1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/pci.h> 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/delay.h> 16 #include <linux/notifier.h> 17 #include <linux/ip.h> 18 #include <linux/tcp.h> 19 #include <linux/in.h> 20 #include <linux/ethtool.h> 21 #include <linux/topology.h> 22 #include <linux/gfp.h> 23 #include <linux/aer.h> 24 #include <linux/interrupt.h> 25 #include "net_driver.h" 26 #include "efx.h" 27 #include "nic.h" 28 #include "selftest.h" 29 #include "sriov.h" 30 31 #include "mcdi.h" 32 #include "workarounds.h" 33 34 /************************************************************************** 35 * 36 * Type name strings 37 * 38 ************************************************************************** 39 */ 40 41 /* Loopback mode names (see LOOPBACK_MODE()) */ 42 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; 43 const char *const efx_loopback_mode_names[] = { 44 [LOOPBACK_NONE] = "NONE", 45 [LOOPBACK_DATA] = "DATAPATH", 46 [LOOPBACK_GMAC] = "GMAC", 47 [LOOPBACK_XGMII] = "XGMII", 48 [LOOPBACK_XGXS] = "XGXS", 49 [LOOPBACK_XAUI] = "XAUI", 50 [LOOPBACK_GMII] = "GMII", 51 [LOOPBACK_SGMII] = "SGMII", 52 [LOOPBACK_XGBR] = "XGBR", 53 [LOOPBACK_XFI] = "XFI", 54 [LOOPBACK_XAUI_FAR] = "XAUI_FAR", 55 [LOOPBACK_GMII_FAR] = "GMII_FAR", 56 [LOOPBACK_SGMII_FAR] = "SGMII_FAR", 57 [LOOPBACK_XFI_FAR] = "XFI_FAR", 58 [LOOPBACK_GPHY] = "GPHY", 59 [LOOPBACK_PHYXS] = "PHYXS", 60 [LOOPBACK_PCS] = "PCS", 61 [LOOPBACK_PMAPMD] = "PMA/PMD", 62 [LOOPBACK_XPORT] = "XPORT", 63 [LOOPBACK_XGMII_WS] = "XGMII_WS", 64 [LOOPBACK_XAUI_WS] = "XAUI_WS", 65 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", 66 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", 67 [LOOPBACK_GMII_WS] = "GMII_WS", 68 [LOOPBACK_XFI_WS] = "XFI_WS", 69 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", 70 [LOOPBACK_PHYXS_WS] = "PHYXS_WS", 71 }; 72 73 const unsigned int efx_reset_type_max = RESET_TYPE_MAX; 74 const char *const efx_reset_type_names[] = { 75 [RESET_TYPE_INVISIBLE] = "INVISIBLE", 76 [RESET_TYPE_ALL] = "ALL", 77 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", 78 [RESET_TYPE_WORLD] = "WORLD", 79 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", 80 [RESET_TYPE_DATAPATH] = "DATAPATH", 81 [RESET_TYPE_MC_BIST] = "MC_BIST", 82 [RESET_TYPE_DISABLE] = "DISABLE", 83 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", 84 [RESET_TYPE_INT_ERROR] = "INT_ERROR", 85 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", 86 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", 87 [RESET_TYPE_TX_SKIP] = "TX_SKIP", 88 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", 89 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)", 90 }; 91 92 /* Reset workqueue. If any NIC has a hardware failure then a reset will be 93 * queued onto this work queue. This is not a per-nic work queue, because 94 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. 95 */ 96 static struct workqueue_struct *reset_workqueue; 97 98 /* How often and how many times to poll for a reset while waiting for a 99 * BIST that another function started to complete. 100 */ 101 #define BIST_WAIT_DELAY_MS 100 102 #define BIST_WAIT_DELAY_COUNT 100 103 104 /************************************************************************** 105 * 106 * Configurable values 107 * 108 *************************************************************************/ 109 110 /* 111 * Use separate channels for TX and RX events 112 * 113 * Set this to 1 to use separate channels for TX and RX. It allows us 114 * to control interrupt affinity separately for TX and RX. 115 * 116 * This is only used in MSI-X interrupt mode 117 */ 118 bool efx_separate_tx_channels; 119 module_param(efx_separate_tx_channels, bool, 0444); 120 MODULE_PARM_DESC(efx_separate_tx_channels, 121 "Use separate channels for TX and RX"); 122 123 /* This is the weight assigned to each of the (per-channel) virtual 124 * NAPI devices. 125 */ 126 static int napi_weight = 64; 127 128 /* This is the time (in jiffies) between invocations of the hardware 129 * monitor. 130 * On Falcon-based NICs, this will: 131 * - Check the on-board hardware monitor; 132 * - Poll the link state and reconfigure the hardware as necessary. 133 * On Siena-based NICs for power systems with EEH support, this will give EEH a 134 * chance to start. 135 */ 136 static unsigned int efx_monitor_interval = 1 * HZ; 137 138 /* Initial interrupt moderation settings. They can be modified after 139 * module load with ethtool. 140 * 141 * The default for RX should strike a balance between increasing the 142 * round-trip latency and reducing overhead. 143 */ 144 static unsigned int rx_irq_mod_usec = 60; 145 146 /* Initial interrupt moderation settings. They can be modified after 147 * module load with ethtool. 148 * 149 * This default is chosen to ensure that a 10G link does not go idle 150 * while a TX queue is stopped after it has become full. A queue is 151 * restarted when it drops below half full. The time this takes (assuming 152 * worst case 3 descriptors per packet and 1024 descriptors) is 153 * 512 / 3 * 1.2 = 205 usec. 154 */ 155 static unsigned int tx_irq_mod_usec = 150; 156 157 /* This is the first interrupt mode to try out of: 158 * 0 => MSI-X 159 * 1 => MSI 160 * 2 => legacy 161 */ 162 static unsigned int interrupt_mode; 163 164 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), 165 * i.e. the number of CPUs among which we may distribute simultaneous 166 * interrupt handling. 167 * 168 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. 169 * The default (0) means to assign an interrupt to each core. 170 */ 171 static unsigned int rss_cpus; 172 module_param(rss_cpus, uint, 0444); 173 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 174 175 static bool phy_flash_cfg; 176 module_param(phy_flash_cfg, bool, 0644); 177 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 178 179 static unsigned irq_adapt_low_thresh = 8000; 180 module_param(irq_adapt_low_thresh, uint, 0644); 181 MODULE_PARM_DESC(irq_adapt_low_thresh, 182 "Threshold score for reducing IRQ moderation"); 183 184 static unsigned irq_adapt_high_thresh = 16000; 185 module_param(irq_adapt_high_thresh, uint, 0644); 186 MODULE_PARM_DESC(irq_adapt_high_thresh, 187 "Threshold score for increasing IRQ moderation"); 188 189 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 190 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 191 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 192 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 193 module_param(debug, uint, 0); 194 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 195 196 /************************************************************************** 197 * 198 * Utility functions and prototypes 199 * 200 *************************************************************************/ 201 202 static int efx_soft_enable_interrupts(struct efx_nic *efx); 203 static void efx_soft_disable_interrupts(struct efx_nic *efx); 204 static void efx_remove_channel(struct efx_channel *channel); 205 static void efx_remove_channels(struct efx_nic *efx); 206 static const struct efx_channel_type efx_default_channel_type; 207 static void efx_remove_port(struct efx_nic *efx); 208 static void efx_init_napi_channel(struct efx_channel *channel); 209 static void efx_fini_napi(struct efx_nic *efx); 210 static void efx_fini_napi_channel(struct efx_channel *channel); 211 static void efx_fini_struct(struct efx_nic *efx); 212 static void efx_start_all(struct efx_nic *efx); 213 static void efx_stop_all(struct efx_nic *efx); 214 215 #define EFX_ASSERT_RESET_SERIALISED(efx) \ 216 do { \ 217 if ((efx->state == STATE_READY) || \ 218 (efx->state == STATE_RECOVERY) || \ 219 (efx->state == STATE_DISABLED)) \ 220 ASSERT_RTNL(); \ 221 } while (0) 222 223 static int efx_check_disabled(struct efx_nic *efx) 224 { 225 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { 226 netif_err(efx, drv, efx->net_dev, 227 "device is disabled due to earlier errors\n"); 228 return -EIO; 229 } 230 return 0; 231 } 232 233 /************************************************************************** 234 * 235 * Event queue processing 236 * 237 *************************************************************************/ 238 239 /* Process channel's event queue 240 * 241 * This function is responsible for processing the event queue of a 242 * single channel. The caller must guarantee that this function will 243 * never be concurrently called more than once on the same channel, 244 * though different channels may be being processed concurrently. 245 */ 246 static int efx_process_channel(struct efx_channel *channel, int budget) 247 { 248 struct efx_tx_queue *tx_queue; 249 int spent; 250 251 if (unlikely(!channel->enabled)) 252 return 0; 253 254 efx_for_each_channel_tx_queue(tx_queue, channel) { 255 tx_queue->pkts_compl = 0; 256 tx_queue->bytes_compl = 0; 257 } 258 259 spent = efx_nic_process_eventq(channel, budget); 260 if (spent && efx_channel_has_rx_queue(channel)) { 261 struct efx_rx_queue *rx_queue = 262 efx_channel_get_rx_queue(channel); 263 264 efx_rx_flush_packet(channel); 265 efx_fast_push_rx_descriptors(rx_queue, true); 266 } 267 268 /* Update BQL */ 269 efx_for_each_channel_tx_queue(tx_queue, channel) { 270 if (tx_queue->bytes_compl) { 271 netdev_tx_completed_queue(tx_queue->core_txq, 272 tx_queue->pkts_compl, tx_queue->bytes_compl); 273 } 274 } 275 276 return spent; 277 } 278 279 /* NAPI poll handler 280 * 281 * NAPI guarantees serialisation of polls of the same device, which 282 * provides the guarantee required by efx_process_channel(). 283 */ 284 static int efx_poll(struct napi_struct *napi, int budget) 285 { 286 struct efx_channel *channel = 287 container_of(napi, struct efx_channel, napi_str); 288 struct efx_nic *efx = channel->efx; 289 int spent; 290 291 if (!efx_channel_lock_napi(channel)) 292 return budget; 293 294 netif_vdbg(efx, intr, efx->net_dev, 295 "channel %d NAPI poll executing on CPU %d\n", 296 channel->channel, raw_smp_processor_id()); 297 298 spent = efx_process_channel(channel, budget); 299 300 if (spent < budget) { 301 if (efx_channel_has_rx_queue(channel) && 302 efx->irq_rx_adaptive && 303 unlikely(++channel->irq_count == 1000)) { 304 if (unlikely(channel->irq_mod_score < 305 irq_adapt_low_thresh)) { 306 if (channel->irq_moderation > 1) { 307 channel->irq_moderation -= 1; 308 efx->type->push_irq_moderation(channel); 309 } 310 } else if (unlikely(channel->irq_mod_score > 311 irq_adapt_high_thresh)) { 312 if (channel->irq_moderation < 313 efx->irq_rx_moderation) { 314 channel->irq_moderation += 1; 315 efx->type->push_irq_moderation(channel); 316 } 317 } 318 channel->irq_count = 0; 319 channel->irq_mod_score = 0; 320 } 321 322 efx_filter_rfs_expire(channel); 323 324 /* There is no race here; although napi_disable() will 325 * only wait for napi_complete(), this isn't a problem 326 * since efx_nic_eventq_read_ack() will have no effect if 327 * interrupts have already been disabled. 328 */ 329 napi_complete(napi); 330 efx_nic_eventq_read_ack(channel); 331 } 332 333 efx_channel_unlock_napi(channel); 334 return spent; 335 } 336 337 /* Create event queue 338 * Event queue memory allocations are done only once. If the channel 339 * is reset, the memory buffer will be reused; this guards against 340 * errors during channel reset and also simplifies interrupt handling. 