1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/pci.h> 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/delay.h> 16 #include <linux/notifier.h> 17 #include <linux/ip.h> 18 #include <linux/tcp.h> 19 #include <linux/in.h> 20 #include <linux/ethtool.h> 21 #include <linux/topology.h> 22 #include <linux/gfp.h> 23 #include <linux/aer.h> 24 #include <linux/interrupt.h> 25 #include "net_driver.h" 26 #include <net/gre.h> 27 #include <net/udp_tunnel.h> 28 #include "efx.h" 29 #include "nic.h" 30 #include "io.h" 31 #include "selftest.h" 32 #include "sriov.h" 33 34 #include "mcdi.h" 35 #include "mcdi_pcol.h" 36 #include "workarounds.h" 37 38 /************************************************************************** 39 * 40 * Type name strings 41 * 42 ************************************************************************** 43 */ 44 45 /* Loopback mode names (see LOOPBACK_MODE()) */ 46 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; 47 const char *const efx_loopback_mode_names[] = { 48 [LOOPBACK_NONE] = "NONE", 49 [LOOPBACK_DATA] = "DATAPATH", 50 [LOOPBACK_GMAC] = "GMAC", 51 [LOOPBACK_XGMII] = "XGMII", 52 [LOOPBACK_XGXS] = "XGXS", 53 [LOOPBACK_XAUI] = "XAUI", 54 [LOOPBACK_GMII] = "GMII", 55 [LOOPBACK_SGMII] = "SGMII", 56 [LOOPBACK_XGBR] = "XGBR", 57 [LOOPBACK_XFI] = "XFI", 58 [LOOPBACK_XAUI_FAR] = "XAUI_FAR", 59 [LOOPBACK_GMII_FAR] = "GMII_FAR", 60 [LOOPBACK_SGMII_FAR] = "SGMII_FAR", 61 [LOOPBACK_XFI_FAR] = "XFI_FAR", 62 [LOOPBACK_GPHY] = "GPHY", 63 [LOOPBACK_PHYXS] = "PHYXS", 64 [LOOPBACK_PCS] = "PCS", 65 [LOOPBACK_PMAPMD] = "PMA/PMD", 66 [LOOPBACK_XPORT] = "XPORT", 67 [LOOPBACK_XGMII_WS] = "XGMII_WS", 68 [LOOPBACK_XAUI_WS] = "XAUI_WS", 69 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", 70 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", 71 [LOOPBACK_GMII_WS] = "GMII_WS", 72 [LOOPBACK_XFI_WS] = "XFI_WS", 73 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", 74 [LOOPBACK_PHYXS_WS] = "PHYXS_WS", 75 }; 76 77 const unsigned int efx_reset_type_max = RESET_TYPE_MAX; 78 const char *const efx_reset_type_names[] = { 79 [RESET_TYPE_INVISIBLE] = "INVISIBLE", 80 [RESET_TYPE_ALL] = "ALL", 81 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", 82 [RESET_TYPE_WORLD] = "WORLD", 83 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", 84 [RESET_TYPE_DATAPATH] = "DATAPATH", 85 [RESET_TYPE_MC_BIST] = "MC_BIST", 86 [RESET_TYPE_DISABLE] = "DISABLE", 87 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", 88 [RESET_TYPE_INT_ERROR] = "INT_ERROR", 89 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", 90 [RESET_TYPE_TX_SKIP] = "TX_SKIP", 91 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", 92 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)", 93 }; 94 95 /* UDP tunnel type names */ 96 static const char *const efx_udp_tunnel_type_names[] = { 97 [TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN] = "vxlan", 98 [TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE] = "geneve", 99 }; 100 101 void efx_get_udp_tunnel_type_name(u16 type, char *buf, size_t buflen) 102 { 103 if (type < ARRAY_SIZE(efx_udp_tunnel_type_names) && 104 efx_udp_tunnel_type_names[type] != NULL) 105 snprintf(buf, buflen, "%s", efx_udp_tunnel_type_names[type]); 106 else 107 snprintf(buf, buflen, "type %d", type); 108 } 109 110 /* Reset workqueue. If any NIC has a hardware failure then a reset will be 111 * queued onto this work queue. This is not a per-nic work queue, because 112 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. 113 */ 114 static struct workqueue_struct *reset_workqueue; 115 116 /* How often and how many times to poll for a reset while waiting for a 117 * BIST that another function started to complete. 118 */ 119 #define BIST_WAIT_DELAY_MS 100 120 #define BIST_WAIT_DELAY_COUNT 100 121 122 /************************************************************************** 123 * 124 * Configurable values 125 * 126 *************************************************************************/ 127 128 /* 129 * Use separate channels for TX and RX events 130 * 131 * Set this to 1 to use separate channels for TX and RX. It allows us 132 * to control interrupt affinity separately for TX and RX. 133 * 134 * This is only used in MSI-X interrupt mode 135 */ 136 bool efx_separate_tx_channels; 137 module_param(efx_separate_tx_channels, bool, 0444); 138 MODULE_PARM_DESC(efx_separate_tx_channels, 139 "Use separate channels for TX and RX"); 140 141 /* This is the weight assigned to each of the (per-channel) virtual 142 * NAPI devices. 143 */ 144 static int napi_weight = 64; 145 146 /* This is the time (in jiffies) between invocations of the hardware 147 * monitor. 148 * On Falcon-based NICs, this will: 149 * - Check the on-board hardware monitor; 150 * - Poll the link state and reconfigure the hardware as necessary. 151 * On Siena-based NICs for power systems with EEH support, this will give EEH a 152 * chance to start. 153 */ 154 static unsigned int efx_monitor_interval = 1 * HZ; 155 156 /* Initial interrupt moderation settings. They can be modified after 157 * module load with ethtool. 158 * 159 * The default for RX should strike a balance between increasing the 160 * round-trip latency and reducing overhead. 161 */ 162 static unsigned int rx_irq_mod_usec = 60; 163 164 /* Initial interrupt moderation settings. They can be modified after 165 * module load with ethtool. 166 * 167 * This default is chosen to ensure that a 10G link does not go idle 168 * while a TX queue is stopped after it has become full. A queue is 169 * restarted when it drops below half full. The time this takes (assuming 170 * worst case 3 descriptors per packet and 1024 descriptors) is 171 * 512 / 3 * 1.2 = 205 usec. 172 */ 173 static unsigned int tx_irq_mod_usec = 150; 174 175 /* This is the first interrupt mode to try out of: 176 * 0 => MSI-X 177 * 1 => MSI 178 * 2 => legacy 179 */ 180 static unsigned int interrupt_mode; 181 182 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), 183 * i.e. the number of CPUs among which we may distribute simultaneous 184 * interrupt handling. 185 * 186 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. 187 * The default (0) means to assign an interrupt to each core. 188 */ 189 static unsigned int rss_cpus; 190 module_param(rss_cpus, uint, 0444); 191 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 192 193 static bool phy_flash_cfg; 194 module_param(phy_flash_cfg, bool, 0644); 195 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 196 197 static unsigned irq_adapt_low_thresh = 8000; 198 module_param(irq_adapt_low_thresh, uint, 0644); 199 MODULE_PARM_DESC(irq_adapt_low_thresh, 200 "Threshold score for reducing IRQ moderation"); 201 202 static unsigned irq_adapt_high_thresh = 16000; 203 module_param(irq_adapt_high_thresh, uint, 0644); 204 MODULE_PARM_DESC(irq_adapt_high_thresh, 205 "Threshold score for increasing IRQ moderation"); 206 207 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 208 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 209 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 210 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 211 module_param(debug, uint, 0); 212 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 213 214 /************************************************************************** 215 * 216 * Utility functions and prototypes 217 * 218 *************************************************************************/ 219 220 static int efx_soft_enable_interrupts(struct efx_nic *efx); 221 static void efx_soft_disable_interrupts(struct efx_nic *efx); 222 static void efx_remove_channel(struct efx_channel *channel); 223 static void efx_remove_channels(struct efx_nic *efx); 224 static const struct efx_channel_type efx_default_channel_type; 225 static void efx_remove_port(struct efx_nic *efx); 226 static void efx_init_napi_channel(struct efx_channel *channel); 227 static void efx_fini_napi(struct efx_nic *efx); 228 static void efx_fini_napi_channel(struct efx_channel *channel); 229 static void efx_fini_struct(struct efx_nic *efx); 230 static void efx_start_all(struct efx_nic *efx); 231 static void efx_stop_all(struct efx_nic *efx); 232 233 #define EFX_ASSERT_RESET_SERIALISED(efx) \ 234 do { \ 235 if ((efx->state == STATE_READY) || \ 236 (efx->state == STATE_RECOVERY) || \ 237 (efx->state == STATE_DISABLED)) \ 238 ASSERT_RTNL(); \ 239 } while (0) 240 241 static int efx_check_disabled(struct efx_nic *efx) 242 { 243 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { 244 netif_err(efx, drv, efx->net_dev, 245 "device is disabled due to earlier errors\n"); 246 return -EIO; 247 } 248 return 0; 249 } 250 251 /************************************************************************** 252 * 253 * Event queue processing 254 * 255 *************************************************************************/ 256 257 /* Process channel's event queue 258 * 259 * This function is responsible for processing the event queue of a 260 * single channel. The caller must guarantee that this function will 261 * never be concurrently called more than once on the same channel, 262 * though different channels may be being processed concurrently. 263 */ 264 static int efx_process_channel(struct efx_channel *channel, int budget) 265 { 266 struct efx_tx_queue *tx_queue; 267 struct list_head rx_list; 268 int spent; 269 270 if (unlikely(!channel->enabled)) 271 return 0; 272 273 /* Prepare the batch receive list */ 274 EFX_WARN_ON_PARANOID(channel->rx_list != NULL); 275 INIT_LIST_HEAD(&rx_list); 276 channel->rx_list = &rx_list; 277 278 efx_for_each_channel_tx_queue(tx_queue, channel) { 279 tx_queue->pkts_compl = 0; 280 tx_queue->bytes_compl = 0; 281 } 282 283 spent = efx_nic_process_eventq(channel, budget); 284 if (spent && efx_channel_has_rx_queue(channel)) { 285 struct efx_rx_queue *rx_queue = 286 efx_channel_get_rx_queue(channel); 287 288 efx_rx_flush_packet(channel); 289 efx_fast_push_rx_descriptors(rx_queue, true); 290 } 291 292 /* Update BQL */ 293 efx_for_each_channel_tx_queue(tx_queue, channel) { 294 if (tx_queue->bytes_compl) { 295 netdev_tx_completed_queue(tx_queue->core_txq, 296 tx_queue->pkts_compl, tx_queue->bytes_compl); 297 } 298 } 299 300 /* Receive any packets we queued up */ 301 netif_receive_skb_list(channel->rx_list); 302 channel->rx_list = NULL; 303 304 return spent; 305 } 306 307 /* NAPI poll handler 308 * 309 * NAPI guarantees serialisation of polls of the same device, which 310 * provides the guarantee required by efx_process_channel(). 311 */ 312 static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel) 313 { 314 int step = efx->irq_mod_step_us; 315 316 if (channel->irq_mod_score < irq_adapt_low_thresh) { 317 if (channel->irq_moderation_us > step) { 318 channel->irq_moderation_us -= step; 319 efx->type->push_irq_moderation(channel); 320 } 321 } else if (channel->irq_mod_score > irq_adapt_high_thresh) { 322 if (channel->irq_moderation_us < 323 efx->irq_rx_moderation_us) { 324 channel->irq_moderation_us += step; 325 efx->type->push_irq_moderation(channel); 326 } 327 } 328 329 channel->irq_count = 0; 330 channel->irq_mod_score = 0; 331 } 332 333 static int efx_poll(struct napi_struct *napi, int budget) 334 { 335 struct efx_channel *channel = 336 container_of(napi, struct efx_channel, napi_str); 337 struct efx_nic *efx = channel->efx; 338 int spent; 339 340 netif_vdbg(efx, intr, efx->net_dev, 341 "channel %d NAPI poll executing on CPU %d\n", 342 channel->channel, raw_smp_processor_id()); 343 344 spent = efx_process_channel(channel, budget); 345 346 if (spent < budget) { 347 if (efx_channel_has_rx_queue(channel) && 348 efx->irq_rx_adaptive && 349 unlikely(++channel->irq_count == 1000)) { 350 efx_update_irq_mod(efx, channel); 351 } 352 353 #ifdef CONFIG_RFS_ACCEL 354 /* Perhaps expire some ARFS filters */ 355 schedule_work(&channel->filter_work); 356 #endif 357 358 /* There is no race here; although napi_disable() will 359 * only wait for napi_complete(), this isn't a problem 360 * since efx_nic_eventq_read_ack() will have no effect if 361 * interrupts have already been disabled. 362 */ 363 if (napi_complete_done(napi, spent)) 364 efx_nic_eventq_read_ack(channel); 365 } 366 367 return spent; 368 } 369 370 /* Create event queue 371 * Event queue memory allocations are done only once. If the channel 372 * is reset, the memory buffer will be reused; this guards against 373 * errors during channel reset and also simplifies interrupt handling. 374 */ 375 static int efx_probe_eventq(struct efx_channel *channel) 376 { 377 struct efx_nic *efx = channel->efx; 378 unsigned long entries; 379 380 netif_dbg(efx, probe, efx->net_dev, 381 "chan %d create event queue\n", channel->channel); 382 383 /* Build an event queue with room for one event per tx and rx buffer, 384 * plus some extra for link state events and MCDI completions. */ 385 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); 386 EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); 387 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; 388 389 return efx_nic_probe_eventq(channel); 390 } 391 392 /* Prepare channel's event queue */ 393 static int efx_init_eventq(struct efx_channel *channel) 394 { 395 struct efx_nic *efx = channel->efx; 396 int rc; 397 398 EFX_WARN_ON_PARANOID(channel->eventq_init); 399 400 netif_dbg(efx, drv, efx->net_dev, 401 "chan %d init event queue\n", channel->channel); 402 403 rc = efx_nic_init_eventq(channel); 404 if (rc == 0) { 405 efx->type->push_irq_moderation(channel); 406 channel->eventq_read_ptr = 0; 407 channel->eventq_init = true; 408 } 409 return rc; 410 } 411 412 /* Enable event queue processing and NAPI */ 413 void efx_start_eventq(struct efx_channel *channel) 414 { 415 netif_dbg(channel->efx, ifup, channel->efx->net_dev, 416 "chan %d start event queue\n", channel->channel); 417 418 /* Make sure the NAPI handler sees the enabled flag set */ 419 channel->enabled = true; 420 smp_wmb(); 421 422 napi_enable(&channel->napi_str); 423 efx_nic_eventq_read_ack(channel); 424 } 425 426 /* Disable event queue processing and NAPI */ 427 void efx_stop_eventq(struct efx_channel *channel) 428 { 429 if (!channel->enabled) 430 return; 431 432 napi_disable(&channel->napi_str); 433 channel->enabled = false; 434 } 435 436 static void efx_fini_eventq(struct efx_channel *channel) 437 { 438 if (!channel->eventq_init) 439 return; 440 441 netif_dbg(channel->efx, drv, channel->efx->net_dev, 442 "chan %d fini event queue\n", channel->channel); 443 444 efx_nic_fini_eventq(channel); 445 channel->eventq_init = false; 446 } 447 448 static void efx_remove_eventq(struct efx_channel *channel) 449 { 450 netif_dbg(channel->efx, drv, channel->efx->net_dev, 451 "chan %d remove event queue\n", channel->channel); 452 453 efx_nic_remove_eventq(channel); 454 } 455 456 /************************************************************************** 457 * 458 * Channel handling 459 * 460 *************************************************************************/ 461 462 /* Allocate and initialise a channel structure. */ 463 static struct efx_channel * 464 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) 465 { 466 struct efx_channel *channel; 467 struct efx_rx_queue *rx_queue; 468 struct efx_tx_queue *tx_queue; 469 int j; 470 471 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 472 if (!channel) 473 return NULL; 474 475 channel->efx = efx; 476 channel->channel = i; 477 channel->type = &efx_default_channel_type; 478 479 for (j = 0; j < EFX_TXQ_TYPES; j++) { 480 tx_queue = &channel->tx_queue[j]; 481 tx_queue->efx = efx; 482 tx_queue->queue = i * EFX_TXQ_TYPES + j; 483 tx_queue->channel = channel; 484 } 485 486 #ifdef CONFIG_RFS_ACCEL 487 INIT_WORK(&channel->filter_work, efx_filter_rfs_expire); 488 #endif 489 490 rx_queue = &channel->rx_queue; 491 rx_queue->efx = efx; 492 timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0); 493 494 return channel; 495 } 496 497 /* Allocate and initialise a channel structure, copying parameters 498 * (but not resources) from an old channel structure. 