xref: /openbmc/linux/drivers/net/ethernet/sfc/efx.c (revision a8fe58ce)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29 #include "sriov.h"
30 
31 #include "mcdi.h"
32 #include "workarounds.h"
33 
34 /**************************************************************************
35  *
36  * Type name strings
37  *
38  **************************************************************************
39  */
40 
41 /* Loopback mode names (see LOOPBACK_MODE()) */
42 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43 const char *const efx_loopback_mode_names[] = {
44 	[LOOPBACK_NONE]		= "NONE",
45 	[LOOPBACK_DATA]		= "DATAPATH",
46 	[LOOPBACK_GMAC]		= "GMAC",
47 	[LOOPBACK_XGMII]	= "XGMII",
48 	[LOOPBACK_XGXS]		= "XGXS",
49 	[LOOPBACK_XAUI]		= "XAUI",
50 	[LOOPBACK_GMII]		= "GMII",
51 	[LOOPBACK_SGMII]	= "SGMII",
52 	[LOOPBACK_XGBR]		= "XGBR",
53 	[LOOPBACK_XFI]		= "XFI",
54 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
55 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
56 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
57 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 	[LOOPBACK_GPHY]		= "GPHY",
59 	[LOOPBACK_PHYXS]	= "PHYXS",
60 	[LOOPBACK_PCS]		= "PCS",
61 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 	[LOOPBACK_XPORT]	= "XPORT",
63 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
66 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67 	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 	[LOOPBACK_XFI_WS]	= "XFI_WS",
69 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 };
72 
73 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74 const char *const efx_reset_type_names[] = {
75 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
76 	[RESET_TYPE_ALL]                = "ALL",
77 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
78 	[RESET_TYPE_WORLD]              = "WORLD",
79 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
80 	[RESET_TYPE_DATAPATH]           = "DATAPATH",
81 	[RESET_TYPE_MC_BIST]		= "MC_BIST",
82 	[RESET_TYPE_DISABLE]            = "DISABLE",
83 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
84 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
85 	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
86 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
87 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
88 	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
89 	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
90 };
91 
92 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
93  * queued onto this work queue. This is not a per-nic work queue, because
94  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
95  */
96 static struct workqueue_struct *reset_workqueue;
97 
98 /* How often and how many times to poll for a reset while waiting for a
99  * BIST that another function started to complete.
100  */
101 #define BIST_WAIT_DELAY_MS	100
102 #define BIST_WAIT_DELAY_COUNT	100
103 
104 /**************************************************************************
105  *
106  * Configurable values
107  *
108  *************************************************************************/
109 
110 /*
111  * Use separate channels for TX and RX events
112  *
113  * Set this to 1 to use separate channels for TX and RX. It allows us
114  * to control interrupt affinity separately for TX and RX.
115  *
116  * This is only used in MSI-X interrupt mode
117  */
118 bool efx_separate_tx_channels;
119 module_param(efx_separate_tx_channels, bool, 0444);
120 MODULE_PARM_DESC(efx_separate_tx_channels,
121 		 "Use separate channels for TX and RX");
122 
123 /* This is the weight assigned to each of the (per-channel) virtual
124  * NAPI devices.
125  */
126 static int napi_weight = 64;
127 
128 /* This is the time (in jiffies) between invocations of the hardware
129  * monitor.
130  * On Falcon-based NICs, this will:
131  * - Check the on-board hardware monitor;
132  * - Poll the link state and reconfigure the hardware as necessary.
133  * On Siena-based NICs for power systems with EEH support, this will give EEH a
134  * chance to start.
135  */
136 static unsigned int efx_monitor_interval = 1 * HZ;
137 
138 /* Initial interrupt moderation settings.  They can be modified after
139  * module load with ethtool.
140  *
141  * The default for RX should strike a balance between increasing the
142  * round-trip latency and reducing overhead.
143  */
144 static unsigned int rx_irq_mod_usec = 60;
145 
146 /* Initial interrupt moderation settings.  They can be modified after
147  * module load with ethtool.
148  *
149  * This default is chosen to ensure that a 10G link does not go idle
150  * while a TX queue is stopped after it has become full.  A queue is
151  * restarted when it drops below half full.  The time this takes (assuming
152  * worst case 3 descriptors per packet and 1024 descriptors) is
153  *   512 / 3 * 1.2 = 205 usec.
154  */
155 static unsigned int tx_irq_mod_usec = 150;
156 
157 /* This is the first interrupt mode to try out of:
158  * 0 => MSI-X
159  * 1 => MSI
160  * 2 => legacy
161  */
162 static unsigned int interrupt_mode;
163 
164 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
165  * i.e. the number of CPUs among which we may distribute simultaneous
166  * interrupt handling.
167  *
168  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
169  * The default (0) means to assign an interrupt to each core.
170  */
171 static unsigned int rss_cpus;
172 module_param(rss_cpus, uint, 0444);
173 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
174 
175 static bool phy_flash_cfg;
176 module_param(phy_flash_cfg, bool, 0644);
177 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
178 
179 static unsigned irq_adapt_low_thresh = 8000;
180 module_param(irq_adapt_low_thresh, uint, 0644);
181 MODULE_PARM_DESC(irq_adapt_low_thresh,
182 		 "Threshold score for reducing IRQ moderation");
183 
184 static unsigned irq_adapt_high_thresh = 16000;
185 module_param(irq_adapt_high_thresh, uint, 0644);
186 MODULE_PARM_DESC(irq_adapt_high_thresh,
187 		 "Threshold score for increasing IRQ moderation");
188 
189 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
190 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
191 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
192 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
193 module_param(debug, uint, 0);
194 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
195 
196 /**************************************************************************
197  *
198  * Utility functions and prototypes
199  *
200  *************************************************************************/
201 
202 static int efx_soft_enable_interrupts(struct efx_nic *efx);
203 static void efx_soft_disable_interrupts(struct efx_nic *efx);
204 static void efx_remove_channel(struct efx_channel *channel);
205 static void efx_remove_channels(struct efx_nic *efx);
206 static const struct efx_channel_type efx_default_channel_type;
207 static void efx_remove_port(struct efx_nic *efx);
208 static void efx_init_napi_channel(struct efx_channel *channel);
209 static void efx_fini_napi(struct efx_nic *efx);
210 static void efx_fini_napi_channel(struct efx_channel *channel);
211 static void efx_fini_struct(struct efx_nic *efx);
212 static void efx_start_all(struct efx_nic *efx);
213 static void efx_stop_all(struct efx_nic *efx);
214 
215 #define EFX_ASSERT_RESET_SERIALISED(efx)		\
216 	do {						\
217 		if ((efx->state == STATE_READY) ||	\
218 		    (efx->state == STATE_RECOVERY) ||	\
219 		    (efx->state == STATE_DISABLED))	\
220 			ASSERT_RTNL();			\
221 	} while (0)
222 
223 static int efx_check_disabled(struct efx_nic *efx)
224 {
225 	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
226 		netif_err(efx, drv, efx->net_dev,
227 			  "device is disabled due to earlier errors\n");
228 		return -EIO;
229 	}
230 	return 0;
231 }
232 
233 /**************************************************************************
234  *
235  * Event queue processing
236  *
237  *************************************************************************/
238 
239 /* Process channel's event queue
240  *
241  * This function is responsible for processing the event queue of a
242  * single channel.  The caller must guarantee that this function will
243  * never be concurrently called more than once on the same channel,
244  * though different channels may be being processed concurrently.
245  */
246 static int efx_process_channel(struct efx_channel *channel, int budget)
247 {
248 	struct efx_tx_queue *tx_queue;
249 	int spent;
250 
251 	if (unlikely(!channel->enabled))
252 		return 0;
253 
254 	efx_for_each_channel_tx_queue(tx_queue, channel) {
255 		tx_queue->pkts_compl = 0;
256 		tx_queue->bytes_compl = 0;
257 	}
258 
259 	spent = efx_nic_process_eventq(channel, budget);
260 	if (spent && efx_channel_has_rx_queue(channel)) {
261 		struct efx_rx_queue *rx_queue =
262 			efx_channel_get_rx_queue(channel);
263 
264 		efx_rx_flush_packet(channel);
265 		efx_fast_push_rx_descriptors(rx_queue, true);
266 	}
267 
268 	/* Update BQL */
269 	efx_for_each_channel_tx_queue(tx_queue, channel) {
270 		if (tx_queue->bytes_compl) {
271 			netdev_tx_completed_queue(tx_queue->core_txq,
272 				tx_queue->pkts_compl, tx_queue->bytes_compl);
273 		}
274 	}
275 
276 	return spent;
277 }
278 
279 /* NAPI poll handler
280  *
281  * NAPI guarantees serialisation of polls of the same device, which
282  * provides the guarantee required by efx_process_channel().
283  */
284 static int efx_poll(struct napi_struct *napi, int budget)
285 {
286 	struct efx_channel *channel =
287 		container_of(napi, struct efx_channel, napi_str);
288 	struct efx_nic *efx = channel->efx;
289 	int spent;
290 
291 	if (!efx_channel_lock_napi(channel))
292 		return budget;
293 
294 	netif_vdbg(efx, intr, efx->net_dev,
295 		   "channel %d NAPI poll executing on CPU %d\n",
296 		   channel->channel, raw_smp_processor_id());
297 
298 	spent = efx_process_channel(channel, budget);
299 
300 	if (spent < budget) {
301 		if (efx_channel_has_rx_queue(channel) &&
302 		    efx->irq_rx_adaptive &&
303 		    unlikely(++channel->irq_count == 1000)) {
304 			if (unlikely(channel->irq_mod_score <
305 				     irq_adapt_low_thresh)) {
306 				if (channel->irq_moderation > 1) {
307 					channel->irq_moderation -= 1;
308 					efx->type->push_irq_moderation(channel);
309 				}
310 			} else if (unlikely(channel->irq_mod_score >
311 					    irq_adapt_high_thresh)) {
312 				if (channel->irq_moderation <
313 				    efx->irq_rx_moderation) {
314 					channel->irq_moderation += 1;
315 					efx->type->push_irq_moderation(channel);
316 				}
317 			}
318 			channel->irq_count = 0;
319 			channel->irq_mod_score = 0;
320 		}
321 
322 		efx_filter_rfs_expire(channel);
323 
324 		/* There is no race here; although napi_disable() will
325 		 * only wait for napi_complete(), this isn't a problem
326 		 * since efx_nic_eventq_read_ack() will have no effect if
327 		 * interrupts have already been disabled.
328 		 */
329 		napi_complete(napi);
330 		efx_nic_eventq_read_ack(channel);
331 	}
332 
333 	efx_channel_unlock_napi(channel);
334 	return spent;
335 }
336 
337 /* Create event queue
338  * Event queue memory allocations are done only once.  If the channel
339  * is reset, the memory buffer will be reused; this guards against
340  * errors during channel reset and also simplifies interrupt handling.
341  */
342 static int efx_probe_eventq(struct efx_channel *channel)
343 {
344 	struct efx_nic *efx = channel->efx;
345 	unsigned long entries;
346 
347 	netif_dbg(efx, probe, efx->net_dev,
348 		  "chan %d create event queue\n", channel->channel);
349 
350 	/* Build an event queue with room for one event per tx and rx buffer,
351 	 * plus some extra for link state events and MCDI completions. */
352 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
353 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
354 	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
355 
356 	return efx_nic_probe_eventq(channel);
357 }
358 
359 /* Prepare channel's event queue */
360 static int efx_init_eventq(struct efx_channel *channel)
361 {
362 	struct efx_nic *efx = channel->efx;
363 	int rc;
364 
365 	EFX_WARN_ON_PARANOID(channel->eventq_init);
366 
367 	netif_dbg(efx, drv, efx->net_dev,
368 		  "chan %d init event queue\n", channel->channel);
369 
370 	rc = efx_nic_init_eventq(channel);
371 	if (rc == 0) {
372 		efx->type->push_irq_moderation(channel);
373 		channel->eventq_read_ptr = 0;
374 		channel->eventq_init = true;
375 	}
376 	return rc;
377 }
378 
379 /* Enable event queue processing and NAPI */
380 void efx_start_eventq(struct efx_channel *channel)
381 {
382 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
383 		  "chan %d start event queue\n", channel->channel);
384 
385 	/* Make sure the NAPI handler sees the enabled flag set */
386 	channel->enabled = true;
387 	smp_wmb();
388 
389 	efx_channel_enable(channel);
390 	napi_enable(&channel->napi_str);
391 	efx_nic_eventq_read_ack(channel);
392 }
393 
394 /* Disable event queue processing and NAPI */
395 void efx_stop_eventq(struct efx_channel *channel)
396 {
397 	if (!channel->enabled)
398 		return;
399 
400 	napi_disable(&channel->napi_str);
401 	while (!efx_channel_disable(channel))
402 		usleep_range(1000, 20000);
403 	channel->enabled = false;
404 }
405 
406 static void efx_fini_eventq(struct efx_channel *channel)
407 {
408 	if (!channel->eventq_init)
409 		return;
410 
411 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
412 		  "chan %d fini event queue\n", channel->channel);
413 
414 	efx_nic_fini_eventq(channel);
415 	channel->eventq_init = false;
416 }
417 
418 static void efx_remove_eventq(struct efx_channel *channel)
419 {
420 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
421 		  "chan %d remove event queue\n", channel->channel);
422 
423 	efx_nic_remove_eventq(channel);
424 }
425 
426 /**************************************************************************
427  *
428  * Channel handling
429  *
430  *************************************************************************/
431 
432 /* Allocate and initialise a channel structure. */
433 static struct efx_channel *
434 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
435 {
436 	struct efx_channel *channel;
437 	struct efx_rx_queue *rx_queue;
438 	struct efx_tx_queue *tx_queue;
439 	int j;
440 
441 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
442 	if (!channel)
443 		return NULL;
444 
445 	channel->efx = efx;
446 	channel->channel = i;
447 	channel->type = &efx_default_channel_type;
448 
449 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
450 		tx_queue = &channel->tx_queue[j];
451 		tx_queue->efx = efx;
452 		tx_queue->queue = i * EFX_TXQ_TYPES + j;
453 		tx_queue->channel = channel;
454 	}
455 
456 	rx_queue = &channel->rx_queue;
457 	rx_queue->efx = efx;
458 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
459 		    (unsigned long)rx_queue);
460 
461 	return channel;
462 }
463 
464 /* Allocate and initialise a channel structure, copying parameters
465  * (but not resources) from an old channel structure.
