1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/pci.h> 10 #include <linux/netdevice.h> 11 #include <linux/etherdevice.h> 12 #include <linux/delay.h> 13 #include <linux/notifier.h> 14 #include <linux/ip.h> 15 #include <linux/tcp.h> 16 #include <linux/in.h> 17 #include <linux/ethtool.h> 18 #include <linux/topology.h> 19 #include <linux/gfp.h> 20 #include <linux/aer.h> 21 #include <linux/interrupt.h> 22 #include "net_driver.h" 23 #include <net/gre.h> 24 #include <net/udp_tunnel.h> 25 #include "efx.h" 26 #include "efx_common.h" 27 #include "efx_channels.h" 28 #include "rx_common.h" 29 #include "tx_common.h" 30 #include "nic.h" 31 #include "io.h" 32 #include "selftest.h" 33 #include "sriov.h" 34 35 #include "mcdi.h" 36 #include "mcdi_pcol.h" 37 #include "workarounds.h" 38 39 /************************************************************************** 40 * 41 * Configurable values 42 * 43 *************************************************************************/ 44 45 module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444); 46 MODULE_PARM_DESC(interrupt_mode, 47 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 48 49 module_param(rss_cpus, uint, 0444); 50 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 51 52 /* 53 * Use separate channels for TX and RX events 54 * 55 * Set this to 1 to use separate channels for TX and RX. It allows us 56 * to control interrupt affinity separately for TX and RX. 57 * 58 * This is only used in MSI-X interrupt mode 59 */ 60 bool efx_separate_tx_channels; 61 module_param(efx_separate_tx_channels, bool, 0444); 62 MODULE_PARM_DESC(efx_separate_tx_channels, 63 "Use separate channels for TX and RX"); 64 65 /* Initial interrupt moderation settings. They can be modified after 66 * module load with ethtool. 67 * 68 * The default for RX should strike a balance between increasing the 69 * round-trip latency and reducing overhead. 70 */ 71 static unsigned int rx_irq_mod_usec = 60; 72 73 /* Initial interrupt moderation settings. They can be modified after 74 * module load with ethtool. 75 * 76 * This default is chosen to ensure that a 10G link does not go idle 77 * while a TX queue is stopped after it has become full. A queue is 78 * restarted when it drops below half full. The time this takes (assuming 79 * worst case 3 descriptors per packet and 1024 descriptors) is 80 * 512 / 3 * 1.2 = 205 usec. 81 */ 82 static unsigned int tx_irq_mod_usec = 150; 83 84 static bool phy_flash_cfg; 85 module_param(phy_flash_cfg, bool, 0644); 86 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 87 88 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 89 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 90 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 91 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 92 module_param(debug, uint, 0); 93 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 94 95 /************************************************************************** 96 * 97 * Utility functions and prototypes 98 * 99 *************************************************************************/ 100 101 static void efx_remove_port(struct efx_nic *efx); 102 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog); 103 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp); 104 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, 105 u32 flags); 106 107 #define EFX_ASSERT_RESET_SERIALISED(efx) \ 108 do { \ 109 if ((efx->state == STATE_READY) || \ 110 (efx->state == STATE_RECOVERY) || \ 111 (efx->state == STATE_DISABLED)) \ 112 ASSERT_RTNL(); \ 113 } while (0) 114 115 /************************************************************************** 116 * 117 * Port handling 118 * 119 **************************************************************************/ 120 121 static void efx_fini_port(struct efx_nic *efx); 122 123 static int efx_probe_port(struct efx_nic *efx) 124 { 125 int rc; 126 127 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 128 129 if (phy_flash_cfg) 130 efx->phy_mode = PHY_MODE_SPECIAL; 131 132 /* Connect up MAC/PHY operations table */ 133 rc = efx->type->probe_port(efx); 134 if (rc) 135 return rc; 136 137 /* Initialise MAC address to permanent address */ 138 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); 139 140 return 0; 141 } 142 143 static int efx_init_port(struct efx_nic *efx) 144 { 145 int rc; 146 147 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 148 149 mutex_lock(&efx->mac_lock); 150 151 rc = efx->phy_op->init(efx); 152 if (rc) 153 goto fail1; 154 155 efx->port_initialized = true; 156 157 /* Ensure the PHY advertises the correct flow control settings */ 158 rc = efx->phy_op->reconfigure(efx); 159 if (rc && rc != -EPERM) 160 goto fail2; 161 162 mutex_unlock(&efx->mac_lock); 163 return 0; 164 165 fail2: 166 efx->phy_op->fini(efx); 167 fail1: 168 mutex_unlock(&efx->mac_lock); 