499 */ 500 static struct efx_channel * 501 efx_copy_channel(const struct efx_channel *old_channel) 502 { 503 struct efx_channel *channel; 504 struct efx_rx_queue *rx_queue; 505 struct efx_tx_queue *tx_queue; 506 int j; 507 508 channel = kmalloc(sizeof(*channel), GFP_KERNEL); 509 if (!channel) 510 return NULL; 511 512 *channel = *old_channel; 513 514 channel->napi_dev = NULL; 515 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node); 516 channel->napi_str.napi_id = 0; 517 channel->napi_str.state = 0; 518 memset(&channel->eventq, 0, sizeof(channel->eventq)); 519 520 for (j = 0; j < EFX_TXQ_TYPES; j++) { 521 tx_queue = &channel->tx_queue[j]; 522 if (tx_queue->channel) 523 tx_queue->channel = channel; 524 tx_queue->buffer = NULL; 525 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); 526 } 527 528 rx_queue = &channel->rx_queue; 529 rx_queue->buffer = NULL; 530 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); 531 timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0); 532 #ifdef CONFIG_RFS_ACCEL 533 INIT_WORK(&channel->filter_work, efx_filter_rfs_expire); 534 #endif 535 536 return channel; 537 } 538 539 static int efx_probe_channel(struct efx_channel *channel) 540 { 541 struct efx_tx_queue *tx_queue; 542 struct efx_rx_queue *rx_queue; 543 int rc; 544 545 netif_dbg(channel->efx, probe, channel->efx->net_dev, 546 "creating channel %d\n", channel->channel); 547 548 rc = channel->type->pre_probe(channel); 549 if (rc) 550 goto fail; 551 552 rc = efx_probe_eventq(channel); 553 if (rc) 554 goto fail; 555 556 efx_for_each_channel_tx_queue(tx_queue, channel) { 557 rc = efx_probe_tx_queue(tx_queue); 558 if (rc) 559 goto fail; 560 } 561 562 efx_for_each_channel_rx_queue(rx_queue, channel) { 563 rc = efx_probe_rx_queue(rx_queue); 564 if (rc) 565 goto fail; 566 } 567 568 channel->rx_list = NULL; 569 570 return 0; 571 572 fail: 573 efx_remove_channel(channel); 574 return rc; 575 } 576 577 static void 578 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len) 579 { 580 struct efx_nic *efx = channel->efx; 581 const char *type; 582 int number; 583 584 number = channel->channel; 585 if (efx->tx_channel_offset == 0) { 586 type = ""; 587 } else if (channel->channel < efx->tx_channel_offset) { 588 type = "-rx"; 589 } else { 590 type = "-tx"; 591 number -= efx->tx_channel_offset; 592 } 593 snprintf(buf, len, "%s%s-%d", efx->name, type, number); 594 } 595 596 static void efx_set_channel_names(struct efx_nic *efx) 597 { 598 struct efx_channel *channel; 599 600 efx_for_each_channel(channel, efx) 601 channel->type->get_name(channel, 602 efx->msi_context[channel->channel].name, 603 sizeof(efx->msi_context[0].name)); 604 } 605 606 static int efx_probe_channels(struct efx_nic *efx) 607 { 608 struct efx_channel *channel; 609 int rc; 610 611 /* Restart special buffer allocation */ 612 efx->next_buffer_table = 0; 613 614 /* Probe channels in reverse, so that any 'extra' channels 615 * use the start of the buffer table. This allows the traffic 616 * channels to be resized without moving them or wasting the 617 * entries before them. 618 */ 619 efx_for_each_channel_rev(channel, efx) { 620 rc = efx_probe_channel(channel); 621 if (rc) { 622 netif_err(efx, probe, efx->net_dev, 623 "failed to create channel %d\n", 624 channel->channel); 625 goto fail; 626 } 627 } 628 efx_set_channel_names(efx); 629 630 return 0; 631 632 fail: 633 efx_remove_channels(efx); 634 return rc; 635 } 636 637 /* Channels are shutdown and reinitialised whilst the NIC is running 638 * to propagate configuration changes (mtu, checksum offload), or 639 * to clear hardware error conditions 640 */ 641 static void efx_start_datapath(struct efx_nic *efx) 642 { 643 netdev_features_t old_features = efx->net_dev->features; 644 bool old_rx_scatter = efx->rx_scatter; 645 struct efx_tx_queue *tx_queue; 646 struct efx_rx_queue *rx_queue; 647 struct efx_channel *channel; 648 size_t rx_buf_len; 649 650 /* Calculate the rx buffer allocation parameters required to 651 * support the current MTU, including padding for header 652 * alignment and overruns. 653 */ 654 efx->rx_dma_len = (efx->rx_prefix_size + 655 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + 656 efx->type->rx_buffer_padding); 657 rx_buf_len = (sizeof(struct efx_rx_page_state) + 658 efx->rx_ip_align + efx->rx_dma_len); 659 if (rx_buf_len <= PAGE_SIZE) { 660 efx->rx_scatter = efx->type->always_rx_scatter; 661 efx->rx_buffer_order = 0; 662 } else if (efx->type->can_rx_scatter) { 663 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES); 664 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) + 665 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE, 666 EFX_RX_BUF_ALIGNMENT) > 667 PAGE_SIZE); 668 efx->rx_scatter = true; 669 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE; 670 efx->rx_buffer_order = 0; 671 } else { 672 efx->rx_scatter = false; 673 efx->rx_buffer_order = get_order(rx_buf_len); 674 } 675 676 efx_rx_config_page_split(efx); 677 if (efx->rx_buffer_order) 678 netif_dbg(efx, drv, efx->net_dev, 679 "RX buf len=%u; page order=%u batch=%u\n", 680 efx->rx_dma_len, efx->rx_buffer_order, 681 efx->rx_pages_per_batch); 682 else 683 netif_dbg(efx, drv, efx->net_dev, 684 "RX buf len=%u step=%u bpp=%u; page batch=%u\n", 685 efx->rx_dma_len, efx->rx_page_buf_step, 686 efx->rx_bufs_per_page, efx->rx_pages_per_batch); 687 688 /* Restore previously fixed features in hw_features and remove 689 * features which are fixed now 690 */ 691 efx->net_dev->hw_features |= efx->net_dev->features; 692 efx->net_dev->hw_features &= ~efx->fixed_features; 693 efx->net_dev->features |= efx->fixed_features; 694 if (efx->net_dev->features != old_features) 695 netdev_features_change(efx->net_dev); 696 697 /* RX filters may also have scatter-enabled flags */ 698 if (efx->rx_scatter != old_rx_scatter) 699 efx->type->filter_update_rx_scatter(efx); 700 701 /* We must keep at least one descriptor in a TX ring empty. 702 * We could avoid this when the queue size does not exactly 703 * match the hardware ring size, but it's not that important. 704 * Therefore we stop the queue when one more skb might fill 705 * the ring completely. We wake it when half way back to 706 * empty. 707 */ 708 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx); 709 efx->txq_wake_thresh = efx->txq_stop_thresh / 2; 710 711 /* Initialise the channels */ 712 efx_for_each_channel(channel, efx) { 713 efx_for_each_channel_tx_queue(tx_queue, channel) { 714 efx_init_tx_queue(tx_queue); 715 atomic_inc(&efx->active_queues); 716 } 717 718 efx_for_each_channel_rx_queue(rx_queue, channel) { 719 efx_init_rx_queue(rx_queue); 720 atomic_inc(&efx->active_queues); 721 efx_stop_eventq(channel); 722 efx_fast_push_rx_descriptors(rx_queue, false); 723 efx_start_eventq(channel); 724 } 725 726 WARN_ON(channel->rx_pkt_n_frags); 727 } 728 729 efx_ptp_start_datapath(efx); 730 731 if (netif_device_present(efx->net_dev)) 732 netif_tx_wake_all_queues(efx->net_dev); 733 } 734 735 static void efx_stop_datapath(struct efx_nic *efx) 736 { 737 struct efx_channel *channel; 738 struct efx_tx_queue *tx_queue; 739 struct efx_rx_queue *rx_queue; 740 int rc; 741 742 EFX_ASSERT_RESET_SERIALISED(efx); 743 BUG_ON(efx->port_enabled); 744 745 efx_ptp_stop_datapath(efx); 746 747 /* Stop RX refill */ 748 efx_for_each_channel(channel, efx) { 749 efx_for_each_channel_rx_queue(rx_queue, channel) 750 rx_queue->refill_enabled = false; 751 } 752 753 efx_for_each_channel(channel, efx) { 754 /* RX packet processing is pipelined, so wait for the 755 * NAPI handler to complete. At least event queue 0 756 * might be kept active by non-data events, so don't 757 * use napi_synchronize() but actually disable NAPI 758 * temporarily. 759 */ 760 if (efx_channel_has_rx_queue(channel)) { 761 efx_stop_eventq(channel); 762 efx_start_eventq(channel); 763 } 764 } 765 766 rc = efx->type->fini_dmaq(efx); 767 if (rc) { 768 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); 769 } else { 770 netif_dbg(efx, drv, efx->net_dev, 771 "successfully flushed all queues\n"); 772 } 773 774 efx_for_each_channel(channel, efx) { 775 efx_for_each_channel_rx_queue(rx_queue, channel) 776 efx_fini_rx_queue(rx_queue); 777 efx_for_each_possible_channel_tx_queue(tx_queue, channel) 778 efx_fini_tx_queue(tx_queue); 779 } 780 } 781 782 static void efx_remove_channel(struct efx_channel *channel) 783 { 784 struct efx_tx_queue *tx_queue; 785 struct efx_rx_queue *rx_queue; 786 787 netif_dbg(channel->efx, drv, channel->efx->net_dev, 788 "destroy chan %d\n", channel->channel); 789 790 efx_for_each_channel_rx_queue(rx_queue, channel) 791 efx_remove_rx_queue(rx_queue); 792 efx_for_each_possible_channel_tx_queue(tx_queue, channel) 793 efx_remove_tx_queue(tx_queue); 794 efx_remove_eventq(channel); 795 channel->type->post_remove(channel); 796 } 797 798 static void efx_remove_channels(struct efx_nic *efx) 799 { 800 struct efx_channel *channel; 801 802 efx_for_each_channel(channel, efx) 803 efx_remove_channel(channel); 804 } 805 806 int 807 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) 808 { 809 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; 810 u32 old_rxq_entries, old_txq_entries; 811 unsigned i, next_buffer_table = 0; 812 int rc, rc2; 813 814 rc = efx_check_disabled(efx); 815 if (rc) 816 return rc; 817 818 /* Not all channels should be reallocated. We must avoid 819 * reallocating their buffer table entries. 820 */ 821 efx_for_each_channel(channel, efx) { 822 struct efx_rx_queue *rx_queue; 823 struct efx_tx_queue *tx_queue; 824 825 if (channel->type->copy) 826 continue; 827 next_buffer_table = max(next_buffer_table, 828 channel->eventq.index + 829 channel->eventq.entries); 830 efx_for_each_channel_rx_queue(rx_queue, channel) 831 next_buffer_table = max(next_buffer_table, 832 rx_queue->rxd.index + 833 rx_queue->rxd.entries); 834 efx_for_each_channel_tx_queue(tx_queue, channel) 835 next_buffer_table = max(next_buffer_table, 836 tx_queue->txd.index + 837 tx_queue->txd.entries); 838 } 839 840 efx_device_detach_sync(efx); 841 efx_stop_all(efx); 842 efx_soft_disable_interrupts(efx); 843 844 /* Clone channels (where possible) */ 845 memset(other_channel, 0, sizeof(other_channel)); 846 for (i = 0; i < efx->n_channels; i++) { 847 channel = efx->channel[i]; 848 if (channel->type->copy) 849 channel = channel->type->copy(channel); 850 if (!channel) { 851 rc = -ENOMEM; 852 goto out; 853 } 854 other_channel[i] = channel; 855 } 856 857 /* Swap entry counts and channel pointers */ 858 old_rxq_entries = efx->rxq_entries; 859 old_txq_entries = efx->txq_entries; 860 efx->rxq_entries = rxq_entries; 861 efx->txq_entries = txq_entries; 862 for (i = 0; i < efx->n_channels; i++) { 863 channel = efx->channel[i]; 864 efx->channel[i] = other_channel[i]; 865 other_channel[i] = channel; 866 } 867 868 /* Restart buffer table allocation */ 869 efx->next_buffer_table = next_buffer_table; 870 871 for (i = 0; i < efx->n_channels; i++) { 872 channel = efx->channel[i]; 873 if (!channel->type->copy) 874 continue; 875 rc = efx_probe_channel(channel); 876 if (rc) 877 goto rollback; 878 efx_init_napi_channel(efx->channel[i]); 879 } 880 881 out: 882 /* Destroy unused channel structures */ 883 for (i = 0; i < efx->n_channels; i++) { 884 channel = other_channel[i]; 885 if (channel && channel->type->copy) { 886 efx_fini_napi_channel(channel); 887 efx_remove_channel(channel); 888 kfree(channel); 889 } 890 } 891 892 rc2 = efx_soft_enable_interrupts(efx); 893 if (rc2) { 894 rc = rc ? rc : rc2; 895 netif_err(efx, drv, efx->net_dev, 896 "unable to restart interrupts on channel reallocation\n"); 897 efx_schedule_reset(efx, RESET_TYPE_DISABLE); 898 } else { 899 efx_start_all(efx); 900 efx_device_attach_if_not_resetting(efx); 901 } 902 return rc; 903 904 rollback: 905 /* Swap back */ 906 efx->rxq_entries = old_rxq_entries; 907 efx->txq_entries = old_txq_entries; 908 for (i = 0; i < efx->n_channels; i++) { 909 channel = efx->channel[i]; 910 efx->channel[i] = other_channel[i]; 911 other_channel[i] = channel; 912 } 913 goto out; 914 } 915 916 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) 917 { 918 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); 919 } 920 921 static bool efx_default_channel_want_txqs(struct efx_channel *channel) 922 { 923 return channel->channel - channel->efx->tx_channel_offset < 924 channel->efx->n_tx_channels; 925 } 926 927 static const struct efx_channel_type efx_default_channel_type = { 928 .pre_probe = efx_channel_dummy_op_int, 929 .post_remove = efx_channel_dummy_op_void, 930 .get_name = efx_get_channel_name, 931 .copy = efx_copy_channel, 932 .want_txqs = efx_default_channel_want_txqs, 933 .keep_eventq = false, 934 .want_pio = true, 935 }; 936 937 int efx_channel_dummy_op_int(struct efx_channel *channel) 938 { 939 return 0; 940 } 941 942 void efx_channel_dummy_op_void(struct efx_channel *channel) 943 { 944 } 945 946 /************************************************************************** 947 * 948 * Port handling 949 * 950 **************************************************************************/ 951 952 /* This ensures that the kernel is kept informed (via 953 * netif_carrier_on/off) of the link status, and also maintains the 954 * link status's stop on the port's TX queue. 