466  */
467 static struct efx_channel *
468 efx_copy_channel(const struct efx_channel *old_channel)
469 {
470 	struct efx_channel *channel;
471 	struct efx_rx_queue *rx_queue;
472 	struct efx_tx_queue *tx_queue;
473 	int j;
474 
475 	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
476 	if (!channel)
477 		return NULL;
478 
479 	*channel = *old_channel;
480 
481 	channel->napi_dev = NULL;
482 	memset(&channel->eventq, 0, sizeof(channel->eventq));
483 
484 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
485 		tx_queue = &channel->tx_queue[j];
486 		if (tx_queue->channel)
487 			tx_queue->channel = channel;
488 		tx_queue->buffer = NULL;
489 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
490 	}
491 
492 	rx_queue = &channel->rx_queue;
493 	rx_queue->buffer = NULL;
494 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
495 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
496 		    (unsigned long)rx_queue);
497 
498 	return channel;
499 }
500 
501 static int efx_probe_channel(struct efx_channel *channel)
502 {
503 	struct efx_tx_queue *tx_queue;
504 	struct efx_rx_queue *rx_queue;
505 	int rc;
506 
507 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
508 		  "creating channel %d\n", channel->channel);
509 
510 	rc = channel->type->pre_probe(channel);
511 	if (rc)
512 		goto fail;
513 
514 	rc = efx_probe_eventq(channel);
515 	if (rc)
516 		goto fail;
517 
518 	efx_for_each_channel_tx_queue(tx_queue, channel) {
519 		rc = efx_probe_tx_queue(tx_queue);
520 		if (rc)
521 			goto fail;
522 	}
523 
524 	efx_for_each_channel_rx_queue(rx_queue, channel) {
525 		rc = efx_probe_rx_queue(rx_queue);
526 		if (rc)
527 			goto fail;
528 	}
529 
530 	return 0;
531 
532 fail:
533 	efx_remove_channel(channel);
534 	return rc;
535 }
536 
537 static void
538 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
539 {
540 	struct efx_nic *efx = channel->efx;
541 	const char *type;
542 	int number;
543 
544 	number = channel->channel;
545 	if (efx->tx_channel_offset == 0) {
546 		type = "";
547 	} else if (channel->channel < efx->tx_channel_offset) {
548 		type = "-rx";
549 	} else {
550 		type = "-tx";
551 		number -= efx->tx_channel_offset;
552 	}
553 	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
554 }
555 
556 static void efx_set_channel_names(struct efx_nic *efx)
557 {
558 	struct efx_channel *channel;
559 
560 	efx_for_each_channel(channel, efx)
561 		channel->type->get_name(channel,
562 					efx->msi_context[channel->channel].name,
563 					sizeof(efx->msi_context[0].name));
564 }
565 
566 static int efx_probe_channels(struct efx_nic *efx)
567 {
568 	struct efx_channel *channel;
569 	int rc;
570 
571 	/* Restart special buffer allocation */
572 	efx->next_buffer_table = 0;
573 
574 	/* Probe channels in reverse, so that any 'extra' channels
575 	 * use the start of the buffer table. This allows the traffic
576 	 * channels to be resized without moving them or wasting the
577 	 * entries before them.
578 	 */
579 	efx_for_each_channel_rev(channel, efx) {
580 		rc = efx_probe_channel(channel);
581 		if (rc) {
582 			netif_err(efx, probe, efx->net_dev,
583 				  "failed to create channel %d\n",
584 				  channel->channel);
585 			goto fail;
586 		}
587 	}
588 	efx_set_channel_names(efx);
589 
590 	return 0;
591 
592 fail:
593 	efx_remove_channels(efx);
594 	return rc;
595 }
596 
597 /* Channels are shutdown and reinitialised whilst the NIC is running
598  * to propagate configuration changes (mtu, checksum offload), or
599  * to clear hardware error conditions
600  */
601 static void efx_start_datapath(struct efx_nic *efx)
602 {
603 	bool old_rx_scatter = efx->rx_scatter;
604 	struct efx_tx_queue *tx_queue;
605 	struct efx_rx_queue *rx_queue;
606 	struct efx_channel *channel;
607 	size_t rx_buf_len;
608 
609 	/* Calculate the rx buffer allocation parameters required to
610 	 * support the current MTU, including padding for header
611 	 * alignment and overruns.
612 	 */
613 	efx->rx_dma_len = (efx->rx_prefix_size +
614 			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
615 			   efx->type->rx_buffer_padding);
616 	rx_buf_len = (sizeof(struct efx_rx_page_state) +
617 		      efx->rx_ip_align + efx->rx_dma_len);
618 	if (rx_buf_len <= PAGE_SIZE) {
619 		efx->rx_scatter = efx->type->always_rx_scatter;
620 		efx->rx_buffer_order = 0;
621 	} else if (efx->type->can_rx_scatter) {
622 		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
623 		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
624 			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
625 				       EFX_RX_BUF_ALIGNMENT) >
626 			     PAGE_SIZE);
627 		efx->rx_scatter = true;
628 		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
629 		efx->rx_buffer_order = 0;
630 	} else {
631 		efx->rx_scatter = false;
632 		efx->rx_buffer_order = get_order(rx_buf_len);
633 	}
634 
635 	efx_rx_config_page_split(efx);
636 	if (efx->rx_buffer_order)
637 		netif_dbg(efx, drv, efx->net_dev,
638 			  "RX buf len=%u; page order=%u batch=%u\n",
639 			  efx->rx_dma_len, efx->rx_buffer_order,
640 			  efx->rx_pages_per_batch);
641 	else
642 		netif_dbg(efx, drv, efx->net_dev,
643 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
644 			  efx->rx_dma_len, efx->rx_page_buf_step,
645 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
646 
647 	/* RX filters may also have scatter-enabled flags */
648 	if (efx->rx_scatter != old_rx_scatter)
649 		efx->type->filter_update_rx_scatter(efx);
650 
651 	/* We must keep at least one descriptor in a TX ring empty.
652 	 * We could avoid this when the queue size does not exactly
653 	 * match the hardware ring size, but it's not that important.
654 	 * Therefore we stop the queue when one more skb might fill
655 	 * the ring completely.  We wake it when half way back to
656 	 * empty.
657 	 */
658 	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
659 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
660 
661 	/* Initialise the channels */
662 	efx_for_each_channel(channel, efx) {
663 		efx_for_each_channel_tx_queue(tx_queue, channel) {
664 			efx_init_tx_queue(tx_queue);
665 			atomic_inc(&efx->active_queues);
666 		}
667 
668 		efx_for_each_channel_rx_queue(rx_queue, channel) {
669 			efx_init_rx_queue(rx_queue);
670 			atomic_inc(&efx->active_queues);
671 			efx_stop_eventq(channel);
672 			efx_fast_push_rx_descriptors(rx_queue, false);
673 			efx_start_eventq(channel);
674 		}
675 
676 		WARN_ON(channel->rx_pkt_n_frags);
677 	}
678 
679 	efx_ptp_start_datapath(efx);
680 
681 	if (netif_device_present(efx->net_dev))
682 		netif_tx_wake_all_queues(efx->net_dev);
683 }
684 
685 static void efx_stop_datapath(struct efx_nic *efx)
686 {
687 	struct efx_channel *channel;
688 	struct efx_tx_queue *tx_queue;
689 	struct efx_rx_queue *rx_queue;
690 	int rc;
691 
692 	EFX_ASSERT_RESET_SERIALISED(efx);
693 	BUG_ON(efx->port_enabled);
694 
695 	efx_ptp_stop_datapath(efx);
696 
697 	/* Stop RX refill */
698 	efx_for_each_channel(channel, efx) {
699 		efx_for_each_channel_rx_queue(rx_queue, channel)
700 			rx_queue->refill_enabled = false;
701 	}
702 
703 	efx_for_each_channel(channel, efx) {
704 		/* RX packet processing is pipelined, so wait for the
705 		 * NAPI handler to complete.  At least event queue 0
706 		 * might be kept active by non-data events, so don't
707 		 * use napi_synchronize() but actually disable NAPI
708 		 * temporarily.
709 		 */
710 		if (efx_channel_has_rx_queue(channel)) {
711 			efx_stop_eventq(channel);
712 			efx_start_eventq(channel);
713 		}
714 	}
715 
716 	rc = efx->type->fini_dmaq(efx);
717 	if (rc && EFX_WORKAROUND_7803(efx)) {
718 		/* Schedule a reset to recover from the flush failure. The
719 		 * descriptor caches reference memory we're about to free,
720 		 * but falcon_reconfigure_mac_wrapper() won't reconnect
721 		 * the MACs because of the pending reset.
722 		 */
723 		netif_err(efx, drv, efx->net_dev,
724 			  "Resetting to recover from flush failure\n");
725 		efx_schedule_reset(efx, RESET_TYPE_ALL);
726 	} else if (rc) {
727 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
728 	} else {
729 		netif_dbg(efx, drv, efx->net_dev,
730 			  "successfully flushed all queues\n");
731 	}
732 
733 	efx_for_each_channel(channel, efx) {
734 		efx_for_each_channel_rx_queue(rx_queue, channel)
735 			efx_fini_rx_queue(rx_queue);
736 		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
737 			efx_fini_tx_queue(tx_queue);
738 	}
739 }
740 
741 static void efx_remove_channel(struct efx_channel *channel)
742 {
743 	struct efx_tx_queue *tx_queue;
744 	struct efx_rx_queue *rx_queue;
745 
746 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
747 		  "destroy chan %d\n", channel->channel);
748 
749 	efx_for_each_channel_rx_queue(rx_queue, channel)
750 		efx_remove_rx_queue(rx_queue);
751 	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
752 		efx_remove_tx_queue(tx_queue);
753 	efx_remove_eventq(channel);
754 	channel->type->post_remove(channel);
755 }
756 
757 static void efx_remove_channels(struct efx_nic *efx)
758 {
759 	struct efx_channel *channel;
760 
761 	efx_for_each_channel(channel, efx)
762 		efx_remove_channel(channel);
763 }
764 
765 int
766 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
767 {
768 	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
769 	u32 old_rxq_entries, old_txq_entries;
770 	unsigned i, next_buffer_table = 0;
771 	int rc, rc2;
772 
773 	rc = efx_check_disabled(efx);
774 	if (rc)
775 		return rc;
776 
777 	/* Not all channels should be reallocated. We must avoid
778 	 * reallocating their buffer table entries.
779 	 */
780 	efx_for_each_channel(channel, efx) {
781 		struct efx_rx_queue *rx_queue;
782 		struct efx_tx_queue *tx_queue;
783 
784 		if (channel->type->copy)
785 			continue;
786 		next_buffer_table = max(next_buffer_table,
787 					channel->eventq.index +
788 					channel->eventq.entries);
789 		efx_for_each_channel_rx_queue(rx_queue, channel)
790 			next_buffer_table = max(next_buffer_table,
791 						rx_queue->rxd.index +
792 						rx_queue->rxd.entries);
793 		efx_for_each_channel_tx_queue(tx_queue, channel)
794 			next_buffer_table = max(next_buffer_table,
795 						tx_queue->txd.index +
796 						tx_queue->txd.entries);
797 	}
798 
799 	efx_device_detach_sync(efx);
800 	efx_stop_all(efx);
801 	efx_soft_disable_interrupts(efx);
802 
803 	/* Clone channels (where possible) */
804 	memset(other_channel, 0, sizeof(other_channel));
805 	for (i = 0; i < efx->n_channels; i++) {
806 		channel = efx->channel[i];
807 		if (channel->type->copy)
808 			channel = channel->type->copy(channel);
809 		if (!channel) {
810 			rc = -ENOMEM;
811 			goto out;
812 		}
813 		other_channel[i] = channel;
814 	}
815 
816 	/* Swap entry counts and channel pointers */
817 	old_rxq_entries = efx->rxq_entries;
818 	old_txq_entries = efx->txq_entries;
819 	efx->rxq_entries = rxq_entries;
820 	efx->txq_entries = txq_entries;
821 	for (i = 0; i < efx->n_channels; i++) {
822 		channel = efx->channel[i];
823 		efx->channel[i] = other_channel[i];
824 		other_channel[i] = channel;
825 	}
826 
827 	/* Restart buffer table allocation */
828 	efx->next_buffer_table = next_buffer_table;
829 
830 	for (i = 0; i < efx->n_channels; i++) {
831 		channel = efx->channel[i];
832 		if (!channel->type->copy)
833 			continue;
834 		rc = efx_probe_channel(channel);
835 		if (rc)
836 			goto rollback;
837 		efx_init_napi_channel(efx->channel[i]);
838 	}
839 
840 out:
841 	/* Destroy unused channel structures */
842 	for (i = 0; i < efx->n_channels; i++) {
843 		channel = other_channel[i];
844 		if (channel && channel->type->copy) {
845 			efx_fini_napi_channel(channel);
846 			efx_remove_channel(channel);
847 			kfree(channel);
848 		}
849 	}
850 
851 	rc2 = efx_soft_enable_interrupts(efx);
852 	if (rc2) {
853 		rc = rc ? rc : rc2;
854 		netif_err(efx, drv, efx->net_dev,
855 			  "unable to restart interrupts on channel reallocation\n");
856 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
857 	} else {
858 		efx_start_all(efx);
859 		netif_device_attach(efx->net_dev);
860 	}
861 	return rc;
862 
863 rollback:
864 	/* Swap back */
865 	efx->rxq_entries = old_rxq_entries;
866 	efx->txq_entries = old_txq_entries;
867 	for (i = 0; i < efx->n_channels; i++) {
868 		channel = efx->channel[i];
869 		efx->channel[i] = other_channel[i];
870 		other_channel[i] = channel;
871 	}
872 	goto out;
873 }
874 
875 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
876 {
877 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
878 }
879 
880 static const struct efx_channel_type efx_default_channel_type = {
881 	.pre_probe		= efx_channel_dummy_op_int,
882 	.post_remove		= efx_channel_dummy_op_void,
883 	.get_name		= efx_get_channel_name,
884 	.copy			= efx_copy_channel,
885 	.keep_eventq		= false,
886 };
887 
888 int efx_channel_dummy_op_int(struct efx_channel *channel)
889 {
890 	return 0;
891 }
892 
893 void efx_channel_dummy_op_void(struct efx_channel *channel)
894 {
895 }
896 
897 /**************************************************************************
898  *
899  * Port handling
900  *
901  **************************************************************************/
902 
903 /* This ensures that the kernel is kept informed (via
904  * netif_carrier_on/off) of the link status, and also maintains the
905  * link status's stop on the port's TX queue.