169 return rc; 170 } 171 172 static void efx_fini_port(struct efx_nic *efx) 173 { 174 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 175 176 if (!efx->port_initialized) 177 return; 178 179 efx->phy_op->fini(efx); 180 efx->port_initialized = false; 181 182 efx->link_state.up = false; 183 efx_link_status_changed(efx); 184 } 185 186 static void efx_remove_port(struct efx_nic *efx) 187 { 188 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 189 190 efx->type->remove_port(efx); 191 } 192 193 /************************************************************************** 194 * 195 * NIC handling 196 * 197 **************************************************************************/ 198 199 static LIST_HEAD(efx_primary_list); 200 static LIST_HEAD(efx_unassociated_list); 201 202 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right) 203 { 204 return left->type == right->type && 205 left->vpd_sn && right->vpd_sn && 206 !strcmp(left->vpd_sn, right->vpd_sn); 207 } 208 209 static void efx_associate(struct efx_nic *efx) 210 { 211 struct efx_nic *other, *next; 212 213 if (efx->primary == efx) { 214 /* Adding primary function; look for secondaries */ 215 216 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 217 list_add_tail(&efx->node, &efx_primary_list); 218 219 list_for_each_entry_safe(other, next, &efx_unassociated_list, 220 node) { 221 if (efx_same_controller(efx, other)) { 222 list_del(&other->node); 223 netif_dbg(other, probe, other->net_dev, 224 "moving to secondary list of %s %s\n", 225 pci_name(efx->pci_dev), 226 efx->net_dev->name); 227 list_add_tail(&other->node, 228 &efx->secondary_list); 229 other->primary = efx; 230 } 231 } 232 } else { 233 /* Adding secondary function; look for primary */ 234 235 list_for_each_entry(other, &efx_primary_list, node) { 236 if (efx_same_controller(efx, other)) { 237 netif_dbg(efx, probe, efx->net_dev, 238 "adding to secondary list of %s %s\n", 239 pci_name(other->pci_dev), 240 other->net_dev->name); 241 list_add_tail(&efx->node, 242 &other->secondary_list); 243 efx->primary = other; 244 return; 245 } 246 } 247 248 netif_dbg(efx, probe, efx->net_dev, 249 "adding to unassociated list\n"); 250 list_add_tail(&efx->node, &efx_unassociated_list); 251 } 252 } 253 254 static void efx_dissociate(struct efx_nic *efx) 255 { 256 struct efx_nic *other, *next; 257 258 list_del(&efx->node); 259 efx->primary = NULL; 260 261 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 262 list_del(&other->node); 263 netif_dbg(other, probe, other->net_dev, 264 "moving to unassociated list\n"); 265 list_add_tail(&other->node, &efx_unassociated_list); 266 other->primary = NULL; 267 } 268 } 269 270 static int efx_probe_nic(struct efx_nic *efx) 271 { 272 int rc; 273 274 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 275 276 /* Carry out hardware-type specific initialisation */ 277 rc = efx->type->probe(efx); 278 if (rc) 279 return rc; 280 281 do { 282 if (!efx->max_channels || !efx->max_tx_channels) { 283 netif_err(efx, drv, efx->net_dev, 284 "Insufficient resources to allocate" 285 " any channels\n"); 286 rc = -ENOSPC; 287 goto fail1; 288 } 289 290 /* Determine the number of channels and queues by trying 291 * to hook in MSI-X interrupts. 292 */ 293 rc = efx_probe_interrupts(efx); 294 if (rc) 295 goto fail1; 296 297 rc = efx_set_channels(efx); 298 if (rc) 299 goto fail1; 300 301 /* dimension_resources can fail with EAGAIN */ 302 rc = efx->type->dimension_resources(efx); 303 if (rc != 0 && rc != -EAGAIN) 304 goto fail2; 305 306 if (rc == -EAGAIN) 307 /* try again with new max_channels */ 308 efx_remove_interrupts(efx); 309 310 } while (rc == -EAGAIN); 311 312 if (efx->n_channels > 1) 313 netdev_rss_key_fill(efx->rss_context.rx_hash_key, 314 sizeof(efx->rss_context.rx_hash_key)); 315 efx_set_default_rx_indir_table(efx, &efx->rss_context); 316 317 /* Initialise the interrupt moderation settings */ 318 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); 319 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 320 true); 321 322 return 0; 323 324 fail2: 325 efx_remove_interrupts(efx); 326 fail1: 327 efx->type->remove(efx); 328 return rc; 329 } 330 331 static void efx_remove_nic(struct efx_nic *efx) 332 { 333 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 334 335 efx_remove_interrupts(efx); 336 efx->type->remove(efx); 337 } 338 339 /************************************************************************** 340 * 341 * NIC startup/shutdown 342 * 343 *************************************************************************/ 344 345 static int efx_probe_all(struct efx_nic *efx) 346 { 347 int rc; 348 349 rc = efx_probe_nic(efx); 350 if (rc) { 351 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 352 goto fail1; 353 } 354 355 rc = efx_probe_port(efx); 356 if (rc) { 357 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 