xref: /openbmc/linux/drivers/net/ethernet/sfc/efx.c (revision 9da8320b)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29 #include "sriov.h"
30 
31 #include "mcdi.h"
32 #include "workarounds.h"
33 
34 /**************************************************************************
35  *
36  * Type name strings
37  *
38  **************************************************************************
39  */
40 
41 /* Loopback mode names (see LOOPBACK_MODE()) */
42 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43 const char *const efx_loopback_mode_names[] = {
44 	[LOOPBACK_NONE]		= "NONE",
45 	[LOOPBACK_DATA]		= "DATAPATH",
46 	[LOOPBACK_GMAC]		= "GMAC",
47 	[LOOPBACK_XGMII]	= "XGMII",
48 	[LOOPBACK_XGXS]		= "XGXS",
49 	[LOOPBACK_XAUI]		= "XAUI",
50 	[LOOPBACK_GMII]		= "GMII",
51 	[LOOPBACK_SGMII]	= "SGMII",
52 	[LOOPBACK_XGBR]		= "XGBR",
53 	[LOOPBACK_XFI]		= "XFI",
54 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
55 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
56 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
57 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 	[LOOPBACK_GPHY]		= "GPHY",
59 	[LOOPBACK_PHYXS]	= "PHYXS",
60 	[LOOPBACK_PCS]		= "PCS",
61 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 	[LOOPBACK_XPORT]	= "XPORT",
63 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
66 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67 	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 	[LOOPBACK_XFI_WS]	= "XFI_WS",
69 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 };
72 
73 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74 const char *const efx_reset_type_names[] = {
75 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
76 	[RESET_TYPE_ALL]                = "ALL",
77 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
78 	[RESET_TYPE_WORLD]              = "WORLD",
79 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
80 	[RESET_TYPE_DATAPATH]           = "DATAPATH",
81 	[RESET_TYPE_MC_BIST]		= "MC_BIST",
82 	[RESET_TYPE_DISABLE]            = "DISABLE",
83 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
84 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
85 	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
86 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
87 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
88 	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
89 	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
90 };
91 
92 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
93  * queued onto this work queue. This is not a per-nic work queue, because
94  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
95  */
96 static struct workqueue_struct *reset_workqueue;
97 
98 /* How often and how many times to poll for a reset while waiting for a
99  * BIST that another function started to complete.
100  */
101 #define BIST_WAIT_DELAY_MS	100
102 #define BIST_WAIT_DELAY_COUNT	100
103 
104 /**************************************************************************
105  *
106  * Configurable values
107  *
108  *************************************************************************/
109 
110 /*
111  * Use separate channels for TX and RX events
112  *
113  * Set this to 1 to use separate channels for TX and RX. It allows us
114  * to control interrupt affinity separately for TX and RX.
115  *
116  * This is only used in MSI-X interrupt mode
117  */
118 bool efx_separate_tx_channels;
119 module_param(efx_separate_tx_channels, bool, 0444);
120 MODULE_PARM_DESC(efx_separate_tx_channels,
121 		 "Use separate channels for TX and RX");
122 
123 /* This is the weight assigned to each of the (per-channel) virtual
124  * NAPI devices.
125  */
126 static int napi_weight = 64;
127 
128 /* This is the time (in jiffies) between invocations of the hardware
129  * monitor.
130  * On Falcon-based NICs, this will:
131  * - Check the on-board hardware monitor;
132  * - Poll the link state and reconfigure the hardware as necessary.
133  * On Siena-based NICs for power systems with EEH support, this will give EEH a
134  * chance to start.
135  */
136 static unsigned int efx_monitor_interval = 1 * HZ;
137 
138 /* Initial interrupt moderation settings.  They can be modified after
139  * module load with ethtool.
140  *
141  * The default for RX should strike a balance between increasing the
142  * round-trip latency and reducing overhead.
143  */
144 static unsigned int rx_irq_mod_usec = 60;
145 
146 /* Initial interrupt moderation settings.  They can be modified after
147  * module load with ethtool.
148  *
149  * This default is chosen to ensure that a 10G link does not go idle
150  * while a TX queue is stopped after it has become full.  A queue is
151  * restarted when it drops below half full.  The time this takes (assuming
152  * worst case 3 descriptors per packet and 1024 descriptors) is
153  *   512 / 3 * 1.2 = 205 usec.
154  */
155 static unsigned int tx_irq_mod_usec = 150;
156 
157 /* This is the first interrupt mode to try out of:
158  * 0 => MSI-X
159  * 1 => MSI
160  * 2 => legacy
161  */
162 static unsigned int interrupt_mode;
163 
164 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
165  * i.e. the number of CPUs among which we may distribute simultaneous
166  * interrupt handling.
167  *
168  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
169  * The default (0) means to assign an interrupt to each core.