955 */ 956 void efx_link_status_changed(struct efx_nic *efx) 957 { 958 struct efx_link_state *link_state = &efx->link_state; 959 960 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure 961 * that no events are triggered between unregister_netdev() and the 962 * driver unloading. A more general condition is that NETDEV_CHANGE 963 * can only be generated between NETDEV_UP and NETDEV_DOWN */ 964 if (!netif_running(efx->net_dev)) 965 return; 966 967 if (link_state->up != netif_carrier_ok(efx->net_dev)) { 968 efx->n_link_state_changes++; 969 970 if (link_state->up) 971 netif_carrier_on(efx->net_dev); 972 else 973 netif_carrier_off(efx->net_dev); 974 } 975 976 /* Status message for kernel log */ 977 if (link_state->up) 978 netif_info(efx, link, efx->net_dev, 979 "link up at %uMbps %s-duplex (MTU %d)\n", 980 link_state->speed, link_state->fd ? "full" : "half", 981 efx->net_dev->mtu); 982 else 983 netif_info(efx, link, efx->net_dev, "link down\n"); 984 } 985 986 void efx_link_set_advertising(struct efx_nic *efx, 987 const unsigned long *advertising) 988 { 989 memcpy(efx->link_advertising, advertising, 990 sizeof(__ETHTOOL_DECLARE_LINK_MODE_MASK())); 991 992 efx->link_advertising[0] |= ADVERTISED_Autoneg; 993 if (advertising[0] & ADVERTISED_Pause) 994 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); 995 else 996 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); 997 if (advertising[0] & ADVERTISED_Asym_Pause) 998 efx->wanted_fc ^= EFX_FC_TX; 999 } 1000 1001 /* Equivalent to efx_link_set_advertising with all-zeroes, except does not 1002 * force the Autoneg bit on. 1003 */ 1004 void efx_link_clear_advertising(struct efx_nic *efx) 1005 { 1006 bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS); 1007 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); 1008 } 1009 1010 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) 1011 { 1012 efx->wanted_fc = wanted_fc; 1013 if (efx->link_advertising[0]) { 1014 if (wanted_fc & EFX_FC_RX) 1015 efx->link_advertising[0] |= (ADVERTISED_Pause | 1016 ADVERTISED_Asym_Pause); 1017 else 1018 efx->link_advertising[0] &= ~(ADVERTISED_Pause | 1019 ADVERTISED_Asym_Pause); 1020 if (wanted_fc & EFX_FC_TX) 1021 efx->link_advertising[0] ^= ADVERTISED_Asym_Pause; 1022 } 1023 } 1024 1025 static void efx_fini_port(struct efx_nic *efx); 1026 1027 /* We assume that efx->type->reconfigure_mac will always try to sync RX 1028 * filters and therefore needs to read-lock the filter table against freeing 1029 */ 1030 void efx_mac_reconfigure(struct efx_nic *efx) 1031 { 1032 down_read(&efx->filter_sem); 1033 efx->type->reconfigure_mac(efx); 1034 up_read(&efx->filter_sem); 1035 } 1036 1037 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure 1038 * the MAC appropriately. All other PHY configuration changes are pushed 1039 * through phy_op->set_settings(), and pushed asynchronously to the MAC 1040 * through efx_monitor(). 1041 * 1042 * Callers must hold the mac_lock 1043 */ 1044 int __efx_reconfigure_port(struct efx_nic *efx) 1045 { 1046 enum efx_phy_mode phy_mode; 1047 int rc; 1048 1049 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 1050 1051 /* Disable PHY transmit in mac level loopbacks */ 1052 phy_mode = efx->phy_mode; 1053 if (LOOPBACK_INTERNAL(efx)) 1054 efx->phy_mode |= PHY_MODE_TX_DISABLED; 1055 else 1056 efx->phy_mode &= ~PHY_MODE_TX_DISABLED; 1057 1058 rc = efx->type->reconfigure_port(efx); 1059 1060 if (rc) 1061 efx->phy_mode = phy_mode; 1062 1063 return rc; 1064 } 1065 1066 /* Reinitialise the MAC to pick up new PHY settings, even if the port is 1067 * disabled. */ 1068 int efx_reconfigure_port(struct efx_nic *efx) 1069 { 1070 int rc; 1071 1072 EFX_ASSERT_RESET_SERIALISED(efx); 1073 1074 mutex_lock(&efx->mac_lock); 1075 rc = __efx_reconfigure_port(efx); 1076 mutex_unlock(&efx->mac_lock); 1077 1078 return rc; 1079 } 1080 1081 /* Asynchronous work item for changing MAC promiscuity and multicast 1082 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current 1083 * MAC directly. */ 1084 static void efx_mac_work(struct work_struct *data) 1085 { 1086 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); 1087 1088 mutex_lock(&efx->mac_lock); 1089 if (efx->port_enabled) 1090 efx_mac_reconfigure(efx); 1091 mutex_unlock(&efx->mac_lock); 1092 } 1093 1094 static int efx_probe_port(struct efx_nic *efx) 1095 { 1096 int rc; 1097 1098 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 1099 1100 if (phy_flash_cfg) 1101 efx->phy_mode = PHY_MODE_SPECIAL; 1102 1103 /* Connect up MAC/PHY operations table */ 1104 rc = efx->type->probe_port(efx); 1105 if (rc) 1106 return rc; 1107 1108 /* Initialise MAC address to permanent address */ 1109 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); 1110 1111 return 0; 1112 } 1113 1114 static int efx_init_port(struct efx_nic *efx) 1115 { 1116 int rc; 1117 1118 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 1119 1120 mutex_lock(&efx->mac_lock); 1121 1122 rc = efx->phy_op->init(efx); 1123 if (rc) 1124 goto fail1; 1125 1126 efx->port_initialized = true; 1127 1128 /* Reconfigure the MAC before creating dma queues (required for 1129 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ 1130 efx_mac_reconfigure(efx); 1131 1132 /* Ensure the PHY advertises the correct flow control settings */ 1133 rc = efx->phy_op->reconfigure(efx); 1134 if (rc && rc != -EPERM) 1135 goto fail2; 1136 1137 mutex_unlock(&efx->mac_lock); 1138 return 0; 1139 1140 fail2: 1141 efx->phy_op->fini(efx); 1142 fail1: 1143 mutex_unlock(&efx->mac_lock); 1144 return rc; 1145 } 1146 1147 static void efx_start_port(struct efx_nic *efx) 1148 { 1149 netif_dbg(efx, ifup, efx->net_dev, "start port\n"); 1150 BUG_ON(efx->port_enabled); 1151 1152 mutex_lock(&efx->mac_lock); 1153 efx->port_enabled = true; 1154 1155 /* Ensure MAC ingress/egress is enabled */ 1156 efx_mac_reconfigure(efx); 1157 1158 mutex_unlock(&efx->mac_lock); 1159 } 1160 1161 /* Cancel work for MAC reconfiguration, periodic hardware monitoring 1162 * and the async self-test, wait for them to finish and prevent them 1163 * being scheduled again. This doesn't cover online resets, which 1164 * should only be cancelled when removing the device. 1165 */ 1166 static void efx_stop_port(struct efx_nic *efx) 1167 { 1168 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); 1169 1170 EFX_ASSERT_RESET_SERIALISED(efx); 1171 1172 mutex_lock(&efx->mac_lock); 1173 efx->port_enabled = false; 1174 mutex_unlock(&efx->mac_lock); 1175 1176 /* Serialise against efx_set_multicast_list() */ 1177 netif_addr_lock_bh(efx->net_dev); 1178 netif_addr_unlock_bh(efx->net_dev); 1179 1180 cancel_delayed_work_sync(&efx->monitor_work); 1181 efx_selftest_async_cancel(efx); 1182 cancel_work_sync(&efx->mac_work); 1183 } 1184 1185 static void efx_fini_port(struct efx_nic *efx) 1186 { 1187 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 1188 1189 if (!efx->port_initialized) 1190 return; 1191 1192 efx->phy_op->fini(efx); 1193 efx->port_initialized = false; 1194 1195 efx->link_state.up = false; 1196 efx_link_status_changed(efx); 1197 } 1198 1199 static void efx_remove_port(struct efx_nic *efx) 1200 { 1201 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 1202 1203 efx->type->remove_port(efx); 1204 } 1205 1206 /************************************************************************** 1207 * 1208 * NIC handling 1209 * 1210 **************************************************************************/ 1211 1212 static LIST_HEAD(efx_primary_list); 1213 static LIST_HEAD(efx_unassociated_list); 1214 1215 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right) 1216 { 1217 return left->type == right->type && 1218 left->vpd_sn && right->vpd_sn && 1219 !strcmp(left->vpd_sn, right->vpd_sn); 1220 } 1221 1222 static void efx_associate(struct efx_nic *efx) 1223 { 1224 struct efx_nic *other, *next; 1225 1226 if (efx->primary == efx) { 1227 /* Adding primary function; look for secondaries */ 1228 1229 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 1230 list_add_tail(&efx->node, &efx_primary_list); 1231 1232 list_for_each_entry_safe(other, next, &efx_unassociated_list, 1233 node) { 1234 if (efx_same_controller(efx, other)) { 1235 list_del(&other->node); 1236 netif_dbg(other, probe, other->net_dev, 1237 "moving to secondary list of %s %s\n", 1238 pci_name(efx->pci_dev), 1239 efx->net_dev->name); 1240 list_add_tail(&other->node, 1241 &efx->secondary_list); 1242 other->primary = efx; 1243 } 1244 } 1245 } else { 1246 /* Adding secondary function; look for primary */ 1247 1248 list_for_each_entry(other, &efx_primary_list, node) { 1249 if (efx_same_controller(efx, other)) { 1250 netif_dbg(efx, probe, efx->net_dev, 1251 "adding to secondary list of %s %s\n", 1252 pci_name(other->pci_dev), 1253 other->net_dev->name); 1254 list_add_tail(&efx->node, 1255 &other->secondary_list); 1256 efx->primary = other; 1257 return; 1258 } 1259 } 1260 1261 netif_dbg(efx, probe, efx->net_dev, 1262 "adding to unassociated list\n"); 1263 list_add_tail(&efx->node, &efx_unassociated_list); 1264 } 1265 } 1266 1267 static void efx_dissociate(struct efx_nic *efx) 1268 { 1269 struct efx_nic *other, *next; 1270 1271 list_del(&efx->node); 1272 efx->primary = NULL; 1273 1274 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 1275 list_del(&other->node); 1276 netif_dbg(other, probe, other->net_dev, 1277 "moving to unassociated list\n"); 1278 list_add_tail(&other->node, &efx_unassociated_list); 1279 other->primary = NULL; 1280 } 1281 } 1282 1283 /* This configures the PCI device to enable I/O and DMA. */ 1284 static int efx_init_io(struct efx_nic *efx) 1285 { 1286 struct pci_dev *pci_dev = efx->pci_dev; 1287 dma_addr_t dma_mask = efx->type->max_dma_mask; 1288 unsigned int mem_map_size = efx->type->mem_map_size(efx); 1289 int rc, bar; 1290 1291 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); 1292 1293 bar = efx->type->mem_bar(efx); 1294 1295 rc = pci_enable_device(pci_dev); 1296 if (rc) { 1297 netif_err(efx, probe, efx->net_dev, 1298 "failed to enable PCI device\n"); 1299 goto fail1; 1300 } 1301 1302 pci_set_master(pci_dev); 1303 1304 /* Set the PCI DMA mask. Try all possibilities from our genuine mask 1305 * down to 32 bits, because some architectures will allow 40 bit 1306 * masks event though they reject 46 bit masks. 1307 */ 1308 while (dma_mask > 0x7fffffffUL) { 1309 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); 1310 if (rc == 0) 1311 break; 1312 dma_mask >>= 1; 1313 } 1314 if (rc) { 1315 netif_err(efx, probe, efx->net_dev, 1316 "could not find a suitable DMA mask\n"); 1317 goto fail2; 1318 } 1319 netif_dbg(efx, probe, efx->net_dev, 1320 "using DMA mask %llx\n", (unsigned long long) dma_mask); 1321 1322 efx->membase_phys = pci_resource_start(efx->pci_dev, bar); 1323 rc = pci_request_region(pci_dev, bar, "sfc"); 1324 if (rc) { 1325 netif_err(efx, probe, efx->net_dev, 1326 "request for memory BAR failed\n"); 1327 rc = -EIO; 1328 goto fail3; 1329 } 1330 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size); 1331 if (!efx->membase) { 1332 netif_err(efx, probe, efx->net_dev, 1333 "could not map memory BAR at %llx+%x\n", 1334 (unsigned long long)efx->membase_phys, mem_map_size); 1335 rc = -ENOMEM; 1336 goto fail4; 1337 } 1338 netif_dbg(efx, probe, efx->net_dev, 1339 "memory BAR at %llx+%x (virtual %p)\n", 1340 (unsigned long long)efx->membase_phys, mem_map_size, 1341 efx->membase); 1342 1343 return 0; 1344 1345 fail4: 1346 pci_release_region(efx->pci_dev, bar); 1347 fail3: 1348 efx->membase_phys = 0; 1349 fail2: 1350 pci_disable_device(efx->pci_dev); 1351 fail1: 1352 return rc; 1353 } 1354 1355 static void efx_fini_io(struct efx_nic *efx) 1356 { 1357 int bar; 1358 1359 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); 1360 1361 if (efx->membase) { 1362 iounmap(efx->membase); 1363 efx->membase = NULL; 1364 } 1365 1366 if (efx->membase_phys) { 1367 bar = efx->type->mem_bar(efx); 1368 pci_release_region(efx->pci_dev, bar); 1369 efx->membase_phys = 0; 1370 } 1371 1372 /* Don't disable bus-mastering if VFs are assigned */ 1373 if (!pci_vfs_assigned(efx->pci_dev)) 1374 pci_disable_device(efx->pci_dev); 1375 } 1376 1377 void efx_set_default_rx_indir_table(struct efx_nic *efx, 1378 struct efx_rss_context *ctx) 1379 { 1380 size_t i; 1381 1382 for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++) 1383 ctx->rx_indir_table[i] = 1384 ethtool_rxfh_indir_default(i, efx->rss_spread); 1385 } 1386 1387 static unsigned int efx_wanted_parallelism(struct efx_nic *efx) 1388 { 1389 cpumask_var_t thread_mask; 1390 unsigned int count; 1391 int cpu; 1392 1393 if (rss_cpus) { 1394 count = rss_cpus; 1395 } else { 1396 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { 1397 netif_warn(efx, probe, efx->net_dev, 1398 "RSS disabled due to allocation failure\n"); 1399 return 1; 1400 } 1401 1402 count = 0; 1403 for_each_online_cpu(cpu) { 1404 if (!cpumask_test_cpu(cpu, thread_mask)) { 1405 ++count; 1406 cpumask_or(thread_mask, thread_mask, 1407 topology_sibling_cpumask(cpu)); 1408 } 1409 } 1410 1411 free_cpumask_var(thread_mask); 1412 } 1413 1414 if (count > EFX_MAX_RX_QUEUES) { 1415 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn, 1416 "Reducing number of rx queues from %u to %u.\n", 1417 count, EFX_MAX_RX_QUEUES); 1418 count = EFX_MAX_RX_QUEUES; 1419 } 1420 1421 /* If RSS is requested for the PF *and* VFs then we can't write RSS 1422 * table entries that are inaccessible to VFs 1423 */ 1424 #ifdef CONFIG_SFC_SRIOV 1425 if (efx->type->sriov_wanted) { 1426 if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 && 1427 count > efx_vf_size(efx)) { 1428 netif_warn(efx, probe, efx->net_dev, 1429 "Reducing number of RSS channels from %u to %u for " 1430 "VF support. Increase vf-msix-limit to use more " 1431 "channels on the PF.\n", 1432 count, efx_vf_size(efx)); 1433 count = efx_vf_size(efx); 1434 } 1435 } 1436 #endif 1437 1438 return count; 1439 } 1440 1441 /* Probe the number and type of interrupts we are able to obtain, and 1442 * the resulting numbers of channels and RX queues. 1443 */ 1444 static int efx_probe_interrupts(struct efx_nic *efx) 1445 { 1446 unsigned int extra_channels = 0; 1447 unsigned int i, j; 1448 int rc; 1449 1450 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) 1451 if (efx->extra_channel_type[i]) 1452 ++extra_channels; 1453 1454 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { 1455 struct msix_entry xentries[EFX_MAX_CHANNELS]; 1456 unsigned int n_channels; 1457 1458 n_channels = efx_wanted_parallelism(efx); 1459 if (efx_separate_tx_channels) 1460 n_channels *= 2; 1461 n_channels += extra_channels; 1462 n_channels = min(n_channels, efx->max_channels); 1463 1464 for (i = 0; i < n_channels; i++) 1465 xentries[i].entry = i; 1466 rc = pci_enable_msix_range(efx->pci_dev, 1467 xentries, 1, n_channels); 1468 if (rc < 0) { 1469 /* Fall back to single channel MSI */ 1470 netif_err(efx, drv, efx->net_dev, 1471 "could not enable MSI-X\n"); 1472 if (efx->type->min_interrupt_mode >= EFX_INT_MODE_MSI) 1473 efx->interrupt_mode = EFX_INT_MODE_MSI; 1474 else 1475 return rc; 1476 } else if (rc < n_channels) { 1477 netif_err(efx, drv, efx->net_dev, 1478 "WARNING: Insufficient MSI-X vectors" 1479 " available (%d < %u).