341 */ 342 static int efx_probe_eventq(struct efx_channel *channel) 343 { 344 struct efx_nic *efx = channel->efx; 345 unsigned long entries; 346 347 netif_dbg(efx, probe, efx->net_dev, 348 "chan %d create event queue\n", channel->channel); 349 350 /* Build an event queue with room for one event per tx and rx buffer, 351 * plus some extra for link state events and MCDI completions. */ 352 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); 353 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); 354 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; 355 356 return efx_nic_probe_eventq(channel); 357 } 358 359 /* Prepare channel's event queue */ 360 static int efx_init_eventq(struct efx_channel *channel) 361 { 362 struct efx_nic *efx = channel->efx; 363 int rc; 364 365 EFX_WARN_ON_PARANOID(channel->eventq_init); 366 367 netif_dbg(efx, drv, efx->net_dev, 368 "chan %d init event queue\n", channel->channel); 369 370 rc = efx_nic_init_eventq(channel); 371 if (rc == 0) { 372 efx->type->push_irq_moderation(channel); 373 channel->eventq_read_ptr = 0; 374 channel->eventq_init = true; 375 } 376 return rc; 377 } 378 379 /* Enable event queue processing and NAPI */ 380 void efx_start_eventq(struct efx_channel *channel) 381 { 382 netif_dbg(channel->efx, ifup, channel->efx->net_dev, 383 "chan %d start event queue\n", channel->channel); 384 385 /* Make sure the NAPI handler sees the enabled flag set */ 386 channel->enabled = true; 387 smp_wmb(); 388 389 efx_channel_enable(channel); 390 napi_enable(&channel->napi_str); 391 efx_nic_eventq_read_ack(channel); 392 } 393 394 /* Disable event queue processing and NAPI */ 395 void efx_stop_eventq(struct efx_channel *channel) 396 { 397 if (!channel->enabled) 398 return; 399 400 napi_disable(&channel->napi_str); 401 while (!efx_channel_disable(channel)) 402 usleep_range(1000, 20000); 403 channel->enabled = false; 404 } 405 406 static void efx_fini_eventq(struct efx_channel *channel) 407 { 408 if (!channel->eventq_init) 409 return; 410 411 netif_dbg(channel->efx, drv, channel->efx->net_dev, 412 "chan %d fini event queue\n", channel->channel); 413 414 efx_nic_fini_eventq(channel); 415 channel->eventq_init = false; 416 } 417 418 static void efx_remove_eventq(struct efx_channel *channel) 419 { 420 netif_dbg(channel->efx, drv, channel->efx->net_dev, 421 "chan %d remove event queue\n", channel->channel); 422 423 efx_nic_remove_eventq(channel); 424 } 425 426 /************************************************************************** 427 * 428 * Channel handling 429 * 430 *************************************************************************/ 431 432 /* Allocate and initialise a channel structure. */ 433 static struct efx_channel * 434 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) 435 { 436 struct efx_channel *channel; 437 struct efx_rx_queue *rx_queue; 438 struct efx_tx_queue *tx_queue; 439 int j; 440 441 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 442 if (!channel) 443 return NULL; 444 445 channel->efx = efx; 446 channel->channel = i; 447 channel->type = &efx_default_channel_type; 448 449 for (j = 0; j < EFX_TXQ_TYPES; j++) { 450 tx_queue = &channel->tx_queue[j]; 451 tx_queue->efx = efx; 452 tx_queue->queue = i * EFX_TXQ_TYPES + j; 453 tx_queue->channel = channel; 454 } 455 456 rx_queue = &channel->rx_queue; 457 rx_queue->efx = efx; 458 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, 459 (unsigned long)rx_queue); 460 461 return channel; 462 } 463 464 /* Allocate and initialise a channel structure, copying parameters 465 * (but not resources) from an old channel structure. 466 */ 467 static struct efx_channel * 468 efx_copy_channel(const struct efx_channel *old_channel) 469 { 470 struct efx_channel *channel; 471 struct efx_rx_queue *rx_queue; 472 struct efx_tx_queue *tx_queue; 473 int j; 474 475 channel = kmalloc(sizeof(*channel), GFP_KERNEL); 476 if (!channel) 477 return NULL; 478 479 *channel = *old_channel; 480 481 channel->napi_dev = NULL; 482 memset(&channel->eventq, 0, sizeof(channel->eventq)); 483 484 for (j = 0; j < EFX_TXQ_TYPES; j++) { 485 tx_queue = &channel->tx_queue[j]; 486 if (tx_queue->channel) 487 tx_queue->channel = channel; 488 tx_queue->buffer = NULL; 489 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); 490 } 491 492 rx_queue = &channel->rx_queue; 493 rx_queue->buffer = NULL; 494 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); 495 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, 496 (unsigned long)rx_queue); 497 498 return channel; 499 } 500 501 static int efx_probe_channel(struct efx_channel *channel) 502 { 503 struct efx_tx_queue *tx_queue; 504 struct efx_rx_queue *rx_queue; 505 int rc; 506 507 netif_dbg(channel->efx, probe, channel->efx->net_dev, 508 "creating channel %d\n", channel->channel); 509 510 rc = channel->type->pre_probe(channel); 511 if (rc) 512 goto fail; 513 514 rc = efx_probe_eventq(channel); 515 if (rc) 516 goto fail; 517 518 efx_for_each_channel_tx_queue(tx_queue, channel) { 519 rc = efx_probe_tx_queue(tx_queue); 520 if (rc) 521 goto fail; 522 } 523 524 efx_for_each_channel_rx_queue(rx_queue, channel) { 525 rc = efx_probe_rx_queue(rx_queue); 526 if (rc) 527 goto fail; 528 } 529 530 return 0; 531 532 fail: 533 efx_remove_channel(channel); 534 return rc; 535 } 536 537 static void 538 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len) 539 { 540 struct efx_nic *efx = channel->efx; 541 const char *type; 542 int number; 543 544 number = channel->channel; 545 if (efx->tx_channel_offset == 0) { 546 type = ""; 547 } else if (channel->channel < efx->tx_channel_offset) { 548 type = "-rx"; 549 } else { 550 type = "-tx"; 551 number -= efx->tx_channel_offset; 552 } 553 snprintf(buf, len, "%s%s-%d", efx->name, type, number); 554 } 555 556 static void efx_set_channel_names(struct efx_nic *efx) 557 { 558 struct efx_channel *channel; 559 560 efx_for_each_channel(channel, efx) 561 channel->type->get_name(channel, 562 efx->msi_context[channel->channel].name, 563 sizeof(efx->msi_context[0].name)); 564 } 565 566 static int efx_probe_channels(struct efx_nic *efx) 567 { 568 struct efx_channel *channel; 569 int rc; 570 571 /* Restart special buffer allocation */ 572 efx->next_buffer_table = 0; 573 574 /* Probe channels in reverse, so that any 'extra' channels 575 * use the start of the buffer table. This allows the traffic 576 * channels to be resized without moving them or wasting the 577 * entries before them. 578 */ 579 efx_for_each_channel_rev(channel, efx) { 580 rc = efx_probe_channel(channel); 581 if (rc) { 582 netif_err(efx, probe, efx->net_dev, 583 "failed to create channel %d\n", 584 channel->channel); 585 goto fail; 586 } 587 } 588 efx_set_channel_names(efx); 589 590 return 0; 591 592 fail: 593 efx_remove_channels(efx); 594 return rc; 595 } 596 597 /* Channels are shutdown and reinitialised whilst the NIC is running 598 * to propagate configuration changes (mtu, checksum offload), or 599 * to clear hardware error conditions 600 */ 601 static void efx_start_datapath(struct efx_nic *efx) 602 { 603 bool old_rx_scatter = efx->rx_scatter; 604 struct efx_tx_queue *tx_queue; 605 struct efx_rx_queue *rx_queue; 606 struct efx_channel *channel; 607 size_t rx_buf_len; 608 609 /* Calculate the rx buffer allocation parameters required to 610 * support the current MTU, including padding for header 611 * alignment and overruns. 612 */ 613 efx->rx_dma_len = (efx->rx_prefix_size + 614 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + 615 efx->type->rx_buffer_padding); 616 rx_buf_len = (sizeof(struct efx_rx_page_state) + 617 efx->rx_ip_align + efx->rx_dma_len); 618 if (rx_buf_len <= PAGE_SIZE) { 619 efx->rx_scatter = efx->type->always_rx_scatter; 620 efx->rx_buffer_order = 0; 621 } else if (efx->type->can_rx_scatter) { 622 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES); 623 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) + 624 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE, 625 EFX_RX_BUF_ALIGNMENT) > 626 PAGE_SIZE); 627 efx->rx_scatter = true; 628 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE; 629 efx->rx_buffer_order = 0; 630 } else { 631 efx->rx_scatter = false; 632 efx->rx_buffer_order = get_order(rx_buf_len); 633 } 634 635 efx_rx_config_page_split(efx); 636 if (efx->rx_buffer_order) 637 netif_dbg(efx, drv, efx->net_dev, 638 "RX buf len=%u; page order=%u batch=%u\n", 639 efx->rx_dma_len, efx->rx_buffer_order, 640 efx->rx_pages_per_batch); 641 else 642 netif_dbg(efx, drv, efx->net_dev, 643 "RX buf len=%u step=%u bpp=%u; page batch=%u\n", 644 efx->rx_dma_len, efx->rx_page_buf_step, 645 efx->rx_bufs_per_page, efx->rx_pages_per_batch); 646 647 /* RX filters may also have scatter-enabled flags */ 648 if (efx->rx_scatter != old_rx_scatter) 649 efx->type->filter_update_rx_scatter(efx); 650 651 /* We must keep at least one descriptor in a TX ring empty. 652 * We could avoid this when the queue size does not exactly 653 * match the hardware ring size, but it's not that important. 654 * Therefore we stop the queue when one more skb might fill 655 * the ring completely. We wake it when half way back to 656 * empty. 657 */ 658 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx); 659 efx->txq_wake_thresh = efx->txq_stop_thresh / 2; 660 661 /* Initialise the channels */ 662 efx_for_each_channel(channel, efx) { 663 efx_for_each_channel_tx_queue(tx_queue, channel) { 664 efx_init_tx_queue(tx_queue); 665 atomic_inc(&efx->active_queues); 666 } 667 668 efx_for_each_channel_rx_queue(rx_queue, channel) { 669 efx_init_rx_queue(rx_queue); 670 atomic_inc(&efx->active_queues); 671 efx_stop_eventq(channel); 672 efx_fast_push_rx_descriptors(rx_queue, false); 673 efx_start_eventq(channel); 674 } 675 676 WARN_ON(channel->rx_pkt_n_frags); 677 } 678 679 efx_ptp_start_datapath(efx); 680 681 if (netif_device_present(efx->net_dev)) 682 netif_tx_wake_all_queues(efx->net_dev); 683 } 684 685 static void efx_stop_datapath(struct efx_nic *efx) 686 { 687 struct efx_channel *channel; 688 struct efx_tx_queue *tx_queue; 689 struct efx_rx_queue *rx_queue; 690 int rc; 691 692 EFX_ASSERT_RESET_SERIALISED(efx); 693 BUG_ON(efx->port_enabled); 694 695 efx_ptp_stop_datapath(efx); 696 697 /* Stop RX refill */ 698 efx_for_each_channel(channel, efx) { 699 efx_for_each_channel_rx_queue(rx_queue, channel) 700 rx_queue->refill_enabled = false; 701 } 702 703 efx_for_each_channel(channel, efx) { 704 /* RX packet processing is pipelined, so wait for the 705 * NAPI handler to complete. At least event queue 0 706 * might be kept active by non-data events, so don't 707 * use napi_synchronize() but actually disable NAPI 708 * temporarily. 709 */ 710 if (efx_channel_has_rx_queue(channel)) { 711 efx_stop_eventq(channel); 712 efx_start_eventq(channel); 713 } 714 } 715 716 rc = efx->type->fini_dmaq(efx); 717 if (rc && EFX_WORKAROUND_7803(efx)) { 718 /* Schedule a reset to recover from the flush failure. The 719 * descriptor caches reference memory we're about to free, 720 * but falcon_reconfigure_mac_wrapper() won't reconnect 721 * the MACs because of the pending reset. 722 */ 723 netif_err(efx, drv, efx->net_dev, 724 "Resetting to recover from flush failure\n"); 725 efx_schedule_reset(efx, RESET_TYPE_ALL); 726 } else if (rc) { 727 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); 728 } else { 729 netif_dbg(efx, drv, efx->net_dev, 730 "successfully flushed all queues\n"); 731 } 732 733 efx_for_each_channel(channel, efx) { 734 efx_for_each_channel_rx_queue(rx_queue, channel) 735 efx_fini_rx_queue(rx_queue); 736 efx_for_each_possible_channel_tx_queue(tx_queue, channel) 737 efx_fini_tx_queue(tx_queue); 738 } 739 } 740 741 static void efx_remove_channel(struct efx_channel *channel) 742 { 743 struct efx_tx_queue *tx_queue; 744 struct efx_rx_queue *rx_queue; 745 746 netif_dbg(channel->efx, drv, channel->efx->net_dev, 747 "destroy chan %d\n", channel->channel); 748 749 efx_for_each_channel_rx_queue(rx_queue, channel) 750 efx_remove_rx_queue(rx_queue); 751 efx_for_each_possible_channel_tx_queue(tx_queue, channel) 752 efx_remove_tx_queue(tx_queue); 753 efx_remove_eventq(channel); 754 channel->type->post_remove(channel); 755 } 756 757 static void efx_remove_channels(struct efx_nic *efx) 758 { 759 struct efx_channel *channel; 760 761 efx_for_each_channel(channel, efx) 762 efx_remove_channel(channel); 763 } 764 765 int 766 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) 767 { 768 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; 769 u32 old_rxq_entries, old_txq_entries; 770 unsigned i, next_buffer_table = 0; 771 int rc, rc2; 772 773 rc = efx_check_disabled(efx); 774 if (rc) 775 return rc; 776 777 /* Not all channels should be reallocated. We must avoid 778 * reallocating their buffer table entries. 