906  */
907 void efx_link_status_changed(struct efx_nic *efx)
908 {
909 	struct efx_link_state *link_state = &efx->link_state;
910 
911 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
912 	 * that no events are triggered between unregister_netdev() and the
913 	 * driver unloading. A more general condition is that NETDEV_CHANGE
914 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
915 	if (!netif_running(efx->net_dev))
916 		return;
917 
918 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
919 		efx->n_link_state_changes++;
920 
921 		if (link_state->up)
922 			netif_carrier_on(efx->net_dev);
923 		else
924 			netif_carrier_off(efx->net_dev);
925 	}
926 
927 	/* Status message for kernel log */
928 	if (link_state->up)
929 		netif_info(efx, link, efx->net_dev,
930 			   "link up at %uMbps %s-duplex (MTU %d)\n",
931 			   link_state->speed, link_state->fd ? "full" : "half",
932 			   efx->net_dev->mtu);
933 	else
934 		netif_info(efx, link, efx->net_dev, "link down\n");
935 }
936 
937 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
938 {
939 	efx->link_advertising = advertising;
940 	if (advertising) {
941 		if (advertising & ADVERTISED_Pause)
942 			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
943 		else
944 			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
945 		if (advertising & ADVERTISED_Asym_Pause)
946 			efx->wanted_fc ^= EFX_FC_TX;
947 	}
948 }
949 
950 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
951 {
952 	efx->wanted_fc = wanted_fc;
953 	if (efx->link_advertising) {
954 		if (wanted_fc & EFX_FC_RX)
955 			efx->link_advertising |= (ADVERTISED_Pause |
956 						  ADVERTISED_Asym_Pause);
957 		else
958 			efx->link_advertising &= ~(ADVERTISED_Pause |
959 						   ADVERTISED_Asym_Pause);
960 		if (wanted_fc & EFX_FC_TX)
961 			efx->link_advertising ^= ADVERTISED_Asym_Pause;
962 	}
963 }
964 
965 static void efx_fini_port(struct efx_nic *efx);
966 
967 /* We assume that efx->type->reconfigure_mac will always try to sync RX
968  * filters and therefore needs to read-lock the filter table against freeing
969  */
970 void efx_mac_reconfigure(struct efx_nic *efx)
971 {
972 	down_read(&efx->filter_sem);
973 	efx->type->reconfigure_mac(efx);
974 	up_read(&efx->filter_sem);
975 }
976 
977 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
978  * the MAC appropriately. All other PHY configuration changes are pushed
979  * through phy_op->set_settings(), and pushed asynchronously to the MAC
980  * through efx_monitor().
981  *
982  * Callers must hold the mac_lock
983  */
984 int __efx_reconfigure_port(struct efx_nic *efx)
985 {
986 	enum efx_phy_mode phy_mode;
987 	int rc;
988 
989 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
990 
991 	/* Disable PHY transmit in mac level loopbacks */
992 	phy_mode = efx->phy_mode;
993 	if (LOOPBACK_INTERNAL(efx))
994 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
995 	else
996 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
997 
998 	rc = efx->type->reconfigure_port(efx);
999 
1000 	if (rc)
1001 		efx->phy_mode = phy_mode;
1002 
1003 	return rc;
1004 }
1005 
1006 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1007  * disabled. */
1008 int efx_reconfigure_port(struct efx_nic *efx)
1009 {
1010 	int rc;
1011 
1012 	EFX_ASSERT_RESET_SERIALISED(efx);
1013 
1014 	mutex_lock(&efx->mac_lock);
1015 	rc = __efx_reconfigure_port(efx);
1016 	mutex_unlock(&efx->mac_lock);
1017 
1018 	return rc;
1019 }
1020 
1021 /* Asynchronous work item for changing MAC promiscuity and multicast
1022  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1023  * MAC directly. */
1024 static void efx_mac_work(struct work_struct *data)
1025 {
1026 	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1027 
1028 	mutex_lock(&efx->mac_lock);
1029 	if (efx->port_enabled)
1030 		efx_mac_reconfigure(efx);
1031 	mutex_unlock(&efx->mac_lock);
1032 }
1033 
1034 static int efx_probe_port(struct efx_nic *efx)
1035 {
1036 	int rc;
1037 
1038 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1039 
1040 	if (phy_flash_cfg)
1041 		efx->phy_mode = PHY_MODE_SPECIAL;
1042 
1043 	/* Connect up MAC/PHY operations table */
1044 	rc = efx->type->probe_port(efx);
1045 	if (rc)
1046 		return rc;
1047 
1048 	/* Initialise MAC address to permanent address */
1049 	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1050 
1051 	return 0;
1052 }
1053 
1054 static int efx_init_port(struct efx_nic *efx)
1055 {
1056 	int rc;
1057 
1058 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1059 
1060 	mutex_lock(&efx->mac_lock);
1061 
1062 	rc = efx->phy_op->init(efx);
1063 	if (rc)
1064 		goto fail1;
1065 
1066 	efx->port_initialized = true;
1067 
1068 	/* Reconfigure the MAC before creating dma queues (required for
1069 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1070 	efx_mac_reconfigure(efx);
1071 
1072 	/* Ensure the PHY advertises the correct flow control settings */
1073 	rc = efx->phy_op->reconfigure(efx);
1074 	if (rc && rc != -EPERM)
1075 		goto fail2;
1076 
1077 	mutex_unlock(&efx->mac_lock);
1078 	return 0;
1079 
1080 fail2:
1081 	efx->phy_op->fini(efx);
1082 fail1:
1083 	mutex_unlock(&efx->mac_lock);
1084 	return rc;
1085 }
1086 
1087 static void efx_start_port(struct efx_nic *efx)
1088 {
1089 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1090 	BUG_ON(efx->port_enabled);
1091 
1092 	mutex_lock(&efx->mac_lock);
1093 	efx->port_enabled = true;
1094 
1095 	/* Ensure MAC ingress/egress is enabled */
1096 	efx_mac_reconfigure(efx);
1097 
1098 	mutex_unlock(&efx->mac_lock);
1099 }
1100 
1101 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1102  * and the async self-test, wait for them to finish and prevent them
1103  * being scheduled again.  This doesn't cover online resets, which
1104  * should only be cancelled when removing the device.
1105  */
1106 static void efx_stop_port(struct efx_nic *efx)
1107 {
1108 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1109 
1110 	EFX_ASSERT_RESET_SERIALISED(efx);
1111 
1112 	mutex_lock(&efx->mac_lock);
1113 	efx->port_enabled = false;
1114 	mutex_unlock(&efx->mac_lock);
1115 
1116 	/* Serialise against efx_set_multicast_list() */
1117 	netif_addr_lock_bh(efx->net_dev);
1118 	netif_addr_unlock_bh(efx->net_dev);
1119 
1120 	cancel_delayed_work_sync(&efx->monitor_work);
1121 	efx_selftest_async_cancel(efx);
1122 	cancel_work_sync(&efx->mac_work);
1123 }
1124 
1125 static void efx_fini_port(struct efx_nic *efx)
1126 {
1127 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1128 
1129 	if (!efx->port_initialized)
1130 		return;
1131 
1132 	efx->phy_op->fini(efx);
1133 	efx->port_initialized = false;
1134 
1135 	efx->link_state.up = false;
1136 	efx_link_status_changed(efx);
1137 }
1138 
1139 static void efx_remove_port(struct efx_nic *efx)
1140 {
1141 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1142 
1143 	efx->type->remove_port(efx);
1144 }
1145 
1146 /**************************************************************************
1147  *
1148  * NIC handling
1149  *
1150  **************************************************************************/
1151 
1152 static LIST_HEAD(efx_primary_list);
1153 static LIST_HEAD(efx_unassociated_list);
1154 
1155 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1156 {
1157 	return left->type == right->type &&
1158 		left->vpd_sn && right->vpd_sn &&
1159 		!strcmp(left->vpd_sn, right->vpd_sn);
1160 }
1161 
1162 static void efx_associate(struct efx_nic *efx)
1163 {
1164 	struct efx_nic *other, *next;
1165 
1166 	if (efx->primary == efx) {
1167 		/* Adding primary function; look for secondaries */
1168 
1169 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1170 		list_add_tail(&efx->node, &efx_primary_list);
1171 
1172 		list_for_each_entry_safe(other, next, &efx_unassociated_list,
1173 					 node) {
1174 			if (efx_same_controller(efx, other)) {
1175 				list_del(&other->node);
1176 				netif_dbg(other, probe, other->net_dev,
1177 					  "moving to secondary list of %s %s\n",
1178 					  pci_name(efx->pci_dev),
1179 					  efx->net_dev->name);
1180 				list_add_tail(&other->node,
1181 					      &efx->secondary_list);
1182 				other->primary = efx;
1183 			}
1184 		}
1185 	} else {
1186 		/* Adding secondary function; look for primary */
1187 
1188 		list_for_each_entry(other, &efx_primary_list, node) {
1189 			if (efx_same_controller(efx, other)) {
1190 				netif_dbg(efx, probe, efx->net_dev,
1191 					  "adding to secondary list of %s %s\n",
1192 					  pci_name(other->pci_dev),
1193 					  other->net_dev->name);
1194 				list_add_tail(&efx->node,
1195 					      &other->secondary_list);
1196 				efx->primary = other;
1197 				return;
1198 			}
1199 		}
1200 
1201 		netif_dbg(efx, probe, efx->net_dev,
1202 			  "adding to unassociated list\n");
1203 		list_add_tail(&efx->node, &efx_unassociated_list);
1204 	}
1205 }
1206 
1207 static void efx_dissociate(struct efx_nic *efx)
1208 {
1209 	struct efx_nic *other, *next;
1210 
1211 	list_del(&efx->node);
1212 	efx->primary = NULL;
1213 
1214 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1215 		list_del(&other->node);
1216 		netif_dbg(other, probe, other->net_dev,
1217 			  "moving to unassociated list\n");
1218 		list_add_tail(&other->node, &efx_unassociated_list);
1219 		other->primary = NULL;
1220 	}
1221 }
1222 
1223 /* This configures the PCI device to enable I/O and DMA. */
1224 static int efx_init_io(struct efx_nic *efx)
1225 {
1226 	struct pci_dev *pci_dev = efx->pci_dev;
1227 	dma_addr_t dma_mask = efx->type->max_dma_mask;
1228 	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1229 	int rc, bar;
1230 
1231 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1232 
1233 	bar = efx->type->mem_bar;
1234 
1235 	rc = pci_enable_device(pci_dev);
1236 	if (rc) {
1237 		netif_err(efx, probe, efx->net_dev,
1238 			  "failed to enable PCI device\n");
1239 		goto fail1;
1240 	}
1241 
1242 	pci_set_master(pci_dev);
1243 
1244 	/* Set the PCI DMA mask.  Try all possibilities from our
1245 	 * genuine mask down to 32 bits, because some architectures
1246 	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1247 	 * masks event though they reject 46 bit masks.
1248 	 */
1249 	while (dma_mask > 0x7fffffffUL) {
1250 		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1251 		if (rc == 0)
1252 			break;
1253 		dma_mask >>= 1;
1254 	}
1255 	if (rc) {
1256 		netif_err(efx, probe, efx->net_dev,
1257 			  "could not find a suitable DMA mask\n");
1258 		goto fail2;
1259 	}
1260 	netif_dbg(efx, probe, efx->net_dev,
1261 		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1262 
1263 	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1264 	rc = pci_request_region(pci_dev, bar, "sfc");
1265 	if (rc) {
1266 		netif_err(efx, probe, efx->net_dev,
1267 			  "request for memory BAR failed\n");
1268 		rc = -EIO;
1269 		goto fail3;
1270 	}
1271 	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1272 	if (!efx->membase) {
1273 		netif_err(efx, probe, efx->net_dev,
1274 			  "could not map memory BAR at %llx+%x\n",
1275 			  (unsigned long long)efx->membase_phys, mem_map_size);
1276 		rc = -ENOMEM;
1277 		goto fail4;
1278 	}
1279 	netif_dbg(efx, probe, efx->net_dev,
1280 		  "memory BAR at %llx+%x (virtual %p)\n",
1281 		  (unsigned long long)efx->membase_phys, mem_map_size,
1282 		  efx->membase);
1283 
1284 	return 0;
1285 
1286  fail4:
1287 	pci_release_region(efx->pci_dev, bar);
1288  fail3:
1289 	efx->membase_phys = 0;
1290  fail2:
1291 	pci_disable_device(efx->pci_dev);
1292  fail1:
1293 	return rc;
1294 }
1295 
1296 static void efx_fini_io(struct efx_nic *efx)
1297 {
1298 	int bar;
1299 
1300 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1301 
1302 	if (efx->membase) {
1303 		iounmap(efx->membase);
1304 		efx->membase = NULL;
1305 	}
1306 
1307 	if (efx->membase_phys) {
1308 		bar = efx->type->mem_bar;
1309 		pci_release_region(efx->pci_dev, bar);
1310 		efx->membase_phys = 0;
1311 	}
1312 
1313 	/* Don't disable bus-mastering if VFs are assigned */
1314 	if (!pci_vfs_assigned(efx->pci_dev))
1315 		pci_disable_device(efx->pci_dev);
1316 }
1317 
1318 void efx_set_default_rx_indir_table(struct efx_nic *efx)
1319 {
1320 	size_t i;
1321 
1322 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1323 		efx->rx_indir_table[i] =
1324 			ethtool_rxfh_indir_default(i, efx->rss_spread);
1325 }
1326 
1327 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1328 {
1329 	cpumask_var_t thread_mask;
1330 	unsigned int count;
1331 	int cpu;
1332 
1333 	if (rss_cpus) {
1334 		count = rss_cpus;
1335 	} else {
1336 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1337 			netif_warn(efx, probe, efx->net_dev,
1338 				   "RSS disabled due to allocation failure\n");
1339 			return 1;
1340 		}
1341 
1342 		count = 0;
1343 		for_each_online_cpu(cpu) {
1344 			if (!cpumask_test_cpu(cpu, thread_mask)) {
1345 				++count;
1346 				cpumask_or(thread_mask, thread_mask,
1347 					   topology_sibling_cpumask(cpu));
1348 			}
1349 		}
1350 
1351 		free_cpumask_var(thread_mask);
1352 	}
1353 
1354 	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1355 	 * table entries that are inaccessible to VFs
1356 	 */
1357 #ifdef CONFIG_SFC_SRIOV
1358 	if (efx->type->sriov_wanted) {
1359 		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1360 		    count > efx_vf_size(efx)) {
1361 			netif_warn(efx, probe, efx->net_dev,
1362 				   "Reducing number of RSS channels from %u to %u for "
1363 				   "VF support. Increase vf-msix-limit to use more "
1364 				   "channels on the PF.\n",
1365 				   count, efx_vf_size(efx));
1366 			count = efx_vf_size(efx);
1367 		}
1368 	}
1369 #endif
1370 
1371 	return count;
1372 }
1373 
1374 /* Probe the number and type of interrupts we are able to obtain, and
1375  * the resulting numbers of channels and RX queues.