\n", rc, n_channels); 1480 netif_err(efx, drv, efx->net_dev, 1481 "WARNING: Performance may be reduced.\n"); 1482 n_channels = rc; 1483 } 1484 1485 if (rc > 0) { 1486 efx->n_channels = n_channels; 1487 if (n_channels > extra_channels) 1488 n_channels -= extra_channels; 1489 if (efx_separate_tx_channels) { 1490 efx->n_tx_channels = min(max(n_channels / 2, 1491 1U), 1492 efx->max_tx_channels); 1493 efx->n_rx_channels = max(n_channels - 1494 efx->n_tx_channels, 1495 1U); 1496 } else { 1497 efx->n_tx_channels = min(n_channels, 1498 efx->max_tx_channels); 1499 efx->n_rx_channels = n_channels; 1500 } 1501 for (i = 0; i < efx->n_channels; i++) 1502 efx_get_channel(efx, i)->irq = 1503 xentries[i].vector; 1504 } 1505 } 1506 1507 /* Try single interrupt MSI */ 1508 if (efx->interrupt_mode == EFX_INT_MODE_MSI) { 1509 efx->n_channels = 1; 1510 efx->n_rx_channels = 1; 1511 efx->n_tx_channels = 1; 1512 rc = pci_enable_msi(efx->pci_dev); 1513 if (rc == 0) { 1514 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; 1515 } else { 1516 netif_err(efx, drv, efx->net_dev, 1517 "could not enable MSI\n"); 1518 if (efx->type->min_interrupt_mode >= EFX_INT_MODE_LEGACY) 1519 efx->interrupt_mode = EFX_INT_MODE_LEGACY; 1520 else 1521 return rc; 1522 } 1523 } 1524 1525 /* Assume legacy interrupts */ 1526 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { 1527 efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0); 1528 efx->n_rx_channels = 1; 1529 efx->n_tx_channels = 1; 1530 efx->legacy_irq = efx->pci_dev->irq; 1531 } 1532 1533 /* Assign extra channels if possible */ 1534 efx->n_extra_tx_channels = 0; 1535 j = efx->n_channels; 1536 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) { 1537 if (!efx->extra_channel_type[i]) 1538 continue; 1539 if (efx->interrupt_mode != EFX_INT_MODE_MSIX || 1540 efx->n_channels <= extra_channels) { 1541 efx->extra_channel_type[i]->handle_no_channel(efx); 1542 } else { 1543 --j; 1544 efx_get_channel(efx, j)->type = 1545 efx->extra_channel_type[i]; 1546 if (efx_channel_has_tx_queues(efx_get_channel(efx, j))) 1547 efx->n_extra_tx_channels++; 1548 } 1549 } 1550 1551 /* RSS might be usable on VFs even if it is disabled on the PF */ 1552 #ifdef CONFIG_SFC_SRIOV 1553 if (efx->type->sriov_wanted) { 1554 efx->rss_spread = ((efx->n_rx_channels > 1 || 1555 !efx->type->sriov_wanted(efx)) ? 1556 efx->n_rx_channels : efx_vf_size(efx)); 1557 return 0; 1558 } 1559 #endif 1560 efx->rss_spread = efx->n_rx_channels; 1561 1562 return 0; 1563 } 1564 1565 #if defined(CONFIG_SMP) 1566 static void efx_set_interrupt_affinity(struct efx_nic *efx) 1567 { 1568 struct efx_channel *channel; 1569 unsigned int cpu; 1570 1571 efx_for_each_channel(channel, efx) { 1572 cpu = cpumask_local_spread(channel->channel, 1573 pcibus_to_node(efx->pci_dev->bus)); 1574 irq_set_affinity_hint(channel->irq, cpumask_of(cpu)); 1575 } 1576 } 1577 1578 static void efx_clear_interrupt_affinity(struct efx_nic *efx) 1579 { 1580 struct efx_channel *channel; 1581 1582 efx_for_each_channel(channel, efx) 1583 irq_set_affinity_hint(channel->irq, NULL); 1584 } 1585 #else 1586 static void 1587 efx_set_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused))) 1588 { 1589 } 1590 1591 static void 1592 efx_clear_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused))) 1593 { 1594 } 1595 #endif /* CONFIG_SMP */ 1596 1597 static int efx_soft_enable_interrupts(struct efx_nic *efx) 1598 { 1599 struct efx_channel *channel, *end_channel; 1600 int rc; 1601 1602 BUG_ON(efx->state == STATE_DISABLED); 1603 1604 efx->irq_soft_enabled = true; 1605 smp_wmb(); 1606 1607 efx_for_each_channel(channel, efx) { 1608 if (!channel->type->keep_eventq) { 1609 rc = efx_init_eventq(channel); 1610 if (rc) 1611 goto fail; 1612 } 1613 efx_start_eventq(channel); 1614 } 1615 1616 efx_mcdi_mode_event(efx); 1617 1618 return 0; 1619 fail: 1620 end_channel = channel; 1621 efx_for_each_channel(channel, efx) { 1622 if (channel == end_channel) 1623 break; 1624 efx_stop_eventq(channel); 1625 if (!channel->type->keep_eventq) 1626 efx_fini_eventq(channel); 1627 } 1628 1629 return rc; 1630 } 1631 1632 static void efx_soft_disable_interrupts(struct efx_nic *efx) 1633 { 1634 struct efx_channel *channel; 1635 1636 if (efx->state == STATE_DISABLED) 1637 return; 1638 1639 efx_mcdi_mode_poll(efx); 1640 1641 efx->irq_soft_enabled = false; 1642 smp_wmb(); 1643 1644 if (efx->legacy_irq) 1645 synchronize_irq(efx->legacy_irq); 1646 1647 efx_for_each_channel(channel, efx) { 1648 if (channel->irq) 1649 synchronize_irq(channel->irq); 1650 1651 efx_stop_eventq(channel); 1652 if (!channel->type->keep_eventq) 1653 efx_fini_eventq(channel); 1654 } 1655 1656 /* Flush the asynchronous MCDI request queue */ 1657 efx_mcdi_flush_async(efx); 1658 } 1659 1660 static int efx_enable_interrupts(struct efx_nic *efx) 1661 { 1662 struct efx_channel *channel, *end_channel; 1663 int rc; 1664 1665 BUG_ON(efx->state == STATE_DISABLED); 1666 1667 if (efx->eeh_disabled_legacy_irq) { 1668 enable_irq(efx->legacy_irq); 1669 efx->eeh_disabled_legacy_irq = false; 1670 } 1671 1672 efx->type->irq_enable_master(efx); 1673 1674 efx_for_each_channel(channel, efx) { 1675 if (channel->type->keep_eventq) { 1676 rc = efx_init_eventq(channel); 1677 if (rc) 1678 goto fail; 1679 } 1680 } 1681 1682 rc = efx_soft_enable_interrupts(efx); 1683 if (rc) 1684 goto fail; 1685 1686 return 0; 1687 1688 fail: 1689 end_channel = channel; 1690 efx_for_each_channel(channel, efx) { 1691 if (channel == end_channel) 1692 break; 1693 if (channel->type->keep_eventq) 1694 efx_fini_eventq(channel); 1695 } 1696 1697 efx->type->irq_disable_non_ev(efx); 1698 1699 return rc; 1700 } 1701 1702 static void efx_disable_interrupts(struct efx_nic *efx) 1703 { 1704 struct efx_channel *channel; 1705 1706 efx_soft_disable_interrupts(efx); 1707 1708 efx_for_each_channel(channel, efx) { 1709 if (channel->type->keep_eventq) 1710 efx_fini_eventq(channel); 1711 } 1712 1713 efx->type->irq_disable_non_ev(efx); 1714 } 1715 1716 static void efx_remove_interrupts(struct efx_nic *efx) 1717 { 1718 struct efx_channel *channel; 1719 1720 /* Remove MSI/MSI-X interrupts */ 1721 efx_for_each_channel(channel, efx) 1722 channel->irq = 0; 1723 pci_disable_msi(efx->pci_dev); 1724 pci_disable_msix(efx->pci_dev); 1725 1726 /* Remove legacy interrupt */ 1727 efx->legacy_irq = 0; 1728 } 1729 1730 static void efx_set_channels(struct efx_nic *efx) 1731 { 1732 struct efx_channel *channel; 1733 struct efx_tx_queue *tx_queue; 1734 1735 efx->tx_channel_offset = 1736 efx_separate_tx_channels ? 1737 efx->n_channels - efx->n_tx_channels : 0; 1738 1739 /* We need to mark which channels really have RX and TX 1740 * queues, and adjust the TX queue numbers if we have separate 1741 * RX-only and TX-only channels. 1742 */ 1743 efx_for_each_channel(channel, efx) { 1744 if (channel->channel < efx->n_rx_channels) 1745 channel->rx_queue.core_index = channel->channel; 1746 else 1747 channel->rx_queue.core_index = -1; 1748 1749 efx_for_each_channel_tx_queue(tx_queue, channel) 1750 tx_queue->queue -= (efx->tx_channel_offset * 1751 EFX_TXQ_TYPES); 1752 } 1753 } 1754 1755 static int efx_probe_nic(struct efx_nic *efx) 1756 { 1757 int rc; 1758 1759 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 1760 1761 /* Carry out hardware-type specific initialisation */ 1762 rc = efx->type->probe(efx); 1763 if (rc) 1764 return rc; 1765 1766 do { 1767 if (!efx->max_channels || !efx->max_tx_channels) { 1768 netif_err(efx, drv, efx->net_dev, 1769 "Insufficient resources to allocate" 1770 " any channels\n"); 1771 rc = -ENOSPC; 1772 goto fail1; 1773 } 1774 1775 /* Determine the number of channels and queues by trying 1776 * to hook in MSI-X interrupts. 1777 */ 1778 rc = efx_probe_interrupts(efx); 1779 if (rc) 1780 goto fail1; 1781 1782 efx_set_channels(efx); 1783 1784 /* dimension_resources can fail with EAGAIN */ 1785 rc = efx->type->dimension_resources(efx); 1786 if (rc != 0 && rc != -EAGAIN) 1787 goto fail2; 1788 1789 if (rc == -EAGAIN) 1790 /* try again with new max_channels */ 1791 efx_remove_interrupts(efx); 1792 1793 } while (rc == -EAGAIN); 1794 1795 if (efx->n_channels > 1) 1796 netdev_rss_key_fill(efx->rss_context.rx_hash_key, 1797 sizeof(efx->rss_context.rx_hash_key)); 1798 efx_set_default_rx_indir_table(efx, &efx->rss_context); 1799 1800 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); 1801 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); 1802 1803 /* Initialise the interrupt moderation settings */ 1804 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); 1805 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 1806 true); 1807 1808 return 0; 1809 1810 fail2: 1811 efx_remove_interrupts(efx); 1812 fail1: 1813 efx->type->remove(efx); 1814 return rc; 1815 } 1816 1817 static void efx_remove_nic(struct efx_nic *efx) 1818 { 1819 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 1820 1821 efx_remove_interrupts(efx); 1822 efx->type->remove(efx); 1823 } 1824 1825 static int efx_probe_filters(struct efx_nic *efx) 1826 { 1827 int rc; 1828 1829 init_rwsem(&efx->filter_sem); 1830 mutex_lock(&efx->mac_lock); 1831 down_write(&efx->filter_sem); 1832 rc = efx->type->filter_table_probe(efx); 1833 if (rc) 1834 goto out_unlock; 1835 1836 #ifdef CONFIG_RFS_ACCEL 1837 if (efx->type->offload_features & NETIF_F_NTUPLE) { 1838 struct efx_channel *channel; 1839 int i, success = 1; 1840 1841 efx_for_each_channel(channel, efx) { 1842 channel->rps_flow_id = 1843 kcalloc(efx->type->max_rx_ip_filters, 1844 sizeof(*channel->rps_flow_id), 1845 GFP_KERNEL); 1846 if (!channel->rps_flow_id) 1847 success = 0; 1848 else 1849 for (i = 0; 1850 i < efx->type->max_rx_ip_filters; 1851 ++i) 1852 channel->rps_flow_id[i] = 1853 RPS_FLOW_ID_INVALID; 1854 } 1855 1856 if (!success) { 1857 efx_for_each_channel(channel, efx) 1858 kfree(channel->rps_flow_id); 1859 efx->type->filter_table_remove(efx); 1860 rc = -ENOMEM; 1861 goto out_unlock; 1862 } 1863 1864 efx->rps_expire_index = efx->rps_expire_channel = 0; 1865 } 1866 #endif 1867 out_unlock: 1868 up_write(&efx->filter_sem); 1869 mutex_unlock(&efx->mac_lock); 1870 return rc; 1871 } 1872 1873 static void efx_remove_filters(struct efx_nic *efx) 1874 { 1875 #ifdef CONFIG_RFS_ACCEL 1876 struct efx_channel *channel; 1877 1878 efx_for_each_channel(channel, efx) 1879 kfree(channel->rps_flow_id); 1880 #endif 1881 down_write(&efx->filter_sem); 1882 efx->type->filter_table_remove(efx); 1883 up_write(&efx->filter_sem); 1884 } 1885 1886 static void efx_restore_filters(struct efx_nic *efx) 1887 { 1888 down_read(&efx->filter_sem); 1889 efx->type->filter_table_restore(efx); 1890 up_read(&efx->filter_sem); 1891 } 1892 1893 /************************************************************************** 1894 * 1895 * NIC startup/shutdown 1896 * 1897 *************************************************************************/ 1898 1899 static int efx_probe_all(struct efx_nic *efx) 1900 { 1901 int rc; 1902 1903 rc = efx_probe_nic(efx); 1904 if (rc) { 1905 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 1906 goto fail1; 1907 } 1908 1909 rc = efx_probe_port(efx); 1910 if (rc) { 1911 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 1912 goto fail2; 1913 } 1914 1915 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); 1916 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { 1917 rc = -EINVAL; 1918 goto fail3; 1919 } 1920 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; 1921 1922 #ifdef CONFIG_SFC_SRIOV 1923 rc = efx->type->vswitching_probe(efx); 1924 if (rc) /* not fatal; the PF will still work fine */ 1925 netif_warn(efx, probe, efx->net_dev, 1926 "failed to setup vswitching rc=%d;" 1927 " VFs may not function\n", rc); 1928 #endif 1929 1930 rc = efx_probe_filters(efx); 1931 if (rc) { 1932 netif_err(efx, probe, efx->net_dev, 1933 "failed to create filter tables\n"); 1934 goto fail4; 1935 } 1936 1937 rc = efx_probe_channels(efx); 1938 if (rc) 1939 goto fail5; 1940 1941 return 0; 1942 1943 fail5: 1944 efx_remove_filters(efx); 1945 fail4: 1946 #ifdef CONFIG_SFC_SRIOV 1947 efx->type->vswitching_remove(efx); 1948 #endif 1949 fail3: 1950 efx_remove_port(efx); 1951 fail2: 1952 efx_remove_nic(efx); 1953 fail1: 1954 return rc; 1955 } 1956 1957 /* If the interface is supposed to be running but is not, start 1958 * the hardware and software data path, regular activity for the port 1959 * (MAC statistics, link polling, etc.) and schedule the port to be 1960 * reconfigured. Interrupts must already be enabled. This function 1961 * is safe to call multiple times, so long as the NIC is not disabled. 1962 * Requires the RTNL lock. 1963 */ 1964 static void efx_start_all(struct efx_nic *efx) 1965 { 1966 EFX_ASSERT_RESET_SERIALISED(efx); 1967 BUG_ON(efx->state == STATE_DISABLED); 1968 1969 /* Check that it is appropriate to restart the interface. All 1970 * of these flags are safe to read under just the rtnl lock */ 1971 if (efx->port_enabled || !netif_running(efx->net_dev) || 1972 efx->reset_pending) 1973 return; 1974 1975 efx_start_port(efx); 1976 efx_start_datapath(efx); 1977 1978 /* Start the hardware monitor if there is one */ 1979 if (efx->type->monitor != NULL) 1980 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1981 efx_monitor_interval); 1982 1983 /* Link state detection is normally event-driven; we have 1984 * to poll now because we could have missed a change 1985 */ 1986 mutex_lock(&efx->mac_lock); 1987 if (efx->phy_op->poll(efx)) 1988 efx_link_status_changed(efx); 1989 mutex_unlock(&efx->mac_lock); 1990 1991 efx->type->start_stats(efx); 1992 efx->type->pull_stats(efx); 1993 spin_lock_bh(&efx->stats_lock); 1994 efx->type->update_stats(efx, NULL, NULL); 1995 spin_unlock_bh(&efx->stats_lock); 1996 } 1997 1998 /* Quiesce the hardware and software data path, and regular activity 1999 * for the port without bringing the link down. Safe to call multiple 2000 * times with the NIC in almost any state, but interrupts should be 2001 * enabled. Requires the RTNL lock. 2002 */ 2003 static void efx_stop_all(struct efx_nic *efx) 2004 { 2005 EFX_ASSERT_RESET_SERIALISED(efx); 2006 2007 /* port_enabled can be read safely under the rtnl lock */ 2008 if (!efx->port_enabled) 2009 return; 2010 2011 /* update stats before we go down so we can accurately count 2012 * rx_nodesc_drops 2013 */ 2014 efx->type->pull_stats(efx); 2015 spin_lock_bh(&efx->stats_lock); 2016 efx->type->update_stats(efx, NULL, NULL); 2017 spin_unlock_bh(&efx->stats_lock); 2018 efx->type->stop_stats(efx); 2019 efx_stop_port(efx); 2020 2021 /* Stop the kernel transmit interface. This is only valid if 2022 * the device is stopped or detached; otherwise the watchdog 2023 * may fire immediately. 