779 */ 780 efx_for_each_channel(channel, efx) { 781 struct efx_rx_queue *rx_queue; 782 struct efx_tx_queue *tx_queue; 783 784 if (channel->type->copy) 785 continue; 786 next_buffer_table = max(next_buffer_table, 787 channel->eventq.index + 788 channel->eventq.entries); 789 efx_for_each_channel_rx_queue(rx_queue, channel) 790 next_buffer_table = max(next_buffer_table, 791 rx_queue->rxd.index + 792 rx_queue->rxd.entries); 793 efx_for_each_channel_tx_queue(tx_queue, channel) 794 next_buffer_table = max(next_buffer_table, 795 tx_queue->txd.index + 796 tx_queue->txd.entries); 797 } 798 799 efx_device_detach_sync(efx); 800 efx_stop_all(efx); 801 efx_soft_disable_interrupts(efx); 802 803 /* Clone channels (where possible) */ 804 memset(other_channel, 0, sizeof(other_channel)); 805 for (i = 0; i < efx->n_channels; i++) { 806 channel = efx->channel[i]; 807 if (channel->type->copy) 808 channel = channel->type->copy(channel); 809 if (!channel) { 810 rc = -ENOMEM; 811 goto out; 812 } 813 other_channel[i] = channel; 814 } 815 816 /* Swap entry counts and channel pointers */ 817 old_rxq_entries = efx->rxq_entries; 818 old_txq_entries = efx->txq_entries; 819 efx->rxq_entries = rxq_entries; 820 efx->txq_entries = txq_entries; 821 for (i = 0; i < efx->n_channels; i++) { 822 channel = efx->channel[i]; 823 efx->channel[i] = other_channel[i]; 824 other_channel[i] = channel; 825 } 826 827 /* Restart buffer table allocation */ 828 efx->next_buffer_table = next_buffer_table; 829 830 for (i = 0; i < efx->n_channels; i++) { 831 channel = efx->channel[i]; 832 if (!channel->type->copy) 833 continue; 834 rc = efx_probe_channel(channel); 835 if (rc) 836 goto rollback; 837 efx_init_napi_channel(efx->channel[i]); 838 } 839 840 out: 841 /* Destroy unused channel structures */ 842 for (i = 0; i < efx->n_channels; i++) { 843 channel = other_channel[i]; 844 if (channel && channel->type->copy) { 845 efx_fini_napi_channel(channel); 846 efx_remove_channel(channel); 847 kfree(channel); 848 } 849 } 850 851 rc2 = efx_soft_enable_interrupts(efx); 852 if (rc2) { 853 rc = rc ? rc : rc2; 854 netif_err(efx, drv, efx->net_dev, 855 "unable to restart interrupts on channel reallocation\n"); 856 efx_schedule_reset(efx, RESET_TYPE_DISABLE); 857 } else { 858 efx_start_all(efx); 859 netif_device_attach(efx->net_dev); 860 } 861 return rc; 862 863 rollback: 864 /* Swap back */ 865 efx->rxq_entries = old_rxq_entries; 866 efx->txq_entries = old_txq_entries; 867 for (i = 0; i < efx->n_channels; i++) { 868 channel = efx->channel[i]; 869 efx->channel[i] = other_channel[i]; 870 other_channel[i] = channel; 871 } 872 goto out; 873 } 874 875 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) 876 { 877 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); 878 } 879 880 static const struct efx_channel_type efx_default_channel_type = { 881 .pre_probe = efx_channel_dummy_op_int, 882 .post_remove = efx_channel_dummy_op_void, 883 .get_name = efx_get_channel_name, 884 .copy = efx_copy_channel, 885 .keep_eventq = false, 886 }; 887 888 int efx_channel_dummy_op_int(struct efx_channel *channel) 889 { 890 return 0; 891 } 892 893 void efx_channel_dummy_op_void(struct efx_channel *channel) 894 { 895 } 896 897 /************************************************************************** 898 * 899 * Port handling 900 * 901 **************************************************************************/ 902 903 /* This ensures that the kernel is kept informed (via 904 * netif_carrier_on/off) of the link status, and also maintains the 905 * link status's stop on the port's TX queue. 906 */ 907 void efx_link_status_changed(struct efx_nic *efx) 908 { 909 struct efx_link_state *link_state = &efx->link_state; 910 911 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure 912 * that no events are triggered between unregister_netdev() and the 913 * driver unloading. A more general condition is that NETDEV_CHANGE 914 * can only be generated between NETDEV_UP and NETDEV_DOWN */ 915 if (!netif_running(efx->net_dev)) 916 return; 917 918 if (link_state->up != netif_carrier_ok(efx->net_dev)) { 919 efx->n_link_state_changes++; 920 921 if (link_state->up) 922 netif_carrier_on(efx->net_dev); 923 else 924 netif_carrier_off(efx->net_dev); 925 } 926 927 /* Status message for kernel log */ 928 if (link_state->up) 929 netif_info(efx, link, efx->net_dev, 930 "link up at %uMbps %s-duplex (MTU %d)\n", 931 link_state->speed, link_state->fd ? "full" : "half", 932 efx->net_dev->mtu); 933 else 934 netif_info(efx, link, efx->net_dev, "link down\n"); 935 } 936 937 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising) 938 { 939 efx->link_advertising = advertising; 940 if (advertising) { 941 if (advertising & ADVERTISED_Pause) 942 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); 943 else 944 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); 945 if (advertising & ADVERTISED_Asym_Pause) 946 efx->wanted_fc ^= EFX_FC_TX; 947 } 948 } 949 950 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) 951 { 952 efx->wanted_fc = wanted_fc; 953 if (efx->link_advertising) { 954 if (wanted_fc & EFX_FC_RX) 955 efx->link_advertising |= (ADVERTISED_Pause | 956 ADVERTISED_Asym_Pause); 957 else 958 efx->link_advertising &= ~(ADVERTISED_Pause | 959 ADVERTISED_Asym_Pause); 960 if (wanted_fc & EFX_FC_TX) 961 efx->link_advertising ^= ADVERTISED_Asym_Pause; 962 } 963 } 964 965 static void efx_fini_port(struct efx_nic *efx); 966 967 /* We assume that efx->type->reconfigure_mac will always try to sync RX 968 * filters and therefore needs to read-lock the filter table against freeing 969 */ 970 void efx_mac_reconfigure(struct efx_nic *efx) 971 { 972 down_read(&efx->filter_sem); 973 efx->type->reconfigure_mac(efx); 974 up_read(&efx->filter_sem); 975 } 976 977 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure 978 * the MAC appropriately. All other PHY configuration changes are pushed 979 * through phy_op->set_settings(), and pushed asynchronously to the MAC 980 * through efx_monitor(). 981 * 982 * Callers must hold the mac_lock 983 */ 984 int __efx_reconfigure_port(struct efx_nic *efx) 985 { 986 enum efx_phy_mode phy_mode; 987 int rc; 988 989 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 990 991 /* Disable PHY transmit in mac level loopbacks */ 992 phy_mode = efx->phy_mode; 993 if (LOOPBACK_INTERNAL(efx)) 994 efx->phy_mode |= PHY_MODE_TX_DISABLED; 995 else 996 efx->phy_mode &= ~PHY_MODE_TX_DISABLED; 997 998 rc = efx->type->reconfigure_port(efx); 999 1000 if (rc) 1001 efx->phy_mode = phy_mode; 1002 1003 return rc; 1004 } 1005 1006 /* Reinitialise the MAC to pick up new PHY settings, even if the port is 1007 * disabled. */ 1008 int efx_reconfigure_port(struct efx_nic *efx) 1009 { 1010 int rc; 1011 1012 EFX_ASSERT_RESET_SERIALISED(efx); 1013 1014 mutex_lock(&efx->mac_lock); 1015 rc = __efx_reconfigure_port(efx); 1016 mutex_unlock(&efx->mac_lock); 1017 1018 return rc; 1019 } 1020 1021 /* Asynchronous work item for changing MAC promiscuity and multicast 1022 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current 1023 * MAC directly. */ 1024 static void efx_mac_work(struct work_struct *data) 1025 { 1026 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); 1027 1028 mutex_lock(&efx->mac_lock); 1029 if (efx->port_enabled) 1030 efx_mac_reconfigure(efx); 1031 mutex_unlock(&efx->mac_lock); 1032 } 1033 1034 static int efx_probe_port(struct efx_nic *efx) 1035 { 1036 int rc; 1037 1038 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 1039 1040 if (phy_flash_cfg) 1041 efx->phy_mode = PHY_MODE_SPECIAL; 1042 1043 /* Connect up MAC/PHY operations table */ 1044 rc = efx->type->probe_port(efx); 1045 if (rc) 1046 return rc; 1047 1048 /* Initialise MAC address to permanent address */ 1049 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); 1050 1051 return 0; 1052 } 1053 1054 static int efx_init_port(struct efx_nic *efx) 1055 { 1056 int rc; 1057 1058 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 1059 1060 mutex_lock(&efx->mac_lock); 1061 1062 rc = efx->phy_op->init(efx); 1063 if (rc) 1064 goto fail1; 1065 1066 efx->port_initialized = true; 1067 1068 /* Reconfigure the MAC before creating dma queues (required for 1069 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ 1070 efx_mac_reconfigure(efx); 1071 1072 /* Ensure the PHY advertises the correct flow control settings */ 1073 rc = efx->phy_op->reconfigure(efx); 1074 if (rc && rc != -EPERM) 1075 goto fail2; 1076 1077 mutex_unlock(&efx->mac_lock); 1078 return 0; 1079 1080 fail2: 1081 efx->phy_op->fini(efx); 1082 fail1: 1083 mutex_unlock(&efx->mac_lock); 1084 return rc; 1085 } 1086 1087 static void efx_start_port(struct efx_nic *efx) 1088 { 1089 netif_dbg(efx, ifup, efx->net_dev, "start port\n"); 1090 BUG_ON(efx->port_enabled); 1091 1092 mutex_lock(&efx->mac_lock); 1093 efx->port_enabled = true; 1094 1095 /* Ensure MAC ingress/egress is enabled */ 1096 efx_mac_reconfigure(efx); 1097 1098 mutex_unlock(&efx->mac_lock); 1099 } 1100 1101 /* Cancel work for MAC reconfiguration, periodic hardware monitoring 1102 * and the async self-test, wait for them to finish and prevent them 1103 * being scheduled again. This doesn't cover online resets, which 1104 * should only be cancelled when removing the device. 1105 */ 1106 static void efx_stop_port(struct efx_nic *efx) 1107 { 1108 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); 1109 1110 EFX_ASSERT_RESET_SERIALISED(efx); 1111 1112 mutex_lock(&efx->mac_lock); 1113 efx->port_enabled = false; 1114 mutex_unlock(&efx->mac_lock); 1115 1116 /* Serialise against efx_set_multicast_list() */ 1117 netif_addr_lock_bh(efx->net_dev); 1118 netif_addr_unlock_bh(efx->net_dev); 1119 1120 cancel_delayed_work_sync(&efx->monitor_work); 1121 efx_selftest_async_cancel(efx); 1122 cancel_work_sync(&efx->mac_work); 1123 } 1124 1125 static void efx_fini_port(struct efx_nic *efx) 1126 { 1127 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 1128 1129 if (!efx->port_initialized) 1130 return; 1131 1132 efx->phy_op->fini(efx); 1133 efx->port_initialized = false; 1134 1135 efx->link_state.up = false; 1136 efx_link_status_changed(efx); 1137 } 1138 1139 static void efx_remove_port(struct efx_nic *efx) 1140 { 1141 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 1142 1143 efx->type->remove_port(efx); 1144 } 1145 1146 /************************************************************************** 1147 * 1148 * NIC handling 1149 * 1150 **************************************************************************/ 1151 1152 static LIST_HEAD(efx_primary_list); 1153 static LIST_HEAD(efx_unassociated_list); 1154 1155 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right) 1156 { 1157 return left->type == right->type && 1158 left->vpd_sn && right->vpd_sn && 1159 !strcmp(left->vpd_sn, right->vpd_sn); 1160 } 1161 1162 static void efx_associate(struct efx_nic *efx) 1163 { 1164 struct efx_nic *other, *next; 1165 1166 if (efx->primary == efx) { 1167 /* Adding primary function; look for secondaries */ 1168 1169 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 1170 list_add_tail(&efx->node, &efx_primary_list); 1171 1172 list_for_each_entry_safe(other, next, &efx_unassociated_list, 1173 node) { 1174 if (efx_same_controller(efx, other)) { 1175 list_del(&other->node); 1176 netif_dbg(other, probe, other->net_dev, 1177 "moving to secondary list of %s %s\n", 1178 pci_name(efx->pci_dev), 1179 efx->net_dev->name); 1180 list_add_tail(&other->node, 1181 &efx->secondary_list); 1182 other->primary = efx; 1183 } 1184 } 1185 } else { 1186 /* Adding secondary function; look for primary */ 1187 1188 list_for_each_entry(other, &efx_primary_list, node) { 1189 if (efx_same_controller(efx, other)) { 1190 netif_dbg(efx, probe, efx->net_dev, 1191 "adding to secondary list of %s %s\n", 1192 pci_name(other->pci_dev), 1193 other->net_dev->name); 1194 list_add_tail(&efx->node, 1195 &other->secondary_list); 1196 efx->primary = other; 1197 return; 1198 } 1199 } 1200 1201 netif_dbg(efx, probe, efx->net_dev, 1202 "adding to unassociated list\n"); 1203 list_add_tail(&efx->node, &efx_unassociated_list); 1204 } 1205 } 1206 1207 static void efx_dissociate(struct efx_nic *efx) 1208 { 1209 struct efx_nic *other, *next; 1210 1211 list_del(&efx->node); 1212 efx->primary = NULL; 1213 1214 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 1215 list_del(&other->node); 1216 netif_dbg(other, probe, other->net_dev, 1217 "moving to unassociated list\n"); 1218 list_add_tail(&other->node, &efx_unassociated_list); 1219 other->primary = NULL; 1220 } 1221 } 1222 1223 /* This configures the PCI device to enable I/O and DMA. */ 1224 static int efx_init_io(struct efx_nic *efx) 1225 { 1226 struct pci_dev *pci_dev = efx->pci_dev; 1227 dma_addr_t dma_mask = efx->type->max_dma_mask; 1228 unsigned int mem_map_size = efx->type->mem_map_size(efx); 1229 int rc, bar; 1230 1231 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); 1232 1233 bar = efx->type->mem_bar; 1234 1235 rc = pci_enable_device(pci_dev); 1236 if (rc) { 1237 netif_err(efx, probe, efx->net_dev, 1238 "failed to enable PCI device\n"); 1239 goto fail1; 1240 } 1241 1242 pci_set_master(pci_dev); 1243 1244 /* Set the PCI DMA mask. Try all possibilities from our 1245 * genuine mask down to 32 bits, because some architectures 1246 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit 1247 * masks event though they reject 46 bit masks. 