358 goto fail2; 359 } 360 361 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); 362 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { 363 rc = -EINVAL; 364 goto fail3; 365 } 366 367 #ifdef CONFIG_SFC_SRIOV 368 rc = efx->type->vswitching_probe(efx); 369 if (rc) /* not fatal; the PF will still work fine */ 370 netif_warn(efx, probe, efx->net_dev, 371 "failed to setup vswitching rc=%d;" 372 " VFs may not function\n", rc); 373 #endif 374 375 rc = efx_probe_filters(efx); 376 if (rc) { 377 netif_err(efx, probe, efx->net_dev, 378 "failed to create filter tables\n"); 379 goto fail4; 380 } 381 382 rc = efx_probe_channels(efx); 383 if (rc) 384 goto fail5; 385 386 return 0; 387 388 fail5: 389 efx_remove_filters(efx); 390 fail4: 391 #ifdef CONFIG_SFC_SRIOV 392 efx->type->vswitching_remove(efx); 393 #endif 394 fail3: 395 efx_remove_port(efx); 396 fail2: 397 efx_remove_nic(efx); 398 fail1: 399 return rc; 400 } 401 402 static void efx_remove_all(struct efx_nic *efx) 403 { 404 rtnl_lock(); 405 efx_xdp_setup_prog(efx, NULL); 406 rtnl_unlock(); 407 408 efx_remove_channels(efx); 409 efx_remove_filters(efx); 410 #ifdef CONFIG_SFC_SRIOV 411 efx->type->vswitching_remove(efx); 412 #endif 413 efx_remove_port(efx); 414 efx_remove_nic(efx); 415 } 416 417 /************************************************************************** 418 * 419 * Interrupt moderation 420 * 421 **************************************************************************/ 422 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs) 423 { 424 if (usecs == 0) 425 return 0; 426 if (usecs * 1000 < efx->timer_quantum_ns) 427 return 1; /* never round down to 0 */ 428 return usecs * 1000 / efx->timer_quantum_ns; 429 } 430 431 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks) 432 { 433 /* We must round up when converting ticks to microseconds 434 * because we round down when converting the other way. 435 */ 436 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000); 437 } 438 439 /* Set interrupt moderation parameters */ 440 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, 441 unsigned int rx_usecs, bool rx_adaptive, 442 bool rx_may_override_tx) 443 { 444 struct efx_channel *channel; 445 unsigned int timer_max_us; 446 447 EFX_ASSERT_RESET_SERIALISED(efx); 448 449 timer_max_us = efx->timer_max_ns / 1000; 450 451 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) 452 return -EINVAL; 453 454 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && 455 !rx_may_override_tx) { 456 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 457 "RX and TX IRQ moderation must be equal\n"); 458 return -EINVAL; 459 } 460 461 efx->irq_rx_adaptive = rx_adaptive; 462 efx->irq_rx_moderation_us = rx_usecs; 463 efx_for_each_channel(channel, efx) { 464 if (efx_channel_has_rx_queue(channel)) 465 channel->irq_moderation_us = rx_usecs; 466 else if (efx_channel_has_tx_queues(channel)) 467 channel->irq_moderation_us = tx_usecs; 468 else if (efx_channel_is_xdp_tx(channel)) 469 channel->irq_moderation_us = tx_usecs; 470 } 471 472 return 0; 473 } 474 475 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, 476 unsigned int *rx_usecs, bool *rx_adaptive) 477 { 478 *rx_adaptive = efx->irq_rx_adaptive; 479 *rx_usecs = efx->irq_rx_moderation_us; 480 481 /* If channels are shared between RX and TX, so is IRQ 482 * moderation. Otherwise, IRQ moderation is the same for all 483 * TX channels and is not adaptive. 484 */ 485 if (efx->tx_channel_offset == 0) { 486 *tx_usecs = *rx_usecs; 487 } else { 488 struct efx_channel *tx_channel; 489 490 tx_channel = efx->channel[efx->tx_channel_offset]; 491 *tx_usecs = tx_channel->irq_moderation_us; 492 } 493 } 494 495 /************************************************************************** 496 * 497 * ioctls 498 * 499 *************************************************************************/ 500 501 /* Net device ioctl 502 * Context: process, rtnl_lock() held. 503 */ 504 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 505 { 506 struct efx_nic *efx = netdev_priv(net_dev); 507 struct mii_ioctl_data *data = if_mii(ifr); 508 509 if (cmd == SIOCSHWTSTAMP) 510 return efx_ptp_set_ts_config(efx, ifr); 511 if (cmd == SIOCGHWTSTAMP) 512 return efx_ptp_get_ts_config(efx, ifr); 513 514 /* Convert phy_id from older PRTAD/DEVAD format */ 515 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 516 (data->phy_id & 0xfc00) == 0x0400) 517 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 518 519 return mdio_mii_ioctl(&efx->mdio, data, cmd); 520 } 521 522 /************************************************************************** 523 * 524 * Kernel net device interface 525 * 526 *************************************************************************/ 527 528 /* Context: process, rtnl_lock() held. */ 529 int efx_net_open(struct net_device *net_dev) 530 { 531 struct