1376  */
1377 static int efx_probe_interrupts(struct efx_nic *efx)
1378 {
1379 	unsigned int extra_channels = 0;
1380 	unsigned int i, j;
1381 	int rc;
1382 
1383 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1384 		if (efx->extra_channel_type[i])
1385 			++extra_channels;
1386 
1387 	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1388 		struct msix_entry xentries[EFX_MAX_CHANNELS];
1389 		unsigned int n_channels;
1390 
1391 		n_channels = efx_wanted_parallelism(efx);
1392 		if (efx_separate_tx_channels)
1393 			n_channels *= 2;
1394 		n_channels += extra_channels;
1395 		n_channels = min(n_channels, efx->max_channels);
1396 
1397 		for (i = 0; i < n_channels; i++)
1398 			xentries[i].entry = i;
1399 		rc = pci_enable_msix_range(efx->pci_dev,
1400 					   xentries, 1, n_channels);
1401 		if (rc < 0) {
1402 			/* Fall back to single channel MSI */
1403 			efx->interrupt_mode = EFX_INT_MODE_MSI;
1404 			netif_err(efx, drv, efx->net_dev,
1405 				  "could not enable MSI-X\n");
1406 		} else if (rc < n_channels) {
1407 			netif_err(efx, drv, efx->net_dev,
1408 				  "WARNING: Insufficient MSI-X vectors"
1409 				  " available (%d < %u).\n", rc, n_channels);
1410 			netif_err(efx, drv, efx->net_dev,
1411 				  "WARNING: Performance may be reduced.\n");
1412 			n_channels = rc;
1413 		}
1414 
1415 		if (rc > 0) {
1416 			efx->n_channels = n_channels;
1417 			if (n_channels > extra_channels)
1418 				n_channels -= extra_channels;
1419 			if (efx_separate_tx_channels) {
1420 				efx->n_tx_channels = min(max(n_channels / 2,
1421 							     1U),
1422 							 efx->max_tx_channels);
1423 				efx->n_rx_channels = max(n_channels -
1424 							 efx->n_tx_channels,
1425 							 1U);
1426 			} else {
1427 				efx->n_tx_channels = min(n_channels,
1428 							 efx->max_tx_channels);
1429 				efx->n_rx_channels = n_channels;
1430 			}
1431 			for (i = 0; i < efx->n_channels; i++)
1432 				efx_get_channel(efx, i)->irq =
1433 					xentries[i].vector;
1434 		}
1435 	}
1436 
1437 	/* Try single interrupt MSI */
1438 	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1439 		efx->n_channels = 1;
1440 		efx->n_rx_channels = 1;
1441 		efx->n_tx_channels = 1;
1442 		rc = pci_enable_msi(efx->pci_dev);
1443 		if (rc == 0) {
1444 			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1445 		} else {
1446 			netif_err(efx, drv, efx->net_dev,
1447 				  "could not enable MSI\n");
1448 			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1449 		}
1450 	}
1451 
1452 	/* Assume legacy interrupts */
1453 	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1454 		efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
1455 		efx->n_rx_channels = 1;
1456 		efx->n_tx_channels = 1;
1457 		efx->legacy_irq = efx->pci_dev->irq;
1458 	}
1459 
1460 	/* Assign extra channels if possible */
1461 	j = efx->n_channels;
1462 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1463 		if (!efx->extra_channel_type[i])
1464 			continue;
1465 		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1466 		    efx->n_channels <= extra_channels) {
1467 			efx->extra_channel_type[i]->handle_no_channel(efx);
1468 		} else {
1469 			--j;
1470 			efx_get_channel(efx, j)->type =
1471 				efx->extra_channel_type[i];
1472 		}
1473 	}
1474 
1475 	/* RSS might be usable on VFs even if it is disabled on the PF */
1476 #ifdef CONFIG_SFC_SRIOV
1477 	if (efx->type->sriov_wanted) {
1478 		efx->rss_spread = ((efx->n_rx_channels > 1 ||
1479 				    !efx->type->sriov_wanted(efx)) ?
1480 				   efx->n_rx_channels : efx_vf_size(efx));
1481 		return 0;
1482 	}
1483 #endif
1484 	efx->rss_spread = efx->n_rx_channels;
1485 
1486 	return 0;
1487 }
1488 
1489 static int efx_soft_enable_interrupts(struct efx_nic *efx)
1490 {
1491 	struct efx_channel *channel, *end_channel;
1492 	int rc;
1493 
1494 	BUG_ON(efx->state == STATE_DISABLED);
1495 
1496 	efx->irq_soft_enabled = true;
1497 	smp_wmb();
1498 
1499 	efx_for_each_channel(channel, efx) {
1500 		if (!channel->type->keep_eventq) {
1501 			rc = efx_init_eventq(channel);
1502 			if (rc)
1503 				goto fail;
1504 		}
1505 		efx_start_eventq(channel);
1506 	}
1507 
1508 	efx_mcdi_mode_event(efx);
1509 
1510 	return 0;
1511 fail:
1512 	end_channel = channel;
1513 	efx_for_each_channel(channel, efx) {
1514 		if (channel == end_channel)
1515 			break;
1516 		efx_stop_eventq(channel);
1517 		if (!channel->type->keep_eventq)
1518 			efx_fini_eventq(channel);
1519 	}
1520 
1521 	return rc;
1522 }
1523 
1524 static void efx_soft_disable_interrupts(struct efx_nic *efx)
1525 {
1526 	struct efx_channel *channel;
1527 
1528 	if (efx->state == STATE_DISABLED)
1529 		return;
1530 
1531 	efx_mcdi_mode_poll(efx);
1532 
1533 	efx->irq_soft_enabled = false;
1534 	smp_wmb();
1535 
1536 	if (efx->legacy_irq)
1537 		synchronize_irq(efx->legacy_irq);
1538 
1539 	efx_for_each_channel(channel, efx) {
1540 		if (channel->irq)
1541 			synchronize_irq(channel->irq);
1542 
1543 		efx_stop_eventq(channel);
1544 		if (!channel->type->keep_eventq)
1545 			efx_fini_eventq(channel);
1546 	}
1547 
1548 	/* Flush the asynchronous MCDI request queue */
1549 	efx_mcdi_flush_async(efx);
1550 }
1551 
1552 static int efx_enable_interrupts(struct efx_nic *efx)
1553 {
1554 	struct efx_channel *channel, *end_channel;
1555 	int rc;
1556 
1557 	BUG_ON(efx->state == STATE_DISABLED);
1558 
1559 	if (efx->eeh_disabled_legacy_irq) {
1560 		enable_irq(efx->legacy_irq);
1561 		efx->eeh_disabled_legacy_irq = false;
1562 	}
1563 
1564 	efx->type->irq_enable_master(efx);
1565 
1566 	efx_for_each_channel(channel, efx) {
1567 		if (channel->type->keep_eventq) {
1568 			rc = efx_init_eventq(channel);
1569 			if (rc)
1570 				goto fail;
1571 		}
1572 	}
1573 
1574 	rc = efx_soft_enable_interrupts(efx);
1575 	if (rc)
1576 		goto fail;
1577 
1578 	return 0;
1579 
1580 fail:
1581 	end_channel = channel;
1582 	efx_for_each_channel(channel, efx) {
1583 		if (channel == end_channel)
1584 			break;
1585 		if (channel->type->keep_eventq)
1586 			efx_fini_eventq(channel);
1587 	}
1588 
1589 	efx->type->irq_disable_non_ev(efx);
1590 
1591 	return rc;
1592 }
1593 
1594 static void efx_disable_interrupts(struct efx_nic *efx)
1595 {
1596 	struct efx_channel *channel;
1597 
1598 	efx_soft_disable_interrupts(efx);
1599 
1600 	efx_for_each_channel(channel, efx) {
1601 		if (channel->type->keep_eventq)
1602 			efx_fini_eventq(channel);
1603 	}
1604 
1605 	efx->type->irq_disable_non_ev(efx);
1606 }
1607 
1608 static void efx_remove_interrupts(struct efx_nic *efx)
1609 {
1610 	struct efx_channel *channel;
1611 
1612 	/* Remove MSI/MSI-X interrupts */
1613 	efx_for_each_channel(channel, efx)
1614 		channel->irq = 0;
1615 	pci_disable_msi(efx->pci_dev);
1616 	pci_disable_msix(efx->pci_dev);
1617 
1618 	/* Remove legacy interrupt */
1619 	efx->legacy_irq = 0;
1620 }
1621 
1622 static void efx_set_channels(struct efx_nic *efx)
1623 {
1624 	struct efx_channel *channel;
1625 	struct efx_tx_queue *tx_queue;
1626 
1627 	efx->tx_channel_offset =
1628 		efx_separate_tx_channels ?
1629 		efx->n_channels - efx->n_tx_channels : 0;
1630 
1631 	/* We need to mark which channels really have RX and TX
1632 	 * queues, and adjust the TX queue numbers if we have separate
1633 	 * RX-only and TX-only channels.
1634 	 */
1635 	efx_for_each_channel(channel, efx) {
1636 		if (channel->channel < efx->n_rx_channels)
1637 			channel->rx_queue.core_index = channel->channel;
1638 		else
1639 			channel->rx_queue.core_index = -1;
1640 
1641 		efx_for_each_channel_tx_queue(tx_queue, channel)
1642 			tx_queue->queue -= (efx->tx_channel_offset *
1643 					    EFX_TXQ_TYPES);
1644 	}
1645 }
1646 
1647 static int efx_probe_nic(struct efx_nic *efx)
1648 {
1649 	int rc;
1650 
1651 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1652 
1653 	/* Carry out hardware-type specific initialisation */
1654 	rc = efx->type->probe(efx);
1655 	if (rc)
1656 		return rc;
1657 
1658 	do {
1659 		if (!efx->max_channels || !efx->max_tx_channels) {
1660 			netif_err(efx, drv, efx->net_dev,
1661 				  "Insufficient resources to allocate"
1662 				  " any channels\n");
1663 			rc = -ENOSPC;
1664 			goto fail1;
1665 		}
1666 
1667 		/* Determine the number of channels and queues by trying
1668 		 * to hook in MSI-X interrupts.
1669 		 */
1670 		rc = efx_probe_interrupts(efx);
1671 		if (rc)
1672 			goto fail1;
1673 
1674 		efx_set_channels(efx);
1675 
1676 		/* dimension_resources can fail with EAGAIN */
1677 		rc = efx->type->dimension_resources(efx);
1678 		if (rc != 0 && rc != -EAGAIN)
1679 			goto fail2;
1680 
1681 		if (rc == -EAGAIN)
1682 			/* try again with new max_channels */
1683 			efx_remove_interrupts(efx);
1684 
1685 	} while (rc == -EAGAIN);
1686 
1687 	if (efx->n_channels > 1)
1688 		netdev_rss_key_fill(&efx->rx_hash_key,
1689 				    sizeof(efx->rx_hash_key));
1690 	efx_set_default_rx_indir_table(efx);
1691 
1692 	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1693 	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1694 
1695 	/* Initialise the interrupt moderation settings */
1696 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1697 				true);
1698 
1699 	return 0;
1700 
1701 fail2:
1702 	efx_remove_interrupts(efx);
1703 fail1:
1704 	efx->type->remove(efx);
1705 	return rc;
1706 }
1707 
1708 static void efx_remove_nic(struct efx_nic *efx)
1709 {
1710 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1711 
1712 	efx_remove_interrupts(efx);
1713 	efx->type->remove(efx);
1714 }
1715 
1716 static int efx_probe_filters(struct efx_nic *efx)
1717 {
1718 	int rc;
1719 
1720 	spin_lock_init(&efx->filter_lock);
1721 	init_rwsem(&efx->filter_sem);
1722 	down_write(&efx->filter_sem);
1723 	rc = efx->type->filter_table_probe(efx);
1724 	if (rc)
1725 		goto out_unlock;
1726 
1727 #ifdef CONFIG_RFS_ACCEL
1728 	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1729 		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1730 					   sizeof(*efx->rps_flow_id),
1731 					   GFP_KERNEL);
1732 		if (!efx->rps_flow_id) {
1733 			efx->type->filter_table_remove(efx);
1734 			rc = -ENOMEM;
1735 			goto out_unlock;
1736 		}
1737 	}
1738 #endif
1739 out_unlock:
1740 	up_write(&efx->filter_sem);
1741 	return rc;
1742 }
1743 
1744 static void efx_remove_filters(struct efx_nic *efx)
1745 {
1746 #ifdef CONFIG_RFS_ACCEL
1747 	kfree(efx->rps_flow_id);
1748 #endif
1749 	down_write(&efx->filter_sem);
1750 	efx->type->filter_table_remove(efx);
1751 	up_write(&efx->filter_sem);
1752 }
1753 
1754 static void efx_restore_filters(struct efx_nic *efx)
1755 {
1756 	down_read(&efx->filter_sem);
1757 	efx->type->filter_table_restore(efx);
1758 	up_read(&efx->filter_sem);
1759 }
1760 
1761 /**************************************************************************
1762  *
1763  * NIC startup/shutdown
1764  *
1765  *************************************************************************/
1766 
1767 static int efx_probe_all(struct efx_nic *efx)
1768 {
1769 	int rc;
1770 
1771 	rc = efx_probe_nic(efx);
1772 	if (rc) {
1773 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1774 		goto fail1;
1775 	}
1776 
1777 	rc = efx_probe_port(efx);
1778 	if (rc) {
1779 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1780 		goto fail2;
1781 	}
1782 
1783 	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1784 	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1785 		rc = -EINVAL;
1786 		goto fail3;
1787 	}
1788 	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1789 
1790 #ifdef CONFIG_SFC_SRIOV
1791 	rc = efx->type->vswitching_probe(efx);
1792 	if (rc) /* not fatal; the PF will still work fine */
1793 		netif_warn(efx, probe, efx->net_dev,
1794 			   "failed to setup vswitching rc=%d;"
1795 			   " VFs may not function\n", rc);
1796 #endif
1797 
1798 	rc = efx_probe_filters(efx);
1799 	if (rc) {
1800 		netif_err(efx, probe, efx->net_dev,
1801 			  "failed to create filter tables\n");
1802 		goto fail4;
1803 	}
1804 
1805 	rc = efx_probe_channels(efx);
1806 	if (rc)
1807 		goto fail5;
1808 
1809 	return 0;
1810 
1811  fail5:
1812 	efx_remove_filters(efx);
1813  fail4:
1814 #ifdef CONFIG_SFC_SRIOV
1815 	efx->type->vswitching_remove(efx);
1816 #endif
1817  fail3:
1818 	efx_remove_port(efx);
1819  fail2:
1820 	efx_remove_nic(efx);
1821  fail1:
1822 	return rc;
1823 }
1824 
1825 /* If the interface is supposed to be running but is not, start
1826  * the hardware and software data path, regular activity for the port
1827  * (MAC statistics, link polling, etc.) and schedule the port to be
1828  * reconfigured.  Interrupts must already be enabled.  This function
1829  * is safe to call multiple times, so long as the NIC is not disabled.