1248 */ 1249 while (dma_mask > 0x7fffffffUL) { 1250 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); 1251 if (rc == 0) 1252 break; 1253 dma_mask >>= 1; 1254 } 1255 if (rc) { 1256 netif_err(efx, probe, efx->net_dev, 1257 "could not find a suitable DMA mask\n"); 1258 goto fail2; 1259 } 1260 netif_dbg(efx, probe, efx->net_dev, 1261 "using DMA mask %llx\n", (unsigned long long) dma_mask); 1262 1263 efx->membase_phys = pci_resource_start(efx->pci_dev, bar); 1264 rc = pci_request_region(pci_dev, bar, "sfc"); 1265 if (rc) { 1266 netif_err(efx, probe, efx->net_dev, 1267 "request for memory BAR failed\n"); 1268 rc = -EIO; 1269 goto fail3; 1270 } 1271 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size); 1272 if (!efx->membase) { 1273 netif_err(efx, probe, efx->net_dev, 1274 "could not map memory BAR at %llx+%x\n", 1275 (unsigned long long)efx->membase_phys, mem_map_size); 1276 rc = -ENOMEM; 1277 goto fail4; 1278 } 1279 netif_dbg(efx, probe, efx->net_dev, 1280 "memory BAR at %llx+%x (virtual %p)\n", 1281 (unsigned long long)efx->membase_phys, mem_map_size, 1282 efx->membase); 1283 1284 return 0; 1285 1286 fail4: 1287 pci_release_region(efx->pci_dev, bar); 1288 fail3: 1289 efx->membase_phys = 0; 1290 fail2: 1291 pci_disable_device(efx->pci_dev); 1292 fail1: 1293 return rc; 1294 } 1295 1296 static void efx_fini_io(struct efx_nic *efx) 1297 { 1298 int bar; 1299 1300 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); 1301 1302 if (efx->membase) { 1303 iounmap(efx->membase); 1304 efx->membase = NULL; 1305 } 1306 1307 if (efx->membase_phys) { 1308 bar = efx->type->mem_bar; 1309 pci_release_region(efx->pci_dev, bar); 1310 efx->membase_phys = 0; 1311 } 1312 1313 /* Don't disable bus-mastering if VFs are assigned */ 1314 if (!pci_vfs_assigned(efx->pci_dev)) 1315 pci_disable_device(efx->pci_dev); 1316 } 1317 1318 void efx_set_default_rx_indir_table(struct efx_nic *efx) 1319 { 1320 size_t i; 1321 1322 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) 1323 efx->rx_indir_table[i] = 1324 ethtool_rxfh_indir_default(i, efx->rss_spread); 1325 } 1326 1327 static unsigned int efx_wanted_parallelism(struct efx_nic *efx) 1328 { 1329 cpumask_var_t thread_mask; 1330 unsigned int count; 1331 int cpu; 1332 1333 if (rss_cpus) { 1334 count = rss_cpus; 1335 } else { 1336 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { 1337 netif_warn(efx, probe, efx->net_dev, 1338 "RSS disabled due to allocation failure\n"); 1339 return 1; 1340 } 1341 1342 count = 0; 1343 for_each_online_cpu(cpu) { 1344 if (!cpumask_test_cpu(cpu, thread_mask)) { 1345 ++count; 1346 cpumask_or(thread_mask, thread_mask, 1347 topology_sibling_cpumask(cpu)); 1348 } 1349 } 1350 1351 free_cpumask_var(thread_mask); 1352 } 1353 1354 /* If RSS is requested for the PF *and* VFs then we can't write RSS 1355 * table entries that are inaccessible to VFs 1356 */ 1357 #ifdef CONFIG_SFC_SRIOV 1358 if (efx->type->sriov_wanted) { 1359 if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 && 1360 count > efx_vf_size(efx)) { 1361 netif_warn(efx, probe, efx->net_dev, 1362 "Reducing number of RSS channels from %u to %u for " 1363 "VF support. Increase vf-msix-limit to use more " 1364 "channels on the PF.\n", 1365 count, efx_vf_size(efx)); 1366 count = efx_vf_size(efx); 1367 } 1368 } 1369 #endif 1370 1371 return count; 1372 } 1373 1374 /* Probe the number and type of interrupts we are able to obtain, and 1375 * the resulting numbers of channels and RX queues. 1376 */ 1377 static int efx_probe_interrupts(struct efx_nic *efx) 1378 { 1379 unsigned int extra_channels = 0; 1380 unsigned int i, j; 1381 int rc; 1382 1383 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) 1384 if (efx->extra_channel_type[i]) 1385 ++extra_channels; 1386 1387 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { 1388 struct msix_entry xentries[EFX_MAX_CHANNELS]; 1389 unsigned int n_channels; 1390 1391 n_channels = efx_wanted_parallelism(efx); 1392 if (efx_separate_tx_channels) 1393 n_channels *= 2; 1394 n_channels += extra_channels; 1395 n_channels = min(n_channels, efx->max_channels); 1396 1397 for (i = 0; i < n_channels; i++) 1398 xentries[i].entry = i; 1399 rc = pci_enable_msix_range(efx->pci_dev, 1400 xentries, 1, n_channels); 1401 if (rc < 0) { 1402 /* Fall back to single channel MSI */ 1403 efx->interrupt_mode = EFX_INT_MODE_MSI; 1404 netif_err(efx, drv, efx->net_dev, 1405 "could not enable MSI-X\n"); 1406 } else if (rc < n_channels) { 1407 netif_err(efx, drv, efx->net_dev, 1408 "WARNING: Insufficient MSI-X vectors" 1409 " available (%d < %u).\n", rc, n_channels); 1410 netif_err(efx, drv, efx->net_dev, 1411 "WARNING: Performance may be reduced.\n"); 1412 n_channels = rc; 1413 } 1414 1415 if (rc > 0) { 1416 efx->n_channels = n_channels; 1417 if (n_channels > extra_channels) 1418 n_channels -= extra_channels; 1419 if (efx_separate_tx_channels) { 1420 efx->n_tx_channels = min(max(n_channels / 2, 1421 1U), 1422 efx->max_tx_channels); 1423 efx->n_rx_channels = max(n_channels - 1424 efx->n_tx_channels, 1425 1U); 1426 } else { 1427 efx->n_tx_channels = min(n_channels, 1428 efx->max_tx_channels); 1429 efx->n_rx_channels = n_channels; 1430 } 1431 for (i = 0; i < efx->n_channels; i++) 1432 efx_get_channel(efx, i)->irq = 1433 xentries[i].vector; 1434 } 1435 } 1436 1437 /* Try single interrupt MSI */ 1438 if (efx->interrupt_mode == EFX_INT_MODE_MSI) { 1439 efx->n_channels = 1; 1440 efx->n_rx_channels = 1; 1441 efx->n_tx_channels = 1; 1442 rc = pci_enable_msi(efx->pci_dev); 1443 if (rc == 0) { 1444 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; 1445 } else { 1446 netif_err(efx, drv, efx->net_dev, 1447 "could not enable MSI\n"); 1448 efx->interrupt_mode = EFX_INT_MODE_LEGACY; 1449 } 1450 } 1451 1452 /* Assume legacy interrupts */ 1453 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { 1454 efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0); 1455 efx->n_rx_channels = 1; 1456 efx->n_tx_channels = 1; 1457 efx->legacy_irq = efx->pci_dev->irq; 1458 } 1459 1460 /* Assign extra channels if possible */ 1461 j = efx->n_channels; 1462 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) { 1463 if (!efx->extra_channel_type[i]) 1464 continue; 1465 if (efx->interrupt_mode != EFX_INT_MODE_MSIX || 1466 efx->n_channels <= extra_channels) { 1467 efx->extra_channel_type[i]->handle_no_channel(efx); 1468 } else { 1469 --j; 1470 efx_get_channel(efx, j)->type = 1471 efx->extra_channel_type[i]; 1472 } 1473 } 1474 1475 /* RSS might be usable on VFs even if it is disabled on the PF */ 1476 #ifdef CONFIG_SFC_SRIOV 1477 if (efx->type->sriov_wanted) { 1478 efx->rss_spread = ((efx->n_rx_channels > 1 || 1479 !efx->type->sriov_wanted(efx)) ? 1480 efx->n_rx_channels : efx_vf_size(efx)); 1481 return 0; 1482 } 1483 #endif 1484 efx->rss_spread = efx->n_rx_channels; 1485 1486 return 0; 1487 } 1488 1489 static int efx_soft_enable_interrupts(struct efx_nic *efx) 1490 { 1491 struct efx_channel *channel, *end_channel; 1492 int rc; 1493 1494 BUG_ON(efx->state == STATE_DISABLED); 1495 1496 efx->irq_soft_enabled = true; 1497 smp_wmb(); 1498 1499 efx_for_each_channel(channel, efx) { 1500 if (!channel->type->keep_eventq) { 1501 rc = efx_init_eventq(channel); 1502 if (rc) 1503 goto fail; 1504 } 1505 efx_start_eventq(channel); 1506 } 1507 1508 efx_mcdi_mode_event(efx); 1509 1510 return 0; 1511 fail: 1512 end_channel = channel; 1513 efx_for_each_channel(channel, efx) { 1514 if (channel == end_channel) 1515 break; 1516 efx_stop_eventq(channel); 1517 if (!channel->type->keep_eventq) 1518 efx_fini_eventq(channel); 1519 } 1520 1521 return rc; 1522 } 1523 1524 static void efx_soft_disable_interrupts(struct efx_nic *efx) 1525 { 1526 struct efx_channel *channel; 1527 1528 if (efx->state == STATE_DISABLED) 1529 return; 1530 1531 efx_mcdi_mode_poll(efx); 1532 1533 efx->irq_soft_enabled = false; 1534 smp_wmb(); 1535 1536 if (efx->legacy_irq) 1537 synchronize_irq(efx->legacy_irq); 1538 1539 efx_for_each_channel(channel, efx) { 1540 if (channel->irq) 1541 synchronize_irq(channel->irq); 1542 1543 efx_stop_eventq(channel); 1544 if (!channel->type->keep_eventq) 1545 efx_fini_eventq(channel); 1546 } 1547 1548 /* Flush the asynchronous MCDI request queue */ 1549 efx_mcdi_flush_async(efx); 1550 } 1551 1552 static int efx_enable_interrupts(struct efx_nic *efx) 1553 { 1554 struct efx_channel *channel, *end_channel; 1555 int rc; 1556 1557 BUG_ON(efx->state == STATE_DISABLED); 1558 1559 if (efx->eeh_disabled_legacy_irq) { 1560 enable_irq(efx->legacy_irq); 1561 efx->eeh_disabled_legacy_irq = false; 1562 } 1563 1564 efx->type->irq_enable_master(efx); 1565 1566 efx_for_each_channel(channel, efx) { 1567 if (channel->type->keep_eventq) { 1568 rc = efx_init_eventq(channel); 1569 if (rc) 1570 goto fail; 1571 } 1572 } 1573 1574 rc = efx_soft_enable_interrupts(efx); 1575 if (rc) 1576 goto fail; 1577 1578 return 0; 1579 1580 fail: 1581 end_channel = channel; 1582 efx_for_each_channel(channel, efx) { 1583 if (channel == end_channel) 1584 break; 1585 if (channel->type->keep_eventq) 1586 efx_fini_eventq(channel); 1587 } 1588 1589 efx->type->irq_disable_non_ev(efx); 1590 1591 return rc; 1592 } 1593 1594 static void efx_disable_interrupts(struct efx_nic *efx) 1595 { 1596 struct efx_channel *channel; 1597 1598 efx_soft_disable_interrupts(efx); 1599 1600 efx_for_each_channel(channel, efx) { 1601 if (channel->type->keep_eventq) 1602 efx_fini_eventq(channel); 1603 } 1604 1605 efx->type->irq_disable_non_ev(efx); 1606 } 1607 1608 static void efx_remove_interrupts(struct efx_nic *efx) 1609 { 1610 struct efx_channel *channel; 1611 1612 /* Remove MSI/MSI-X interrupts */ 1613 efx_for_each_channel(channel, efx) 1614 channel->irq = 0; 1615 pci_disable_msi(efx->pci_dev); 1616 pci_disable_msix(efx->pci_dev); 1617 1618 /* Remove legacy interrupt */ 1619 efx->legacy_irq = 0; 1620 } 1621 1622 static void efx_set_channels(struct efx_nic *efx) 1623 { 1624 struct efx_channel *channel; 1625 struct efx_tx_queue *tx_queue; 1626 1627 efx->tx_channel_offset = 1628 efx_separate_tx_channels ? 1629 efx->n_channels - efx->n_tx_channels : 0; 1630 1631 /* We need to mark which channels really have RX and TX 1632 * queues, and adjust the TX queue numbers if we have separate 1633 * RX-only and TX-only channels. 1634 */ 1635 efx_for_each_channel(channel, efx) { 1636 if (channel->channel < efx->n_rx_channels) 1637 channel->rx_queue.core_index = channel->channel; 1638 else 1639 channel->rx_queue.core_index = -1; 1640 1641 efx_for_each_channel_tx_queue(tx_queue, channel) 1642 tx_queue->queue -= (efx->tx_channel_offset * 1643 EFX_TXQ_TYPES); 1644 } 1645 } 1646 1647 static int efx_probe_nic(struct efx_nic *efx) 1648 { 1649 int rc; 1650 1651 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 1652 1653 /* Carry out hardware-type specific initialisation */ 1654 rc = efx->type->probe(efx); 1655 if (rc) 1656 return rc; 1657 1658 do { 1659 if (!efx->max_channels || !efx->max_tx_channels) { 1660 netif_err(efx, drv, efx->net_dev, 1661 "Insufficient resources to allocate" 1662 " any channels\n"); 1663 rc = -ENOSPC; 1664 goto fail1; 1665 } 1666 1667 /* Determine the number of channels and queues by trying 1668 * to hook in MSI-X interrupts. 1669 */ 1670 rc = efx_probe_interrupts(efx); 1671 if (rc) 1672 goto fail1; 1673 1674 efx_set_channels(efx); 1675 1676 /* dimension_resources can fail with EAGAIN */ 1677 rc = efx->type->dimension_resources(efx); 1678 if (rc != 0 && rc != -EAGAIN) 1679 goto fail2; 1680 1681 if (rc == -EAGAIN) 1682 /* try again with new max_channels */ 1683 efx_remove_interrupts(efx); 1684 1685 } while (rc == -EAGAIN); 1686 1687 if (efx->n_channels > 1) 1688 netdev_rss_key_fill(&efx->rx_hash_key, 1689 sizeof(efx->rx_hash_key)); 1690 efx_set_default_rx_indir_table(efx); 1691 1692 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); 1693 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); 1694 1695 /* Initialise the interrupt moderation settings */ 1696 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 1697 true); 1698 1699 return 0; 1700 1701 fail2: 1702 efx_remove_interrupts(efx); 1703 fail1: 1704 efx->type->remove(efx); 1705 return rc; 1706 } 1707 1708 static void efx_remove_nic(struct efx_nic *efx) 1709 { 1710 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 1711 1712 efx_remove_interrupts(efx); 1713 efx->type->remove(efx); 1714 } 1715 1716 static int efx_probe_filters(struct efx_nic *efx) 1717 { 1718 int rc; 1719 1720 spin_lock_init(&efx->filter_lock); 1721 init_rwsem(&efx->filter_sem); 1722 down_write(&efx->filter_sem); 1723 rc = efx->type->filter_table_probe(efx); 1724 if (rc) 1725 goto out_unlock; 1726 1727 #ifdef CONFIG_RFS_ACCEL 1728 if (efx->type->offload_features & NETIF_F_NTUPLE) { 1729 efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters, 1730 sizeof(*efx->rps_flow_id), 1731 GFP_KERNEL); 1732 if (!efx->rps_flow_id) { 1733 efx->type->filter_table_remove(efx); 1734 rc = -ENOMEM; 1735 goto out_unlock; 1736 } 1737 } 1738 #endif 1739 out_unlock: 1740 up_write(&efx->filter_sem); 1741 return rc; 1742 } 1743 1744 static void efx_remove_filters(struct efx_nic *efx) 1745 { 1746 #ifdef CONFIG_RFS_ACCEL 1747 kfree(efx->rps_flow_id); 1748 #endif 1749 down_write(&efx->filter_sem); 1750 efx->type->filter_table_remove(efx); 1751 up_write(&efx->filter_sem); 1752 } 1753 1754 static void efx_restore_filters(struct efx_nic *efx) 1755 { 1756 down_read(&efx->filter_sem); 1757 efx->type->filter_table_restore(efx); 1758 up_read(&efx->filter_sem); 1759 } 1760 1761 /************************************************************************** 1762 * 1763 * NIC startup/shutdown 1764 * 1765 *************************************************************************/ 1766 1767 static int efx_probe_all(struct efx_nic *efx) 1768 { 1769 int rc; 1770 1771 rc = efx_probe_nic(efx); 1772 if (rc) { 1773 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 1774 goto fail1; 1775 } 1776 1777 rc = efx_probe_port(efx); 1778 if (rc) { 1779 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 1780 goto fail2; 1781 } 1782 1783 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); 1784 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { 1785 rc = -EINVAL; 1786 goto fail3; 1787 } 1788 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; 1789 1790 #ifdef CONFIG_SFC_SRIOV 1791 rc = efx->type->vswitching_probe(efx); 1792 if (rc) /* not fatal; the PF will still work fine */ 1793 netif_warn(efx, probe, efx->net_dev, 1794 "failed to setup vswitching rc=%d;" 1795 " VFs may not function\n", rc); 1796 #endif 1797 1798 rc = efx_probe_filters(efx); 1799 if (rc) { 1800 netif_err(efx, probe, efx->net_dev, 1801 "failed to create filter tables\n"); 1802 goto fail4; 1803 } 1804 1805 rc = efx_probe_channels(efx); 1806 if (rc) 1807 goto fail5; 1808 1809 return 0; 1810 1811 fail5: 1812 efx_remove_filters(efx); 1813 fail4: 1814 #ifdef CONFIG_SFC_SRIOV 1815 efx->type->vswitching_remove(efx); 1816 #endif 1817 fail3: 1818 efx_remove_port(efx); 1819 fail2: 1820 efx_remove_nic(efx); 1821 fail1: 1822 return rc; 1823 } 1824 1825 /* If the interface is supposed to be running but is not, start 1826 * the hardware and software data path, regular activity for the port 1827 * (MAC statistics, link polling, etc.) and schedule the port to be 1828 * reconfigured. Interrupts must already be enabled. This function 1829 * is safe to call multiple times, so long as the NIC is not disabled. 