efx_nic *efx = netdev_priv(net_dev); 532 int rc; 533 534 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 535 raw_smp_processor_id()); 536 537 rc = efx_check_disabled(efx); 538 if (rc) 539 return rc; 540 if (efx->phy_mode & PHY_MODE_SPECIAL) 541 return -EBUSY; 542 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) 543 return -EIO; 544 545 /* Notify the kernel of the link state polled during driver load, 546 * before the monitor starts running */ 547 efx_link_status_changed(efx); 548 549 efx_start_all(efx); 550 if (efx->state == STATE_DISABLED || efx->reset_pending) 551 netif_device_detach(efx->net_dev); 552 efx_selftest_async_start(efx); 553 return 0; 554 } 555 556 /* Context: process, rtnl_lock() held. 557 * Note that the kernel will ignore our return code; this method 558 * should really be a void. 559 */ 560 int efx_net_stop(struct net_device *net_dev) 561 { 562 struct efx_nic *efx = netdev_priv(net_dev); 563 564 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 565 raw_smp_processor_id()); 566 567 /* Stop the device and flush all the channels */ 568 efx_stop_all(efx); 569 570 return 0; 571 } 572 573 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid) 574 { 575 struct efx_nic *efx = netdev_priv(net_dev); 576 577 if (efx->type->vlan_rx_add_vid) 578 return efx->type->vlan_rx_add_vid(efx, proto, vid); 579 else 580 return -EOPNOTSUPP; 581 } 582 583 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid) 584 { 585 struct efx_nic *efx = netdev_priv(net_dev); 586 587 if (efx->type->vlan_rx_kill_vid) 588 return efx->type->vlan_rx_kill_vid(efx, proto, vid); 589 else 590 return -EOPNOTSUPP; 591 } 592 593 static const struct net_device_ops efx_netdev_ops = { 594 .ndo_open = efx_net_open, 595 .ndo_stop = efx_net_stop, 596 .ndo_get_stats64 = efx_net_stats, 597 .ndo_tx_timeout = efx_watchdog, 598 .ndo_start_xmit = efx_hard_start_xmit, 599 .ndo_validate_addr = eth_validate_addr, 600 .ndo_do_ioctl = efx_ioctl, 601 .ndo_change_mtu = efx_change_mtu, 602 .ndo_set_mac_address = efx_set_mac_address, 603 .ndo_set_rx_mode = efx_set_rx_mode, 604 .ndo_set_features = efx_set_features, 605 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid, 606 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid, 607 #ifdef CONFIG_SFC_SRIOV 608 .ndo_set_vf_mac = efx_sriov_set_vf_mac, 609 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, 610 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, 611 .ndo_get_vf_config = efx_sriov_get_vf_config, 612 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state, 613 #endif 614 .ndo_get_phys_port_id = efx_get_phys_port_id, 615 .ndo_get_phys_port_name = efx_get_phys_port_name, 616 .ndo_setup_tc = efx_setup_tc, 617 #ifdef CONFIG_RFS_ACCEL 618 .ndo_rx_flow_steer = efx_filter_rfs, 619 #endif 620 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port, 621 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port, 622 .ndo_xdp_xmit = efx_xdp_xmit, 623 .ndo_bpf = efx_xdp 624 }; 625 626 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog) 627 { 628 struct bpf_prog *old_prog; 629 630 if (efx->xdp_rxq_info_failed) { 631 netif_err(efx, drv, efx->net_dev, 632 "Unable to bind XDP program due to previous failure of rxq_info\n"); 633 return -EINVAL; 634 } 635 636 if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) { 637 netif_err(efx, drv, efx->net_dev, 638 "Unable to configure XDP with MTU of %d (max: %d)\n", 639 efx->net_dev->mtu, efx_xdp_max_mtu(efx)); 640 return -EINVAL; 641 } 642 643 old_prog = rtnl_dereference(efx->xdp_prog); 644 rcu_assign_pointer(efx->xdp_prog, prog); 645 /* Release the reference that was originally passed by the caller. */ 646 if (old_prog) 647 bpf_prog_put(old_prog); 648 649 return 0; 650 } 651 652 /* Context: process, rtnl_lock() held. */ 653 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp) 654 { 655 struct efx_nic *efx = netdev_priv(dev); 656 struct bpf_prog *xdp_prog; 657 658 switch (xdp->command) { 659 case XDP_SETUP_PROG: 660 return efx_xdp_setup_prog(efx, xdp->prog); 661 case XDP_QUERY_PROG: 662 xdp_prog = rtnl_dereference(efx->xdp_prog); 663 xdp->prog_id = xdp_prog ? xdp_prog->aux->id : 0; 664 return 0; 665 default: 666 return -EINVAL; 667 } 668 } 669 670 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, 671 u32 flags) 672 { 673 struct efx_nic *efx = netdev_priv(dev); 674 675 if (!netif_running(dev)) 676 return -EINVAL; 677 678 return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH); 679 } 680 681 static void efx_update_name(struct efx_nic *efx) 682 { 683 strcpy(efx->name, efx->net_dev->name); 684 efx_mtd_rename(efx); 685 efx_set_channel_names(efx); 686 } 687 688 static int efx_netdev_event(struct notifier_block *this, 689 unsigned long event, void *ptr) 690 { 691 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 692 693 if ((net_dev->netdev_ops == &efx_netdev_ops) && 694 event == NETDEV_CHANGENAME) 695 efx_update_name(netdev_priv(net_dev)); 696 697 return NOTIFY_DONE; 698 } 699 700 static struct notifier_block efx_netdev_notifier = { 701 .notifier_call = efx_netdev_event, 702 }; 703 704 static ssize_t 705 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) 706 { 707 struct efx_nic *efx = dev_get_drvdata(dev); 708 return sprintf(buf, "%d\n", efx->phy_type); 709 } 710 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); 711 712 static int efx_register_netdev(struct efx_nic *efx) 713 { 714 struct net_device *net_dev = efx->net_dev; 715 struct efx_channel *channel; 716 int rc; 717 718 net_dev->watchdog_timeo = 5 * HZ; 719 net_dev->irq = efx->pci_dev->irq; 720 net_dev->netdev_ops = &efx_netdev_ops; 721 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) 722 net_dev->priv_flags |= IFF_UNICAST_FLT; 723 net_dev->ethtool_ops = &efx_ethtool_ops; 724 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS; 725 net_dev->min_mtu = EFX_MIN_MTU; 726 net_dev->max_mtu = EFX_MAX_MTU; 727 728 rtnl_lock(); 729 730 /* Enable resets to be scheduled and check whether any were 731 * already requested. If so, the NIC is probably hosed so we 732 * abort. 733 */ 734 efx->state = STATE_READY; 735 smp_mb(); /* ensure we change state before checking reset_pending */ 736 if (efx->reset_pending) { 737 netif_err(efx, probe, efx->net_dev, 738 "aborting probe due to scheduled reset\n"); 739 rc = -EIO; 740 goto fail_locked; 741 } 742 743 rc = dev_alloc_name(net_dev, net_dev->name); 744 if (rc < 0) 745 goto fail_locked; 746 efx_update_name(efx); 747 748 /* Always start with carrier off; PHY events will detect the link */ 749 netif_carrier_off(net_dev); 750 751 rc = register_netdevice(net_dev); 752 if (rc) 753 goto fail_locked; 754 755 efx_for_each_channel(channel, efx) { 756 struct efx_tx_queue *tx_queue; 757 efx_for_each_channel_tx_queue(tx_queue, channel) 758 efx_init_tx_queue_core_txq(tx_queue); 759 } 760 761 efx_associate(efx); 762 763 rtnl_unlock(); 764 765 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 766 if (rc) { 767 netif_err(efx, drv, efx->net_dev, 768 "failed to init net dev attributes\n"); 769 goto fail_registered; 770 } 771 772 efx_init_mcdi_logging(efx); 773 774 return 0; 775 776 fail_registered: 777 rtnl_lock(); 778 efx_dissociate(efx); 779 unregister_netdevice(net_dev); 780 fail_locked: 781 efx->state = STATE_UNINIT; 782 rtnl_unlock(); 783 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 784 return rc; 785 } 786 787 static void efx_unregister_netdev(struct efx_nic *efx) 788 { 789 if (!efx->net_dev) 790 return; 791 792 BUG_ON(netdev_priv(efx->net_dev) != efx); 793 794 if (efx_dev_registered(efx)) { 795 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 796 efx_fini_mcdi_logging(efx); 797 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 798 unregister_netdev(efx->net_dev); 799 } 800 } 801 802 /************************************************************************** 803 * 804 * List of NICs we support 805 * 806 **************************************************************************/ 807 808 /* PCI device ID table */ 809 static const struct pci_device_id efx_pci_table[] = { 810 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ 811 .driver_data = (unsigned long) &siena_a0_nic_type}, 812 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ 813 .driver_data = (unsigned long) &siena_a0_nic_type}, 814 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */ 815 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 816 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */ 817 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 818 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */ 819 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 820 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */ 821 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 822 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */ 823 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 824 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */ 825 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 826 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */ 827 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 828 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */ 829 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 830 {0} /* end of list */ 831 }; 832 833 /************************************************************************** 834 * 835 * Data housekeeping 836 * 837 **************************************************************************/ 838 839 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats) 840 { 841 u64 n_rx_nodesc_trunc = 0; 842 struct efx_channel *channel; 843 844 efx_for_each_channel(channel, efx) 845 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; 846 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; 847 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); 848 } 849 850 /************************************************************************** 851 * 852 * PCI interface 853 * 854 **************************************************************************/ 855 856 /* Main body of final NIC shutdown code 857 * This is called only at module unload (or hotplug removal). 