170  */
171 static unsigned int rss_cpus;
172 module_param(rss_cpus, uint, 0444);
173 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
174 
175 static bool phy_flash_cfg;
176 module_param(phy_flash_cfg, bool, 0644);
177 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
178 
179 static unsigned irq_adapt_low_thresh = 8000;
180 module_param(irq_adapt_low_thresh, uint, 0644);
181 MODULE_PARM_DESC(irq_adapt_low_thresh,
182 		 "Threshold score for reducing IRQ moderation");
183 
184 static unsigned irq_adapt_high_thresh = 16000;
185 module_param(irq_adapt_high_thresh, uint, 0644);
186 MODULE_PARM_DESC(irq_adapt_high_thresh,
187 		 "Threshold score for increasing IRQ moderation");
188 
189 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
190 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
191 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
192 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
193 module_param(debug, uint, 0);
194 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
195 
196 /**************************************************************************
197  *
198  * Utility functions and prototypes
199  *
200  *************************************************************************/
201 
202 static int efx_soft_enable_interrupts(struct efx_nic *efx);
203 static void efx_soft_disable_interrupts(struct efx_nic *efx);
204 static void efx_remove_channel(struct efx_channel *channel);
205 static void efx_remove_channels(struct efx_nic *efx);
206 static const struct efx_channel_type efx_default_channel_type;
207 static void efx_remove_port(struct efx_nic *efx);
208 static void efx_init_napi_channel(struct efx_channel *channel);
209 static void efx_fini_napi(struct efx_nic *efx);
210 static void efx_fini_napi_channel(struct efx_channel *channel);
211 static void efx_fini_struct(struct efx_nic *efx);
212 static void efx_start_all(struct efx_nic *efx);
213 static void efx_stop_all(struct efx_nic *efx);
214 
215 #define EFX_ASSERT_RESET_SERIALISED(efx)		\
216 	do {						\
217 		if ((efx->state == STATE_READY) ||	\
218 		    (efx->state == STATE_RECOVERY) ||	\
219 		    (efx->state == STATE_DISABLED))	\
220 			ASSERT_RTNL();			\
221 	} while (0)
222 
223 static int efx_check_disabled(struct efx_nic *efx)
224 {
225 	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
226 		netif_err(efx, drv, efx->net_dev,
227 			  "device is disabled due to earlier errors\n");
228 		return -EIO;
229 	}
230 	return 0;
231 }
232 
233 /**************************************************************************
234  *
235  * Event queue processing
236  *
237  *************************************************************************/
238 
239 /* Process channel's event queue
240  *
241  * This function is responsible for processing the event queue of a
242  * single channel.  The caller must guarantee that this function will
243  * never be concurrently called more than once on the same channel,
244  * though different channels may be being processed concurrently.
245  */
246 static int efx_process_channel(struct efx_channel *channel, int budget)
247 {
248 	struct efx_tx_queue *tx_queue;
249 	int spent;
250 
251 	if (unlikely(!channel->enabled))
252 		return 0;
253 
254 	efx_for_each_channel_tx_queue(tx_queue, channel) {
255 		tx_queue->pkts_compl = 0;
256 		tx_queue->bytes_compl = 0;
257 	}
258 
259 	spent = efx_nic_process_eventq(channel, budget);
260 	if (spent && efx_channel_has_rx_queue(channel)) {
261 		struct efx_rx_queue *rx_queue =
262 			efx_channel_get_rx_queue(channel);
263 
264 		efx_rx_flush_packet(channel);
265 		efx_fast_push_rx_descriptors(rx_queue, true);
266 	}
267 
268 	/* Update BQL */
269 	efx_for_each_channel_tx_queue(tx_queue, channel) {
270 		if (tx_queue->bytes_compl) {
271 			netdev_tx_completed_queue(tx_queue->core_txq,
272 				tx_queue->pkts_compl, tx_queue->bytes_compl);
273 		}
274 	}
275 
276 	return spent;
277 }
278 
279 /* NAPI poll handler
280  *
281  * NAPI guarantees serialisation of polls of the same device, which
282  * provides the guarantee required by efx_process_channel().
283  */
284 static int efx_poll(struct napi_struct *napi, int budget)
285 {
286 	struct efx_channel *channel =
287 		container_of(napi, struct efx_channel, napi_str);
288 	struct efx_nic *efx = channel->efx;
289 	int spent;
290 
291 	if (!efx_channel_lock_napi(channel))
292 		return budget;
293 
294 	netif_vdbg(efx, intr, efx->net_dev,
295 		   "channel %d NAPI poll executing on CPU %d\n",
296 		   channel->channel, raw_smp_processor_id());
297 
298 	spent = efx_process_channel(channel, budget);
299 
300 	if (spent < budget) {
301 		if (efx_channel_has_rx_queue(channel) &&
302 		    efx->irq_rx_adaptive &&
303 		    unlikely(++channel->irq_count == 1000)) {
304 			if (unlikely(channel->irq_mod_score <
305 				     irq_adapt_low_thresh)) {
306 				if (channel->irq_moderation > 1) {
307 					channel->irq_moderation -= 1;
308 					efx->type->push_irq_moderation(channel);
309 				}
310 			} else if (unlikely(channel->irq_mod_score >
311 					    irq_adapt_high_thresh)) {
312 				if (channel->irq_moderation <
313 				    efx->irq_rx_moderation) {
314 					channel->irq_moderation += 1;
315 					efx->type->push_irq_moderation(channel);
316 				}
317 			}
318 			channel->irq_count = 0;
319 			channel->irq_mod_score = 0;
320 		}
321 
322 		efx_filter_rfs_expire(channel);
323 
324 		/* There is no race here; although napi_disable() will
325 		 * only wait for napi_complete(), this isn't a problem
326 		 * since efx_nic_eventq_read_ack() will have no effect if
327 		 * interrupts have already been disabled.