1830  * Requires the RTNL lock.
1831  */
1832 static void efx_start_all(struct efx_nic *efx)
1833 {
1834 	EFX_ASSERT_RESET_SERIALISED(efx);
1835 	BUG_ON(efx->state == STATE_DISABLED);
1836 
1837 	/* Check that it is appropriate to restart the interface. All
1838 	 * of these flags are safe to read under just the rtnl lock */
1839 	if (efx->port_enabled || !netif_running(efx->net_dev) ||
1840 	    efx->reset_pending)
1841 		return;
1842 
1843 	efx_start_port(efx);
1844 	efx_start_datapath(efx);
1845 
1846 	/* Start the hardware monitor if there is one */
1847 	if (efx->type->monitor != NULL)
1848 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1849 				   efx_monitor_interval);
1850 
1851 	/* If link state detection is normally event-driven, we have
1852 	 * to poll now because we could have missed a change
1853 	 */
1854 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1855 		mutex_lock(&efx->mac_lock);
1856 		if (efx->phy_op->poll(efx))
1857 			efx_link_status_changed(efx);
1858 		mutex_unlock(&efx->mac_lock);
1859 	}
1860 
1861 	efx->type->start_stats(efx);
1862 	efx->type->pull_stats(efx);
1863 	spin_lock_bh(&efx->stats_lock);
1864 	efx->type->update_stats(efx, NULL, NULL);
1865 	spin_unlock_bh(&efx->stats_lock);
1866 }
1867 
1868 /* Quiesce the hardware and software data path, and regular activity
1869  * for the port without bringing the link down.  Safe to call multiple
1870  * times with the NIC in almost any state, but interrupts should be
1871  * enabled.  Requires the RTNL lock.
1872  */
1873 static void efx_stop_all(struct efx_nic *efx)
1874 {
1875 	EFX_ASSERT_RESET_SERIALISED(efx);
1876 
1877 	/* port_enabled can be read safely under the rtnl lock */
1878 	if (!efx->port_enabled)
1879 		return;
1880 
1881 	/* update stats before we go down so we can accurately count
1882 	 * rx_nodesc_drops
1883 	 */
1884 	efx->type->pull_stats(efx);
1885 	spin_lock_bh(&efx->stats_lock);
1886 	efx->type->update_stats(efx, NULL, NULL);
1887 	spin_unlock_bh(&efx->stats_lock);
1888 	efx->type->stop_stats(efx);
1889 	efx_stop_port(efx);
1890 
1891 	/* Stop the kernel transmit interface.  This is only valid if
1892 	 * the device is stopped or detached; otherwise the watchdog
1893 	 * may fire immediately.
1894 	 */
1895 	WARN_ON(netif_running(efx->net_dev) &&
1896 		netif_device_present(efx->net_dev));
1897 	netif_tx_disable(efx->net_dev);
1898 
1899 	efx_stop_datapath(efx);
1900 }
1901 
1902 static void efx_remove_all(struct efx_nic *efx)
1903 {
1904 	efx_remove_channels(efx);
1905 	efx_remove_filters(efx);
1906 #ifdef CONFIG_SFC_SRIOV
1907 	efx->type->vswitching_remove(efx);
1908 #endif
1909 	efx_remove_port(efx);
1910 	efx_remove_nic(efx);
1911 }
1912 
1913 /**************************************************************************
1914  *
1915  * Interrupt moderation
1916  *
1917  **************************************************************************/
1918 
1919 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1920 {
1921 	if (usecs == 0)
1922 		return 0;
1923 	if (usecs * 1000 < quantum_ns)
1924 		return 1; /* never round down to 0 */
1925 	return usecs * 1000 / quantum_ns;
1926 }
1927 
1928 /* Set interrupt moderation parameters */
1929 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1930 			    unsigned int rx_usecs, bool rx_adaptive,
1931 			    bool rx_may_override_tx)
1932 {
1933 	struct efx_channel *channel;
1934 	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1935 						efx->timer_quantum_ns,
1936 						1000);
1937 	unsigned int tx_ticks;
1938 	unsigned int rx_ticks;
1939 
1940 	EFX_ASSERT_RESET_SERIALISED(efx);
1941 
1942 	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1943 		return -EINVAL;
1944 
1945 	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1946 	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1947 
1948 	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1949 	    !rx_may_override_tx) {
1950 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1951 			  "RX and TX IRQ moderation must be equal\n");
1952 		return -EINVAL;
1953 	}
1954 
1955 	efx->irq_rx_adaptive = rx_adaptive;
1956 	efx->irq_rx_moderation = rx_ticks;
1957 	efx_for_each_channel(channel, efx) {
1958 		if (efx_channel_has_rx_queue(channel))
1959 			channel->irq_moderation = rx_ticks;
1960 		else if (efx_channel_has_tx_queues(channel))
1961 			channel->irq_moderation = tx_ticks;
1962 	}
1963 
1964 	return 0;
1965 }
1966 
1967 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1968 			    unsigned int *rx_usecs, bool *rx_adaptive)
1969 {
1970 	/* We must round up when converting ticks to microseconds
1971 	 * because we round down when converting the other way.
1972 	 */
1973 
1974 	*rx_adaptive = efx->irq_rx_adaptive;
1975 	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1976 				 efx->timer_quantum_ns,
1977 				 1000);
1978 
1979 	/* If channels are shared between RX and TX, so is IRQ
1980 	 * moderation.  Otherwise, IRQ moderation is the same for all
1981 	 * TX channels and is not adaptive.
1982 	 */
1983 	if (efx->tx_channel_offset == 0)
1984 		*tx_usecs = *rx_usecs;
1985 	else
1986 		*tx_usecs = DIV_ROUND_UP(
1987 			efx->channel[efx->tx_channel_offset]->irq_moderation *
1988 			efx->timer_quantum_ns,
1989 			1000);
1990 }
1991 
1992 /**************************************************************************
1993  *
1994  * Hardware monitor
1995  *
1996  **************************************************************************/
1997 
1998 /* Run periodically off the general workqueue */
1999 static void efx_monitor(struct work_struct *data)
2000 {
2001 	struct efx_nic *efx = container_of(data, struct efx_nic,
2002 					   monitor_work.work);
2003 
2004 	netif_vdbg(efx, timer, efx->net_dev,
2005 		   "hardware monitor executing on CPU %d\n",
2006 		   raw_smp_processor_id());
2007 	BUG_ON(efx->type->monitor == NULL);
2008 
2009 	/* If the mac_lock is already held then it is likely a port
2010 	 * reconfiguration is already in place, which will likely do
2011 	 * most of the work of monitor() anyway. */
2012 	if (mutex_trylock(&efx->mac_lock)) {
2013 		if (efx->port_enabled)
2014 			efx->type->monitor(efx);
2015 		mutex_unlock(&efx->mac_lock);
2016 	}
2017 
2018 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
2019 			   efx_monitor_interval);
2020 }
2021 
2022 /**************************************************************************
2023  *
2024  * ioctls
2025  *
2026  *************************************************************************/
2027 
2028 /* Net device ioctl
2029  * Context: process, rtnl_lock() held.
2030  */
2031 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2032 {
2033 	struct efx_nic *efx = netdev_priv(net_dev);
2034 	struct mii_ioctl_data *data = if_mii(ifr);
2035 
2036 	if (cmd == SIOCSHWTSTAMP)
2037 		return efx_ptp_set_ts_config(efx, ifr);
2038 	if (cmd == SIOCGHWTSTAMP)
2039 		return efx_ptp_get_ts_config(efx, ifr);
2040 
2041 	/* Convert phy_id from older PRTAD/DEVAD format */
2042 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2043 	    (data->phy_id & 0xfc00) == 0x0400)
2044 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2045 
2046 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2047 }
2048 
2049 /**************************************************************************
2050  *
2051  * NAPI interface
2052  *
2053  **************************************************************************/
2054 
2055 static void efx_init_napi_channel(struct efx_channel *channel)
2056 {
2057 	struct efx_nic *efx = channel->efx;
2058 
2059 	channel->napi_dev = efx->net_dev;
2060 	netif_napi_add(channel->napi_dev, &channel->napi_str,
2061 		       efx_poll, napi_weight);
2062 	efx_channel_busy_poll_init(channel);
2063 }
2064 
2065 static void efx_init_napi(struct efx_nic *efx)
2066 {
2067 	struct efx_channel *channel;
2068 
2069 	efx_for_each_channel(channel, efx)
2070 		efx_init_napi_channel(channel);
2071 }
2072 
2073 static void efx_fini_napi_channel(struct efx_channel *channel)
2074 {
2075 	if (channel->napi_dev) {
2076 		netif_napi_del(&channel->napi_str);
2077 		napi_hash_del(&channel->napi_str);
2078 	}
2079 	channel->napi_dev = NULL;
2080 }
2081 
2082 static void efx_fini_napi(struct efx_nic *efx)
2083 {
2084 	struct efx_channel *channel;
2085 
2086 	efx_for_each_channel(channel, efx)
2087 		efx_fini_napi_channel(channel);
2088 }
2089 
2090 /**************************************************************************
2091  *
2092  * Kernel netpoll interface
2093  *
2094  *************************************************************************/
2095 
2096 #ifdef CONFIG_NET_POLL_CONTROLLER
2097 
2098 /* Although in the common case interrupts will be disabled, this is not
2099  * guaranteed. However, all our work happens inside the NAPI callback,
2100  * so no locking is required.
2101  */
2102 static void efx_netpoll(struct net_device *net_dev)
2103 {
2104 	struct efx_nic *efx = netdev_priv(net_dev);
2105 	struct efx_channel *channel;
2106 
2107 	efx_for_each_channel(channel, efx)
2108 		efx_schedule_channel(channel);
2109 }
2110 
2111 #endif
2112 
2113 #ifdef CONFIG_NET_RX_BUSY_POLL
2114 static int efx_busy_poll(struct napi_struct *napi)
2115 {
2116 	struct efx_channel *channel =
2117 		container_of(napi, struct efx_channel, napi_str);
2118 	struct efx_nic *efx = channel->efx;
2119 	int budget = 4;
2120 	int old_rx_packets, rx_packets;
2121 
2122 	if (!netif_running(efx->net_dev))
2123 		return LL_FLUSH_FAILED;
2124 
2125 	if (!efx_channel_try_lock_poll(channel))
2126 		return LL_FLUSH_BUSY;
2127 
2128 	old_rx_packets = channel->rx_queue.rx_packets;
2129 	efx_process_channel(channel, budget);
2130 
2131 	rx_packets = channel->rx_queue.rx_packets - old_rx_packets;
2132 
2133 	/* There is no race condition with NAPI here.
2134 	 * NAPI will automatically be rescheduled if it yielded during busy
2135 	 * polling, because it was not able to take the lock and thus returned
2136 	 * the full budget.
2137 	 */
2138 	efx_channel_unlock_poll(channel);
2139 
2140 	return rx_packets;
2141 }
2142 #endif
2143 
2144 /**************************************************************************
2145  *
2146  * Kernel net device interface
2147  *
2148  *************************************************************************/
2149 
2150 /* Context: process, rtnl_lock() held. */
2151 int efx_net_open(struct net_device *net_dev)
2152 {
2153 	struct efx_nic *efx = netdev_priv(net_dev);
2154 	int rc;
2155 
2156 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2157 		  raw_smp_processor_id());
2158 
2159 	rc = efx_check_disabled(efx);
2160 	if (rc)
2161 		return rc;
2162 	if (efx->phy_mode & PHY_MODE_SPECIAL)
2163 		return -EBUSY;
2164 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2165 		return -EIO;
2166 
2167 	/* Notify the kernel of the link state polled during driver load,
2168 	 * before the monitor starts running */
2169 	efx_link_status_changed(efx);
2170 
2171 	efx_start_all(efx);
2172 	efx_selftest_async_start(efx);
2173 	return 0;
2174 }
2175 
2176 /* Context: process, rtnl_lock() held.
2177  * Note that the kernel will ignore our return code; this method
2178  * should really be a void.