1830 * Requires the RTNL lock. 1831 */ 1832 static void efx_start_all(struct efx_nic *efx) 1833 { 1834 EFX_ASSERT_RESET_SERIALISED(efx); 1835 BUG_ON(efx->state == STATE_DISABLED); 1836 1837 /* Check that it is appropriate to restart the interface. All 1838 * of these flags are safe to read under just the rtnl lock */ 1839 if (efx->port_enabled || !netif_running(efx->net_dev) || 1840 efx->reset_pending) 1841 return; 1842 1843 efx_start_port(efx); 1844 efx_start_datapath(efx); 1845 1846 /* Start the hardware monitor if there is one */ 1847 if (efx->type->monitor != NULL) 1848 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1849 efx_monitor_interval); 1850 1851 /* If link state detection is normally event-driven, we have 1852 * to poll now because we could have missed a change 1853 */ 1854 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { 1855 mutex_lock(&efx->mac_lock); 1856 if (efx->phy_op->poll(efx)) 1857 efx_link_status_changed(efx); 1858 mutex_unlock(&efx->mac_lock); 1859 } 1860 1861 efx->type->start_stats(efx); 1862 efx->type->pull_stats(efx); 1863 spin_lock_bh(&efx->stats_lock); 1864 efx->type->update_stats(efx, NULL, NULL); 1865 spin_unlock_bh(&efx->stats_lock); 1866 } 1867 1868 /* Quiesce the hardware and software data path, and regular activity 1869 * for the port without bringing the link down. Safe to call multiple 1870 * times with the NIC in almost any state, but interrupts should be 1871 * enabled. Requires the RTNL lock. 1872 */ 1873 static void efx_stop_all(struct efx_nic *efx) 1874 { 1875 EFX_ASSERT_RESET_SERIALISED(efx); 1876 1877 /* port_enabled can be read safely under the rtnl lock */ 1878 if (!efx->port_enabled) 1879 return; 1880 1881 /* update stats before we go down so we can accurately count 1882 * rx_nodesc_drops 1883 */ 1884 efx->type->pull_stats(efx); 1885 spin_lock_bh(&efx->stats_lock); 1886 efx->type->update_stats(efx, NULL, NULL); 1887 spin_unlock_bh(&efx->stats_lock); 1888 efx->type->stop_stats(efx); 1889 efx_stop_port(efx); 1890 1891 /* Stop the kernel transmit interface. This is only valid if 1892 * the device is stopped or detached; otherwise the watchdog 1893 * may fire immediately. 1894 */ 1895 WARN_ON(netif_running(efx->net_dev) && 1896 netif_device_present(efx->net_dev)); 1897 netif_tx_disable(efx->net_dev); 1898 1899 efx_stop_datapath(efx); 1900 } 1901 1902 static void efx_remove_all(struct efx_nic *efx) 1903 { 1904 efx_remove_channels(efx); 1905 efx_remove_filters(efx); 1906 #ifdef CONFIG_SFC_SRIOV 1907 efx->type->vswitching_remove(efx); 1908 #endif 1909 efx_remove_port(efx); 1910 efx_remove_nic(efx); 1911 } 1912 1913 /************************************************************************** 1914 * 1915 * Interrupt moderation 1916 * 1917 **************************************************************************/ 1918 1919 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns) 1920 { 1921 if (usecs == 0) 1922 return 0; 1923 if (usecs * 1000 < quantum_ns) 1924 return 1; /* never round down to 0 */ 1925 return usecs * 1000 / quantum_ns; 1926 } 1927 1928 /* Set interrupt moderation parameters */ 1929 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, 1930 unsigned int rx_usecs, bool rx_adaptive, 1931 bool rx_may_override_tx) 1932 { 1933 struct efx_channel *channel; 1934 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max * 1935 efx->timer_quantum_ns, 1936 1000); 1937 unsigned int tx_ticks; 1938 unsigned int rx_ticks; 1939 1940 EFX_ASSERT_RESET_SERIALISED(efx); 1941 1942 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max) 1943 return -EINVAL; 1944 1945 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns); 1946 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns); 1947 1948 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 && 1949 !rx_may_override_tx) { 1950 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 1951 "RX and TX IRQ moderation must be equal\n"); 1952 return -EINVAL; 1953 } 1954 1955 efx->irq_rx_adaptive = rx_adaptive; 1956 efx->irq_rx_moderation = rx_ticks; 1957 efx_for_each_channel(channel, efx) { 1958 if (efx_channel_has_rx_queue(channel)) 1959 channel->irq_moderation = rx_ticks; 1960 else if (efx_channel_has_tx_queues(channel)) 1961 channel->irq_moderation = tx_ticks; 1962 } 1963 1964 return 0; 1965 } 1966 1967 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, 1968 unsigned int *rx_usecs, bool *rx_adaptive) 1969 { 1970 /* We must round up when converting ticks to microseconds 1971 * because we round down when converting the other way. 1972 */ 1973 1974 *rx_adaptive = efx->irq_rx_adaptive; 1975 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation * 1976 efx->timer_quantum_ns, 1977 1000); 1978 1979 /* If channels are shared between RX and TX, so is IRQ 1980 * moderation. Otherwise, IRQ moderation is the same for all 1981 * TX channels and is not adaptive. 1982 */ 1983 if (efx->tx_channel_offset == 0) 1984 *tx_usecs = *rx_usecs; 1985 else 1986 *tx_usecs = DIV_ROUND_UP( 1987 efx->channel[efx->tx_channel_offset]->irq_moderation * 1988 efx->timer_quantum_ns, 1989 1000); 1990 } 1991 1992 /************************************************************************** 1993 * 1994 * Hardware monitor 1995 * 1996 **************************************************************************/ 1997 1998 /* Run periodically off the general workqueue */ 1999 static void efx_monitor(struct work_struct *data) 2000 { 2001 struct efx_nic *efx = container_of(data, struct efx_nic, 2002 monitor_work.work); 2003 2004 netif_vdbg(efx, timer, efx->net_dev, 2005 "hardware monitor executing on CPU %d\n", 2006 raw_smp_processor_id()); 2007 BUG_ON(efx->type->monitor == NULL); 2008 2009 /* If the mac_lock is already held then it is likely a port 2010 * reconfiguration is already in place, which will likely do 2011 * most of the work of monitor() anyway. */ 2012 if (mutex_trylock(&efx->mac_lock)) { 2013 if (efx->port_enabled) 2014 efx->type->monitor(efx); 2015 mutex_unlock(&efx->mac_lock); 2016 } 2017 2018 queue_delayed_work(efx->workqueue, &efx->monitor_work, 2019 efx_monitor_interval); 2020 } 2021 2022 /************************************************************************** 2023 * 2024 * ioctls 2025 * 2026 *************************************************************************/ 2027 2028 /* Net device ioctl 2029 * Context: process, rtnl_lock() held. 2030 */ 2031 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 2032 { 2033 struct efx_nic *efx = netdev_priv(net_dev); 2034 struct mii_ioctl_data *data = if_mii(ifr); 2035 2036 if (cmd == SIOCSHWTSTAMP) 2037 return efx_ptp_set_ts_config(efx, ifr); 2038 if (cmd == SIOCGHWTSTAMP) 2039 return efx_ptp_get_ts_config(efx, ifr); 2040 2041 /* Convert phy_id from older PRTAD/DEVAD format */ 2042 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 2043 (data->phy_id & 0xfc00) == 0x0400) 2044 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 2045 2046 return mdio_mii_ioctl(&efx->mdio, data, cmd); 2047 } 2048 2049 /************************************************************************** 2050 * 2051 * NAPI interface 2052 * 2053 **************************************************************************/ 2054 2055 static void efx_init_napi_channel(struct efx_channel *channel) 2056 { 2057 struct efx_nic *efx = channel->efx; 2058 2059 channel->napi_dev = efx->net_dev; 2060 netif_napi_add(channel->napi_dev, &channel->napi_str, 2061 efx_poll, napi_weight); 2062 napi_hash_add(&channel->napi_str); 2063 efx_channel_busy_poll_init(channel); 2064 } 2065 2066 static void efx_init_napi(struct efx_nic *efx) 2067 { 2068 struct efx_channel *channel; 2069 2070 efx_for_each_channel(channel, efx) 2071 efx_init_napi_channel(channel); 2072 } 2073 2074 static void efx_fini_napi_channel(struct efx_channel *channel) 2075 { 2076 if (channel->napi_dev) { 2077 netif_napi_del(&channel->napi_str); 2078 napi_hash_del(&channel->napi_str); 2079 } 2080 channel->napi_dev = NULL; 2081 } 2082 2083 static void efx_fini_napi(struct efx_nic *efx) 2084 { 2085 struct efx_channel *channel; 2086 2087 efx_for_each_channel(channel, efx) 2088 efx_fini_napi_channel(channel); 2089 } 2090 2091 /************************************************************************** 2092 * 2093 * Kernel netpoll interface 2094 * 2095 *************************************************************************/ 2096 2097 #ifdef CONFIG_NET_POLL_CONTROLLER 2098 2099 /* Although in the common case interrupts will be disabled, this is not 2100 * guaranteed. However, all our work happens inside the NAPI callback, 2101 * so no locking is required. 2102 */ 2103 static void efx_netpoll(struct net_device *net_dev) 2104 { 2105 struct efx_nic *efx = netdev_priv(net_dev); 2106 struct efx_channel *channel; 2107 2108 efx_for_each_channel(channel, efx) 2109 efx_schedule_channel(channel); 2110 } 2111 2112 #endif 2113 2114 #ifdef CONFIG_NET_RX_BUSY_POLL 2115 static int efx_busy_poll(struct napi_struct *napi) 2116 { 2117 struct efx_channel *channel = 2118 container_of(napi, struct efx_channel, napi_str); 2119 struct efx_nic *efx = channel->efx; 2120 int budget = 4; 2121 int old_rx_packets, rx_packets; 2122 2123 if (!netif_running(efx->net_dev)) 2124 return LL_FLUSH_FAILED; 2125 2126 if (!efx_channel_try_lock_poll(channel)) 2127 return LL_FLUSH_BUSY; 2128 2129 old_rx_packets = channel->rx_queue.rx_packets; 2130 efx_process_channel(channel, budget); 2131 2132 rx_packets = channel->rx_queue.rx_packets - old_rx_packets; 2133 2134 /* There is no race condition with NAPI here. 2135 * NAPI will automatically be rescheduled if it yielded during busy 2136 * polling, because it was not able to take the lock and thus returned 2137 * the full budget. 