328 		 */
329 		napi_complete(napi);
330 		efx_nic_eventq_read_ack(channel);
331 	}
332 
333 	efx_channel_unlock_napi(channel);
334 	return spent;
335 }
336 
337 /* Create event queue
338  * Event queue memory allocations are done only once.  If the channel
339  * is reset, the memory buffer will be reused; this guards against
340  * errors during channel reset and also simplifies interrupt handling.
341  */
342 static int efx_probe_eventq(struct efx_channel *channel)
343 {
344 	struct efx_nic *efx = channel->efx;
345 	unsigned long entries;
346 
347 	netif_dbg(efx, probe, efx->net_dev,
348 		  "chan %d create event queue\n", channel->channel);
349 
350 	/* Build an event queue with room for one event per tx and rx buffer,
351 	 * plus some extra for link state events and MCDI completions. */
352 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
353 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
354 	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
355 
356 	return efx_nic_probe_eventq(channel);
357 }
358 
359 /* Prepare channel's event queue */
360 static int efx_init_eventq(struct efx_channel *channel)
361 {
362 	struct efx_nic *efx = channel->efx;
363 	int rc;
364 
365 	EFX_WARN_ON_PARANOID(channel->eventq_init);
366 
367 	netif_dbg(efx, drv, efx->net_dev,
368 		  "chan %d init event queue\n", channel->channel);
369 
370 	rc = efx_nic_init_eventq(channel);
371 	if (rc == 0) {
372 		efx->type->push_irq_moderation(channel);
373 		channel->eventq_read_ptr = 0;
374 		channel->eventq_init = true;
375 	}
376 	return rc;
377 }
378 
379 /* Enable event queue processing and NAPI */
380 void efx_start_eventq(struct efx_channel *channel)
381 {
382 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
383 		  "chan %d start event queue\n", channel->channel);
384 
385 	/* Make sure the NAPI handler sees the enabled flag set */
386 	channel->enabled = true;
387 	smp_wmb();
388 
389 	efx_channel_enable(channel);
390 	napi_enable(&channel->napi_str);
391 	efx_nic_eventq_read_ack(channel);
392 }
393 
394 /* Disable event queue processing and NAPI */
395 void efx_stop_eventq(struct efx_channel *channel)
396 {
397 	if (!channel->enabled)
398 		return;
399 
400 	napi_disable(&channel->napi_str);
401 	while (!efx_channel_disable(channel))
402 		usleep_range(1000, 20000);
403 	channel->enabled = false;
404 }
405 
406 static void efx_fini_eventq(struct efx_channel *channel)
407 {
408 	if (!channel->eventq_init)
409 		return;
410 
411 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
412 		  "chan %d fini event queue\n", channel->channel);
413 
414 	efx_nic_fini_eventq(channel);
415 	channel->eventq_init = false;
416 }
417 
418 static void efx_remove_eventq(struct efx_channel *channel)
419 {
420 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
421 		  "chan %d remove event queue\n", channel->channel);
422 
423 	efx_nic_remove_eventq(channel);
424 }
425 
426 /**************************************************************************
427  *
428  * Channel handling
429  *
430  *************************************************************************/
431 
432 /* Allocate and initialise a channel structure. */
433 static struct efx_channel *
434 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
435 {
436 	struct efx_channel *channel;
437 	struct efx_rx_queue *rx_queue;
438 	struct efx_tx_queue *tx_queue;
439 	int j;
440 
441 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
442 	if (!channel)
443 		return NULL;
444 
445 	channel->efx = efx;
446 	channel->channel = i;
447 	channel->type = &efx_default_channel_type;
448 
449 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
450 		tx_queue = &channel->tx_queue[j];
451 		tx_queue->efx = efx;
452 		tx_queue->queue = i * EFX_TXQ_TYPES + j;
453 		tx_queue->channel = channel;
454 	}
455 
456 	rx_queue = &channel->rx_queue;
457 	rx_queue->efx = efx;
458 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
459 		    (unsigned long)rx_queue);
460 
461 	return channel;
462 }
463 
464 /* Allocate and initialise a channel structure, copying parameters
465  * (but not resources) from an old channel structure.