2024 */ 2025 WARN_ON(netif_running(efx->net_dev) && 2026 netif_device_present(efx->net_dev)); 2027 netif_tx_disable(efx->net_dev); 2028 2029 efx_stop_datapath(efx); 2030 } 2031 2032 static void efx_remove_all(struct efx_nic *efx) 2033 { 2034 efx_remove_channels(efx); 2035 efx_remove_filters(efx); 2036 #ifdef CONFIG_SFC_SRIOV 2037 efx->type->vswitching_remove(efx); 2038 #endif 2039 efx_remove_port(efx); 2040 efx_remove_nic(efx); 2041 } 2042 2043 /************************************************************************** 2044 * 2045 * Interrupt moderation 2046 * 2047 **************************************************************************/ 2048 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs) 2049 { 2050 if (usecs == 0) 2051 return 0; 2052 if (usecs * 1000 < efx->timer_quantum_ns) 2053 return 1; /* never round down to 0 */ 2054 return usecs * 1000 / efx->timer_quantum_ns; 2055 } 2056 2057 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks) 2058 { 2059 /* We must round up when converting ticks to microseconds 2060 * because we round down when converting the other way. 2061 */ 2062 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000); 2063 } 2064 2065 /* Set interrupt moderation parameters */ 2066 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, 2067 unsigned int rx_usecs, bool rx_adaptive, 2068 bool rx_may_override_tx) 2069 { 2070 struct efx_channel *channel; 2071 unsigned int timer_max_us; 2072 2073 EFX_ASSERT_RESET_SERIALISED(efx); 2074 2075 timer_max_us = efx->timer_max_ns / 1000; 2076 2077 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) 2078 return -EINVAL; 2079 2080 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && 2081 !rx_may_override_tx) { 2082 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 2083 "RX and TX IRQ moderation must be equal\n"); 2084 return -EINVAL; 2085 } 2086 2087 efx->irq_rx_adaptive = rx_adaptive; 2088 efx->irq_rx_moderation_us = rx_usecs; 2089 efx_for_each_channel(channel, efx) { 2090 if (efx_channel_has_rx_queue(channel)) 2091 channel->irq_moderation_us = rx_usecs; 2092 else if (efx_channel_has_tx_queues(channel)) 2093 channel->irq_moderation_us = tx_usecs; 2094 } 2095 2096 return 0; 2097 } 2098 2099 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, 2100 unsigned int *rx_usecs, bool *rx_adaptive) 2101 { 2102 *rx_adaptive = efx->irq_rx_adaptive; 2103 *rx_usecs = efx->irq_rx_moderation_us; 2104 2105 /* If channels are shared between RX and TX, so is IRQ 2106 * moderation. Otherwise, IRQ moderation is the same for all 2107 * TX channels and is not adaptive. 2108 */ 2109 if (efx->tx_channel_offset == 0) { 2110 *tx_usecs = *rx_usecs; 2111 } else { 2112 struct efx_channel *tx_channel; 2113 2114 tx_channel = efx->channel[efx->tx_channel_offset]; 2115 *tx_usecs = tx_channel->irq_moderation_us; 2116 } 2117 } 2118 2119 /************************************************************************** 2120 * 2121 * Hardware monitor 2122 * 2123 **************************************************************************/ 2124 2125 /* Run periodically off the general workqueue */ 2126 static void efx_monitor(struct work_struct *data) 2127 { 2128 struct efx_nic *efx = container_of(data, struct efx_nic, 2129 monitor_work.work); 2130 2131 netif_vdbg(efx, timer, efx->net_dev, 2132 "hardware monitor executing on CPU %d\n", 2133 raw_smp_processor_id()); 2134 BUG_ON(efx->type->monitor == NULL); 2135 2136 /* If the mac_lock is already held then it is likely a port 2137 * reconfiguration is already in place, which will likely do 2138 * most of the work of monitor() anyway. */ 2139 if (mutex_trylock(&efx->mac_lock)) { 2140 if (efx->port_enabled) 2141 efx->type->monitor(efx); 2142 mutex_unlock(&efx->mac_lock); 2143 } 2144 2145 queue_delayed_work(efx->workqueue, &efx->monitor_work, 2146 efx_monitor_interval); 2147 } 2148 2149 /************************************************************************** 2150 * 2151 * ioctls 2152 * 2153 *************************************************************************/ 2154 2155 /* Net device ioctl 2156 * Context: process, rtnl_lock() held. 2157 */ 2158 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 2159 { 2160 struct efx_nic *efx = netdev_priv(net_dev); 2161 struct mii_ioctl_data *data = if_mii(ifr); 2162 2163 if (cmd == SIOCSHWTSTAMP) 2164 return efx_ptp_set_ts_config(efx, ifr); 2165 if (cmd == SIOCGHWTSTAMP) 2166 return efx_ptp_get_ts_config(efx, ifr); 2167 2168 /* Convert phy_id from older PRTAD/DEVAD format */ 2169 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 2170 (data->phy_id & 0xfc00) == 0x0400) 2171 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 2172 2173 return mdio_mii_ioctl(&efx->mdio, data, cmd); 2174 } 2175 2176 /************************************************************************** 2177 * 2178 * NAPI interface 2179 * 2180 **************************************************************************/ 2181 2182 static void efx_init_napi_channel(struct efx_channel *channel) 2183 { 2184 struct efx_nic *efx = channel->efx; 2185 2186 channel->napi_dev = efx->net_dev; 2187 netif_napi_add(channel->napi_dev, &channel->napi_str, 2188 efx_poll, napi_weight); 2189 } 2190 2191 static void efx_init_napi(struct efx_nic *efx) 2192 { 2193 struct efx_channel *channel; 2194 2195 efx_for_each_channel(channel, efx) 2196 efx_init_napi_channel(channel); 2197 } 2198 2199 static void efx_fini_napi_channel(struct efx_channel *channel) 2200 { 2201 if (channel->napi_dev) 2202 netif_napi_del(&channel->napi_str); 2203 2204 channel->napi_dev = NULL; 2205 } 2206 2207 static void efx_fini_napi(struct efx_nic *efx) 2208 { 2209 struct efx_channel *channel; 2210 2211 efx_for_each_channel(channel, efx) 2212 efx_fini_napi_channel(channel); 2213 } 2214 2215 /************************************************************************** 2216 * 2217 * Kernel netpoll interface 2218 * 2219 *************************************************************************/ 2220 2221 #ifdef CONFIG_NET_POLL_CONTROLLER 2222 2223 /* Although in the common case interrupts will be disabled, this is not 2224 * guaranteed. However, all our work happens inside the NAPI callback, 2225 * so no locking is required. 2226 */ 2227 static void efx_netpoll(struct net_device *net_dev) 2228 { 2229 struct efx_nic *efx = netdev_priv(net_dev); 2230 struct efx_channel *channel; 2231 2232 efx_for_each_channel(channel, efx) 2233 efx_schedule_channel(channel); 2234 } 2235 2236 #endif 2237 2238 /************************************************************************** 2239 * 2240 * Kernel net device interface 2241 * 2242 *************************************************************************/ 2243 2244 /* Context: process, rtnl_lock() held. */ 2245 int efx_net_open(struct net_device *net_dev) 2246 { 2247 struct efx_nic *efx = netdev_priv(net_dev); 2248 int rc; 2249 2250 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 2251 raw_smp_processor_id()); 2252 2253 rc = efx_check_disabled(efx); 2254 if (rc) 2255 return rc; 2256 if (efx->phy_mode & PHY_MODE_SPECIAL) 2257 return -EBUSY; 2258 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) 2259 return -EIO; 2260 2261 /* Notify the kernel of the link state polled during driver load, 2262 * before the monitor starts running */ 2263 efx_link_status_changed(efx); 2264 2265 efx_start_all(efx); 2266 if (efx->state == STATE_DISABLED || efx->reset_pending) 2267 netif_device_detach(efx->net_dev); 2268 efx_selftest_async_start(efx); 2269 return 0; 2270 } 2271 2272 /* Context: process, rtnl_lock() held. 2273 * Note that the kernel will ignore our return code; this method 2274 * should really be a void. 2275 */ 2276 int efx_net_stop(struct net_device *net_dev) 2277 { 2278 struct efx_nic *efx = netdev_priv(net_dev); 2279 2280 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 2281 raw_smp_processor_id()); 2282 2283 /* Stop the device and flush all the channels */ 2284 efx_stop_all(efx); 2285 2286 return 0; 2287 } 2288 2289 /* Context: process, dev_base_lock or RTNL held, non-blocking. */ 2290 static void efx_net_stats(struct net_device *net_dev, 2291 struct rtnl_link_stats64 *stats) 2292 { 2293 struct efx_nic *efx = netdev_priv(net_dev); 2294 2295 spin_lock_bh(&efx->stats_lock); 2296 efx->type->update_stats(efx, NULL, stats); 2297 spin_unlock_bh(&efx->stats_lock); 2298 } 2299 2300 /* Context: netif_tx_lock held, BHs disabled. */ 2301 static void efx_watchdog(struct net_device *net_dev) 2302 { 2303 struct efx_nic *efx = netdev_priv(net_dev); 2304 2305 netif_err(efx, tx_err, efx->net_dev, 2306 "TX stuck with port_enabled=%d: resetting channels\n", 2307 efx->port_enabled); 2308 2309 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 2310 } 2311 2312 2313 /* Context: process, rtnl_lock() held. */ 2314 static int efx_change_mtu(struct net_device *net_dev, int new_mtu) 2315 { 2316 struct efx_nic *efx = netdev_priv(net_dev); 2317 int rc; 2318 2319 rc = efx_check_disabled(efx); 2320 if (rc) 2321 return rc; 2322 2323 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); 2324 2325 efx_device_detach_sync(efx); 2326 efx_stop_all(efx); 2327 2328 mutex_lock(&efx->mac_lock); 2329 net_dev->mtu = new_mtu; 2330 efx_mac_reconfigure(efx); 2331 mutex_unlock(&efx->mac_lock); 2332 2333 efx_start_all(efx); 2334 efx_device_attach_if_not_resetting(efx); 2335 return 0; 2336 } 2337 2338 static int efx_set_mac_address(struct net_device *net_dev, void *data) 2339 { 2340 struct efx_nic *efx = netdev_priv(net_dev); 2341 struct sockaddr *addr = data; 2342 u8 *new_addr = addr->sa_data; 2343 u8 old_addr[6]; 2344 int rc; 2345 2346 if (!is_valid_ether_addr(new_addr)) { 2347 netif_err(efx, drv, efx->net_dev, 2348 "invalid ethernet MAC address requested: %pM\n", 2349 new_addr); 2350 return -EADDRNOTAVAIL; 2351 } 2352 2353 /* save old address */ 2354 ether_addr_copy(old_addr, net_dev->dev_addr); 2355 ether_addr_copy(net_dev->dev_addr, new_addr); 2356 if (efx->type->set_mac_address) { 2357 rc = efx->type->set_mac_address(efx); 2358 if (rc) { 2359 ether_addr_copy(net_dev->dev_addr, old_addr); 2360 return rc; 2361 } 2362 } 2363 2364 /* Reconfigure the MAC */ 2365 mutex_lock(&efx->mac_lock); 2366 efx_mac_reconfigure(efx); 2367 mutex_unlock(&efx->mac_lock); 2368 2369 return 0; 2370 } 2371 2372 /* Context: netif_addr_lock held, BHs disabled. */ 2373 static void efx_set_rx_mode(struct net_device *net_dev) 2374 { 2375 struct efx_nic *efx = netdev_priv(net_dev); 2376 2377 if (efx->port_enabled) 2378 queue_work(efx->workqueue, &efx->mac_work); 2379 /* Otherwise efx_start_port() will do this */ 2380 } 2381 2382 static int efx_set_features(struct net_device *net_dev, netdev_features_t data) 2383 { 2384 struct efx_nic *efx = netdev_priv(net_dev); 2385 int rc; 2386 2387 /* If disabling RX n-tuple filtering, clear existing filters */ 2388 if (net_dev->features & ~data & NETIF_F_NTUPLE) { 2389 rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); 2390 if (rc) 2391 return rc; 2392 } 2393 2394 /* If Rx VLAN filter is changed, update filters via mac_reconfigure. 2395 * If rx-fcs is changed, mac_reconfigure updates that too. 2396 */ 2397 if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER | 2398 NETIF_F_RXFCS)) { 2399 /* efx_set_rx_mode() will schedule MAC work to update filters 2400 * when a new features are finally set in net_dev. 2401 */ 2402 efx_set_rx_mode(net_dev); 2403 } 2404 2405 return 0; 2406 } 2407 2408 static int efx_get_phys_port_id(struct net_device *net_dev, 2409 struct netdev_phys_item_id *ppid) 2410 { 2411 struct efx_nic *efx = netdev_priv(net_dev); 2412 2413 if (efx->type->get_phys_port_id) 2414 return efx->type->get_phys_port_id(efx, ppid); 2415 else 2416 return -EOPNOTSUPP; 2417 } 2418 2419 static int efx_get_phys_port_name(struct net_device *net_dev, 2420 char *name, size_t len) 2421 { 2422 struct efx_nic *efx = netdev_priv(net_dev); 2423 2424 if (snprintf(name, len, "p%u", efx->port_num) >= len) 2425 return -EINVAL; 2426 return 0; 2427 } 2428 2429 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid) 2430 { 2431 struct efx_nic *efx = netdev_priv(net_dev); 2432 2433 if (efx->type->vlan_rx_add_vid) 2434 return efx->type->vlan_rx_add_vid(efx, proto, vid); 2435 else 2436 return -EOPNOTSUPP; 2437 } 2438 2439 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid) 2440 { 2441 struct efx_nic *efx = netdev_priv(net_dev); 2442 2443 if (efx->type->vlan_rx_kill_vid) 2444 return efx->type->vlan_rx_kill_vid(efx, proto, vid); 2445 else 2446 return -EOPNOTSUPP; 2447 } 2448 2449 static int efx_udp_tunnel_type_map(enum udp_parsable_tunnel_type in) 2450 { 2451 switch (in) { 2452 case UDP_TUNNEL_TYPE_VXLAN: 2453 return TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN; 2454 case UDP_TUNNEL_TYPE_GENEVE: 2455 return TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE; 2456 default: 2457 return -1; 2458 } 2459 } 2460 2461 static void efx_udp_tunnel_add(struct net_device *dev, struct udp_tunnel_info *ti) 2462 { 2463 struct efx_nic *efx = netdev_priv(dev); 2464 struct efx_udp_tunnel tnl; 2465 int efx_tunnel_type; 2466 2467 efx_tunnel_type = efx_udp_tunnel_type_map(ti->type); 2468 if (efx_tunnel_type < 0) 2469 return; 2470 2471 tnl.type = (u16)efx_tunnel_type; 2472 tnl.port = ti->port; 2473 2474 if (efx->type->udp_tnl_add_port) 2475 (void)efx->type->udp_tnl_add_port(efx, tnl); 2476 } 2477 2478 static void efx_udp_tunnel_del(struct net_device *dev, struct udp_tunnel_info *ti) 2479 { 2480 struct efx_nic *efx = netdev_priv(dev); 2481 struct efx_udp_tunnel tnl; 2482 int efx_tunnel_type; 2483 2484 efx_tunnel_type = efx_udp_tunnel_type_map(ti->type); 2485 if (efx_tunnel_type < 0) 2486 return; 2487 2488 tnl.type = (u16)efx_tunnel_type; 2489 tnl.port = ti->port; 2490 2491 if (efx->type->udp_tnl_del_port) 2492 (void)efx->type->udp_tnl_del_port(efx, tnl); 2493 } 2494 2495 static const struct net_device_ops efx_netdev_ops = { 2496 .ndo_open = efx_net_open, 2497 .ndo_stop = efx_net_stop, 2498 .ndo_get_stats64 = efx_net_stats, 2499 .ndo_tx_timeout = efx_watchdog, 2500 .ndo_start_xmit = efx_hard_start_xmit, 2501 .ndo_validate_addr = eth_validate_addr, 2502 .ndo_do_ioctl = efx_ioctl, 2503 .ndo_change_mtu = efx_change_mtu, 2504 .ndo_set_mac_address = efx_set_mac_address, 2505 .ndo_set_rx_mode = efx_set_rx_mode, 2506 .ndo_set_features = efx_set_features, 2507 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid, 2508 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid, 2509 #ifdef CONFIG_SFC_SRIOV 2510 .ndo_set_vf_mac = efx_sriov_set_vf_mac, 2511 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, 2512 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, 2513 .ndo_get_vf_config = efx_sriov_get_vf_config, 2514 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state, 2515 #endif 2516 .ndo_get_phys_port_id = efx_get_phys_port_id, 2517 .ndo_get_phys_port_name = efx_get_phys_port_name, 2518 #ifdef CONFIG_NET_POLL_CONTROLLER 2519 .ndo_poll_controller = efx_netpoll, 2520 #endif 2521 .ndo_setup_tc = efx_setup_tc, 2522 #ifdef CONFIG_RFS_ACCEL 2523 .ndo_rx_flow_steer = efx_filter_rfs, 2524 #endif 2525 .ndo_udp_tunnel_add = efx_udp_tunnel_add, 2526 .ndo_udp_tunnel_del = efx_udp_tunnel_del, 2527 }; 2528 2529 static void efx_update_name(struct efx_nic *efx) 2530 { 2531 strcpy(efx->name, efx->net_dev->name); 2532 efx_mtd_rename(efx); 2533 efx_set_channel_names(efx); 2534 } 2535 2536 static int efx_netdev_event(struct notifier_block *this, 2537 unsigned long event, void *ptr) 2538 { 2539 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 2540 2541 if ((net_dev->netdev_ops == &efx_netdev_ops) && 2542 event == NETDEV_CHANGENAME) 2543 efx_update_name(netdev_priv(net_dev)); 2544 2545 return NOTIFY_DONE; 2546 } 2547 2548 static struct notifier_block efx_netdev_notifier = { 2549 .notifier_call = efx_netdev_event, 2550 }; 2551 2552 static ssize_t 2553 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) 2554 { 2555 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2556 return sprintf(buf, "%d\n", efx->phy_type); 2557 } 2558 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); 2559 2560 #ifdef CONFIG_SFC_MCDI_LOGGING 2561 static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr, 2562 char *buf) 2563 { 2564 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2565 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 2566 2567 return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled); 2568 } 2569 static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr, 2570 const char *buf, size_t count) 2571 { 2572 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2573 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 2574 bool enable = count > 0 && *buf != '0'; 2575 2576 mcdi->logging_enabled = enable; 2577 return count; 2578 } 2579 static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log); 2580 #endif 2581 2582 static int efx_register_netdev(struct efx_nic *efx) 2583 { 2584 struct net_device *net_dev = efx->net_dev; 2585 struct efx_channel *channel; 2586 int rc; 2587 2588 net_dev->watchdog_timeo = 5 * HZ; 2589 net_dev->irq = efx->pci_dev->irq; 2590 net_dev->netdev_ops = &efx_netdev_ops; 2591 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) 2592 net_dev->priv_flags |= IFF_UNICAST_FLT; 2593 net_dev->ethtool_ops = &efx_ethtool_ops; 2594 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS; 2595 net_dev->min_mtu = EFX_MIN_MTU; 2596 net_dev->max_mtu = EFX_MAX_MTU; 2597 2598 rtnl_lock(); 2599 2600 /* Enable resets to be scheduled and check whether any were 2601 * already requested. If so, the NIC is probably hosed so we 2602 * abort. 2603 */ 2604 efx->state = STATE_READY; 2605 smp_mb(); /* ensure we change state before checking reset_pending */ 2606 if (efx->reset_pending) { 2607 netif_err(efx, probe, efx->net_dev, 2608 "aborting probe due to scheduled reset\n"); 2609 rc = -EIO; 2610 goto fail_locked; 2611 } 2612 2613 rc = dev_alloc_name(net_dev, net_dev->name); 2614 if (rc < 0) 2615 goto fail_locked; 2616 efx_update_name(efx); 2617 2618 /* Always start with carrier off; PHY events will detect the link */ 2619 netif_carrier_off(net_dev); 2620 2621 rc = register_netdevice(net_dev); 2622 if (rc) 2623 goto fail_locked; 2624 2625 efx_for_each_channel(channel, efx) { 2626 struct efx_tx_queue *tx_queue; 2627 efx_for_each_channel_tx_queue(tx_queue, channel) 2628 efx_init_tx_queue_core_txq(tx_queue); 2629 } 2630 2631 efx_associate(efx); 2632 2633 rtnl_unlock(); 2634 2635 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2636 if (rc) { 2637 netif_err(efx, drv, efx->net_dev, 2638 "failed to init net dev attributes\n"); 2639 goto fail_registered; 2640 } 2641 #ifdef CONFIG_SFC_MCDI_LOGGING 2642 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); 2643 if (rc) { 2644 netif_err(efx, drv, efx->net_dev, 2645 "failed to init net dev attributes\n"); 2646 goto fail_attr_mcdi_logging; 2647 } 2648 #endif 2649 2650 return 0; 2651 2652 #ifdef CONFIG_SFC_MCDI_LOGGING 2653 fail_attr_mcdi_logging: 2654 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2655 #endif 2656 fail_registered: 2657 rtnl_lock(); 2658 efx_dissociate(efx); 2659 unregister_netdevice(net_dev); 2660 fail_locked: 2661 efx->state = STATE_UNINIT; 2662 rtnl_unlock(); 2663 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 2664 return rc; 2665 } 2666 2667 static void efx_unregister_netdev(struct efx_nic *efx) 2668 { 2669 if (!efx->net_dev) 2670 return; 2671 2672 BUG_ON(netdev_priv(efx->net_dev) != efx); 2673 2674 if (efx_dev_registered(efx)) { 2675 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 2676 #ifdef CONFIG_SFC_MCDI_LOGGING 2677 device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); 2678 #endif 2679 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2680 unregister_netdev(efx->net_dev); 2681 } 2682 } 2683 2684 /************************************************************************** 2685 * 2686 * Device reset and suspend 2687 * 2688 **************************************************************************/ 2689 2690 /* Tears down the entire software state and most of the hardware state 2691 * before reset. */ 2692 void efx_reset_down(struct efx_nic *efx, enum reset_type method) 2693 { 2694 EFX_ASSERT_RESET_SERIALISED(efx); 2695 2696 if (method == RESET_TYPE_MCDI_TIMEOUT) 2697 efx->type->prepare_flr(efx); 2698 2699 efx_stop_all(efx); 2700 efx_disable_interrupts(efx); 2701 2702 mutex_lock(&efx->mac_lock); 2703 mutex_lock(&efx->rss_lock); 2704 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2705 method != RESET_TYPE_DATAPATH) 2706 efx->phy_op->fini(efx); 2707 efx->type->fini(efx); 2708 } 2709 2710 /* This function will always ensure that the locks acquired in 2711 * efx_reset_down() are released. A failure return code indicates 2712 * that we were unable to reinitialise the hardware, and the 2713 * driver should be disabled. If ok is false, then the rx and tx 2714 * engines are not restarted, pending a RESET_DISABLE. */ 2715 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) 2716 { 2717 int rc; 2718 2719 EFX_ASSERT_RESET_SERIALISED(efx); 2720 2721 if (method == RESET_TYPE_MCDI_TIMEOUT) 2722 efx->type->finish_flr(efx); 2723 2724 /* Ensure that SRAM is initialised even if we're disabling the device */ 2725 rc = efx->type->init(efx); 2726 if (rc) { 2727 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); 2728 goto fail; 2729 } 2730 2731 if (!ok) 2732 goto fail; 2733 2734 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2735 method != RESET_TYPE_DATAPATH) { 2736 rc = efx->phy_op->init(efx); 2737 if (rc) 2738 goto fail; 2739 rc = efx->phy_op->reconfigure(efx); 2740 if (rc && rc != -EPERM) 2741 netif_err(efx, drv, efx->net_dev, 2742 "could not restore PHY settings\n"); 2743 } 2744 2745 rc = efx_enable_interrupts(efx); 2746 if (rc) 2747 goto fail; 2748 2749 #ifdef CONFIG_SFC_SRIOV 2750 rc = efx->type->vswitching_restore(efx); 2751 if (rc) /* not fatal; the PF will still work fine */ 2752 netif_warn(efx, probe, efx->net_dev, 2753 "failed to restore vswitching rc=%d;" 2754 " VFs may not function\n", rc); 2755 #endif 2756 2757 if (efx->type->rx_restore_rss_contexts) 2758 efx->type->rx_restore_rss_contexts(efx); 2759 mutex_unlock(&efx->rss_lock); 2760 down_read(&efx->filter_sem); 2761 efx_restore_filters(efx); 2762 up_read(&efx->filter_sem); 2763 if (efx->type->sriov_reset) 2764 efx->type->sriov_reset(efx); 2765 2766 mutex_unlock(&efx->mac_lock); 2767 2768 efx_start_all(efx); 2769 2770 if (efx->type->udp_tnl_push_ports) 2771 efx->type->udp_tnl_push_ports(efx); 2772 2773 return 0; 2774 2775 fail: 2776 efx->port_initialized = false; 2777 2778 mutex_unlock(&efx->rss_lock); 2779 mutex_unlock(&efx->mac_lock); 2780 2781 return rc; 2782 } 2783 2784 /* Reset the NIC using the specified method. Note that the reset may 2785 * fail, in which case the card will be left in an unusable state. 2786 * 2787 * Caller must hold the rtnl_lock. 2788 */ 2789 int efx_reset(struct efx_nic *efx, enum reset_type method) 2790 { 2791 int rc, rc2; 2792 bool disabled; 2793 2794 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", 2795 RESET_TYPE(method)); 2796 2797 efx_device_detach_sync(efx); 2798 efx_reset_down(efx, method); 2799 2800 rc = efx->type->reset(efx, method); 2801 if (rc) { 2802 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); 2803 goto out; 2804 } 2805 2806 /* Clear flags for the scopes we covered. We assume the NIC and 2807 * driver are now quiescent so that there is no race here. 2808 */ 2809 if (method < RESET_TYPE_MAX_METHOD) 2810 efx->reset_pending &= -(1 << (method + 1)); 2811 else /* it doesn't fit into the well-ordered scope hierarchy */ 2812 __clear_bit(method, &efx->reset_pending); 2813 2814 /* Reinitialise bus-mastering, which may have been turned off before 2815 * the reset was scheduled. This is still appropriate, even in the 2816 * RESET_TYPE_DISABLE since this driver generally assumes the hardware 2817 * can respond to requests. */ 2818 pci_set_master(efx->pci_dev); 2819 2820 out: 2821 /* Leave device stopped if necessary */ 2822 disabled = rc || 2823 method == RESET_TYPE_DISABLE || 2824 method == RESET_TYPE_RECOVER_OR_DISABLE; 2825 rc2 = efx_reset_up(efx, method, !disabled); 2826 if (rc2) { 2827 disabled = true; 2828 if (!rc) 2829 rc = rc2; 2830 } 2831 2832 if (disabled) { 2833 dev_close(efx->net_dev); 2834 netif_err(efx, drv, efx->net_dev, "has been disabled\n"); 2835 efx->state = STATE_DISABLED; 2836 } else { 2837 netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); 2838 efx_device_attach_if_not_resetting(efx); 2839 } 2840 return rc; 2841 } 2842 2843 /* Try recovery mechanisms. 2844 * For now only EEH is supported. 2845 * Returns 0 if the recovery mechanisms are unsuccessful. 2846 * Returns a non-zero value otherwise. 2847 */ 2848 int efx_try_recovery(struct efx_nic *efx) 2849 { 2850 #ifdef CONFIG_EEH 2851 /* A PCI error can occur and not be seen by EEH because nothing 2852 * happens on the PCI bus. In this case the driver may fail and 2853 * schedule a 'recover or reset', leading to this recovery handler. 2854 * Manually call the eeh failure check function. 2855 */ 2856 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev); 2857 if (eeh_dev_check_failure(eehdev)) { 2858 /* The EEH mechanisms will handle the error and reset the 2859 * device if necessary. 2860 */ 2861 return 1; 2862 } 2863 #endif 2864 return 0; 2865 } 2866 2867 static void efx_wait_for_bist_end(struct efx_nic *efx) 2868 { 2869 int i; 2870 2871 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) { 2872 if (efx_mcdi_poll_reboot(efx)) 2873 goto out; 2874 msleep(BIST_WAIT_DELAY_MS); 2875 } 2876 2877 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n"); 2878 out: 2879 /* Either way unset the BIST flag. If we found no reboot we probably 2880 * won't recover, but we should try. 2881 */ 2882 efx->mc_bist_for_other_fn = false; 2883 } 2884 2885 /* The worker thread exists so that code that cannot sleep can 2886 * schedule a reset for later. 2887 */ 2888 static void efx_reset_work(struct work_struct *data) 2889 { 2890 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); 2891 unsigned long pending; 2892 enum reset_type method; 2893 2894 pending = READ_ONCE(efx->reset_pending); 2895 method = fls(pending) - 1; 2896 2897 if (method == RESET_TYPE_MC_BIST) 2898 efx_wait_for_bist_end(efx); 2899 2900 if ((method == RESET_TYPE_RECOVER_OR_DISABLE || 2901 method == RESET_TYPE_RECOVER_OR_ALL) && 2902 efx_try_recovery(efx)) 2903 return; 2904 2905 if (!pending) 2906 return; 2907 2908 rtnl_lock(); 2909 2910 /* We checked the state in efx_schedule_reset() but it may 2911 * have changed by now. Now that we have the RTNL lock, 2912 * it cannot change again. 2913 */ 2914 if (efx->state == STATE_READY) 2915 (void)efx_reset(efx, method); 2916 2917 rtnl_unlock(); 2918 } 2919 2920 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) 2921 { 2922 enum reset_type method; 2923 2924 if (efx->state == STATE_RECOVERY) { 2925 netif_dbg(efx, drv, efx->net_dev, 2926 "recovering: skip scheduling %s reset\n", 2927 RESET_TYPE(type)); 2928 return; 2929 } 2930 2931 switch (type) { 2932 case RESET_TYPE_INVISIBLE: 2933 case RESET_TYPE_ALL: 2934 case RESET_TYPE_RECOVER_OR_ALL: 2935 case RESET_TYPE_WORLD: 2936 case RESET_TYPE_DISABLE: 2937 case RESET_TYPE_RECOVER_OR_DISABLE: 2938 case RESET_TYPE_DATAPATH: 2939 case RESET_TYPE_MC_BIST: 2940 case RESET_TYPE_MCDI_TIMEOUT: 2941 method = type; 2942 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", 2943 RESET_TYPE(method)); 2944 break; 2945 default: 2946 method = efx->type->map_reset_reason(type); 2947 netif_dbg(efx, drv, efx->net_dev, 2948 "scheduling %s reset for %s\n", 2949 RESET_TYPE(method), RESET_TYPE(type)); 2950 break; 2951 } 2952 2953 set_bit(method, &efx->reset_pending); 2954 smp_mb(); /* ensure we change reset_pending before checking state */ 2955 2956 /* If we're not READY then just leave the flags set as the cue 2957 * to abort probing or reschedule the reset later. 