2138 */ 2139 efx_channel_unlock_poll(channel); 2140 2141 return rx_packets; 2142 } 2143 #endif 2144 2145 /************************************************************************** 2146 * 2147 * Kernel net device interface 2148 * 2149 *************************************************************************/ 2150 2151 /* Context: process, rtnl_lock() held. */ 2152 int efx_net_open(struct net_device *net_dev) 2153 { 2154 struct efx_nic *efx = netdev_priv(net_dev); 2155 int rc; 2156 2157 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 2158 raw_smp_processor_id()); 2159 2160 rc = efx_check_disabled(efx); 2161 if (rc) 2162 return rc; 2163 if (efx->phy_mode & PHY_MODE_SPECIAL) 2164 return -EBUSY; 2165 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) 2166 return -EIO; 2167 2168 /* Notify the kernel of the link state polled during driver load, 2169 * before the monitor starts running */ 2170 efx_link_status_changed(efx); 2171 2172 efx_start_all(efx); 2173 efx_selftest_async_start(efx); 2174 return 0; 2175 } 2176 2177 /* Context: process, rtnl_lock() held. 2178 * Note that the kernel will ignore our return code; this method 2179 * should really be a void. 2180 */ 2181 int efx_net_stop(struct net_device *net_dev) 2182 { 2183 struct efx_nic *efx = netdev_priv(net_dev); 2184 2185 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 2186 raw_smp_processor_id()); 2187 2188 /* Stop the device and flush all the channels */ 2189 efx_stop_all(efx); 2190 2191 return 0; 2192 } 2193 2194 /* Context: process, dev_base_lock or RTNL held, non-blocking. */ 2195 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, 2196 struct rtnl_link_stats64 *stats) 2197 { 2198 struct efx_nic *efx = netdev_priv(net_dev); 2199 2200 spin_lock_bh(&efx->stats_lock); 2201 efx->type->update_stats(efx, NULL, stats); 2202 spin_unlock_bh(&efx->stats_lock); 2203 2204 return stats; 2205 } 2206 2207 /* Context: netif_tx_lock held, BHs disabled. */ 2208 static void efx_watchdog(struct net_device *net_dev) 2209 { 2210 struct efx_nic *efx = netdev_priv(net_dev); 2211 2212 netif_err(efx, tx_err, efx->net_dev, 2213 "TX stuck with port_enabled=%d: resetting channels\n", 2214 efx->port_enabled); 2215 2216 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 2217 } 2218 2219 2220 /* Context: process, rtnl_lock() held. */ 2221 static int efx_change_mtu(struct net_device *net_dev, int new_mtu) 2222 { 2223 struct efx_nic *efx = netdev_priv(net_dev); 2224 int rc; 2225 2226 rc = efx_check_disabled(efx); 2227 if (rc) 2228 return rc; 2229 if (new_mtu > EFX_MAX_MTU) 2230 return -EINVAL; 2231 2232 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); 2233 2234 efx_device_detach_sync(efx); 2235 efx_stop_all(efx); 2236 2237 mutex_lock(&efx->mac_lock); 2238 net_dev->mtu = new_mtu; 2239 efx_mac_reconfigure(efx); 2240 mutex_unlock(&efx->mac_lock); 2241 2242 efx_start_all(efx); 2243 netif_device_attach(efx->net_dev); 2244 return 0; 2245 } 2246 2247 static int efx_set_mac_address(struct net_device *net_dev, void *data) 2248 { 2249 struct efx_nic *efx = netdev_priv(net_dev); 2250 struct sockaddr *addr = data; 2251 u8 *new_addr = addr->sa_data; 2252 u8 old_addr[6]; 2253 int rc; 2254 2255 if (!is_valid_ether_addr(new_addr)) { 2256 netif_err(efx, drv, efx->net_dev, 2257 "invalid ethernet MAC address requested: %pM\n", 2258 new_addr); 2259 return -EADDRNOTAVAIL; 2260 } 2261 2262 /* save old address */ 2263 ether_addr_copy(old_addr, net_dev->dev_addr); 2264 ether_addr_copy(net_dev->dev_addr, new_addr); 2265 if (efx->type->set_mac_address) { 2266 rc = efx->type->set_mac_address(efx); 2267 if (rc) { 2268 ether_addr_copy(net_dev->dev_addr, old_addr); 2269 return rc; 2270 } 2271 } 2272 2273 /* Reconfigure the MAC */ 2274 mutex_lock(&efx->mac_lock); 2275 efx_mac_reconfigure(efx); 2276 mutex_unlock(&efx->mac_lock); 2277 2278 return 0; 2279 } 2280 2281 /* Context: netif_addr_lock held, BHs disabled. */ 2282 static void efx_set_rx_mode(struct net_device *net_dev) 2283 { 2284 struct efx_nic *efx = netdev_priv(net_dev); 2285 2286 if (efx->port_enabled) 2287 queue_work(efx->workqueue, &efx->mac_work); 2288 /* Otherwise efx_start_port() will do this */ 2289 } 2290 2291 static int efx_set_features(struct net_device *net_dev, netdev_features_t data) 2292 { 2293 struct efx_nic *efx = netdev_priv(net_dev); 2294 2295 /* If disabling RX n-tuple filtering, clear existing filters */ 2296 if (net_dev->features & ~data & NETIF_F_NTUPLE) 2297 return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); 2298 2299 return 0; 2300 } 2301 2302 static const struct net_device_ops efx_netdev_ops = { 2303 .ndo_open = efx_net_open, 2304 .ndo_stop = efx_net_stop, 2305 .ndo_get_stats64 = efx_net_stats, 2306 .ndo_tx_timeout = efx_watchdog, 2307 .ndo_start_xmit = efx_hard_start_xmit, 2308 .ndo_validate_addr = eth_validate_addr, 2309 .ndo_do_ioctl = efx_ioctl, 2310 .ndo_change_mtu = efx_change_mtu, 2311 .ndo_set_mac_address = efx_set_mac_address, 2312 .ndo_set_rx_mode = efx_set_rx_mode, 2313 .ndo_set_features = efx_set_features, 2314 #ifdef CONFIG_SFC_SRIOV 2315 .ndo_set_vf_mac = efx_sriov_set_vf_mac, 2316 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, 2317 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, 2318 .ndo_get_vf_config = efx_sriov_get_vf_config, 2319 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state, 2320 .ndo_get_phys_port_id = efx_sriov_get_phys_port_id, 2321 #endif 2322 #ifdef CONFIG_NET_POLL_CONTROLLER 2323 .ndo_poll_controller = efx_netpoll, 2324 #endif 2325 .ndo_setup_tc = efx_setup_tc, 2326 #ifdef CONFIG_NET_RX_BUSY_POLL 2327 .ndo_busy_poll = efx_busy_poll, 2328 #endif 2329 #ifdef CONFIG_RFS_ACCEL 2330 .ndo_rx_flow_steer = efx_filter_rfs, 2331 #endif 2332 }; 2333 2334 static void efx_update_name(struct efx_nic *efx) 2335 { 2336 strcpy(efx->name, efx->net_dev->name); 2337 efx_mtd_rename(efx); 2338 efx_set_channel_names(efx); 2339 } 2340 2341 static int efx_netdev_event(struct notifier_block *this, 2342 unsigned long event, void *ptr) 2343 { 2344 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 2345 2346 if ((net_dev->netdev_ops == &efx_netdev_ops) && 2347 event == NETDEV_CHANGENAME) 2348 efx_update_name(netdev_priv(net_dev)); 2349 2350 return NOTIFY_DONE; 2351 } 2352 2353 static struct notifier_block efx_netdev_notifier = { 2354 .notifier_call = efx_netdev_event, 2355 }; 2356 2357 static ssize_t 2358 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) 2359 { 2360 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2361 return sprintf(buf, "%d\n", efx->phy_type); 2362 } 2363 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); 2364 2365 #ifdef CONFIG_SFC_MCDI_LOGGING 2366 static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr, 2367 char *buf) 2368 { 2369 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2370 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 2371 2372 return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled); 2373 } 2374 static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr, 2375 const char *buf, size_t count) 2376 { 2377 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2378 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 2379 bool enable = count > 0 && *buf != '0'; 2380 2381 mcdi->logging_enabled = enable; 2382 return count; 2383 } 2384 static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log); 2385 #endif 2386 2387 static int efx_register_netdev(struct efx_nic *efx) 2388 { 2389 struct net_device *net_dev = efx->net_dev; 2390 struct efx_channel *channel; 2391 int rc; 2392 2393 net_dev->watchdog_timeo = 5 * HZ; 2394 net_dev->irq = efx->pci_dev->irq; 2395 net_dev->netdev_ops = &efx_netdev_ops; 2396 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) 2397 net_dev->priv_flags |= IFF_UNICAST_FLT; 2398 net_dev->ethtool_ops = &efx_ethtool_ops; 2399 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS; 2400 2401 rtnl_lock(); 2402 2403 /* Enable resets to be scheduled and check whether any were 2404 * already requested. If so, the NIC is probably hosed so we 2405 * abort. 2406 */ 2407 efx->state = STATE_READY; 2408 smp_mb(); /* ensure we change state before checking reset_pending */ 2409 if (efx->reset_pending) { 2410 netif_err(efx, probe, efx->net_dev, 2411 "aborting probe due to scheduled reset\n"); 2412 rc = -EIO; 2413 goto fail_locked; 2414 } 2415 2416 rc = dev_alloc_name(net_dev, net_dev->name); 2417 if (rc < 0) 2418 goto fail_locked; 2419 efx_update_name(efx); 2420 2421 /* Always start with carrier off; PHY events will detect the link */ 2422 netif_carrier_off(net_dev); 2423 2424 rc = register_netdevice(net_dev); 2425 if (rc) 2426 goto fail_locked; 2427 2428 efx_for_each_channel(channel, efx) { 2429 struct efx_tx_queue *tx_queue; 2430 efx_for_each_channel_tx_queue(tx_queue, channel) 2431 efx_init_tx_queue_core_txq(tx_queue); 2432 } 2433 2434 efx_associate(efx); 2435 2436 rtnl_unlock(); 2437 2438 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2439 if (rc) { 2440 netif_err(efx, drv, efx->net_dev, 2441 "failed to init net dev attributes\n"); 2442 goto fail_registered; 2443 } 2444 #ifdef CONFIG_SFC_MCDI_LOGGING 2445 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); 2446 if (rc) { 2447 netif_err(efx, drv, efx->net_dev, 2448 "failed to init net dev attributes\n"); 2449 goto fail_attr_mcdi_logging; 2450 } 2451 #endif 2452 2453 return 0; 2454 2455 #ifdef CONFIG_SFC_MCDI_LOGGING 2456 fail_attr_mcdi_logging: 2457 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2458 #endif 2459 fail_registered: 2460 rtnl_lock(); 2461 efx_dissociate(efx); 2462 unregister_netdevice(net_dev); 2463 fail_locked: 2464 efx->state = STATE_UNINIT; 2465 rtnl_unlock(); 2466 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 2467 return rc; 2468 } 2469 2470 static void efx_unregister_netdev(struct efx_nic *efx) 2471 { 2472 if (!efx->net_dev) 2473 return; 2474 2475 BUG_ON(netdev_priv(efx->net_dev) != efx); 2476 2477 if (efx_dev_registered(efx)) { 2478 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 2479 #ifdef CONFIG_SFC_MCDI_LOGGING 2480 device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); 2481 #endif 2482 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2483 unregister_netdev(efx->net_dev); 2484 } 2485 } 2486 2487 /************************************************************************** 2488 * 2489 * Device reset and suspend 2490 * 2491 **************************************************************************/ 2492 2493 /* Tears down the entire software state and most of the hardware state 2494 * before reset. */ 2495 void efx_reset_down(struct efx_nic *efx, enum reset_type method) 2496 { 2497 EFX_ASSERT_RESET_SERIALISED(efx); 2498 2499 if (method == RESET_TYPE_MCDI_TIMEOUT) 2500 efx->type->prepare_flr(efx); 2501 2502 efx_stop_all(efx); 2503 efx_disable_interrupts(efx); 2504 2505 mutex_lock(&efx->mac_lock); 2506 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2507 method != RESET_TYPE_DATAPATH) 2508 efx->phy_op->fini(efx); 2509 efx->type->fini(efx); 2510 } 2511 2512 /* This function will always ensure that the locks acquired in 2513 * efx_reset_down() are released. A failure return code indicates 2514 * that we were unable to reinitialise the hardware, and the 2515 * driver should be disabled. If ok is false, then the rx and tx 2516 * engines are not restarted, pending a RESET_DISABLE. */ 2517 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) 2518 { 2519 int rc; 2520 2521 EFX_ASSERT_RESET_SERIALISED(efx); 2522 2523 if (method == RESET_TYPE_MCDI_TIMEOUT) 2524 efx->type->finish_flr(efx); 2525 2526 /* Ensure that SRAM is initialised even if we're disabling the device */ 2527 rc = efx->type->init(efx); 2528 if (rc) { 2529 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); 2530 goto fail; 2531 } 2532 2533 if (!ok) 2534 goto fail; 2535 2536 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2537 method != RESET_TYPE_DATAPATH) { 2538 rc = efx->phy_op->init(efx); 2539 if (rc) 2540 goto fail; 2541 rc = efx->phy_op->reconfigure(efx); 2542 if (rc && rc != -EPERM) 2543 netif_err(efx, drv, efx->net_dev, 2544 "could not restore PHY settings\n"); 2545 } 2546 2547 rc = efx_enable_interrupts(efx); 2548 if (rc) 2549 goto fail; 2550 2551 #ifdef CONFIG_SFC_SRIOV 2552 rc = efx->type->vswitching_restore(efx); 2553 if (rc) /* not fatal; the PF will still work fine */ 2554 netif_warn(efx, probe, efx->net_dev, 2555 "failed to restore vswitching rc=%d;" 2556 " VFs may not function\n", rc); 2557 #endif 2558 2559 down_read(&efx->filter_sem); 2560 efx_restore_filters(efx); 2561 up_read(&efx->filter_sem); 2562 if (efx->type->sriov_reset) 2563 efx->type->sriov_reset(efx); 2564 2565 mutex_unlock(&efx->mac_lock); 2566 2567 efx_start_all(efx); 2568 2569 return 0; 2570 2571 fail: 2572 efx->port_initialized = false; 2573 2574 mutex_unlock(&efx->mac_lock); 2575 2576 return rc; 2577 } 2578 2579 /* Reset the NIC using the specified method. Note that the reset may 2580 * fail, in which case the card will be left in an unusable state. 2581 * 2582 * Caller must hold the rtnl_lock. 2583 */ 2584 int efx_reset(struct efx_nic *efx, enum reset_type method) 2585 { 2586 int rc, rc2; 2587 bool disabled; 2588 2589 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", 2590 RESET_TYPE(method)); 2591 2592 efx_device_detach_sync(efx); 2593 efx_reset_down(efx, method); 2594 2595 rc = efx->type->reset(efx, method); 2596 if (rc) { 2597 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); 2598 goto out; 2599 } 2600 2601 /* Clear flags for the scopes we covered. We assume the NIC and 2602 * driver are now quiescent so that there is no race here. 2603 */ 2604 if (method < RESET_TYPE_MAX_METHOD) 2605 efx->reset_pending &= -(1 << (method + 1)); 2606 else /* it doesn't fit into the well-ordered scope hierarchy */ 2607 __clear_bit(method, &efx->reset_pending); 2608 2609 /* Reinitialise bus-mastering, which may have been turned off before 2610 * the reset was scheduled. This is still appropriate, even in the 2611 * RESET_TYPE_DISABLE since this driver generally assumes the hardware 2612 * can respond to requests. */ 2613 pci_set_master(efx->pci_dev); 2614 2615 out: 2616 /* Leave device stopped if necessary */ 2617 disabled = rc || 2618 method == RESET_TYPE_DISABLE || 2619 method == RESET_TYPE_RECOVER_OR_DISABLE; 2620 rc2 = efx_reset_up(efx, method, !disabled); 2621 if (rc2) { 2622 disabled = true; 2623 if (!rc) 2624 rc = rc2; 2625 } 2626 2627 if (disabled) { 2628 dev_close(efx->net_dev); 2629 netif_err(efx, drv, efx->net_dev, "has been disabled\n"); 2630 efx->state = STATE_DISABLED; 2631 } else { 2632 netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); 2633 netif_device_attach(efx->net_dev); 2634 } 2635 return rc; 2636 } 2637 2638 /* Try recovery mechanisms. 