466  */
467 static struct efx_channel *
468 efx_copy_channel(const struct efx_channel *old_channel)
469 {
470 	struct efx_channel *channel;
471 	struct efx_rx_queue *rx_queue;
472 	struct efx_tx_queue *tx_queue;
473 	int j;
474 
475 	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
476 	if (!channel)
477 		return NULL;
478 
479 	*channel = *old_channel;
480 
481 	channel->napi_dev = NULL;
482 	memset(&channel->eventq, 0, sizeof(channel->eventq));
483 
484 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
485 		tx_queue = &channel->tx_queue[j];
486 		if (tx_queue->channel)
487 			tx_queue->channel = channel;
488 		tx_queue->buffer = NULL;
489 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
490 	}
491 
492 	rx_queue = &channel->rx_queue;
493 	rx_queue->buffer = NULL;
494 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
495 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
496 		    (unsigned long)rx_queue);
497 
498 	return channel;
499 }
500 
501 static int efx_probe_channel(struct efx_channel *channel)
502 {
503 	struct efx_tx_queue *tx_queue;
504 	struct efx_rx_queue *rx_queue;
505 	int rc;
506 
507 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
508 		  "creating channel %d\n", channel->channel);
509 
510 	rc = channel->type->pre_probe(channel);
511 	if (rc)
512 		goto fail;
513 
514 	rc = efx_probe_eventq(channel);
515 	if (rc)
516 		goto fail;
517 
518 	efx_for_each_channel_tx_queue(tx_queue, channel) {
519 		rc = efx_probe_tx_queue(tx_queue);
520 		if (rc)
521 			goto fail;
522 	}
523 
524 	efx_for_each_channel_rx_queue(rx_queue, channel) {
525 		rc = efx_probe_rx_queue(rx_queue);
526 		if (rc)
527 			goto fail;
528 	}
529 
530 	return 0;
531 
532 fail:
533 	efx_remove_channel(channel);
534 	return rc;
535 }
536 
537 static void
538 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
539 {
540 	struct efx_nic *efx = channel->efx;
541 	const char *type;
542 	int number;
543 
544 	number = channel->channel;
545 	if (efx->tx_channel_offset == 0) {
546 		type = "";
547 	} else if (channel->channel < efx->tx_channel_offset) {
548 		type = "-rx";
549 	} else {
550 		type = "-tx";
551 		number -= efx->tx_channel_offset;
552 	}
553 	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
554 }
555 
556 static void efx_set_channel_names(struct efx_nic *efx)
557 {
558 	struct efx_channel *channel;
559 
560 	efx_for_each_channel(channel, efx)
561 		channel->type->get_name(channel,
562 					efx->msi_context[channel->channel].name,
563 					sizeof(efx->msi_context[0].name));
564 }
565 
566 static int efx_probe_channels(struct efx_nic *efx)
567 {
568 	struct efx_channel *channel;
569 	int rc;
570 
571 	/* Restart special buffer allocation */
572 	efx->next_buffer_table = 0;
573 
574 	/* Probe channels in reverse, so that any 'extra' channels
575 	 * use the start of the buffer table. This allows the traffic
576 	 * channels to be resized without moving them or wasting the
577 	 * entries before them.
578 	 */
579 	efx_for_each_channel_rev(channel, efx) {
580 		rc = efx_probe_channel(channel);
581 		if (rc) {
582 			netif_err(efx, probe, efx->net_dev,
583 				  "failed to create channel %d\n",
584 				  channel->channel);
585 			goto fail;
586 		}
587 	}
588 	efx_set_channel_names(efx);
589 
590 	return 0;
591 
592 fail:
593 	efx_remove_channels(efx);
594 	return rc;
595 }
596 
597 /* Channels are shutdown and reinitialised whilst the NIC is running
598  * to propagate configuration changes (mtu, checksum offload), or
599  * to clear hardware error conditions
600  */
601 static void efx_start_datapath(struct efx_nic *efx)
602 {
603 	bool old_rx_scatter = efx->rx_scatter;
604 	struct efx_tx_queue *tx_queue;
605 	struct efx_rx_queue *rx_queue;
606 	struct efx_channel *channel;
607 	size_t rx_buf_len;
608 
609 	/* Calculate the rx buffer allocation parameters required to
610 	 * support the current MTU, including padding for header
611 	 * alignment and overruns.
612 	 */
613 	efx->rx_dma_len = (efx->rx_prefix_size +
614 			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
615 			   efx->type->rx_buffer_padding);
616 	rx_buf_len = (sizeof(struct efx_rx_page_state) +
617 		      efx->rx_ip_align + efx->rx_dma_len);
618 	if (rx_buf_len <= PAGE_SIZE) {
619 		efx->rx_scatter = efx->type->always_rx_scatter;
620 		efx->rx_buffer_order = 0;
621 	} else if (efx->type->can_rx_scatter) {
622 		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
623 		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
624 			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
625 				       EFX_RX_BUF_ALIGNMENT) >
626 			     PAGE_SIZE);
627 		efx->rx_scatter = true;
628 		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
629 		efx->rx_buffer_order = 0;
630 	} else {
631 		efx->rx_scatter = false;
632 		efx->rx_buffer_order = get_order(rx_buf_len);
633 	}
634 
635 	efx_rx_config_page_split(efx);
636 	if (efx->rx_buffer_order)
637 		netif_dbg(efx, drv, efx->net_dev,
638 			  "RX buf len=%u; page order=%u batch=%u\n",
639 			  efx->rx_dma_len, efx->rx_buffer_order,
640 			  efx->rx_pages_per_batch);
641 	else
642 		netif_dbg(efx, drv, efx->net_dev,
643 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
644 			  efx->rx_dma_len, efx->rx_page_buf_step,
645 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
646 
647 	/* RX filters may also have scatter-enabled flags */
648 	if (efx->rx_scatter != old_rx_scatter)
649 		efx->type->filter_update_rx_scatter(efx);
650 
651 	/* We must keep at least one descriptor in a TX ring empty.
652 	 * We could avoid this when the queue size does not exactly
653 	 * match the hardware ring size, but it's not that important.
654 	 * Therefore we stop the queue when one more skb might fill
655 	 * the ring completely.  We wake it when half way back to
656 	 * empty.