2179  */
2180 int efx_net_stop(struct net_device *net_dev)
2181 {
2182 	struct efx_nic *efx = netdev_priv(net_dev);
2183 
2184 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2185 		  raw_smp_processor_id());
2186 
2187 	/* Stop the device and flush all the channels */
2188 	efx_stop_all(efx);
2189 
2190 	return 0;
2191 }
2192 
2193 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2194 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2195 					       struct rtnl_link_stats64 *stats)
2196 {
2197 	struct efx_nic *efx = netdev_priv(net_dev);
2198 
2199 	spin_lock_bh(&efx->stats_lock);
2200 	efx->type->update_stats(efx, NULL, stats);
2201 	spin_unlock_bh(&efx->stats_lock);
2202 
2203 	return stats;
2204 }
2205 
2206 /* Context: netif_tx_lock held, BHs disabled. */
2207 static void efx_watchdog(struct net_device *net_dev)
2208 {
2209 	struct efx_nic *efx = netdev_priv(net_dev);
2210 
2211 	netif_err(efx, tx_err, efx->net_dev,
2212 		  "TX stuck with port_enabled=%d: resetting channels\n",
2213 		  efx->port_enabled);
2214 
2215 	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2216 }
2217 
2218 
2219 /* Context: process, rtnl_lock() held. */
2220 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2221 {
2222 	struct efx_nic *efx = netdev_priv(net_dev);
2223 	int rc;
2224 
2225 	rc = efx_check_disabled(efx);
2226 	if (rc)
2227 		return rc;
2228 	if (new_mtu > EFX_MAX_MTU)
2229 		return -EINVAL;
2230 
2231 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2232 
2233 	efx_device_detach_sync(efx);
2234 	efx_stop_all(efx);
2235 
2236 	mutex_lock(&efx->mac_lock);
2237 	net_dev->mtu = new_mtu;
2238 	efx_mac_reconfigure(efx);
2239 	mutex_unlock(&efx->mac_lock);
2240 
2241 	efx_start_all(efx);
2242 	netif_device_attach(efx->net_dev);
2243 	return 0;
2244 }
2245 
2246 static int efx_set_mac_address(struct net_device *net_dev, void *data)
2247 {
2248 	struct efx_nic *efx = netdev_priv(net_dev);
2249 	struct sockaddr *addr = data;
2250 	u8 *new_addr = addr->sa_data;
2251 	u8 old_addr[6];
2252 	int rc;
2253 
2254 	if (!is_valid_ether_addr(new_addr)) {
2255 		netif_err(efx, drv, efx->net_dev,
2256 			  "invalid ethernet MAC address requested: %pM\n",
2257 			  new_addr);
2258 		return -EADDRNOTAVAIL;
2259 	}
2260 
2261 	/* save old address */
2262 	ether_addr_copy(old_addr, net_dev->dev_addr);
2263 	ether_addr_copy(net_dev->dev_addr, new_addr);
2264 	if (efx->type->set_mac_address) {
2265 		rc = efx->type->set_mac_address(efx);
2266 		if (rc) {
2267 			ether_addr_copy(net_dev->dev_addr, old_addr);
2268 			return rc;
2269 		}
2270 	}
2271 
2272 	/* Reconfigure the MAC */
2273 	mutex_lock(&efx->mac_lock);
2274 	efx_mac_reconfigure(efx);
2275 	mutex_unlock(&efx->mac_lock);
2276 
2277 	return 0;
2278 }
2279 
2280 /* Context: netif_addr_lock held, BHs disabled. */
2281 static void efx_set_rx_mode(struct net_device *net_dev)
2282 {
2283 	struct efx_nic *efx = netdev_priv(net_dev);
2284 
2285 	if (efx->port_enabled)
2286 		queue_work(efx->workqueue, &efx->mac_work);
2287 	/* Otherwise efx_start_port() will do this */
2288 }
2289 
2290 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2291 {
2292 	struct efx_nic *efx = netdev_priv(net_dev);
2293 
2294 	/* If disabling RX n-tuple filtering, clear existing filters */
2295 	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2296 		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2297 
2298 	return 0;
2299 }
2300 
2301 static const struct net_device_ops efx_netdev_ops = {
2302 	.ndo_open		= efx_net_open,
2303 	.ndo_stop		= efx_net_stop,
2304 	.ndo_get_stats64	= efx_net_stats,
2305 	.ndo_tx_timeout		= efx_watchdog,
2306 	.ndo_start_xmit		= efx_hard_start_xmit,
2307 	.ndo_validate_addr	= eth_validate_addr,
2308 	.ndo_do_ioctl		= efx_ioctl,
2309 	.ndo_change_mtu		= efx_change_mtu,
2310 	.ndo_set_mac_address	= efx_set_mac_address,
2311 	.ndo_set_rx_mode	= efx_set_rx_mode,
2312 	.ndo_set_features	= efx_set_features,
2313 #ifdef CONFIG_SFC_SRIOV
2314 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2315 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2316 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2317 	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2318 	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
2319 	.ndo_get_phys_port_id   = efx_sriov_get_phys_port_id,
2320 #endif
2321 #ifdef CONFIG_NET_POLL_CONTROLLER
2322 	.ndo_poll_controller = efx_netpoll,
2323 #endif
2324 	.ndo_setup_tc		= efx_setup_tc,
2325 #ifdef CONFIG_NET_RX_BUSY_POLL
2326 	.ndo_busy_poll		= efx_busy_poll,
2327 #endif
2328 #ifdef CONFIG_RFS_ACCEL
2329 	.ndo_rx_flow_steer	= efx_filter_rfs,
2330 #endif
2331 };
2332 
2333 static void efx_update_name(struct efx_nic *efx)
2334 {
2335 	strcpy(efx->name, efx->net_dev->name);
2336 	efx_mtd_rename(efx);
2337 	efx_set_channel_names(efx);
2338 }
2339 
2340 static int efx_netdev_event(struct notifier_block *this,
2341 			    unsigned long event, void *ptr)
2342 {
2343 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2344 
2345 	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2346 	    event == NETDEV_CHANGENAME)
2347 		efx_update_name(netdev_priv(net_dev));
2348 
2349 	return NOTIFY_DONE;
2350 }
2351 
2352 static struct notifier_block efx_netdev_notifier = {
2353 	.notifier_call = efx_netdev_event,
2354 };
2355 
2356 static ssize_t
2357 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2358 {
2359 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2360 	return sprintf(buf, "%d\n", efx->phy_type);
2361 }
2362 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2363 
2364 #ifdef CONFIG_SFC_MCDI_LOGGING
2365 static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
2366 			     char *buf)
2367 {
2368 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2369 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2370 
2371 	return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
2372 }
2373 static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
2374 			    const char *buf, size_t count)
2375 {
2376 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2377 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2378 	bool enable = count > 0 && *buf != '0';
2379 
2380 	mcdi->logging_enabled = enable;
2381 	return count;
2382 }
2383 static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
2384 #endif
2385 
2386 static int efx_register_netdev(struct efx_nic *efx)
2387 {
2388 	struct net_device *net_dev = efx->net_dev;
2389 	struct efx_channel *channel;
2390 	int rc;
2391 
2392 	net_dev->watchdog_timeo = 5 * HZ;
2393 	net_dev->irq = efx->pci_dev->irq;
2394 	net_dev->netdev_ops = &efx_netdev_ops;
2395 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2396 		net_dev->priv_flags |= IFF_UNICAST_FLT;
2397 	net_dev->ethtool_ops = &efx_ethtool_ops;
2398 	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2399 
2400 	rtnl_lock();
2401 
2402 	/* Enable resets to be scheduled and check whether any were
2403 	 * already requested.  If so, the NIC is probably hosed so we
2404 	 * abort.
2405 	 */
2406 	efx->state = STATE_READY;
2407 	smp_mb(); /* ensure we change state before checking reset_pending */
2408 	if (efx->reset_pending) {
2409 		netif_err(efx, probe, efx->net_dev,
2410 			  "aborting probe due to scheduled reset\n");
2411 		rc = -EIO;
2412 		goto fail_locked;
2413 	}
2414 
2415 	rc = dev_alloc_name(net_dev, net_dev->name);
2416 	if (rc < 0)
2417 		goto fail_locked;
2418 	efx_update_name(efx);
2419 
2420 	/* Always start with carrier off; PHY events will detect the link */
2421 	netif_carrier_off(net_dev);
2422 
2423 	rc = register_netdevice(net_dev);
2424 	if (rc)
2425 		goto fail_locked;
2426 
2427 	efx_for_each_channel(channel, efx) {
2428 		struct efx_tx_queue *tx_queue;
2429 		efx_for_each_channel_tx_queue(tx_queue, channel)
2430 			efx_init_tx_queue_core_txq(tx_queue);
2431 	}
2432 
2433 	efx_associate(efx);
2434 
2435 	rtnl_unlock();
2436 
2437 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2438 	if (rc) {
2439 		netif_err(efx, drv, efx->net_dev,
2440 			  "failed to init net dev attributes\n");
2441 		goto fail_registered;
2442 	}
2443 #ifdef CONFIG_SFC_MCDI_LOGGING
2444 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2445 	if (rc) {
2446 		netif_err(efx, drv, efx->net_dev,
2447 			  "failed to init net dev attributes\n");
2448 		goto fail_attr_mcdi_logging;
2449 	}
2450 #endif
2451 
2452 	return 0;
2453 
2454 #ifdef CONFIG_SFC_MCDI_LOGGING
2455 fail_attr_mcdi_logging:
2456 	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2457 #endif
2458 fail_registered:
2459 	rtnl_lock();
2460 	efx_dissociate(efx);
2461 	unregister_netdevice(net_dev);
2462 fail_locked:
2463 	efx->state = STATE_UNINIT;
2464 	rtnl_unlock();
2465 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2466 	return rc;
2467 }
2468 
2469 static void efx_unregister_netdev(struct efx_nic *efx)
2470 {
2471 	if (!efx->net_dev)
2472 		return;
2473 
2474 	BUG_ON(netdev_priv(efx->net_dev) != efx);
2475 
2476 	if (efx_dev_registered(efx)) {
2477 		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2478 #ifdef CONFIG_SFC_MCDI_LOGGING
2479 		device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2480 #endif
2481 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2482 		unregister_netdev(efx->net_dev);
2483 	}
2484 }
2485 
2486 /**************************************************************************
2487  *
2488  * Device reset and suspend
2489  *
2490  **************************************************************************/
2491 
2492 /* Tears down the entire software state and most of the hardware state
2493  * before reset.  */
2494 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2495 {
2496 	EFX_ASSERT_RESET_SERIALISED(efx);
2497 
2498 	if (method == RESET_TYPE_MCDI_TIMEOUT)
2499 		efx->type->prepare_flr(efx);
2500 
2501 	efx_stop_all(efx);
2502 	efx_disable_interrupts(efx);
2503 
2504 	mutex_lock(&efx->mac_lock);
2505 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2506 	    method != RESET_TYPE_DATAPATH)
2507 		efx->phy_op->fini(efx);
2508 	efx->type->fini(efx);
2509 }
2510 
2511 /* This function will always ensure that the locks acquired in
2512  * efx_reset_down() are released. A failure return code indicates
2513  * that we were unable to reinitialise the hardware, and the
2514  * driver should be disabled. If ok is false, then the rx and tx
2515  * engines are not restarted, pending a RESET_DISABLE. */
2516 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2517 {
2518 	int rc;
2519 
2520 	EFX_ASSERT_RESET_SERIALISED(efx);
2521 
2522 	if (method == RESET_TYPE_MCDI_TIMEOUT)
2523 		efx->type->finish_flr(efx);
2524 
2525 	/* Ensure that SRAM is initialised even if we're disabling the device */
2526 	rc = efx->type->init(efx);
2527 	if (rc) {
2528 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2529 		goto fail;
2530 	}
2531 
2532 	if (!ok)
2533 		goto fail;
2534 
2535 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2536 	    method != RESET_TYPE_DATAPATH) {
2537 		rc = efx->phy_op->init(efx);
2538 		if (rc)
2539 			goto fail;
2540 		rc = efx->phy_op->reconfigure(efx);
2541 		if (rc && rc != -EPERM)
2542 			netif_err(efx, drv, efx->net_dev,
2543 				  "could not restore PHY settings\n");
2544 	}
2545 
2546 	rc = efx_enable_interrupts(efx);
2547 	if (rc)
2548 		goto fail;
2549 
2550 #ifdef CONFIG_SFC_SRIOV
2551 	rc = efx->type->vswitching_restore(efx);
2552 	if (rc) /* not fatal; the PF will still work fine */
2553 		netif_warn(efx, probe, efx->net_dev,
2554 			   "failed to restore vswitching rc=%d;"
2555 			   " VFs may not function\n", rc);
2556 #endif
2557 
2558 	down_read(&efx->filter_sem);
2559 	efx_restore_filters(efx);
2560 	up_read(&efx->filter_sem);
2561 	if (efx->type->sriov_reset)
2562 		efx->type->sriov_reset(efx);
2563 
2564 	mutex_unlock(&efx->mac_lock);
2565 
2566 	efx_start_all(efx);
2567 
2568 	return 0;
2569 
2570 fail:
2571 	efx->port_initialized = false;
2572 
2573 	mutex_unlock(&efx->mac_lock);
2574 
2575 	return rc;
2576 }
2577 
2578 /* Reset the NIC using the specified method.  Note that the reset may
2579  * fail, in which case the card will be left in an unusable state.
2580  *
2581  * Caller must hold the rtnl_lock.
2582  */
2583 int efx_reset(struct efx_nic *efx, enum reset_type method)
2584 {
2585 	int rc, rc2;
2586 	bool disabled;
2587 
2588 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2589 		   RESET_TYPE(method));
2590 
2591 	efx_device_detach_sync(efx);
2592 	efx_reset_down(efx, method);
2593 
2594 	rc = efx->type->reset(efx, method);
2595 	if (rc) {
2596 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2597 		goto out;
2598 	}
2599 
2600 	/* Clear flags for the scopes we covered.  We assume the NIC and
2601 	 * driver are now quiescent so that there is no race here.