2639 * For now only EEH is supported. 2640 * Returns 0 if the recovery mechanisms are unsuccessful. 2641 * Returns a non-zero value otherwise. 2642 */ 2643 int efx_try_recovery(struct efx_nic *efx) 2644 { 2645 #ifdef CONFIG_EEH 2646 /* A PCI error can occur and not be seen by EEH because nothing 2647 * happens on the PCI bus. In this case the driver may fail and 2648 * schedule a 'recover or reset', leading to this recovery handler. 2649 * Manually call the eeh failure check function. 2650 */ 2651 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev); 2652 if (eeh_dev_check_failure(eehdev)) { 2653 /* The EEH mechanisms will handle the error and reset the 2654 * device if necessary. 2655 */ 2656 return 1; 2657 } 2658 #endif 2659 return 0; 2660 } 2661 2662 static void efx_wait_for_bist_end(struct efx_nic *efx) 2663 { 2664 int i; 2665 2666 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) { 2667 if (efx_mcdi_poll_reboot(efx)) 2668 goto out; 2669 msleep(BIST_WAIT_DELAY_MS); 2670 } 2671 2672 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n"); 2673 out: 2674 /* Either way unset the BIST flag. If we found no reboot we probably 2675 * won't recover, but we should try. 2676 */ 2677 efx->mc_bist_for_other_fn = false; 2678 } 2679 2680 /* The worker thread exists so that code that cannot sleep can 2681 * schedule a reset for later. 2682 */ 2683 static void efx_reset_work(struct work_struct *data) 2684 { 2685 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); 2686 unsigned long pending; 2687 enum reset_type method; 2688 2689 pending = ACCESS_ONCE(efx->reset_pending); 2690 method = fls(pending) - 1; 2691 2692 if (method == RESET_TYPE_MC_BIST) 2693 efx_wait_for_bist_end(efx); 2694 2695 if ((method == RESET_TYPE_RECOVER_OR_DISABLE || 2696 method == RESET_TYPE_RECOVER_OR_ALL) && 2697 efx_try_recovery(efx)) 2698 return; 2699 2700 if (!pending) 2701 return; 2702 2703 rtnl_lock(); 2704 2705 /* We checked the state in efx_schedule_reset() but it may 2706 * have changed by now. Now that we have the RTNL lock, 2707 * it cannot change again. 2708 */ 2709 if (efx->state == STATE_READY) 2710 (void)efx_reset(efx, method); 2711 2712 rtnl_unlock(); 2713 } 2714 2715 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) 2716 { 2717 enum reset_type method; 2718 2719 if (efx->state == STATE_RECOVERY) { 2720 netif_dbg(efx, drv, efx->net_dev, 2721 "recovering: skip scheduling %s reset\n", 2722 RESET_TYPE(type)); 2723 return; 2724 } 2725 2726 switch (type) { 2727 case RESET_TYPE_INVISIBLE: 2728 case RESET_TYPE_ALL: 2729 case RESET_TYPE_RECOVER_OR_ALL: 2730 case RESET_TYPE_WORLD: 2731 case RESET_TYPE_DISABLE: 2732 case RESET_TYPE_RECOVER_OR_DISABLE: 2733 case RESET_TYPE_DATAPATH: 2734 case RESET_TYPE_MC_BIST: 2735 case RESET_TYPE_MCDI_TIMEOUT: 2736 method = type; 2737 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", 2738 RESET_TYPE(method)); 2739 break; 2740 default: 2741 method = efx->type->map_reset_reason(type); 2742 netif_dbg(efx, drv, efx->net_dev, 2743 "scheduling %s reset for %s\n", 2744 RESET_TYPE(method), RESET_TYPE(type)); 2745 break; 2746 } 2747 2748 set_bit(method, &efx->reset_pending); 2749 smp_mb(); /* ensure we change reset_pending before checking state */ 2750 2751 /* If we're not READY then just leave the flags set as the cue 2752 * to abort probing or reschedule the reset later. 2753 */ 2754 if (ACCESS_ONCE(efx->state) != STATE_READY) 2755 return; 2756 2757 /* efx_process_channel() will no longer read events once a 2758 * reset is scheduled. So switch back to poll'd MCDI completions. */ 2759 efx_mcdi_mode_poll(efx); 2760 2761 queue_work(reset_workqueue, &efx->reset_work); 2762 } 2763 2764 /************************************************************************** 2765 * 2766 * List of NICs we support 2767 * 2768 **************************************************************************/ 2769 2770 /* PCI device ID table */ 2771 static const struct pci_device_id efx_pci_table[] = { 2772 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2773 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), 2774 .driver_data = (unsigned long) &falcon_a1_nic_type}, 2775 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2776 PCI_DEVICE_ID_SOLARFLARE_SFC4000B), 2777 .driver_data = (unsigned long) &falcon_b0_nic_type}, 2778 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ 2779 .driver_data = (unsigned long) &siena_a0_nic_type}, 2780 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ 2781 .driver_data = (unsigned long) &siena_a0_nic_type}, 2782 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */ 2783 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 2784 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */ 2785 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 2786 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */ 2787 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 2788 {0} /* end of list */ 2789 }; 2790 2791 /************************************************************************** 2792 * 2793 * Dummy PHY/MAC operations 2794 * 2795 * Can be used for some unimplemented operations 2796 * Needed so all function pointers are valid and do not have to be tested 2797 * before use 2798 * 2799 **************************************************************************/ 2800 int efx_port_dummy_op_int(struct efx_nic *efx) 2801 { 2802 return 0; 2803 } 2804 void efx_port_dummy_op_void(struct efx_nic *efx) {} 2805 2806 static bool efx_port_dummy_op_poll(struct efx_nic *efx) 2807 { 2808 return false; 2809 } 2810 2811 static const struct efx_phy_operations efx_dummy_phy_operations = { 2812 .init = efx_port_dummy_op_int, 2813 .reconfigure = efx_port_dummy_op_int, 2814 .poll = efx_port_dummy_op_poll, 2815 .fini = efx_port_dummy_op_void, 2816 }; 2817 2818 /************************************************************************** 2819 * 2820 * Data housekeeping 2821 * 2822 **************************************************************************/ 2823 2824 /* This zeroes out and then fills in the invariants in a struct 2825 * efx_nic (including all sub-structures). 2826 */ 2827 static int efx_init_struct(struct efx_nic *efx, 2828 struct pci_dev *pci_dev, struct net_device *net_dev) 2829 { 2830 int i; 2831 2832 /* Initialise common structures */ 2833 INIT_LIST_HEAD(&efx->node); 2834 INIT_LIST_HEAD(&efx->secondary_list); 2835 spin_lock_init(&efx->biu_lock); 2836 #ifdef CONFIG_SFC_MTD 2837 INIT_LIST_HEAD(&efx->mtd_list); 2838 #endif 2839 INIT_WORK(&efx->reset_work, efx_reset_work); 2840 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); 2841 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work); 2842 efx->pci_dev = pci_dev; 2843 efx->msg_enable = debug; 2844 efx->state = STATE_UNINIT; 2845 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); 2846 2847 efx->net_dev = net_dev; 2848 efx->rx_prefix_size = efx->type->rx_prefix_size; 2849 efx->rx_ip_align = 2850 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; 2851 efx->rx_packet_hash_offset = 2852 efx->type->rx_hash_offset - efx->type->rx_prefix_size; 2853 efx->rx_packet_ts_offset = 2854 efx->type->rx_ts_offset - efx->type->rx_prefix_size; 2855 spin_lock_init(&efx->stats_lock); 2856 mutex_init(&efx->mac_lock); 2857 efx->phy_op = &efx_dummy_phy_operations; 2858 efx->mdio.dev = net_dev; 2859 INIT_WORK(&efx->mac_work, efx_mac_work); 2860 init_waitqueue_head(&efx->flush_wq); 2861 2862 for (i = 0; i < EFX_MAX_CHANNELS; i++) { 2863 efx->channel[i] = efx_alloc_channel(efx, i, NULL); 2864 if (!efx->channel[i]) 2865 goto fail; 2866 efx->msi_context[i].efx = efx; 2867 efx->msi_context[i].index = i; 2868 } 2869 2870 /* Higher numbered interrupt modes are less capable! */ 2871 efx->interrupt_mode = max(efx->type->max_interrupt_mode, 2872 interrupt_mode); 2873 2874 /* Would be good to use the net_dev name, but we're too early */ 2875 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", 2876 pci_name(pci_dev)); 2877 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); 2878 if (!efx->workqueue) 2879 goto fail; 2880 2881 return 0; 2882 2883 fail: 2884 efx_fini_struct(efx); 2885 return -ENOMEM; 2886 } 2887 2888 static void efx_fini_struct(struct efx_nic *efx) 2889 { 2890 int i; 2891 2892 for (i = 0; i < EFX_MAX_CHANNELS; i++) 2893 kfree(efx->channel[i]); 2894 2895 kfree(efx->vpd_sn); 2896 2897 if (efx->workqueue) { 2898 destroy_workqueue(efx->workqueue); 2899 efx->workqueue = NULL; 2900 } 2901 } 2902 2903 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats) 2904 { 2905 u64 n_rx_nodesc_trunc = 0; 2906 struct efx_channel *channel; 2907 2908 efx_for_each_channel(channel, efx) 2909 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; 2910 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; 2911 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); 2912 } 2913 2914 /************************************************************************** 2915 * 2916 * PCI interface 2917 * 2918 **************************************************************************/ 2919 2920 /* Main body of final NIC shutdown code 2921 * This is called only at module unload (or hotplug removal). 2922 */ 2923 static void efx_pci_remove_main(struct efx_nic *efx) 2924 { 2925 /* Flush reset_work. It can no longer be scheduled since we 2926 * are not READY. 2927 */ 2928 BUG_ON(efx->state == STATE_READY); 2929 cancel_work_sync(&efx->reset_work); 2930 2931 efx_disable_interrupts(efx); 2932 efx_nic_fini_interrupt(efx); 2933 efx_fini_port(efx); 2934 efx->type->fini(efx); 2935 efx_fini_napi(efx); 2936 efx_remove_all(efx); 2937 } 2938 2939 /* Final NIC shutdown 2940 * This is called only at module unload (or hotplug removal). A PF can call 2941 * this on its VFs to ensure they are unbound first. 2942 */ 2943 static void efx_pci_remove(struct pci_dev *pci_dev) 2944 { 2945 struct efx_nic *efx; 2946 2947 efx = pci_get_drvdata(pci_dev); 2948 if (!efx) 2949 return; 2950 2951 /* Mark the NIC as fini, then stop the interface */ 2952 rtnl_lock(); 2953 efx_dissociate(efx); 2954 dev_close(efx->net_dev); 2955 efx_disable_interrupts(efx); 2956 efx->state = STATE_UNINIT; 2957 rtnl_unlock(); 2958 2959 if (efx->type->sriov_fini) 2960 efx->type->sriov_fini(efx); 2961 2962 efx_unregister_netdev(efx); 2963 2964 efx_mtd_remove(efx); 2965 2966 efx_pci_remove_main(efx); 2967 2968 efx_fini_io(efx); 2969 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 2970 2971 efx_fini_struct(efx); 2972 free_netdev(efx->net_dev); 2973 2974 pci_disable_pcie_error_reporting(pci_dev); 2975 }; 2976 2977 /* NIC VPD information 2978 * Called during probe to display the part number of the 2979 * installed NIC. VPD is potentially very large but this should 2980 * always appear within the first 512 bytes. 2981 */ 2982 #define SFC_VPD_LEN 512 2983 static void efx_probe_vpd_strings(struct efx_nic *efx) 2984 { 2985 struct pci_dev *dev = efx->pci_dev; 2986 char vpd_data[SFC_VPD_LEN]; 2987 ssize_t vpd_size; 2988 int ro_start, ro_size, i, j; 2989 2990 /* Get the vpd data from the device */ 2991 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); 2992 if (vpd_size <= 0) { 2993 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); 2994 return; 2995 } 2996 2997 /* Get the Read only section */ 2998 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 2999 if (ro_start < 0) { 3000 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); 3001 return; 3002 } 3003 3004 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 3005 j = ro_size; 3006 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 3007 if (i + j > vpd_size) 3008 j = vpd_size - i; 3009 3010 /* Get the Part number */ 3011 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); 3012 if (i < 0) { 3013 netif_err(efx, drv, efx->net_dev, "Part number not found\n"); 3014 return; 3015 } 3016 3017 j = pci_vpd_info_field_size(&vpd_data[i]); 3018 i += PCI_VPD_INFO_FLD_HDR_SIZE; 3019 if (i + j > vpd_size) { 3020 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); 3021 return; 3022 } 3023 3024 netif_info(efx, drv, efx->net_dev, 3025 "Part Number : %.