657 	 */
658 	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
659 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
660 
661 	/* Initialise the channels */
662 	efx_for_each_channel(channel, efx) {
663 		efx_for_each_channel_tx_queue(tx_queue, channel) {
664 			efx_init_tx_queue(tx_queue);
665 			atomic_inc(&efx->active_queues);
666 		}
667 
668 		efx_for_each_channel_rx_queue(rx_queue, channel) {
669 			efx_init_rx_queue(rx_queue);
670 			atomic_inc(&efx->active_queues);
671 			efx_stop_eventq(channel);
672 			efx_fast_push_rx_descriptors(rx_queue, false);
673 			efx_start_eventq(channel);
674 		}
675 
676 		WARN_ON(channel->rx_pkt_n_frags);
677 	}
678 
679 	efx_ptp_start_datapath(efx);
680 
681 	if (netif_device_present(efx->net_dev))
682 		netif_tx_wake_all_queues(efx->net_dev);
683 }
684 
685 static void efx_stop_datapath(struct efx_nic *efx)
686 {
687 	struct efx_channel *channel;
688 	struct efx_tx_queue *tx_queue;
689 	struct efx_rx_queue *rx_queue;
690 	int rc;
691 
692 	EFX_ASSERT_RESET_SERIALISED(efx);
693 	BUG_ON(efx->port_enabled);
694 
695 	efx_ptp_stop_datapath(efx);
696 
697 	/* Stop RX refill */
698 	efx_for_each_channel(channel, efx) {
699 		efx_for_each_channel_rx_queue(rx_queue, channel)
700 			rx_queue->refill_enabled = false;
701 	}
702 
703 	efx_for_each_channel(channel, efx) {
704 		/* RX packet processing is pipelined, so wait for the
705 		 * NAPI handler to complete.  At least event queue 0
706 		 * might be kept active by non-data events, so don't
707 		 * use napi_synchronize() but actually disable NAPI
708 		 * temporarily.
709 		 */
710 		if (efx_channel_has_rx_queue(channel)) {
711 			efx_stop_eventq(channel);
712 			efx_start_eventq(channel);
713 		}
714 	}
715 
716 	rc = efx->type->fini_dmaq(efx);
717 	if (rc && EFX_WORKAROUND_7803(efx)) {
718 		/* Schedule a reset to recover from the flush failure. The
719 		 * descriptor caches reference memory we're about to free,
720 		 * but falcon_reconfigure_mac_wrapper() won't reconnect
721 		 * the MACs because of the pending reset.
722 		 */
723 		netif_err(efx, drv, efx->net_dev,
724 			  "Resetting to recover from flush failure\n");
725 		efx_schedule_reset(efx, RESET_TYPE_ALL);
726 	} else if (rc) {
727 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
728 	} else {
729 		netif_dbg(efx, drv, efx->net_dev,
730 			  "successfully flushed all queues\n");
731 	}
732 
733 	efx_for_each_channel(channel, efx) {
734 		efx_for_each_channel_rx_queue(rx_queue, channel)
735 			efx_fini_rx_queue(rx_queue);
736 		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
737 			efx_fini_tx_queue(tx_queue);
738 	}
739 }
740 
741 static void efx_remove_channel(struct efx_channel *channel)
742 {
743 	struct efx_tx_queue *tx_queue;
744 	struct efx_rx_queue *rx_queue;
745 
746 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
747 		  "destroy chan %d\n", channel->channel);
748 
749 	efx_for_each_channel_rx_queue(rx_queue, channel)
750 		efx_remove_rx_queue(rx_queue);
751 	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
752 		efx_remove_tx_queue(tx_queue);
753 	efx_remove_eventq(channel);
754 	channel->type->post_remove(channel);
755 }
756 
757 static void efx_remove_channels(struct efx_nic *efx)
758 {
759 	struct efx_channel *channel;
760 
761 	efx_for_each_channel(channel, efx)
762 		efx_remove_channel(channel);
763 }
764 
765 int
766 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
767 {
768 	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
769 	u32 old_rxq_entries, old_txq_entries;
770 	unsigned i, next_buffer_table = 0;
771 	int rc, rc2;
772 
773 	rc = efx_check_disabled(efx);
774 	if (rc)
775 		return rc;
776 
777 	/* Not all channels should be reallocated. We must avoid
778 	 * reallocating their buffer table entries.
779 	 */
780 	efx_for_each_channel(channel, efx) {
781 		struct efx_rx_queue *rx_queue;
782 		struct efx_tx_queue *tx_queue;
783 
784 		if (channel->type->copy)
785 			continue;
786 		next_buffer_table = max(next_buffer_table,
787 					channel->eventq.index +
788 					channel->eventq.entries);
789 		efx_for_each_channel_rx_queue(rx_queue, channel)
790 			next_buffer_table = max(next_buffer_table,
791 						rx_queue->rxd.index +
792 						rx_queue->rxd.entries);
793 		efx_for_each_channel_tx_queue(tx_queue, channel)
794 			next_buffer_table = max(next_buffer_table,
795 						tx_queue->txd.index +
796 						tx_queue->txd.entries);
797 	}
798 
799 	efx_device_detach_sync(efx);
800 	efx_stop_all(efx);
801 	efx_soft_disable_interrupts(efx);
802 
803 	/* Clone channels (where possible) */
804 	memset(other_channel, 0, sizeof(other_channel));
805 	for (i = 0; i < efx->n_channels; i++) {
806 		channel = efx->channel[i];
807 		if (channel->type->copy)
808 			channel = channel->type->copy(channel);
809 		if (!channel) {
810 			rc = -ENOMEM;
811 			goto out;
812 		}
813 		other_channel[i] = channel;
814 	}
815 
816 	/* Swap entry counts and channel pointers */
817 	old_rxq_entries = efx->rxq_entries;
818 	old_txq_entries = efx->txq_entries;
