe, efx->net_dev, 2965 "failed to create MTDs (%d)\n", rc); 2966 2967 rc = pci_enable_pcie_error_reporting(pci_dev); 2968 if (rc && rc != -EINVAL) 2969 netif_warn(efx, probe, efx->net_dev, 2970 "pci_enable_pcie_error_reporting failed (%d)\n", rc); 2971 2972 return 0; 2973 2974 fail4: 2975 efx_pci_remove_main(efx); 2976 fail3: 2977 efx_fini_io(efx); 2978 fail2: 2979 efx_fini_struct(efx); 2980 fail1: 2981 WARN_ON(rc > 0); 2982 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 2983 free_netdev(net_dev); 2984 return rc; 2985 } 2986 2987 static int efx_pm_freeze(struct device *dev) 2988 { 2989 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2990 2991 rtnl_lock(); 2992 2993 if (efx->state != STATE_DISABLED) { 2994 efx->state = STATE_UNINIT; 2995 2996 efx_device_detach_sync(efx); 2997 2998 efx_stop_all(efx); 2999 efx_disable_interrupts(efx); 3000 } 3001 3002 rtnl_unlock(); 3003 3004 return 0; 3005 } 3006 3007 static int efx_pm_thaw(struct device *dev) 3008 { 3009 int rc; 3010 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 3011 3012 rtnl_lock(); 3013 3014 if (efx->state != STATE_DISABLED) { 3015 rc = efx_enable_interrupts(efx); 3016 if (rc) 3017 goto fail; 3018 3019 mutex_lock(&efx->mac_lock); 3020 efx->phy_op->reconfigure(efx); 3021 mutex_unlock(&efx->mac_lock); 3022 3023 efx_start_all(efx); 3024 3025 netif_device_attach(efx->net_dev); 3026 3027 efx->state = STATE_READY; 3028 3029 efx->type->resume_wol(efx); 3030 } 3031 3032 rtnl_unlock(); 3033 3034 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ 3035 queue_work(reset_workqueue, &efx->reset_work); 3036 3037 return 0; 3038 3039 fail: 3040 rtnl_unlock(); 3041 3042 return rc; 3043 } 3044 3045 static int efx_pm_poweroff(struct device *dev) 3046 { 3047 struct pci_dev *pci_dev = to_pci_dev(dev); 3048 struct efx_nic *efx = pci_get_drvdata(pci_dev); 3049 3050 efx->type->fini(efx); 3051 3052 efx->reset_pending = 0; 3053 3054 pci_save_state(pci_dev); 3055 return pci_set_power_state(pci_dev, PCI_D3hot); 3056 } 3057 3058 /* Used for both resume and restore */ 3059 static int efx_pm_resume(struct device *dev) 3060 { 3061 struct pci_dev *pci_dev = to_pci_dev(dev); 3062 struct efx_nic *efx = pci_get_drvdata(pci_dev); 3063 int rc; 3064 3065 rc = pci_set_power_state(pci_dev, PCI_D0); 3066 if (rc) 3067 return rc; 3068 pci_restore_state(pci_dev); 3069 rc = pci_enable_device(pci_dev); 3070 if (rc) 3071 return rc; 3072 pci_set_master(efx->pci_dev); 3073 rc = efx->type->reset(efx, RESET_TYPE_ALL); 3074 if (rc) 3075 return rc; 3076 rc = efx->type->init(efx); 3077 if (rc) 3078 return rc; 3079 rc = efx_pm_thaw(dev); 3080 return rc; 3081 } 3082 3083 static int efx_pm_suspend(struct device *dev) 3084 { 3085 int rc; 3086 3087 efx_pm_freeze(dev); 3088 rc = efx_pm_poweroff(dev); 3089 if (rc) 3090 efx_pm_resume(dev); 3091 return rc; 3092 } 3093 3094 static const struct dev_pm_ops efx_pm_ops = { 3095 .suspend = efx_pm_suspend, 3096 .resume = efx_pm_resume, 3097 .freeze = efx_pm_freeze, 3098 .thaw = efx_pm_thaw, 3099 .poweroff = efx_pm_poweroff, 3100 .restore = efx_pm_resume, 3101 }; 3102 3103 /* A PCI error affecting this device was detected. 3104 * At this point MMIO and DMA may be disabled. 3105 * Stop the software path and request a slot reset. 3106 */ 3107 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev, 3108 enum pci_channel_state state) 3109 { 3110 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3111 struct efx_nic *efx = pci_get_drvdata(pdev); 3112 3113 if (state == pci_channel_io_perm_failure) 3114 return PCI_ERS_RESULT_DISCONNECT; 3115 3116 rtnl_lock(); 3117 3118 if (efx->state != STATE_DISABLED) { 3119 efx->state = STATE_RECOVERY; 3120 efx->reset_pending = 0; 3121 3122 efx_device_detach_sync(efx); 3123 3124 efx_stop_all(efx); 3125 efx_disable_interrupts(efx); 3126 3127 status = PCI_ERS_RESULT_NEED_RESET; 3128 } else { 3129 /* If the interface is disabled we don't want to do anything 3130 * with it. 3131 */ 3132 status = PCI_ERS_RESULT_RECOVERED; 3133 } 3134 3135 rtnl_unlock(); 3136 3137 pci_disable_device(pdev); 3138 3139 return status; 3140 } 3141 3142 /* Fake a successfull reset, which will be performed later in efx_io_resume. */ 3143 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev) 3144 { 3145 struct efx_nic *efx = pci_get_drvdata(pdev); 3146 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3147 int rc; 3148 3149 if (pci_enable_device(pdev)) { 3150 netif_err(efx, hw, efx->net_dev, 3151 "Cannot re-enable PCI device after reset.