*s\n", j, &vpd_data[i]); 3026 3027 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 3028 j = ro_size; 3029 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); 3030 if (i < 0) { 3031 netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); 3032 return; 3033 } 3034 3035 j = pci_vpd_info_field_size(&vpd_data[i]); 3036 i += PCI_VPD_INFO_FLD_HDR_SIZE; 3037 if (i + j > vpd_size) { 3038 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); 3039 return; 3040 } 3041 3042 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); 3043 if (!efx->vpd_sn) 3044 return; 3045 3046 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); 3047 } 3048 3049 3050 /* Main body of NIC initialisation 3051 * This is called at module load (or hotplug insertion, theoretically). 3052 */ 3053 static int efx_pci_probe_main(struct efx_nic *efx) 3054 { 3055 int rc; 3056 3057 /* Do start-of-day initialisation */ 3058 rc = efx_probe_all(efx); 3059 if (rc) 3060 goto fail1; 3061 3062 efx_init_napi(efx); 3063 3064 rc = efx->type->init(efx); 3065 if (rc) { 3066 netif_err(efx, probe, efx->net_dev, 3067 "failed to initialise NIC\n"); 3068 goto fail3; 3069 } 3070 3071 rc = efx_init_port(efx); 3072 if (rc) { 3073 netif_err(efx, probe, efx->net_dev, 3074 "failed to initialise port\n"); 3075 goto fail4; 3076 } 3077 3078 rc = efx_nic_init_interrupt(efx); 3079 if (rc) 3080 goto fail5; 3081 rc = efx_enable_interrupts(efx); 3082 if (rc) 3083 goto fail6; 3084 3085 return 0; 3086 3087 fail6: 3088 efx_nic_fini_interrupt(efx); 3089 fail5: 3090 efx_fini_port(efx); 3091 fail4: 3092 efx->type->fini(efx); 3093 fail3: 3094 efx_fini_napi(efx); 3095 efx_remove_all(efx); 3096 fail1: 3097 return rc; 3098 } 3099 3100 /* NIC initialisation 3101 * 3102 * This is called at module load (or hotplug insertion, 3103 * theoretically). It sets up PCI mappings, resets the NIC, 3104 * sets up and registers the network devices with the kernel and hooks 3105 * the interrupt service routine. It does not prepare the device for 3106 * transmission; this is left to the first time one of the network 3107 * interfaces is brought up (i.e. efx_net_open). 3108 */ 3109 static int efx_pci_probe(struct pci_dev *pci_dev, 3110 const struct pci_device_id *entry) 3111 { 3112 struct net_device *net_dev; 3113 struct efx_nic *efx; 3114 int rc; 3115 3116 /* Allocate and initialise a struct net_device and struct efx_nic */ 3117 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, 3118 EFX_MAX_RX_QUEUES); 3119 if (!net_dev) 3120 return -ENOMEM; 3121 efx = netdev_priv(net_dev); 3122 efx->type = (const struct efx_nic_type *) entry->driver_data; 3123 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 3124 NETIF_F_HIGHDMA | NETIF_F_TSO | 3125 NETIF_F_RXCSUM); 3126 if (efx->type->offload_features & NETIF_F_V6_CSUM) 3127 net_dev->features |= NETIF_F_TSO6; 3128 /* Mask for features that also apply to VLAN devices */ 3129 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG | 3130 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | 3131 NETIF_F_RXCSUM); 3132 /* All offloads can be toggled */ 3133 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA; 3134 pci_set_drvdata(pci_dev, efx); 3135 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 3136 rc = efx_init_struct(efx, pci_dev, net_dev); 3137 if (rc) 3138 goto fail1; 3139 3140 netif_info(efx, probe, efx->net_dev, 3141 "Solarflare NIC detected\n"); 3142 3143 if (!efx->type->is_vf) 3144 efx_probe_vpd_strings(efx); 3145 3146 /* Set up basic I/O (BAR mappings etc) */ 3147 rc = efx_init_io(efx); 3148 if (rc) 3149 goto fail2; 3150 3151 rc = efx_pci_probe_main(efx); 3152 if (rc) 3153 goto fail3; 3154 3155 rc = efx_register_netdev(efx); 3156 if (rc) 3157 goto fail4; 3158 3159 if (efx->type->sriov_init) { 3160 rc = efx->type->sriov_init(efx); 3161 if (rc) 3162 netif_err(efx, probe, efx->net_dev, 3163 "SR-IOV can't be enabled rc %d\n", rc); 3164 } 3165 3166 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 3167 3168 /* Try to create MTDs, but allow this to fail */ 3169 rtnl_lock(); 3170 rc = efx_mtd_probe(efx); 3171 rtnl_unlock(); 3172 if (rc) 3173 netif_warn(efx, probe, efx->net_dev, 3174 "failed to create MTDs (%d)\n", rc); 3175 3176 rc = pci_enable_pcie_error_reporting(pci_dev); 3177 if (rc && rc != -EINVAL) 3178 netif_warn(efx, probe, efx->net_dev, 3179 "pci_enable_pcie_error_reporting failed (%d)\n", rc); 3180 3181 return 0; 3182 3183 fail4: 3184 efx_pci_remove_main(efx); 3185 fail3: 3186 efx_fini_io(efx); 3187 fail2: 3188 efx_fini_struct(efx); 3189 fail1: 3190 WARN_ON(rc > 0); 3191 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 3192 free_netdev(net_dev); 3193 return rc; 3194 } 3195 3196 /* efx_pci_sriov_configure returns the actual number of Virtual Functions 3197 * enabled on success 3198 */ 3199 #ifdef CONFIG_SFC_SRIOV 3200 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 3201 { 3202 int rc; 3203 struct efx_nic *efx = pci_get_drvdata(dev); 3204 3205 if (efx->type->sriov_configure) { 3206 rc = efx->type->sriov_configure(efx, num_vfs); 3207 if (rc) 3208 return rc; 3209 else 3210 return num_vfs; 3211 } else 3212 return -EOPNOTSUPP; 3213 } 3214 #endif 3215 3216 static int efx_pm_freeze(struct device *dev) 3217 { 3218 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 3219 3220 rtnl_lock(); 3221 3222 if (efx->state != STATE_DISABLED) { 3223 efx->state = STATE_UNINIT; 3224 3225 efx_device_detach_sync(efx); 3226 3227 efx_stop_all(efx); 3228 efx_disable_interrupts(efx); 3229 } 3230 3231 rtnl_unlock(); 3232 3233 return 0; 3234 } 3235 3236 static int efx_pm_thaw(struct device *dev) 3237 { 3238 int rc; 3239 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 3240 3241 rtnl_lock(); 3242 3243 if (efx->state != STATE_DISABLED) { 3244 rc = efx_enable_interrupts(efx); 3245 if (rc) 3246 goto fail; 3247 3248 mutex_lock(&efx->mac_lock); 3249 efx->phy_op->reconfigure(efx); 3250 mutex_unlock(&efx->mac_lock); 3251 3252 efx_start_all(efx); 3253 3254 netif_device_attach(efx->net_dev); 3255 3256 efx->state = STATE_READY; 3257 3258 efx->type->resume_wol(efx); 3259 } 3260 3261 rtnl_unlock(); 3262 3263 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ 3264 queue_work(reset_workqueue, &efx->reset_work); 3265 3266 return 0; 3267 3268 fail: 3269 rtnl_unlock(); 3270 3271 return rc; 3272 } 3273 3274 static int efx_pm_poweroff(struct device *dev) 3275 { 3276 struct pci_dev *pci_dev = to_pci_dev(dev); 3277 struct efx_nic *efx = pci_get_drvdata(pci_dev); 3278 3279 efx->type->fini(efx); 3280 3281 efx->reset_pending = 0; 3282 3283 pci_save_state(pci_dev); 3284 return pci_set_power_state(pci_dev, PCI_D3hot); 3285 } 3286 3287 /* Used for both resume and restore */ 3288 static int efx_pm_resume(struct device *dev) 3289 { 3290 struct pci_dev *pci_dev = to_pci_dev(dev); 3291 struct efx_nic *efx = pci_get_drvdata(pci_dev); 3292 int rc; 3293 3294 rc = pci_set_power_state(pci_dev, PCI_D0); 3295 if (rc) 3296 return rc; 3297 pci_restore_state(pci_dev); 3298 rc = pci_enable_device(pci_dev); 3299 if (rc) 3300 return rc; 3301 pci_set_master(efx->pci_dev); 3302 rc = efx->type->reset(efx, RESET_TYPE_ALL); 3303 if (rc) 3304 return rc; 3305 rc = efx->type->init(efx); 3306 if (rc) 3307 return rc; 3308 rc = efx_pm_thaw(dev); 3309 return rc; 3310 } 3311 3312 static int efx_pm_suspend(struct device *dev) 3313 { 3314 int rc; 3315 3316 efx_pm_freeze(dev); 3317 rc = efx_pm_poweroff(dev); 3318 if (rc) 3319 efx_pm_resume(dev); 3320 return rc; 3321 } 3322 3323 static const struct dev_pm_ops efx_pm_ops = { 3324 .suspend = efx_pm_suspend, 3325 .resume = efx_pm_resume, 3326 .freeze = efx_pm_freeze, 3327 .thaw = efx_pm_thaw, 3328 .poweroff = efx_pm_poweroff, 3329 .restore = efx_pm_resume, 3330 }; 3331 3332 /* A PCI error affecting this device was detected. 3333 * At this point MMIO and DMA may be disabled. 3334 * Stop the software path and request a slot reset. 3335 */ 3336 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev, 3337 enum pci_channel_state state) 3338 { 3339 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3340 struct efx_nic *efx = pci_get_drvdata(pdev); 3341 3342 if (state == pci_channel_io_perm_failure) 3343 return PCI_ERS_RESULT_DISCONNECT; 3344 3345 rtnl_lock(); 3346 3347 if (efx->state != STATE_DISABLED) { 3348 efx->state = STATE_RECOVERY; 3349 efx->reset_pending = 0; 3350 3351 efx_device_detach_sync(efx); 3352 3353 efx_stop_all(efx); 3354 efx_disable_interrupts(efx); 3355 3356 status = PCI_ERS_RESULT_NEED_RESET; 3357 } else { 3358 /* If the interface is disabled we don't want to do anything 3359 * with it. 3360 */ 3361 status = PCI_ERS_RESULT_RECOVERED; 3362 } 3363 3364 rtnl_unlock(); 3365 3366 pci_disable_device(pdev); 3367 3368 return status; 3369 } 3370 3371 /* Fake a successful reset, which will be performed later in efx_io_resume. */ 3372 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev) 3373 { 3374 struct efx_nic *efx = pci_get_drvdata(pdev); 3375 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3376 int rc; 3377 3378 if (pci_enable_device(pdev)) { 3379 netif_err(efx, hw, efx->net_dev, 3380 "Cannot re-enable PCI device after reset.\n"); 3381 status = PCI_ERS_RESULT_DISCONNECT; 3382 } 3383 3384 rc = pci_cleanup_aer_uncorrect_error_status(pdev); 3385 if (rc) { 3386 netif_err(efx, hw, efx->net_dev, 3387 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc); 3388 /* Non-fatal error. Continue. */ 3389 } 3390 3391 return status; 3392 } 3393 3394 /* Perform the actual reset and resume I/O operations. */ 3395 static void efx_io_resume(struct pci_dev *pdev) 3396 { 3397 struct efx_nic *efx = pci_get_drvdata(pdev); 3398 int rc; 3399 3400 rtnl_lock(); 3401 3402 if (efx->state == STATE_DISABLED) 3403 goto out; 3404 3405 rc = efx_reset(efx, RESET_TYPE_ALL); 3406 if (rc) { 3407 netif_err(efx, hw, efx->net_dev, 3408 "efx_reset failed after PCI error (%d)\n", rc); 3409 } else { 3410 efx->state = STATE_READY; 3411 netif_dbg(efx, hw, efx->net_dev, 3412 "Done resetting and resuming IO after PCI error.\n"); 3413 } 3414 3415 out: 3416 rtnl_unlock(); 3417 } 3418 3419 /* For simplicity and reliability, we always require a slot reset and try to 3420 * reset the hardware when a pci error affecting the device is detected. 3421 * We leave both the link_reset and mmio_enabled callback unimplemented: 3422 * with our request for slot reset the mmio_enabled callback will never be 3423 * called, and the link_reset callback is not used by AER or EEH mechanisms. 3424 */ 3425 static const struct pci_error_handlers efx_err_handlers = { 3426 .error_detected = efx_io_error_detected, 3427 .slot_reset = efx_io_slot_reset, 3428 .resume = efx_io_resume, 3429 }; 3430 3431 static struct pci_driver efx_pci_driver = { 3432 .name = KBUILD_MODNAME, 3433 .id_table = efx_pci_table, 3434 .probe = efx_pci_probe, 3435 .remove = efx_pci_remove, 3436 .driver.pm = &efx_pm_ops, 3437 .err_handler = &efx_err_handlers, 3438 #ifdef CONFIG_SFC_SRIOV 3439 .sriov_configure = efx_pci_sriov_configure, 3440 #endif 3441 }; 3442 3443 /************************************************************************** 3444 * 3445 * Kernel module interface 3446 * 3447 *************************************************************************/ 3448 3449 module_param(interrupt_mode, uint, 0444); 3450 MODULE_PARM_DESC(interrupt_mode, 3451 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 3452 3453 static int __init efx_init_module(void) 3454 { 3455 int rc; 3456 3457 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); 3458 3459 rc = register_netdevice_notifier(&efx_netdev_notifier); 3460 if (rc) 3461 goto err_notifier; 3462 3463 #ifdef CONFIG_SFC_SRIOV 3464 rc = efx_init_sriov(); 3465 if (rc) 3466 goto err_sriov; 3467 #endif 3468 3469 reset_workqueue = create_singlethread_workqueue("sfc_reset"); 3470 if (!reset_workqueue) { 3471 rc = -ENOMEM; 3472 goto err_reset; 3473 } 3474 3475 rc = pci_register_driver(&efx_pci_driver); 3476 if (rc < 0) 3477 goto err_pci; 3478 3479 return 0; 3480 3481 err_pci: 3482 destroy_workqueue(reset_workqueue); 3483 err_reset: 3484 #ifdef CONFIG_SFC_SRIOV 3485 efx_fini_sriov(); 3486 err_sriov: 3487 #endif 3488 unregister_netdevice_notifier(&efx_netdev_notifier); 3489 err_notifier: 3490 return rc; 3491 } 3492 3493 static void __exit efx_exit_module(void) 3494 { 3495 printk(KERN_INFO "Solarflare NET driver unloading\n"); 3496 3497 pci_unregister_driver(&efx_pci_driver); 3498 destroy_workqueue(reset_workqueue); 3499 #ifdef CONFIG_SFC_SRIOV 3500 efx_fini_sriov(); 3501 #endif 3502 unregister_netdevice_notifier(&efx_netdev_notifier); 3503 3504 } 3505 3506 module_init(efx_init_module); 3507 module_exit(efx_exit_module); 3508 3509 MODULE_AUTHOR("Solarflare Communications and " 3510 "Michael Brown <mbrown@fensystems.co.uk>"); 3511 MODULE_DESCRIPTION("Solarflare network driver"); 3512 MODULE_LICENSE("GPL"); 3513 MODULE_DEVICE_TABLE(pci, efx_pci_table); 3514