819 	efx->rxq_entries = rxq_entries;
820 	efx->txq_entries = txq_entries;
821 	for (i = 0; i < efx->n_channels; i++) {
822 		channel = efx->channel[i];
823 		efx->channel[i] = other_channel[i];
824 		other_channel[i] = channel;
825 	}
826 
827 	/* Restart buffer table allocation */
828 	efx->next_buffer_table = next_buffer_table;
829 
830 	for (i = 0; i < efx->n_channels; i++) {
831 		channel = efx->channel[i];
832 		if (!channel->type->copy)
833 			continue;
834 		rc = efx_probe_channel(channel);
835 		if (rc)
836 			goto rollback;
837 		efx_init_napi_channel(efx->channel[i]);
838 	}
839 
840 out:
841 	/* Destroy unused channel structures */
842 	for (i = 0; i < efx->n_channels; i++) {
843 		channel = other_channel[i];
844 		if (channel && channel->type->copy) {
845 			efx_fini_napi_channel(channel);
846 			efx_remove_channel(channel);
847 			kfree(channel);
848 		}
849 	}
850 
851 	rc2 = efx_soft_enable_interrupts(efx);
852 	if (rc2) {
853 		rc = rc ? rc : rc2;
854 		netif_err(efx, drv, efx->net_dev,
855 			  "unable to restart interrupts on channel reallocation\n");
856 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
857 	} else {
858 		efx_start_all(efx);
859 		netif_device_attach(efx->net_dev);
860 	}
861 	return rc;
862 
863 rollback:
864 	/* Swap back */
865 	efx->rxq_entries = old_rxq_entries;
866 	efx->txq_entries = old_txq_entries;
867 	for (i = 0; i < efx->n_channels; i++) {
868 		channel = efx->channel[i];
869 		efx->channel[i] = other_channel[i];
870 		other_channel[i] = channel;
871 	}
872 	goto out;
873 }
874 
875 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
876 {
877 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
878 }
879 
880 static const struct efx_channel_type efx_default_channel_type = {
881 	.pre_probe		= efx_channel_dummy_op_int,
882 	.post_remove		= efx_channel_dummy_op_void,
883 	.get_name		= efx_get_channel_name,
884 	.copy			= efx_copy_channel,
885 	.keep_eventq		= false,
886 };
887 
888 int efx_channel_dummy_op_int(struct efx_channel *channel)
889 {
890 	return 0;
891 }
892 
893 void efx_channel_dummy_op_void(struct efx_channel *channel)
894 {
895 }
896 
897 /**************************************************************************
898  *
899  * Port handling
900  *
901  **************************************************************************/
902 
903 /* This ensures that the kernel is kept informed (via
904  * netif_carrier_on/off) of the link status, and also maintains the
905  * link status's stop on the port's TX queue.
906  */
907 void efx_link_status_changed(struct efx_nic *efx)
908 {
909 	struct efx_link_state *link_state = &efx->link_state;
910 
911 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
912 	 * that no events are triggered between unregister_netdev() and the
913 	 * driver unloading. A more general condition is that NETDEV_CHANGE
914 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
915 	if (!netif_running(efx->net_dev))
916 		return;
917 
918 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
919 		efx->n_link_state_changes++;
920 
921 		if (link_state->up)
922 			netif_carrier_on(efx->net_dev);
923 		else
924 			netif_carrier_off(efx->net_dev);
925 	}
926 
927 	/* Status message for kernel log */
928 	if (link_state->up)
929 		netif_info(efx, link, efx->net_dev,
930 			   "link up at %uMbps %s-duplex (MTU %d)\n",
931 			   link_state->speed, link_state->fd ? "full" : "half",
932 			   efx->net_dev->mtu);
933 	else
934 		netif_info(efx, link, efx->net_dev, "link down\n");
935 }
936 
937 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
938 {
939 	efx->link_advertising = advertising;
940 	if (advertising) {
941 		if (advertising & ADVERTISED_Pause)
942 			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
943 		else
944 			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
945 		if (advertising & ADVERTISED_Asym_Pause)
946 			efx->wanted_fc ^= EFX_FC_TX;
947 	}
948 }
949 
950 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
951 {
952 	efx->wanted_fc = wanted_fc;
953 	if (efx->link_advertising) {
954 		if (wanted_fc & EFX_FC_RX)
955 			efx->link_advertising |= (ADVERTISED_Pause |
956 						  ADVERTISED_Asym_Pause);
957 		else
958 			efx->link_advertising &= ~(ADVERTISED_Pause |
959 						   ADVERTISED_Asym_Pause);
960 		if (wanted_fc & EFX_FC_TX)
961 			efx->link_advertising ^= ADVERTISED_Asym_Pause;
962 	}
963 }
964 
965 static void efx_fini_port(struct efx_nic *efx);
966 
967 /* We assume that efx->type->reconfigure_mac will always try to sync RX
968  * filters and therefore needs to read-lock the filter table against freeing
969  */
970 void efx_mac_reconfigure(struct efx_nic *efx)
971 {
972 	down_read(&efx->filter_sem);
973 	efx->type->reconfigure_mac(efx);
974 	up_read(&efx->filter_sem);
975 }
976 
977 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
978  * the MAC appropriately. All other PHY configuration changes are pushed
979  * through phy_op->set_settings(), and pushed asynchronously to the MAC
980  * through efx_monitor().