\n"); 3152 status = PCI_ERS_RESULT_DISCONNECT; 3153 } 3154 3155 rc = pci_cleanup_aer_uncorrect_error_status(pdev); 3156 if (rc) { 3157 netif_err(efx, hw, efx->net_dev, 3158 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc); 3159 /* Non-fatal error. Continue. */ 3160 } 3161 3162 return status; 3163 } 3164 3165 /* Perform the actual reset and resume I/O operations. */ 3166 static void efx_io_resume(struct pci_dev *pdev) 3167 { 3168 struct efx_nic *efx = pci_get_drvdata(pdev); 3169 int rc; 3170 3171 rtnl_lock(); 3172 3173 if (efx->state == STATE_DISABLED) 3174 goto out; 3175 3176 rc = efx_reset(efx, RESET_TYPE_ALL); 3177 if (rc) { 3178 netif_err(efx, hw, efx->net_dev, 3179 "efx_reset failed after PCI error (%d)\n", rc); 3180 } else { 3181 efx->state = STATE_READY; 3182 netif_dbg(efx, hw, efx->net_dev, 3183 "Done resetting and resuming IO after PCI error.\n"); 3184 } 3185 3186 out: 3187 rtnl_unlock(); 3188 } 3189 3190 /* For simplicity and reliability, we always require a slot reset and try to 3191 * reset the hardware when a pci error affecting the device is detected. 3192 * We leave both the link_reset and mmio_enabled callback unimplemented: 3193 * with our request for slot reset the mmio_enabled callback will never be 3194 * called, and the link_reset callback is not used by AER or EEH mechanisms. 3195 */ 3196 static struct pci_error_handlers efx_err_handlers = { 3197 .error_detected = efx_io_error_detected, 3198 .slot_reset = efx_io_slot_reset, 3199 .resume = efx_io_resume, 3200 }; 3201 3202 static struct pci_driver efx_pci_driver = { 3203 .name = KBUILD_MODNAME, 3204 .id_table = efx_pci_table, 3205 .probe = efx_pci_probe, 3206 .remove = efx_pci_remove, 3207 .driver.pm = &efx_pm_ops, 3208 .err_handler = &efx_err_handlers, 3209 }; 3210 3211 /************************************************************************** 3212 * 3213 * Kernel module interface 3214 * 3215 *************************************************************************/ 3216 3217 module_param(interrupt_mode, uint, 0444); 3218 MODULE_PARM_DESC(interrupt_mode, 3219 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 3220 3221 static int __init efx_init_module(void) 3222 { 3223 int rc; 3224 3225 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); 3226 3227 rc = register_netdevice_notifier(&efx_netdev_notifier); 3228 if (rc) 3229 goto err_notifier; 3230 3231 rc = efx_init_sriov(); 3232 if (rc) 3233 goto err_sriov; 3234 3235 reset_workqueue = create_singlethread_workqueue("sfc_reset"); 3236 if (!reset_workqueue) { 3237 rc = -ENOMEM; 3238 goto err_reset; 3239 } 3240 3241 rc = pci_register_driver(&efx_pci_driver); 3242 if (rc < 0) 3243 goto err_pci; 3244 3245 return 0; 3246 3247 err_pci: 3248 destroy_workqueue(reset_workqueue); 3249 err_reset: 3250 efx_fini_sriov(); 3251 err_sriov: 3252 unregister_netdevice_notifier(&efx_netdev_notifier); 3253 err_notifier: 3254 return rc; 3255 } 3256 3257 static void __exit efx_exit_module(void) 3258 { 3259 printk(KERN_INFO "Solarflare NET driver unloading\n"); 3260 3261 pci_unregister_driver(&efx_pci_driver); 3262 destroy_workqueue(reset_workqueue); 3263 efx_fini_sriov(); 3264 unregister_netdevice_notifier(&efx_netdev_notifier); 3265 3266 } 3267 3268 module_init(efx_init_module); 3269 module_exit(efx_exit_module); 3270 3271 MODULE_AUTHOR("Solarflare Communications and " 3272 "Michael Brown <mbrown@fensystems.co.uk>"); 3273 MODULE_DESCRIPTION("Solarflare network driver"); 3274 MODULE_LICENSE("GPL"); 3275 MODULE_DEVICE_TABLE(pci, efx_pci_table); 3276