2958 */ 2959 if (READ_ONCE(efx->state) != STATE_READY) 2960 return; 2961 2962 /* efx_process_channel() will no longer read events once a 2963 * reset is scheduled. So switch back to poll'd MCDI completions. */ 2964 efx_mcdi_mode_poll(efx); 2965 2966 queue_work(reset_workqueue, &efx->reset_work); 2967 } 2968 2969 /************************************************************************** 2970 * 2971 * List of NICs we support 2972 * 2973 **************************************************************************/ 2974 2975 /* PCI device ID table */ 2976 static const struct pci_device_id efx_pci_table[] = { 2977 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ 2978 .driver_data = (unsigned long) &siena_a0_nic_type}, 2979 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ 2980 .driver_data = (unsigned long) &siena_a0_nic_type}, 2981 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */ 2982 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 2983 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */ 2984 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 2985 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */ 2986 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 2987 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */ 2988 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 2989 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */ 2990 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 2991 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */ 2992 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 2993 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */ 2994 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 2995 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */ 2996 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 2997 {0} /* end of list */ 2998 }; 2999 3000 /************************************************************************** 3001 * 3002 * Dummy PHY/MAC operations 3003 * 3004 * Can be used for some unimplemented operations 3005 * Needed so all function pointers are valid and do not have to be tested 3006 * before use 3007 * 3008 **************************************************************************/ 3009 int efx_port_dummy_op_int(struct efx_nic *efx) 3010 { 3011 return 0; 3012 } 3013 void efx_port_dummy_op_void(struct efx_nic *efx) {} 3014 3015 static bool efx_port_dummy_op_poll(struct efx_nic *efx) 3016 { 3017 return false; 3018 } 3019 3020 static const struct efx_phy_operations efx_dummy_phy_operations = { 3021 .init = efx_port_dummy_op_int, 3022 .reconfigure = efx_port_dummy_op_int, 3023 .poll = efx_port_dummy_op_poll, 3024 .fini = efx_port_dummy_op_void, 3025 }; 3026 3027 /************************************************************************** 3028 * 3029 * Data housekeeping 3030 * 3031 **************************************************************************/ 3032 3033 /* This zeroes out and then fills in the invariants in a struct 3034 * efx_nic (including all sub-structures). 3035 */ 3036 static int efx_init_struct(struct efx_nic *efx, 3037 struct pci_dev *pci_dev, struct net_device *net_dev) 3038 { 3039 int rc = -ENOMEM, i; 3040 3041 /* Initialise common structures */ 3042 INIT_LIST_HEAD(&efx->node); 3043 INIT_LIST_HEAD(&efx->secondary_list); 3044 spin_lock_init(&efx->biu_lock); 3045 #ifdef CONFIG_SFC_MTD 3046 INIT_LIST_HEAD(&efx->mtd_list); 3047 #endif 3048 INIT_WORK(&efx->reset_work, efx_reset_work); 3049 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); 3050 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work); 3051 efx->pci_dev = pci_dev; 3052 efx->msg_enable = debug; 3053 efx->state = STATE_UNINIT; 3054 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); 3055 3056 efx->net_dev = net_dev; 3057 efx->rx_prefix_size = efx->type->rx_prefix_size; 3058 efx->rx_ip_align = 3059 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; 3060 efx->rx_packet_hash_offset = 3061 efx->type->rx_hash_offset - efx->type->rx_prefix_size; 3062 efx->rx_packet_ts_offset = 3063 efx->type->rx_ts_offset - efx->type->rx_prefix_size; 3064 INIT_LIST_HEAD(&efx->rss_context.list); 3065 mutex_init(&efx->rss_lock); 3066 spin_lock_init(&efx->stats_lock); 3067 efx->vi_stride = EFX_DEFAULT_VI_STRIDE; 3068 efx->num_mac_stats = MC_CMD_MAC_NSTATS; 3069 BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END); 3070 mutex_init(&efx->mac_lock); 3071 #ifdef CONFIG_RFS_ACCEL 3072 mutex_init(&efx->rps_mutex); 3073 spin_lock_init(&efx->rps_hash_lock); 3074 /* Failure to allocate is not fatal, but may degrade ARFS performance */ 3075 efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE, 3076 sizeof(*efx->rps_hash_table), GFP_KERNEL); 3077 #endif 3078 efx->phy_op = &efx_dummy_phy_operations; 3079 efx->mdio.dev = net_dev; 3080 INIT_WORK(&efx->mac_work, efx_mac_work); 3081 init_waitqueue_head(&efx->flush_wq); 3082 3083 for (i = 0; i < EFX_MAX_CHANNELS; i++) { 3084 efx->channel[i] = efx_alloc_channel(efx, i, NULL); 3085 if (!efx->channel[i]) 3086 goto fail; 3087 efx->msi_context[i].efx = efx; 3088 efx->msi_context[i].index = i; 3089 } 3090 3091 /* Higher numbered interrupt modes are less capable! */ 3092 if (WARN_ON_ONCE(efx->type->max_interrupt_mode > 3093 efx->type->min_interrupt_mode)) { 3094 rc = -EIO; 3095 goto fail; 3096 } 3097 efx->interrupt_mode = max(efx->type->max_interrupt_mode, 3098 interrupt_mode); 3099 efx->interrupt_mode = min(efx->type->min_interrupt_mode, 3100 interrupt_mode); 3101 3102 /* Would be good to use the net_dev name, but we're too early */ 3103 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", 3104 pci_name(pci_dev)); 3105 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); 3106 if (!efx->workqueue) 3107 goto fail; 3108 3109 return 0; 3110 3111 fail: 3112 efx_fini_struct(efx); 3113 return rc; 3114 } 3115 3116 static void efx_fini_struct(struct efx_nic *efx) 3117 { 3118 int i; 3119 3120 #ifdef CONFIG_RFS_ACCEL 3121 kfree(efx->rps_hash_table); 3122 #endif 3123 3124 for (i = 0; i < EFX_MAX_CHANNELS; i++) 3125 kfree(efx->channel[i]); 3126 3127 kfree(efx->vpd_sn); 3128 3129 if (efx->workqueue) { 3130 destroy_workqueue(efx->workqueue); 3131 efx->workqueue = NULL; 3132 } 3133 } 3134 3135 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats) 3136 { 3137 u64 n_rx_nodesc_trunc = 0; 3138 struct efx_channel *channel; 3139 3140 efx_for_each_channel(channel, efx) 3141 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; 3142 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; 3143 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); 3144 } 3145 3146 bool efx_filter_spec_equal(const struct efx_filter_spec *left, 3147 const struct efx_filter_spec *right) 3148 { 3149 if ((left->match_flags ^ right->match_flags) | 3150 ((left->flags ^ right->flags) & 3151 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX))) 3152 return false; 3153 3154 return memcmp(&left->outer_vid, &right->outer_vid, 3155 sizeof(struct efx_filter_spec) - 3156 offsetof(struct efx_filter_spec, outer_vid)) == 0; 3157 } 3158 3159 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec) 3160 { 3161 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3); 3162 return jhash2((const u32 *)&spec->outer_vid, 3163 (sizeof(struct efx_filter_spec) - 3164 offsetof(struct efx_filter_spec, outer_vid)) / 4, 3165 0); 3166 } 3167 3168 #ifdef CONFIG_RFS_ACCEL 3169 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx, 3170 bool *force) 3171 { 3172 if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) { 3173 /* ARFS is currently updating this entry, leave it */ 3174 return false; 3175 } 3176 if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) { 3177 /* ARFS tried and failed to update this, so it's probably out 3178 * of date. Remove the filter and the ARFS rule entry. 3179 */ 3180 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING; 3181 *force = true; 3182 return true; 3183 } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */ 3184 /* ARFS has moved on, so old filter is not needed. Since we did 3185 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will 3186 * not be removed by efx_rps_hash_del() subsequently. 3187 */ 3188 *force = true; 3189 return true; 3190 } 3191 /* Remove it iff ARFS wants to. */ 3192 return true; 3193 } 3194 3195 static 3196 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx, 3197 const struct efx_filter_spec *spec) 3198 { 3199 u32 hash = efx_filter_spec_hash(spec); 3200 3201 WARN_ON(!spin_is_locked(&efx->rps_hash_lock)); 3202 if (!efx->rps_hash_table) 3203 return NULL; 3204 return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE]; 3205 } 3206 3207 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx, 3208 const struct efx_filter_spec *spec) 3209 { 3210 struct efx_arfs_rule *rule; 3211 struct hlist_head *head; 3212 struct hlist_node *node; 3213 3214 head = efx_rps_hash_bucket(efx, spec); 3215 if (!head) 3216 return NULL; 3217 hlist_for_each(node, head) { 3218 rule = container_of(node, struct efx_arfs_rule, node); 3219 if (efx_filter_spec_equal(spec, &rule->spec)) 3220 return rule; 3221 } 3222 return NULL; 3223 } 3224 3225 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx, 3226 const struct efx_filter_spec *spec, 3227 bool *new) 3228 { 3229 struct efx_arfs_rule *rule; 3230 struct hlist_head *head; 3231 struct hlist_node *node; 3232 3233 head = efx_rps_hash_bucket(efx, spec); 3234 if (!head) 3235 return NULL; 3236 hlist_for_each(node, head) { 3237 rule = container_of(node, struct efx_arfs_rule, node); 3238 if (efx_filter_spec_equal(spec, &rule->spec)) { 3239 *new = false; 3240 return rule; 3241 } 3242 } 3243 rule = kmalloc(sizeof(*rule), GFP_ATOMIC); 3244 *new = true; 3245 if (rule) { 3246 memcpy(&rule->spec, spec, sizeof(rule->spec)); 3247 hlist_add_head(&rule->node, head); 3248 } 3249 return rule; 3250 } 3251 3252 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec) 3253 { 3254 struct efx_arfs_rule *rule; 3255 struct hlist_head *head; 3256 struct hlist_node *node; 3257 3258 head = efx_rps_hash_bucket(efx, spec); 3259 if (WARN_ON(!head)) 3260 return; 3261 hlist_for_each(node, head) { 3262 rule = container_of(node, struct efx_arfs_rule, node); 3263 if (efx_filter_spec_equal(spec, &rule->spec)) { 3264 /* Someone already reused the entry. We know that if 3265 * this check doesn't fire (i.e. filter_id == REMOVING) 3266 * then the REMOVING mark was put there by our caller, 3267 * because caller is holding a lock on filter table and 3268 * only holders of that lock set REMOVING. 3269 */ 3270 if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING) 3271 return; 3272 hlist_del(node); 3273 kfree(rule); 3274 return; 3275 } 3276 } 3277 /* We didn't find it. */ 3278 WARN_ON(1); 3279 } 3280 #endif 3281 3282 /* RSS contexts. We're using linked lists and crappy O(n) algorithms, because 3283 * (a) this is an infrequent control-plane operation and (b) n is small (max 64) 3284 */ 3285 struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx) 3286 { 3287 struct list_head *head = &efx->rss_context.list; 3288 struct efx_rss_context *ctx, *new; 3289 u32 id = 1; /* Don't use zero, that refers to the master RSS context */ 3290 3291 WARN_ON(!mutex_is_locked(&efx->rss_lock)); 3292 3293 /* Search for first gap in the numbering */ 3294 list_for_each_entry(ctx, head, list) { 3295 if (ctx->user_id != id) 3296 break; 3297 id++; 3298 /* Check for wrap. If this happens, we have nearly 2^32 3299 * allocated RSS contexts, which seems unlikely. 3300 */ 3301 if (WARN_ON_ONCE(!id)) 3302 return NULL; 3303 } 3304 3305 /* Create the new entry */ 3306 new = kmalloc(sizeof(struct efx_rss_context), GFP_KERNEL); 3307 if (!new) 3308 return NULL; 3309 new->context_id = EFX_EF10_RSS_CONTEXT_INVALID; 3310 new->rx_hash_udp_4tuple = false; 3311 3312 /* Insert the new entry into the gap */ 3313 new->user_id = id; 3314 list_add_tail(&new->list, &ctx->list); 3315 return new; 3316 } 3317 3318 struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id) 3319 { 3320 struct list_head *head = &efx->rss_context.list; 3321 struct efx_rss_context *ctx; 3322 3323 WARN_ON(!mutex_is_locked(&efx->rss_lock)); 3324 3325 list_for_each_entry(ctx, head, list) 3326 if (ctx->user_id == id) 3327 return ctx; 3328 return NULL; 3329 } 3330 3331 void efx_free_rss_context_entry(struct efx_rss_context *ctx) 3332 { 3333 list_del(&ctx->list); 3334 kfree(ctx); 3335 } 3336 3337 /************************************************************************** 3338 * 3339 * PCI interface 3340 * 3341 **************************************************************************/ 3342 3343 /* Main body of final NIC shutdown code 3344 * This is called only at module unload (or hotplug removal). 3345 */ 3346 static void efx_pci_remove_main(struct efx_nic *efx) 3347 { 3348 /* Flush reset_work. It can no longer be scheduled since we 3349 * are not READY. 3350 */ 3351 BUG_ON(efx->state == STATE_READY); 3352 cancel_work_sync(&efx->reset_work); 3353 3354 efx_disable_interrupts(efx); 3355 efx_clear_interrupt_affinity(efx); 3356 efx_nic_fini_interrupt(efx); 3357 efx_fini_port(efx); 3358 efx->type->fini(efx); 3359 efx_fini_napi(efx); 3360 efx_remove_all(efx); 3361 } 3362 3363 /* Final NIC shutdown 3364 * This is called only at module unload (or hotplug removal). A PF can call 3365 * this on its VFs to ensure they are unbound first. 3366 */ 3367 static void efx_pci_remove(struct pci_dev *pci_dev) 3368 { 3369 struct efx_nic *efx; 3370 3371 efx = pci_get_drvdata(pci_dev); 3372 if (!efx) 3373 return; 3374 3375 /* Mark the NIC as fini, then stop the interface */ 3376 rtnl_lock(); 3377 efx_dissociate(efx); 3378 dev_close(efx->net_dev); 3379 efx_disable_interrupts(efx); 3380 efx->state = STATE_UNINIT; 3381 rtnl_unlock(); 3382 3383 if (efx->type->sriov_fini) 3384 efx->type->sriov_fini(efx); 3385 3386 efx_unregister_netdev(efx); 3387 3388 efx_mtd_remove(efx); 3389 3390 efx_pci_remove_main(efx); 3391 3392 efx_fini_io(efx); 3393 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 3394 3395 efx_fini_struct(efx); 3396 free_netdev(efx->net_dev); 3397 3398 pci_disable_pcie_error_reporting(pci_dev); 3399 }; 3400 3401 /* NIC VPD information 3402 * Called during probe to display the part number of the 3403 * installed NIC. VPD is potentially very large but this should 3404 * always appear within the first 512 bytes. 3405 */ 3406 #define SFC_VPD_LEN 512 3407 static void efx_probe_vpd_strings(struct efx_nic *efx) 3408 { 3409 struct pci_dev *dev = efx->pci_dev; 3410 char vpd_data[SFC_VPD_LEN]; 3411 ssize_t vpd_size; 3412 int ro_start, ro_size, i, j; 3413 3414 /* Get the vpd data from the device */ 3415 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); 3416 if (vpd_size <= 0) { 3417 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); 3418 return; 3419 } 3420 3421 /* Get the Read only section */ 3422 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 3423 if (ro_start < 0) { 3424 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); 3425 return; 3426 } 3427 3428 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 3429 j = ro_size; 3430 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 3431 if (i + j > vpd_size) 3432 j = vpd_size - i; 3433 3434 /* Get the Part number */ 3435 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); 3436 if (i < 0) { 3437 netif_err(efx, drv, efx->net_dev, "Part number not found\n"); 3438 return; 3439 } 3440 3441 j = pci_vpd_info_field_size(&vpd_data[i]); 3442 i += PCI_VPD_INFO_FLD_HDR_SIZE; 3443 if (i + j > vpd_size) { 3444 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); 3445 return; 3446 } 3447 3448 netif_info(efx, drv, efx->net_dev, 3449 "Part Number : %.