2602 	 */
2603 	if (method < RESET_TYPE_MAX_METHOD)
2604 		efx->reset_pending &= -(1 << (method + 1));
2605 	else /* it doesn't fit into the well-ordered scope hierarchy */
2606 		__clear_bit(method, &efx->reset_pending);
2607 
2608 	/* Reinitialise bus-mastering, which may have been turned off before
2609 	 * the reset was scheduled. This is still appropriate, even in the
2610 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2611 	 * can respond to requests. */
2612 	pci_set_master(efx->pci_dev);
2613 
2614 out:
2615 	/* Leave device stopped if necessary */
2616 	disabled = rc ||
2617 		method == RESET_TYPE_DISABLE ||
2618 		method == RESET_TYPE_RECOVER_OR_DISABLE;
2619 	rc2 = efx_reset_up(efx, method, !disabled);
2620 	if (rc2) {
2621 		disabled = true;
2622 		if (!rc)
2623 			rc = rc2;
2624 	}
2625 
2626 	if (disabled) {
2627 		dev_close(efx->net_dev);
2628 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2629 		efx->state = STATE_DISABLED;
2630 	} else {
2631 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2632 		netif_device_attach(efx->net_dev);
2633 	}
2634 	return rc;
2635 }
2636 
2637 /* Try recovery mechanisms.
2638  * For now only EEH is supported.
2639  * Returns 0 if the recovery mechanisms are unsuccessful.
2640  * Returns a non-zero value otherwise.
2641  */
2642 int efx_try_recovery(struct efx_nic *efx)
2643 {
2644 #ifdef CONFIG_EEH
2645 	/* A PCI error can occur and not be seen by EEH because nothing
2646 	 * happens on the PCI bus. In this case the driver may fail and
2647 	 * schedule a 'recover or reset', leading to this recovery handler.
2648 	 * Manually call the eeh failure check function.
2649 	 */
2650 	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2651 	if (eeh_dev_check_failure(eehdev)) {
2652 		/* The EEH mechanisms will handle the error and reset the
2653 		 * device if necessary.
2654 		 */
2655 		return 1;
2656 	}
2657 #endif
2658 	return 0;
2659 }
2660 
2661 static void efx_wait_for_bist_end(struct efx_nic *efx)
2662 {
2663 	int i;
2664 
2665 	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2666 		if (efx_mcdi_poll_reboot(efx))
2667 			goto out;
2668 		msleep(BIST_WAIT_DELAY_MS);
2669 	}
2670 
2671 	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2672 out:
2673 	/* Either way unset the BIST flag. If we found no reboot we probably
2674 	 * won't recover, but we should try.
2675 	 */
2676 	efx->mc_bist_for_other_fn = false;
2677 }
2678 
2679 /* The worker thread exists so that code that cannot sleep can
2680  * schedule a reset for later.
2681  */
2682 static void efx_reset_work(struct work_struct *data)
2683 {
2684 	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2685 	unsigned long pending;
2686 	enum reset_type method;
2687 
2688 	pending = ACCESS_ONCE(efx->reset_pending);
2689 	method = fls(pending) - 1;
2690 
2691 	if (method == RESET_TYPE_MC_BIST)
2692 		efx_wait_for_bist_end(efx);
2693 
2694 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2695 	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2696 	    efx_try_recovery(efx))
2697 		return;
2698 
2699 	if (!pending)
2700 		return;
2701 
2702 	rtnl_lock();
2703 
2704 	/* We checked the state in efx_schedule_reset() but it may
2705 	 * have changed by now.  Now that we have the RTNL lock,
2706 	 * it cannot change again.
2707 	 */
2708 	if (efx->state == STATE_READY)
2709 		(void)efx_reset(efx, method);
2710 
2711 	rtnl_unlock();
2712 }
2713 
2714 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2715 {
2716 	enum reset_type method;
2717 
2718 	if (efx->state == STATE_RECOVERY) {
2719 		netif_dbg(efx, drv, efx->net_dev,
2720 			  "recovering: skip scheduling %s reset\n",
2721 			  RESET_TYPE(type));
2722 		return;
2723 	}
2724 
2725 	switch (type) {
2726 	case RESET_TYPE_INVISIBLE:
2727 	case RESET_TYPE_ALL:
2728 	case RESET_TYPE_RECOVER_OR_ALL:
2729 	case RESET_TYPE_WORLD:
2730 	case RESET_TYPE_DISABLE:
2731 	case RESET_TYPE_RECOVER_OR_DISABLE:
2732 	case RESET_TYPE_DATAPATH:
2733 	case RESET_TYPE_MC_BIST:
2734 	case RESET_TYPE_MCDI_TIMEOUT:
2735 		method = type;
2736 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2737 			  RESET_TYPE(method));
2738 		break;
2739 	default:
2740 		method = efx->type->map_reset_reason(type);
2741 		netif_dbg(efx, drv, efx->net_dev,
2742 			  "scheduling %s reset for %s\n",
2743 			  RESET_TYPE(method), RESET_TYPE(type));
2744 		break;
2745 	}
2746 
2747 	set_bit(method, &efx->reset_pending);
2748 	smp_mb(); /* ensure we change reset_pending before checking state */
2749 
2750 	/* If we're not READY then just leave the flags set as the cue
2751 	 * to abort probing or reschedule the reset later.
2752 	 */
2753 	if (ACCESS_ONCE(efx->state) != STATE_READY)
2754 		return;
2755 
2756 	/* efx_process_channel() will no longer read events once a
2757 	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2758 	efx_mcdi_mode_poll(efx);
2759 
2760 	queue_work(reset_workqueue, &efx->reset_work);
2761 }
2762 
2763 /**************************************************************************
2764  *
2765  * List of NICs we support
2766  *
2767  **************************************************************************/
2768 
2769 /* PCI device ID table */
2770 static const struct pci_device_id efx_pci_table[] = {
2771 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2772 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2773 	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2774 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2775 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2776 	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2777 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2778 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2779 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2780 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2781 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2782 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2783 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
2784 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2785 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
2786 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2787 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
2788 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2789 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
2790 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2791 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
2792 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2793 	{0}			/* end of list */
2794 };
2795 
2796 /**************************************************************************
2797  *
2798  * Dummy PHY/MAC operations
2799  *
2800  * Can be used for some unimplemented operations
2801  * Needed so all function pointers are valid and do not have to be tested
2802  * before use
2803  *
2804  **************************************************************************/
2805 int efx_port_dummy_op_int(struct efx_nic *efx)
2806 {
2807 	return 0;
2808 }
2809 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2810 
2811 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2812 {
2813 	return false;
2814 }
2815 
2816 static const struct efx_phy_operations efx_dummy_phy_operations = {
2817 	.init		 = efx_port_dummy_op_int,
2818 	.reconfigure	 = efx_port_dummy_op_int,
2819 	.poll		 = efx_port_dummy_op_poll,
2820 	.fini		 = efx_port_dummy_op_void,
2821 };
2822 
2823 /**************************************************************************
2824  *
2825  * Data housekeeping
2826  *
2827  **************************************************************************/
2828 
2829 /* This zeroes out and then fills in the invariants in a struct
2830  * efx_nic (including all sub-structures).
2831  */
2832 static int efx_init_struct(struct efx_nic *efx,
2833 			   struct pci_dev *pci_dev, struct net_device *net_dev)
2834 {
2835 	int i;
2836 
2837 	/* Initialise common structures */
2838 	INIT_LIST_HEAD(&efx->node);
2839 	INIT_LIST_HEAD(&efx->secondary_list);
2840 	spin_lock_init(&efx->biu_lock);
2841 #ifdef CONFIG_SFC_MTD
2842 	INIT_LIST_HEAD(&efx->mtd_list);
2843 #endif
2844 	INIT_WORK(&efx->reset_work, efx_reset_work);
2845 	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2846 	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2847 	efx->pci_dev = pci_dev;
2848 	efx->msg_enable = debug;
2849 	efx->state = STATE_UNINIT;
2850 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2851 
2852 	efx->net_dev = net_dev;
2853 	efx->rx_prefix_size = efx->type->rx_prefix_size;
2854 	efx->rx_ip_align =
2855 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2856 	efx->rx_packet_hash_offset =
2857 		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2858 	efx->rx_packet_ts_offset =
2859 		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2860 	spin_lock_init(&efx->stats_lock);
2861 	mutex_init(&efx->mac_lock);
2862 	efx->phy_op = &efx_dummy_phy_operations;
2863 	efx->mdio.dev = net_dev;
2864 	INIT_WORK(&efx->mac_work, efx_mac_work);
2865 	init_waitqueue_head(&efx->flush_wq);
2866 
2867 	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2868 		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2869 		if (!efx->channel[i])
2870 			goto fail;
2871 		efx->msi_context[i].efx = efx;
2872 		efx->msi_context[i].index = i;
2873 	}
2874 
2875 	/* Higher numbered interrupt modes are less capable! */
2876 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2877 				  interrupt_mode);
2878 
2879 	/* Would be good to use the net_dev name, but we're too early */
2880 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2881 		 pci_name(pci_dev));
2882 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2883 	if (!efx->workqueue)
2884 		goto fail;
2885 
2886 	return 0;
2887 
2888 fail:
2889 	efx_fini_struct(efx);
2890 	return -ENOMEM;
2891 }
2892 
2893 static void efx_fini_struct(struct efx_nic *efx)
2894 {
2895 	int i;
2896 
2897 	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2898 		kfree(efx->channel[i]);
2899 
2900 	kfree(efx->vpd_sn);
2901 
2902 	if (efx->workqueue) {
2903 		destroy_workqueue(efx->workqueue);
2904 		efx->workqueue = NULL;
2905 	}
2906 }
2907 
2908 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
2909 {
2910 	u64 n_rx_nodesc_trunc = 0;
2911 	struct efx_channel *channel;
2912 
2913 	efx_for_each_channel(channel, efx)
2914 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2915 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2916 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2917 }
2918 
2919 /**************************************************************************
2920  *
2921  * PCI interface
2922  *
2923  **************************************************************************/
2924 
2925 /* Main body of final NIC shutdown code
2926  * This is called only at module unload (or hotplug removal).
2927  */
2928 static void efx_pci_remove_main(struct efx_nic *efx)
2929 {
2930 	/* Flush reset_work. It can no longer be scheduled since we
2931 	 * are not READY.
2932 	 */
2933 	BUG_ON(efx->state == STATE_READY);
2934 	cancel_work_sync(&efx->reset_work);
2935 
2936 	efx_disable_interrupts(efx);
2937 	efx_nic_fini_interrupt(efx);
2938 	efx_fini_port(efx);
2939 	efx->type->fini(efx);
2940 	efx_fini_napi(efx);
2941 	efx_remove_all(efx);
2942 }
2943 
2944 /* Final NIC shutdown
2945  * This is called only at module unload (or hotplug removal).  A PF can call
2946  * this on its VFs to ensure they are unbound first.
2947  */
2948 static void efx_pci_remove(struct pci_dev *pci_dev)
2949 {
2950 	struct efx_nic *efx;
2951 
2952 	efx = pci_get_drvdata(pci_dev);
2953 	if (!efx)
2954 		return;
2955 
2956 	/* Mark the NIC as fini, then stop the interface */
2957 	rtnl_lock();
2958 	efx_dissociate(efx);
2959 	dev_close(efx->net_dev);
2960 	efx_disable_interrupts(efx);
2961 	efx->state = STATE_UNINIT;
2962 	rtnl_unlock();
2963 
2964 	if (efx->type->sriov_fini)
2965 		efx->type->sriov_fini(efx);
2966 
2967 	efx_unregister_netdev(efx);
2968 
2969 	efx_mtd_remove(efx);
2970 
2971 	efx_pci_remove_main(efx);
2972 
2973 	efx_fini_io(efx);
2974 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2975 
2976 	efx_fini_struct(efx);
2977 	free_netdev(efx->net_dev);
2978 
2979 	pci_disable_pcie_error_reporting(pci_dev);
2980 };
2981 
2982 /* NIC VPD information
2983  * Called during probe to display the part number of the
2984  * installed NIC.  VPD is potentially very large but this should
2985  * always appear within the first 512 bytes.
2986  */
2987 #define SFC_VPD_LEN 512
2988 static void efx_probe_vpd_strings(struct efx_nic *efx)
2989 {
2990 	struct pci_dev *dev = efx->pci_dev;
2991 	char vpd_data[SFC_VPD_LEN];
2992 	ssize_t vpd_size;
2993 	int ro_start, ro_size, i, j;
2994 
2995 	/* Get the vpd data from the device */
2996 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2997 	if (vpd_size <= 0) {
2998 		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2999 		return;
3000 	}
3001 
3002 	/* Get the Read only section */
3003 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
3004 	if (ro_start < 0) {
3005 		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
3006 		return;
3007 	}
3008 
3009 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
3010 	j = ro_size;
3011 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3012 	if (i + j > vpd_size)
3013 		j = vpd_size - i;
3014 
3015 	/* Get the Part number */
3016 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
3017 	if (i < 0) {
3018 		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
3019 		return;
3020 	}
3021 
3022 	j = pci_vpd_info_field_size(&vpd_data[i]);
3023 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
3024 	if (i + j > vpd_size) {
3025 		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
3026 		return;
3027 	}
3028 
3029 	netif_info(efx, drv, efx->net_dev,
3030 		   "Part Number : %.*s\n", j, &vpd_data[i]);
3031 
3032 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3033 	j = ro_size;
3034 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
3035 	if (i < 0) {
3036 		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
3037 		return;
3038 	}
3039 
3040 	j = pci_vpd_info_field_size(&vpd_data[i]);
3041 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
3042 	if (i + j > vpd_size) {
3043 		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
3044 		return;
3045 	}
3046 
3047 	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
3048 	if (!efx->vpd_sn)
3049 		return;
3050 
3051 	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3052 }
3053 
3054 
3055 /* Main body of NIC initialisation
3056  * This is called at module load (or hotplug insertion, theoretically).