981  *
982  * Callers must hold the mac_lock
983  */
984 int __efx_reconfigure_port(struct efx_nic *efx)
985 {
986 	enum efx_phy_mode phy_mode;
987 	int rc;
988 
989 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
990 
991 	/* Disable PHY transmit in mac level loopbacks */
992 	phy_mode = efx->phy_mode;
993 	if (LOOPBACK_INTERNAL(efx))
994 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
995 	else
996 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
997 
998 	rc = efx->type->reconfigure_port(efx);
999 
1000 	if (rc)
1001 		efx->phy_mode = phy_mode;
1002 
1003 	return rc;
1004 }
1005 
1006 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1007  * disabled. */
1008 int efx_reconfigure_port(struct efx_nic *efx)
1009 {
1010 	int rc;
1011 
1012 	EFX_ASSERT_RESET_SERIALISED(efx);
1013 
1014 	mutex_lock(&efx->mac_lock);
1015 	rc = __efx_reconfigure_port(efx);
1016 	mutex_unlock(&efx->mac_lock);
1017 
1018 	return rc;
1019 }
1020 
1021 /* Asynchronous work item for changing MAC promiscuity and multicast
1022  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1023  * MAC directly. */
1024 static void efx_mac_work(struct work_struct *data)
1025 {
1026 	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1027 
1028 	mutex_lock(&efx->mac_lock);
1029 	if (efx->port_enabled)
1030 		efx_mac_reconfigure(efx);
1031 	mutex_unlock(&efx->mac_lock);
1032 }
1033 
1034 static int efx_probe_port(struct efx_nic *efx)
1035 {
1036 	int rc;
1037 
1038 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1039 
1040 	if (phy_flash_cfg)
1041 		efx->phy_mode = PHY_MODE_SPECIAL;
1042 
1043 	/* Connect up MAC/PHY operations table */
1044 	rc = efx->type->probe_port(efx);
1045 	if (rc)
1046 		return rc;
1047 
1048 	/* Initialise MAC address to permanent address */
1049 	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1050 
1051 	return 0;
1052 }
1053 
1054 static int efx_init_port(struct efx_nic *efx)
1055 {
1056 	int rc;
1057 
1058 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1059 
1060 	mutex_lock(&efx->mac_lock);
1061 
1062 	rc = efx->phy_op->init(efx);
1063 	if (rc)
1064 		goto fail1;
1065 
1066 	efx->port_initialized = true;
1067 
1068 	/* Reconfigure the MAC before creating dma queues (required for
1069 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1070 	efx_mac_reconfigure(efx);
1071 
1072 	/* Ensure the PHY advertises the correct flow control settings */
1073 	rc = efx->phy_op->reconfigure(efx);
1074 	if (rc && rc != -EPERM)
1075 		goto fail2;
1076 
1077 	mutex_unlock(&efx->mac_lock);
1078 	return 0;
1079 
1080 fail2:
1081 	efx->phy_op->fini(efx);
1082 fail1:
1083 	mutex_unlock(&efx->mac_lock);
1084 	return rc;
1085 }
1086 
1087 static void efx_start_port(struct efx_nic *efx)
1088 {
1089 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1090 	BUG_ON(efx->port_enabled);
1091 
1092 	mutex_lock(&efx->mac_lock);
1093 	efx->port_enabled = true;
1094 
1095 	/* Ensure MAC ingress/egress is enabled */
1096 	efx_mac_reconfigure(efx);
1097 
1098 	mutex_unlock(&efx->mac_lock);
1099 }
1100 
1101 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1102  * and the async self-test, wait for them to finish and prevent them
1103  * being scheduled again.  This doesn't cover online resets, which
1104  * should only be cancelled when removing the device.
1105  */
1106 static void efx_stop_port(struct efx_nic *efx)
1107 {
1108 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1109 
1110 	EFX_ASSERT_RESET_SERIALISED(efx);
1111 
1112 	mutex_lock(&efx->mac_lock);
1113 	efx->port_enabled = false;
1114 	mutex_unlock(&efx->mac_lock);
1115 
1116 	/* Serialise against efx_set_multicast_list() */
1117 	netif_addr_lock_bh(efx->net_dev);
1118 	netif_addr_unlock_bh(efx->net_dev);
1119 
1120 	cancel_delayed_work_sync(&efx->monitor_work);
1121 	efx_selftest_async_cancel(efx);
1122 	cancel_work_sync(&efx->mac_work);
1123 }
1124 
1125 static void efx_fini_port(struct efx_nic *efx)
1126 {
1127 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1128 
1129 	if (!efx->port_initialized)
1130 		return;
1131 
1132 	efx->phy_op->fini(efx);
1133 	efx->port_initialized = false;
1134 
1135 	efx->link_state.up = false;
1136 	efx_link_status_changed(efx);
1137 }
1138 
1139 static void efx_remove_port(struct efx_nic *efx)
1140 {
1141 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1142 
1143 	efx->type->remove_port(efx);
1144 }
1145 
1146 /**************************************************************************
1147  *
1148  * NIC handling
1149  *
1150  **************************************************************************/
1151 
1152 static LIST_HEAD(efx_primary_list);
1153 static LIST_HEAD(efx_unassociated_list);
1154 
1155 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1156 {
1157 	return left->type == right->type &&
1158 		left->vpd_sn && right->vpd_sn &&