858 */ 859 static void efx_pci_remove_main(struct efx_nic *efx) 860 { 861 /* Flush reset_work. It can no longer be scheduled since we 862 * are not READY. 863 */ 864 BUG_ON(efx->state == STATE_READY); 865 efx_flush_reset_workqueue(efx); 866 867 efx_disable_interrupts(efx); 868 efx_clear_interrupt_affinity(efx); 869 efx_nic_fini_interrupt(efx); 870 efx_fini_port(efx); 871 efx->type->fini(efx); 872 efx_fini_napi(efx); 873 efx_remove_all(efx); 874 } 875 876 /* Final NIC shutdown 877 * This is called only at module unload (or hotplug removal). A PF can call 878 * this on its VFs to ensure they are unbound first. 879 */ 880 static void efx_pci_remove(struct pci_dev *pci_dev) 881 { 882 struct efx_nic *efx; 883 884 efx = pci_get_drvdata(pci_dev); 885 if (!efx) 886 return; 887 888 /* Mark the NIC as fini, then stop the interface */ 889 rtnl_lock(); 890 efx_dissociate(efx); 891 dev_close(efx->net_dev); 892 efx_disable_interrupts(efx); 893 efx->state = STATE_UNINIT; 894 rtnl_unlock(); 895 896 if (efx->type->sriov_fini) 897 efx->type->sriov_fini(efx); 898 899 efx_unregister_netdev(efx); 900 901 efx_mtd_remove(efx); 902 903 efx_pci_remove_main(efx); 904 905 efx_fini_io(efx); 906 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 907 908 efx_fini_struct(efx); 909 free_netdev(efx->net_dev); 910 911 pci_disable_pcie_error_reporting(pci_dev); 912 }; 913 914 /* NIC VPD information 915 * Called during probe to display the part number of the 916 * installed NIC. VPD is potentially very large but this should 917 * always appear within the first 512 bytes. 918 */ 919 #define SFC_VPD_LEN 512 920 static void efx_probe_vpd_strings(struct efx_nic *efx) 921 { 922 struct pci_dev *dev = efx->pci_dev; 923 char vpd_data[SFC_VPD_LEN]; 924 ssize_t vpd_size; 925 int ro_start, ro_size, i, j; 926 927 /* Get the vpd data from the device */ 928 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); 929 if (vpd_size <= 0) { 930 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); 931 return; 932 } 933 934 /* Get the Read only section */ 935 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 936 if (ro_start < 0) { 937 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); 938 return; 939 } 940 941 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 942 j = ro_size; 943 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 944 if (i + j > vpd_size) 945 j = vpd_size - i; 946 947 /* Get the Part number */ 948 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); 949 if (i < 0) { 950 netif_err(efx, drv, efx->net_dev, "Part number not found\n"); 951 return; 952 } 953 954 j = pci_vpd_info_field_size(&vpd_data[i]); 955 i += PCI_VPD_INFO_FLD_HDR_SIZE; 956 if (i + j > vpd_size) { 957 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); 958 return; 959 } 960 961 netif_info(efx, drv, efx->net_dev, 962 "Part Number : %.*s\n", j, &vpd_data[i]); 963 964 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 965 j = ro_size; 966 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); 967 if (i < 0) { 968 netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); 969 return; 970 } 971 972 j = pci_vpd_info_field_size(&vpd_data[i]); 973 i += PCI_VPD_INFO_FLD_HDR_SIZE; 974 if (i + j > vpd_size) { 975 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); 976 return; 977 } 978 979 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); 980 if (!efx->vpd_sn) 981 return; 982 983 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); 984 } 985 986 987 /* Main body of NIC initialisation 988 * This is called at module load (or hotplug insertion, theoretically). 989 */ 990 static int efx_pci_probe_main(struct efx_nic *efx) 991 { 992 int rc; 993 994 /* Do start-of-day initialisation */ 995 rc = efx_probe_all(efx); 996 if (rc) 997 goto fail1; 998 999 efx_init_napi(efx); 1000 1001 down_write(&efx->filter_sem); 1002 rc = efx->type->init(efx); 1003 up_write(&efx->filter_sem); 1004 if (rc) { 1005 netif_err(efx, probe, efx->net_dev, 1006 "failed to initialise NIC\n"); 1007 goto fail3; 1008 } 1009 1010 rc = efx_init_port(efx); 1011 if (rc) { 1012 netif_err(efx, probe, efx->net_dev, 1013 "failed to initialise port\n"); 1014 goto fail4; 1015 } 1016 1017 rc = efx_nic_init_interrupt(efx); 1018 if (rc) 1019 goto fail5; 1020 1021 efx_set_interrupt_affinity(efx); 1022 rc = efx_enable_interrupts(efx); 1023 if (rc) 1024 goto fail6; 1025 1026 return 0; 1027 1028 fail6: 1029 