3057  */
3058 static int efx_pci_probe_main(struct efx_nic *efx)
3059 {
3060 	int rc;
3061 
3062 	/* Do start-of-day initialisation */
3063 	rc = efx_probe_all(efx);
3064 	if (rc)
3065 		goto fail1;
3066 
3067 	efx_init_napi(efx);
3068 
3069 	rc = efx->type->init(efx);
3070 	if (rc) {
3071 		netif_err(efx, probe, efx->net_dev,
3072 			  "failed to initialise NIC\n");
3073 		goto fail3;
3074 	}
3075 
3076 	rc = efx_init_port(efx);
3077 	if (rc) {
3078 		netif_err(efx, probe, efx->net_dev,
3079 			  "failed to initialise port\n");
3080 		goto fail4;
3081 	}
3082 
3083 	rc = efx_nic_init_interrupt(efx);
3084 	if (rc)
3085 		goto fail5;
3086 	rc = efx_enable_interrupts(efx);
3087 	if (rc)
3088 		goto fail6;
3089 
3090 	return 0;
3091 
3092  fail6:
3093 	efx_nic_fini_interrupt(efx);
3094  fail5:
3095 	efx_fini_port(efx);
3096  fail4:
3097 	efx->type->fini(efx);
3098  fail3:
3099 	efx_fini_napi(efx);
3100 	efx_remove_all(efx);
3101  fail1:
3102 	return rc;
3103 }
3104 
3105 /* NIC initialisation
3106  *
3107  * This is called at module load (or hotplug insertion,
3108  * theoretically).  It sets up PCI mappings, resets the NIC,
3109  * sets up and registers the network devices with the kernel and hooks
3110  * the interrupt service routine.  It does not prepare the device for
3111  * transmission; this is left to the first time one of the network
3112  * interfaces is brought up (i.e. efx_net_open).
3113  */
3114 static int efx_pci_probe(struct pci_dev *pci_dev,
3115 			 const struct pci_device_id *entry)
3116 {
3117 	struct net_device *net_dev;
3118 	struct efx_nic *efx;
3119 	int rc;
3120 
3121 	/* Allocate and initialise a struct net_device and struct efx_nic */
3122 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
3123 				     EFX_MAX_RX_QUEUES);
3124 	if (!net_dev)
3125 		return -ENOMEM;
3126 	efx = netdev_priv(net_dev);
3127 	efx->type = (const struct efx_nic_type *) entry->driver_data;
3128 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
3129 			      NETIF_F_HIGHDMA | NETIF_F_TSO |
3130 			      NETIF_F_RXCSUM);
3131 	if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
3132 		net_dev->features |= NETIF_F_TSO6;
3133 	/* Mask for features that also apply to VLAN devices */
3134 	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
3135 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
3136 				   NETIF_F_RXCSUM);
3137 	/* All offloads can be toggled */
3138 	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
3139 	pci_set_drvdata(pci_dev, efx);
3140 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3141 	rc = efx_init_struct(efx, pci_dev, net_dev);
3142 	if (rc)
3143 		goto fail1;
3144 
3145 	netif_info(efx, probe, efx->net_dev,
3146 		   "Solarflare NIC detected\n");
3147 
3148 	if (!efx->type->is_vf)
3149 		efx_probe_vpd_strings(efx);
3150 
3151 	/* Set up basic I/O (BAR mappings etc) */
3152 	rc = efx_init_io(efx);
3153 	if (rc)
3154 		goto fail2;
3155 
3156 	rc = efx_pci_probe_main(efx);
3157 	if (rc)
3158 		goto fail3;
3159 
3160 	rc = efx_register_netdev(efx);
3161 	if (rc)
3162 		goto fail4;
3163 
3164 	if (efx->type->sriov_init) {
3165 		rc = efx->type->sriov_init(efx);
3166 		if (rc)
3167 			netif_err(efx, probe, efx->net_dev,
3168 				  "SR-IOV can't be enabled rc %d\n", rc);
3169 	}
3170 
3171 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3172 
3173 	/* Try to create MTDs, but allow this to fail */
3174 	rtnl_lock();
3175 	rc = efx_mtd_probe(efx);
3176 	rtnl_unlock();
3177 	if (rc && rc != -EPERM)
3178 		netif_warn(efx, probe, efx->net_dev,
3179 			   "failed to create MTDs (%d)\n", rc);
3180 
3181 	rc = pci_enable_pcie_error_reporting(pci_dev);
3182 	if (rc && rc != -EINVAL)
3183 		netif_notice(efx, probe, efx->net_dev,
3184 			     "PCIE error reporting unavailable (%d).\n",
3185 			     rc);
3186 
3187 	return 0;
3188 
3189  fail4:
3190 	efx_pci_remove_main(efx);
3191  fail3:
3192 	efx_fini_io(efx);
3193  fail2:
3194 	efx_fini_struct(efx);
3195  fail1:
3196 	WARN_ON(rc > 0);
3197 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3198 	free_netdev(net_dev);
3199 	return rc;
3200 }
3201 
3202 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
3203  * enabled on success
3204  */
3205 #ifdef CONFIG_SFC_SRIOV
3206 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
3207 {
3208 	int rc;
3209 	struct efx_nic *efx = pci_get_drvdata(dev);
3210 
3211 	if (efx->type->sriov_configure) {
3212 		rc = efx->type->sriov_configure(efx, num_vfs);
3213 		if (rc)
3214 			return rc;
3215 		else
3216 			return num_vfs;
3217 	} else
3218 		return -EOPNOTSUPP;
3219 }
3220 #endif
3221 
3222 static int efx_pm_freeze(struct device *dev)
3223 {
3224 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3225 
3226 	rtnl_lock();
3227 
3228 	if (efx->state != STATE_DISABLED) {
3229 		efx->state = STATE_UNINIT;
3230 
3231 		efx_device_detach_sync(efx);
3232 
3233 		efx_stop_all(efx);
3234 		efx_disable_interrupts(efx);
3235 	}
3236 
3237 	rtnl_unlock();
3238 
3239 	return 0;
3240 }
3241 
3242 static int efx_pm_thaw(struct device *dev)
3243 {
3244 	int rc;
3245 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3246 
3247 	rtnl_lock();
3248 
3249 	if (efx->state != STATE_DISABLED) {
3250 		rc = efx_enable_interrupts(efx);
3251 		if (rc)
3252 			goto fail;
3253 
3254 		mutex_lock(&efx->mac_lock);
3255 		efx->phy_op->reconfigure(efx);
3256 		mutex_unlock(&efx->mac_lock);
3257 
3258 		efx_start_all(efx);
3259 
3260 		netif_device_attach(efx->net_dev);
3261 
3262 		efx->state = STATE_READY;
3263 
3264 		efx->type->resume_wol(efx);
3265 	}
3266 
3267 	rtnl_unlock();
3268 
3269 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3270 	queue_work(reset_workqueue, &efx->reset_work);
3271 
3272 	return 0;
3273 
3274 fail:
3275 	rtnl_unlock();
3276 
3277 	return rc;
3278 }
3279 
3280 static int efx_pm_poweroff(struct device *dev)
3281 {
3282 	struct pci_dev *pci_dev = to_pci_dev(dev);
3283 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3284 
3285 	efx->type->fini(efx);
3286 
3287 	efx->reset_pending = 0;
3288 
3289 	pci_save_state(pci_dev);
3290 	return pci_set_power_state(pci_dev, PCI_D3hot);
3291 }
3292 
3293 /* Used for both resume and restore */
3294 static int efx_pm_resume(struct device *dev)
3295 {
3296 	struct pci_dev *pci_dev = to_pci_dev(dev);
3297 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3298 	int rc;
3299 
3300 	rc = pci_set_power_state(pci_dev, PCI_D0);
3301 	if (rc)
3302 		return rc;
3303 	pci_restore_state(pci_dev);
3304 	rc = pci_enable_device(pci_dev);
3305 	if (rc)
3306 		return rc;
3307 	pci_set_master(efx->pci_dev);
3308 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3309 	if (rc)
3310 		return rc;
3311 	rc = efx->type->init(efx);
3312 	if (rc)
3313 		return rc;
3314 	rc = efx_pm_thaw(dev);
3315 	return rc;
3316 }
3317 
3318 static int efx_pm_suspend(struct device *dev)
3319 {
3320 	int rc;
3321 
3322 	efx_pm_freeze(dev);
3323 	rc = efx_pm_poweroff(dev);
3324 	if (rc)
3325 		efx_pm_resume(dev);
3326 	return rc;
3327 }
3328 
3329 static const struct dev_pm_ops efx_pm_ops = {
3330 	.suspend	= efx_pm_suspend,
3331 	.resume		= efx_pm_resume,
3332 	.freeze		= efx_pm_freeze,
3333 	.thaw		= efx_pm_thaw,
3334 	.poweroff	= efx_pm_poweroff,
3335 	.restore	= efx_pm_resume,
3336 };
3337 
3338 /* A PCI error affecting this device was detected.
3339  * At this point MMIO and DMA may be disabled.
3340  * Stop the software path and request a slot reset.
3341  */
3342 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3343 					      enum pci_channel_state state)
3344 {
3345 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3346 	struct efx_nic *efx = pci_get_drvdata(pdev);
3347 
3348 	if (state == pci_channel_io_perm_failure)
3349 		return PCI_ERS_RESULT_DISCONNECT;
3350 
3351 	rtnl_lock();
3352 
3353 	if (efx->state != STATE_DISABLED) {
3354 		efx->state = STATE_RECOVERY;
3355 		efx->reset_pending = 0;
3356 
3357 		efx_device_detach_sync(efx);
3358 
3359 		efx_stop_all(efx);
3360 		efx_disable_interrupts(efx);
3361 
3362 		status = PCI_ERS_RESULT_NEED_RESET;
3363 	} else {
3364 		/* If the interface is disabled we don't want to do anything
3365 		 * with it.
3366 		 */
3367 		status = PCI_ERS_RESULT_RECOVERED;
3368 	}
3369 
3370 	rtnl_unlock();
3371 
3372 	pci_disable_device(pdev);
3373 
3374 	return status;
3375 }
3376 
3377 /* Fake a successful reset, which will be performed later in efx_io_resume. */
3378 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3379 {
3380 	struct efx_nic *efx = pci_get_drvdata(pdev);
3381 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3382 	int rc;
3383 
3384 	if (pci_enable_device(pdev)) {
3385 		netif_err(efx, hw, efx->net_dev,
3386 			  "Cannot re-enable PCI device after reset.\n");
3387 		status =  PCI_ERS_RESULT_DISCONNECT;
3388 	}
3389 
3390 	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3391 	if (rc) {
3392 		netif_err(efx, hw, efx->net_dev,
3393 		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3394 		/* Non-fatal error. Continue. */
3395 	}
3396 
3397 	return status;
3398 }
3399 
3400 /* Perform the actual reset and resume I/O operations. */
3401 static void efx_io_resume(struct pci_dev *pdev)
3402 {
3403 	struct efx_nic *efx = pci_get_drvdata(pdev);
3404 	int rc;
3405 
3406 	rtnl_lock();
3407 
3408 	if (efx->state == STATE_DISABLED)
3409 		goto out;
3410 
3411 	rc = efx_reset(efx, RESET_TYPE_ALL);
3412 	if (rc) {
3413 		netif_err(efx, hw, efx->net_dev,
3414 			  "efx_reset failed after PCI error (%d)\n", rc);
3415 	} else {
3416 		efx->state = STATE_READY;
3417 		netif_dbg(efx, hw, efx->net_dev,
3418 			  "Done resetting and resuming IO after PCI error.\n");
3419 	}
3420 
3421 out:
3422 	rtnl_unlock();
3423 }
3424 
3425 /* For simplicity and reliability, we always require a slot reset and try to
3426  * reset the hardware when a pci error affecting the device is detected.
3427  * We leave both the link_reset and mmio_enabled callback unimplemented:
3428  * with our request for slot reset the mmio_enabled callback will never be
3429  * called, and the link_reset callback is not used by AER or EEH mechanisms.
3430  */
3431 static const struct pci_error_handlers efx_err_handlers = {
3432 	.error_detected = efx_io_error_detected,
3433 	.slot_reset	= efx_io_slot_reset,
3434 	.resume		= efx_io_resume,
3435 };
3436 
3437 static struct pci_driver efx_pci_driver = {
3438 	.name		= KBUILD_MODNAME,
3439 	.id_table	= efx_pci_table,
3440 	.probe		= efx_pci_probe,
3441 	.remove		= efx_pci_remove,
3442 	.driver.pm	= &efx_pm_ops,
3443 	.err_handler	= &efx_err_handlers,
3444 #ifdef CONFIG_SFC_SRIOV
3445 	.sriov_configure = efx_pci_sriov_configure,
3446 #endif
3447 };
3448 
3449 /**************************************************************************
3450  *
3451  * Kernel module interface
3452  *
3453  *************************************************************************/
3454 
3455 module_param(interrupt_mode, uint, 0444);
3456 MODULE_PARM_DESC(interrupt_mode,
3457 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3458 
3459 static int __init efx_init_module(void)
3460 {
3461 	int rc;
3462 
3463 	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3464 
3465 	rc = register_netdevice_notifier(&efx_netdev_notifier);
3466 	if (rc)
3467 		goto err_notifier;
3468 
3469 #ifdef CONFIG_SFC_SRIOV
3470 	rc = efx_init_sriov();
3471 	if (rc)
3472 		goto err_sriov;
3473 #endif
3474 
3475 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3476 	if (!reset_workqueue) {
3477 		rc = -ENOMEM;
3478 		goto err_reset;
3479 	}
3480 
3481 	rc = pci_register_driver(&efx_pci_driver);
3482 	if (rc < 0)
3483 		goto err_pci;
3484 
3485 	return 0;
3486 
3487  err_pci:
3488 	destroy_workqueue(reset_workqueue);
3489  err_reset:
3490 #ifdef CONFIG_SFC_SRIOV
3491 	efx_fini_sriov();
3492  err_sriov:
3493 #endif
3494 	unregister_netdevice_notifier(&efx_netdev_notifier);
3495  err_notifier:
3496 	return rc;
3497 }
3498 
3499 static void __exit efx_exit_module(void)
3500 {
3501 	printk(KERN_INFO "Solarflare NET driver unloading\n");
3502 
3503 	pci_unregister_driver(&efx_pci_driver);
3504 	destroy_workqueue(reset_workqueue);
3505 #ifdef CONFIG_SFC_SRIOV
3506 	efx_fini_sriov();
3507 #endif
3508 	unregister_netdevice_notifier(&efx_netdev_notifier);
3509 
3510 }
3511 
3512 module_init(efx_init_module);
3513 module_exit(efx_exit_module);
3514 
3515 MODULE_AUTHOR("Solarflare Communications and "
3516 	      "Michael Brown <mbrown@fensystems.co.uk>");
3517 MODULE_DESCRIPTION("Solarflare network driver");
3518 MODULE_LICENSE("GPL");
3519 MODULE_DEVICE_TABLE(pci, efx_pci_table);
3520