*s\n", j, &vpd_data[i]); 3450 3451 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 3452 j = ro_size; 3453 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); 3454 if (i < 0) { 3455 netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); 3456 return; 3457 } 3458 3459 j = pci_vpd_info_field_size(&vpd_data[i]); 3460 i += PCI_VPD_INFO_FLD_HDR_SIZE; 3461 if (i + j > vpd_size) { 3462 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); 3463 return; 3464 } 3465 3466 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); 3467 if (!efx->vpd_sn) 3468 return; 3469 3470 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); 3471 } 3472 3473 3474 /* Main body of NIC initialisation 3475 * This is called at module load (or hotplug insertion, theoretically). 3476 */ 3477 static int efx_pci_probe_main(struct efx_nic *efx) 3478 { 3479 int rc; 3480 3481 /* Do start-of-day initialisation */ 3482 rc = efx_probe_all(efx); 3483 if (rc) 3484 goto fail1; 3485 3486 efx_init_napi(efx); 3487 3488 rc = efx->type->init(efx); 3489 if (rc) { 3490 netif_err(efx, probe, efx->net_dev, 3491 "failed to initialise NIC\n"); 3492 goto fail3; 3493 } 3494 3495 rc = efx_init_port(efx); 3496 if (rc) { 3497 netif_err(efx, probe, efx->net_dev, 3498 "failed to initialise port\n"); 3499 goto fail4; 3500 } 3501 3502 rc = efx_nic_init_interrupt(efx); 3503 if (rc) 3504 goto fail5; 3505 3506 efx_set_interrupt_affinity(efx); 3507 rc = efx_enable_interrupts(efx); 3508 if (rc) 3509 goto fail6; 3510 3511 return 0; 3512 3513 fail6: 3514 efx_clear_interrupt_affinity(efx); 3515 efx_nic_fini_interrupt(efx); 3516 fail5: 3517 efx_fini_port(efx); 3518 fail4: 3519 efx->type->fini(efx); 3520 fail3: 3521 efx_fini_napi(efx); 3522 efx_remove_all(efx); 3523 fail1: 3524 return rc; 3525 } 3526 3527 static int efx_pci_probe_post_io(struct efx_nic *efx) 3528 { 3529 struct net_device *net_dev = efx->net_dev; 3530 int rc = efx_pci_probe_main(efx); 3531 3532 if (rc) 3533 return rc; 3534 3535 if (efx->type->sriov_init) { 3536 rc = efx->type->sriov_init(efx); 3537 if (rc) 3538 netif_err(efx, probe, efx->net_dev, 3539 "SR-IOV can't be enabled rc %d\n", rc); 3540 } 3541 3542 /* Determine netdevice features */ 3543 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 3544 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL); 3545 if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM)) 3546 net_dev->features |= NETIF_F_TSO6; 3547 /* Check whether device supports TSO */ 3548 if (!efx->type->tso_versions || !efx->type->tso_versions(efx)) 3549 net_dev->features &= ~NETIF_F_ALL_TSO; 3550 /* Mask for features that also apply to VLAN devices */ 3551 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | 3552 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | 3553 NETIF_F_RXCSUM); 3554 3555 net_dev->hw_features |= net_dev->features & ~efx->fixed_features; 3556 3557 /* Disable receiving frames with bad FCS, by default. */ 3558 net_dev->features &= ~NETIF_F_RXALL; 3559 3560 /* Disable VLAN filtering by default. It may be enforced if 3561 * the feature is fixed (i.e. VLAN filters are required to 3562 * receive VLAN tagged packets due to vPort restrictions). 3563 */ 3564 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 3565 net_dev->features |= efx->fixed_features; 3566 3567 rc = efx_register_netdev(efx); 3568 if (!rc) 3569 return 0; 3570 3571 efx_pci_remove_main(efx); 3572 return rc; 3573 } 3574 3575 /* NIC initialisation 3576 * 3577 * This is called at module load (or hotplug insertion, 3578 * theoretically). It sets up PCI mappings, resets the NIC, 3579 * sets up and registers the network devices with the kernel and hooks 3580 * the interrupt service routine. It does not prepare the device for 3581 * transmission; this is left to the first time one of the network 3582 * interfaces is brought up (i.e. efx_net_open). 3583 */ 3584 static int efx_pci_probe(struct pci_dev *pci_dev, 3585 const struct pci_device_id *entry) 3586 { 3587 struct net_device *net_dev; 3588 struct efx_nic *efx; 3589 int rc; 3590 3591 /* Allocate and initialise a struct net_device and struct efx_nic */ 3592 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, 3593 EFX_MAX_RX_QUEUES); 3594 if (!net_dev) 3595 return -ENOMEM; 3596 efx = netdev_priv(net_dev); 3597 efx->type = (const struct efx_nic_type *) entry->driver_data; 3598 efx->fixed_features |= NETIF_F_HIGHDMA; 3599 3600 pci_set_drvdata(pci_dev, efx); 3601 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 3602 rc = efx_init_struct(efx, pci_dev, net_dev); 3603 if (rc) 3604 goto fail1; 3605 3606 netif_info(efx, probe, efx->net_dev, 3607 "Solarflare NIC detected\n"); 3608 3609 if (!efx->type->is_vf) 3610 efx_probe_vpd_strings(efx); 3611 3612 /* Set up basic I/O (BAR mappings etc) */ 3613 rc = efx_init_io(efx); 3614 if (rc) 3615 goto fail2; 3616 3617 rc = efx_pci_probe_post_io(efx); 3618 if (rc) { 3619 /* On failure, retry once immediately. 3620 * If we aborted probe due to a scheduled reset, dismiss it. 3621 */ 3622 efx->reset_pending = 0; 3623 rc = efx_pci_probe_post_io(efx); 3624 if (rc) { 3625 /* On another failure, retry once more 3626 * after a 50-305ms delay. 3627 */ 3628 unsigned char r; 3629 3630 get_random_bytes(&r, 1); 3631 msleep((unsigned int)r + 50); 3632 efx->reset_pending = 0; 3633 rc = efx_pci_probe_post_io(efx); 3634 } 3635 } 3636 if (rc) 3637 goto fail3; 3638 3639 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 3640 3641 /* Try to create MTDs, but allow this to fail */ 3642 rtnl_lock(); 3643 rc = efx_mtd_probe(efx); 3644 rtnl_unlock(); 3645 if (rc && rc != -EPERM) 3646 netif_warn(efx, probe, efx->net_dev, 3647 "failed to create MTDs (%d)\n", rc); 3648 3649 rc = pci_enable_pcie_error_reporting(pci_dev); 3650 if (rc && rc != -EINVAL) 3651 netif_notice(efx, probe, efx->net_dev, 3652 "PCIE error reporting unavailable (%d).\n", 3653 rc); 3654 3655 if (efx->type->udp_tnl_push_ports) 3656 efx->type->udp_tnl_push_ports(efx); 3657 3658 return 0; 3659 3660 fail3: 3661 efx_fini_io(efx); 3662 fail2: 3663 efx_fini_struct(efx); 3664 fail1: 3665 WARN_ON(rc > 0); 3666 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 3667 free_netdev(net_dev); 3668 return rc; 3669 } 3670 3671 /* efx_pci_sriov_configure returns the actual number of Virtual Functions 3672 * enabled on success 3673 */ 3674 #ifdef CONFIG_SFC_SRIOV 3675 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 3676 { 3677 int rc; 3678 struct efx_nic *efx = pci_get_drvdata(dev); 3679 3680 if (efx->type->sriov_configure) { 3681 rc = efx->type->sriov_configure(efx, num_vfs); 3682 if (rc) 3683 return rc; 3684 else 3685 return num_vfs; 3686 } else 3687 return -EOPNOTSUPP; 3688 } 3689 #endif 3690 3691 static int efx_pm_freeze(struct device *dev) 3692 { 3693 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 3694 3695 rtnl_lock(); 3696 3697 if (efx->state != STATE_DISABLED) { 3698 efx->state = STATE_UNINIT; 3699 3700 efx_device_detach_sync(efx); 3701 3702 efx_stop_all(efx); 3703 efx_disable_interrupts(efx); 3704 } 3705 3706 rtnl_unlock(); 3707 3708 return 0; 3709 } 3710 3711 static int efx_pm_thaw(struct device *dev) 3712 { 3713 int rc; 3714 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 3715 3716 rtnl_lock(); 3717 3718 if (efx->state != STATE_DISABLED) { 3719 rc = efx_enable_interrupts(efx); 3720 if (rc) 3721 goto fail; 3722 3723 mutex_lock(&efx->mac_lock); 3724 efx->phy_op->reconfigure(efx); 3725 mutex_unlock(&efx->mac_lock); 3726 3727 efx_start_all(efx); 3728 3729 efx_device_attach_if_not_resetting(efx); 3730 3731 efx->state = STATE_READY; 3732 3733 efx->type->resume_wol(efx); 3734 } 3735 3736 rtnl_unlock(); 3737 3738 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ 3739 queue_work(reset_workqueue, &efx->reset_work); 3740 3741 return 0; 3742 3743 fail: 3744 rtnl_unlock(); 3745 3746 return rc; 3747 } 3748 3749 static int efx_pm_poweroff(struct device *dev) 3750 { 3751 struct pci_dev *pci_dev = to_pci_dev(dev); 3752 struct efx_nic *efx = pci_get_drvdata(pci_dev); 3753 3754 efx->type->fini(efx); 3755 3756 efx->reset_pending = 0; 3757 3758 pci_save_state(pci_dev); 3759 return pci_set_power_state(pci_dev, PCI_D3hot); 3760 } 3761 3762 /* Used for both resume and restore */ 3763 static int efx_pm_resume(struct device *dev) 3764 { 3765 struct pci_dev *pci_dev = to_pci_dev(dev); 3766 struct efx_nic *efx = pci_get_drvdata(pci_dev); 3767 int rc; 3768 3769 rc = pci_set_power_state(pci_dev, PCI_D0); 3770 if (rc) 3771 return rc; 3772 pci_restore_state(pci_dev); 3773 rc = pci_enable_device(pci_dev); 3774 if (rc) 3775 return rc; 3776 pci_set_master(efx->pci_dev); 3777 rc = efx->type->reset(efx, RESET_TYPE_ALL); 3778 if (rc) 3779 return rc; 3780 rc = efx->type->init(efx); 3781 if (rc) 3782 return rc; 3783 rc = efx_pm_thaw(dev); 3784 return rc; 3785 } 3786 3787 static int efx_pm_suspend(struct device *dev) 3788 { 3789 int rc; 3790 3791 efx_pm_freeze(dev); 3792 rc = efx_pm_poweroff(dev); 3793 if (rc) 3794 efx_pm_resume(dev); 3795 return rc; 3796 } 3797 3798 static const struct dev_pm_ops efx_pm_ops = { 3799 .suspend = efx_pm_suspend, 3800 .resume = efx_pm_resume, 3801 .freeze = efx_pm_freeze, 3802 .thaw = efx_pm_thaw, 3803 .poweroff = efx_pm_poweroff, 3804 .restore = efx_pm_resume, 3805 }; 3806 3807 /* A PCI error affecting this device was detected. 3808 * At this point MMIO and DMA may be disabled. 3809 * Stop the software path and request a slot reset. 3810 */ 3811 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev, 3812 enum pci_channel_state state) 3813 { 3814 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3815 struct efx_nic *efx = pci_get_drvdata(pdev); 3816 3817 if (state == pci_channel_io_perm_failure) 3818 return PCI_ERS_RESULT_DISCONNECT; 3819 3820 rtnl_lock(); 3821 3822 if (efx->state != STATE_DISABLED) { 3823 efx->state = STATE_RECOVERY; 3824 efx->reset_pending = 0; 3825 3826 efx_device_detach_sync(efx); 3827 3828 efx_stop_all(efx); 3829 efx_disable_interrupts(efx); 3830 3831 status = PCI_ERS_RESULT_NEED_RESET; 3832 } else { 3833 /* If the interface is disabled we don't want to do anything 3834 * with it. 3835 */ 3836 status = PCI_ERS_RESULT_RECOVERED; 3837 } 3838 3839 rtnl_unlock(); 3840 3841 pci_disable_device(pdev); 3842 3843 return status; 3844 } 3845 3846 /* Fake a successful reset, which will be performed later in efx_io_resume. */ 3847 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev) 3848 { 3849 struct efx_nic *efx = pci_get_drvdata(pdev); 3850 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3851 int rc; 3852 3853 if (pci_enable_device(pdev)) { 3854 netif_err(efx, hw, efx->net_dev, 3855 "Cannot re-enable PCI device after reset.\n"); 3856 status = PCI_ERS_RESULT_DISCONNECT; 3857 } 3858 3859 rc = pci_cleanup_aer_uncorrect_error_status(pdev); 3860 if (rc) { 3861 netif_err(efx, hw, efx->net_dev, 3862 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc); 3863 /* Non-fatal error. Continue. */ 3864 } 3865 3866 return status; 3867 } 3868 3869 /* Perform the actual reset and resume I/O operations. */ 3870 static void efx_io_resume(struct pci_dev *pdev) 3871 { 3872 struct efx_nic *efx = pci_get_drvdata(pdev); 3873 int rc; 3874 3875 rtnl_lock(); 3876 3877 if (efx->state == STATE_DISABLED) 3878 goto out; 3879 3880 rc = efx_reset(efx, RESET_TYPE_ALL); 3881 if (rc) { 3882 netif_err(efx, hw, efx->net_dev, 3883 "efx_reset failed after PCI error (%d)\n", rc); 3884 } else { 3885 efx->state = STATE_READY; 3886 netif_dbg(efx, hw, efx->net_dev, 3887 "Done resetting and resuming IO after PCI error.\n"); 3888 } 3889 3890 out: 3891 rtnl_unlock(); 3892 } 3893 3894 /* For simplicity and reliability, we always require a slot reset and try to 3895 * reset the hardware when a pci error affecting the device is detected. 3896 * We leave both the link_reset and mmio_enabled callback unimplemented: 3897 * with our request for slot reset the mmio_enabled callback will never be 3898 * called, and the link_reset callback is not used by AER or EEH mechanisms. 3899 */ 3900 static const struct pci_error_handlers efx_err_handlers = { 3901 .error_detected = efx_io_error_detected, 3902 .slot_reset = efx_io_slot_reset, 3903 .resume = efx_io_resume, 3904 }; 3905 3906 static struct pci_driver efx_pci_driver = { 3907 .name = KBUILD_MODNAME, 3908 .id_table = efx_pci_table, 3909 .probe = efx_pci_probe, 3910 .remove = efx_pci_remove, 3911 .driver.pm = &efx_pm_ops, 3912 .err_handler = &efx_err_handlers, 3913 #ifdef CONFIG_SFC_SRIOV 3914 .sriov_configure = efx_pci_sriov_configure, 3915 #endif 3916 }; 3917 3918 /************************************************************************** 3919 * 3920 * Kernel module interface 3921 * 3922 *************************************************************************/ 3923 3924 module_param(interrupt_mode, uint, 0444); 3925 MODULE_PARM_DESC(interrupt_mode, 3926 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 3927 3928 static int __init efx_init_module(void) 3929 { 3930 int rc; 3931 3932 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); 3933 3934 rc = register_netdevice_notifier(&efx_netdev_notifier); 3935 if (rc) 3936 goto err_notifier; 3937 3938 #ifdef CONFIG_SFC_SRIOV 3939 rc = efx_init_sriov(); 3940 if (rc) 3941 goto err_sriov; 3942 #endif 3943 3944 reset_workqueue = create_singlethread_workqueue("sfc_reset"); 3945 if (!reset_workqueue) { 3946 rc = -ENOMEM; 3947 goto err_reset; 3948 } 3949 3950 rc = pci_register_driver(&efx_pci_driver); 3951 if (rc < 0) 3952 goto err_pci; 3953 3954 return 0; 3955 3956 err_pci: 3957 destroy_workqueue(reset_workqueue); 3958 err_reset: 3959 #ifdef CONFIG_SFC_SRIOV 3960 efx_fini_sriov(); 3961 err_sriov: 3962 #endif 3963 unregister_netdevice_notifier(&efx_netdev_notifier); 3964 err_notifier: 3965 return rc; 3966 } 3967 3968 static void __exit efx_exit_module(void) 3969 { 3970 printk(KERN_INFO "Solarflare NET driver unloading\n"); 3971 3972 pci_unregister_driver(&efx_pci_driver); 3973 destroy_workqueue(reset_workqueue); 3974 #ifdef CONFIG_SFC_SRIOV 3975 efx_fini_sriov(); 3976 #endif 3977 unregister_netdevice_notifier(&efx_netdev_notifier); 3978 3979 } 3980 3981 module_init(efx_init_module); 3982 module_exit(efx_exit_module); 3983 3984 MODULE_AUTHOR("Solarflare Communications and " 3985 "Michael Brown <mbrown@fensystems.co.uk>"); 3986 MODULE_DESCRIPTION("Solarflare network driver"); 3987 MODULE_LICENSE("GPL"); 3988 MODULE_DEVICE_TABLE(pci, efx_pci_table); 3989 MODULE_VERSION(EFX_DRIVER_VERSION); 3990