efx_clear_interrupt_affinity(efx); 1030 efx_nic_fini_interrupt(efx); 1031 fail5: 1032 efx_fini_port(efx); 1033 fail4: 1034 efx->type->fini(efx); 1035 fail3: 1036 efx_fini_napi(efx); 1037 efx_remove_all(efx); 1038 fail1: 1039 return rc; 1040 } 1041 1042 static int efx_pci_probe_post_io(struct efx_nic *efx) 1043 { 1044 struct net_device *net_dev = efx->net_dev; 1045 int rc = efx_pci_probe_main(efx); 1046 1047 if (rc) 1048 return rc; 1049 1050 if (efx->type->sriov_init) { 1051 rc = efx->type->sriov_init(efx); 1052 if (rc) 1053 netif_err(efx, probe, efx->net_dev, 1054 "SR-IOV can't be enabled rc %d\n", rc); 1055 } 1056 1057 /* Determine netdevice features */ 1058 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 1059 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL); 1060 if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM)) 1061 net_dev->features |= NETIF_F_TSO6; 1062 /* Check whether device supports TSO */ 1063 if (!efx->type->tso_versions || !efx->type->tso_versions(efx)) 1064 net_dev->features &= ~NETIF_F_ALL_TSO; 1065 /* Mask for features that also apply to VLAN devices */ 1066 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | 1067 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | 1068 NETIF_F_RXCSUM); 1069 1070 net_dev->hw_features |= net_dev->features & ~efx->fixed_features; 1071 1072 /* Disable receiving frames with bad FCS, by default. */ 1073 net_dev->features &= ~NETIF_F_RXALL; 1074 1075 /* Disable VLAN filtering by default. It may be enforced if 1076 * the feature is fixed (i.e. VLAN filters are required to 1077 * receive VLAN tagged packets due to vPort restrictions). 1078 */ 1079 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 1080 net_dev->features |= efx->fixed_features; 1081 1082 rc = efx_register_netdev(efx); 1083 if (!rc) 1084 return 0; 1085 1086 efx_pci_remove_main(efx); 1087 return rc; 1088 } 1089 1090 /* NIC initialisation 1091 * 1092 * This is called at module load (or hotplug insertion, 1093 * theoretically). It sets up PCI mappings, resets the NIC, 1094 * sets up and registers the network devices with the kernel and hooks 1095 * the interrupt service routine. It does not prepare the device for 1096 * transmission; this is left to the first time one of the network 1097 * interfaces is brought up (i.e. efx_net_open). 1098 */ 1099 static int efx_pci_probe(struct pci_dev *pci_dev, 1100 const struct pci_device_id *entry) 1101 { 1102 struct net_device *net_dev; 1103 struct efx_nic *efx; 1104 int rc; 1105 1106 /* Allocate and initialise a struct net_device and struct efx_nic */ 1107 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, 1108 EFX_MAX_RX_QUEUES); 1109 if (!net_dev) 1110 return -ENOMEM; 1111 efx = netdev_priv(net_dev); 1112 efx->type = (const struct efx_nic_type *) entry->driver_data; 1113 efx->fixed_features |= NETIF_F_HIGHDMA; 1114 1115 pci_set_drvdata(pci_dev, efx); 1116 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 1117 rc = efx_init_struct(efx, pci_dev, net_dev); 1118 if (rc) 1119 goto fail1; 1120 1121 netif_info(efx, probe, efx->net_dev, 1122 "Solarflare NIC detected\n"); 1123 1124 if (!efx->type->is_vf) 1125 efx_probe_vpd_strings(efx); 1126 1127 /* Set up basic I/O (BAR mappings etc) */ 1128 rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask, 1129 efx->type->mem_map_size(efx)); 1130 if (rc) 1131 goto fail2; 1132 1133 rc = efx_pci_probe_post_io(efx); 1134 if (rc) { 1135 /* On failure, retry once immediately. 1136 * If we aborted probe due to a scheduled reset, dismiss it. 1137 */ 1138 efx->reset_pending = 0; 1139 rc = efx_pci_probe_post_io(efx); 1140 if (rc) { 1141 /* On another failure, retry once more 1142 * after a 50-305ms delay. 1143 */ 1144 unsigned char r; 1145 1146 get_random_bytes(&r, 1); 1147 msleep((unsigned int)r + 50); 1148 efx->reset_pending = 0; 1149 rc = efx_pci_probe_post_io(efx); 1150 } 1151 } 1152 if (rc) 1153 goto fail3; 1154 1155 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 1156 1157 /* Try to create MTDs, but allow this to fail */ 1158 rtnl_lock(); 1159 rc = efx_mtd_probe(efx); 1160 rtnl_unlock(); 1161 if (rc && rc != -EPERM) 1162 netif_warn(efx, probe, efx->net_dev, 1163 "failed to create MTDs (%d)\n", rc); 1164 1165 (void)pci_enable_pcie_error_reporting(pci_dev); 1166 1167 if (efx->type->udp_tnl_push_ports) 1168 efx->type->udp_tnl_push_ports(efx); 1169 1170 return 0; 1171 1172 fail3: 1173 efx_fini_io(efx); 1174 fail2: 1175 efx_fini_struct(efx); 1176 fail1: 1177 WARN_ON(rc > 0); 1178 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 1179 free_netdev(net_dev); 1180 return rc; 1181 } 1182 1183 /* efx_pci_sriov_configure returns the actual number of Virtual Functions 1184 * enabled on success 1185 */ 1186 #ifdef CONFIG_SFC_SRIOV 1187 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 1188 { 1189 int rc; 1190 struct efx_nic *efx = pci_get_drvdata(dev); 1191 1192 if (efx->type->sriov_configure) { 1193 rc = efx->type->sriov_configure(efx, num_vfs); 1194 if (rc) 1195 return rc; 1196 else 1197 return num_vfs; 1198 } else 1199 return -EOPNOTSUPP; 1200 } 1201 #endif 1202 1203 static int efx_pm_freeze(struct device *dev) 1204 { 1205 struct efx_nic *efx = dev_get_drvdata(dev); 1206 1207 rtnl_lock(); 1208 1209 if (efx->state != STATE_DISABLED) { 1210 efx->state = STATE_UNINIT; 1211 1212 efx_device_detach_sync(efx); 1213 1214 efx_stop_all(efx); 1215 efx_disable_interrupts(efx); 1216 } 1217 1218 rtnl_unlock(); 1219 1220 return 0; 1221 } 1222 1223 static int efx_pm_thaw(struct device *dev) 1224 { 1225 int rc; 1226 struct efx_nic *efx = dev_get_drvdata(dev); 1227 1228 rtnl_lock(); 1229 1230 if (efx->state != STATE_DISABLED) { 1231 rc = efx_enable_interrupts(efx); 1232 if (rc) 1233 goto fail; 1234 1235 mutex_lock(&efx->mac_lock); 1236 efx->phy_op->reconfigure(efx); 1237 mutex_unlock(&efx->mac_lock); 1238 1239 efx_start_all(efx); 1240 1241 efx_device_attach_if_not_resetting(efx); 1242 1243 efx->state = STATE_READY; 1244 1245 efx->type->resume_wol(efx); 1246 } 1247 1248 rtnl_unlock(); 1249 1250 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ 1251 efx_queue_reset_work(efx); 1252 1253 return 0; 1254 1255 fail: 1256 rtnl_unlock(); 1257 1258 return rc; 1259 } 1260 1261 static int efx_pm_poweroff(struct device *dev) 1262 { 1263 struct pci_dev *pci_dev = to_pci_dev(dev); 1264 struct efx_nic *efx = pci_get_drvdata(pci_dev); 1265 1266 efx->type->fini(efx); 1267 1268 efx->reset_pending = 0; 1269 1270 pci_save_state(pci_dev); 1271 return pci_set_power_state(pci_dev, PCI_D3hot); 1272 } 1273 1274 /* Used for both resume and restore */ 1275 static int efx_pm_resume(struct device *dev) 1276 { 1277 struct pci_dev *pci_dev = to_pci_dev(dev); 1278 struct efx_nic *efx = pci_get_drvdata(pci_dev); 1279 int rc; 1280 1281 rc = pci_set_power_state(pci_dev, PCI_D0); 1282 if (rc) 1283 return rc; 1284 pci_restore_state(pci_dev); 1285 rc = pci_enable_device(pci_dev); 1286 if (rc) 1287 return rc; 1288 pci_set_master(efx->pci_dev); 1289 rc = efx->type->reset(efx, RESET_TYPE_ALL); 1290 if (rc) 1291 return rc; 1292 down_write(&efx->filter_sem); 1293 rc = efx->type->init(efx); 1294 up_write(&efx->filter_sem); 1295 if (rc) 1296 return rc; 1297 rc = efx_pm_thaw(dev); 1298 return rc; 1299 } 1300 1301 static int efx_pm_suspend(struct device *dev) 1302 { 1303 int rc; 1304 1305 efx_pm_freeze(dev); 1306 rc = efx_pm_poweroff(dev); 1307 if (rc) 1308 efx_pm_resume(dev); 1309 return rc; 1310 } 1311 1312 static const struct dev_pm_ops efx_pm_ops = { 1313 .suspend = efx_pm_suspend, 1314 .resume = efx_pm_resume, 1315 .freeze = efx_pm_freeze, 1316 .thaw = efx_pm_thaw, 1317 .poweroff = efx_pm_poweroff, 1318 .restore = efx_pm_resume, 1319 }; 1320 1321 static struct pci_driver efx_pci_driver = { 1322 .name = KBUILD_MODNAME, 1323 .id_table = efx_pci_table, 1324 .probe = efx_pci_probe, 1325 .remove = efx_pci_remove, 1326 .driver.pm = &efx_pm_ops, 1327 .err_handler = &efx_err_handlers, 1328 #ifdef CONFIG_SFC_SRIOV 1329 .sriov_configure = efx_pci_sriov_configure, 1330 #endif 1331 }; 1332 1333 /************************************************************************** 1334 * 1335 * Kernel module interface 1336 * 1337 *************************************************************************/ 1338 1339 static int __init efx_init_module(void) 1340 { 1341 int rc; 1342 1343 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); 1344 1345 rc = register_netdevice_notifier(&efx_netdev_notifier); 1346 if (rc) 1347 goto err_notifier; 1348 1349 #ifdef CONFIG_SFC_SRIOV 1350 rc = efx_init_sriov(); 1351 if (rc) 1352 goto err_sriov; 1353 #endif 1354 1355 rc = efx_create_reset_workqueue(); 1356 if (rc) 1357 goto err_reset; 1358 1359 rc = pci_register_driver(&efx_pci_driver); 1360 if (rc < 0) 1361 goto err_pci; 1362 1363 return 0; 1364 1365 err_pci: 1366 efx_destroy_reset_workqueue(); 1367 err_reset: 1368 #ifdef CONFIG_SFC_SRIOV 1369 efx_fini_sriov(); 1370 err_sriov: 1371 #endif 1372 unregister_netdevice_notifier(&efx_netdev_notifier); 1373 err_notifier: 1374 return rc; 1375 } 1376 1377 static void __exit efx_exit_module(void) 1378 { 1379 printk(KERN_INFO "Solarflare NET driver unloading\n"); 1380 1381 pci_unregister_driver(&efx_pci_driver); 1382 efx_destroy_reset_workqueue(); 1383 #ifdef CONFIG_SFC_SRIOV 1384 efx_fini_sriov(); 1385 #endif 1386 unregister_netdevice_notifier(&efx_netdev_notifier); 1387 1388 } 1389 1390 module_init(efx_init_module); 1391 module_exit(efx_exit_module); 1392 1393 MODULE_AUTHOR("Solarflare Communications and " 1394 "Michael Brown <mbrown@fensystems.co.uk>"); 1395 MODULE_DESCRIPTION("Solarflare network driver"); 1396 MODULE_LICENSE("GPL"); 1397 MODULE_DEVICE_TABLE(pci, efx_pci_table); 1398 MODULE_VERSION(EFX_DRIVER_VERSION); 1399