1159 		!strcmp(left->vpd_sn, right->vpd_sn);
1160 }
1161 
1162 static void efx_associate(struct efx_nic *efx)
1163 {
1164 	struct efx_nic *other, *next;
1165 
1166 	if (efx->primary == efx) {
1167 		/* Adding primary function; look for secondaries */
1168 
1169 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1170 		list_add_tail(&efx->node, &efx_primary_list);
1171 
1172 		list_for_each_entry_safe(other, next, &efx_unassociated_list,
1173 					 node) {
1174 			if (efx_same_controller(efx, other)) {
1175 				list_del(&other->node);
1176 				netif_dbg(other, probe, other->net_dev,
1177 					  "moving to secondary list of %s %s\n",
1178 					  pci_name(efx->pci_dev),
1179 					  efx->net_dev->name);
1180 				list_add_tail(&other->node,
1181 					      &efx->secondary_list);
1182 				other->primary = efx;
1183 			}
1184 		}
1185 	} else {
1186 		/* Adding secondary function; look for primary */
1187 
1188 		list_for_each_entry(other, &efx_primary_list, node) {
1189 			if (efx_same_controller(efx, other)) {
1190 				netif_dbg(efx, probe, efx->net_dev,
1191 					  "adding to secondary list of %s %s\n",
1192 					  pci_name(other->pci_dev),
1193 					  other->net_dev->name);
1194 				list_add_tail(&efx->node,
1195 					      &other->secondary_list);
1196 				efx->primary = other;
1197 				return;
1198 			}
1199 		}
1200 
1201 		netif_dbg(efx, probe, efx->net_dev,
1202 			  "adding to unassociated list\n");
1203 		list_add_tail(&efx->node, &efx_unassociated_list);
1204 	}
1205 }
1206 
1207 static void efx_dissociate(struct efx_nic *efx)
1208 {
1209 	struct efx_nic *other, *next;
1210 
1211 	list_del(&efx->node);
1212 	efx->primary = NULL;
1213 
1214 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1215 		list_del(&other->node);
1216 		netif_dbg(other, probe, other->net_dev,
1217 			  "moving to unassociated list\n");
1218 		list_add_tail(&other->node, &efx_unassociated_list);
1219 		other->primary = NULL;
1220 	}
1221 }
1222 
1223 /* This configures the PCI device to enable I/O and DMA. */
1224 static int efx_init_io(struct efx_nic *efx)
1225 {
1226 	struct pci_dev *pci_dev = efx->pci_dev;
1227 	dma_addr_t dma_mask = efx->type->max_dma_mask;
1228 	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1229 	int rc, bar;
1230 
1231 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1232 
1233 	bar = efx->type->mem_bar;
1234 
1235 	rc = pci_enable_device(pci_dev);
1236 	if (rc) {
1237 		netif_err(efx, probe, efx->net_dev,
1238 			  "failed to enable PCI device\n");
1239 		goto fail1;
1240 	}
1241 
1242 	pci_set_master(pci_dev);
1243 
1244 	/* Set the PCI DMA mask.  Try all possibilities from our
1245 	 * genuine mask down to 32 bits, because some architectures
1246 	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1247 	 * masks event though they reject 46 bit masks.
1248 	 */
1249 	while (dma_mask > 0x7fffffffUL) {
1250 		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1251 		if (rc == 0)
1252 			break;
1253 		dma_mask >>= 1;
1254 	}
1255 	if (rc) {
1256 		netif_err(efx, probe, efx->net_dev,
1257 			  "could not find a suitable DMA mask\n");
1258 		goto fail2;
1259 	}
1260 	netif_dbg(efx, probe, efx->net_dev,
1261 		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1262 
1263 	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1264 	rc = pci_request_region(pci_dev, bar, "sfc");
1265 	if (rc) {
1266 		netif_err(efx, probe, efx->net_dev,
1267 			  "request for memory BAR failed\n");
1268 		rc = -EIO;
1269 		goto fail3;
1270 	}
1271 	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1272 	if (!efx->membase) {
1273 		netif_err(efx, probe, efx->net_dev,
1274 			  "could not map memory BAR at %llx+%x\n",
1275 			  (unsigned long long)efx->membase_phys, mem_map_size);
1276 		rc = -ENOMEM;
1277 		goto fail4;
1278 	}
1279 	netif_dbg(efx, probe, efx->net_dev,
1280 		  "memory BAR at %llx+%x (virtual %p)\n",
1281 		  (unsigned long long)efx->membase_phys, mem_map_size,
1282 		  efx->membase);
1283 
1284 	return 0;
1285 
1286  fail4:
1287 	pci_release_region(efx->pci_dev, bar);
1288  fail3:
1289 	efx->membase_phys = 0;
1290  fail2:
1291 	pci_disable_device(efx->pci_dev);
1292  fail1:
1293 	return rc;
1294 }
1295 
1296 static void efx_fini_io(struct efx_nic *efx)
1297 {
1298 	int bar;
1299 
1300 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1301 
1302 	if (efx->membase) {
1303 		iounmap(efx->membase);
1304 		efx->membase = NULL;
1305 	}
1306 
1307 	if (efx->membase_phys) {
1308 		bar = efx->type->mem_bar;
1309 		pci_release_region(efx->pci_dev, bar);
1310 		efx->membase_phys = 0;
1311 	}
1312 
1313 	/* Don't disable bus-mastering if VFs are assigned */
1314 	if (!pci_vfs_assigned(efx->pci_dev))
1315 		pci_disable_device(efx->pci_dev);
1316 }
1317 
1318 void efx_set_default_rx_indir_table(struct efx_nic *efx)
1319 {
1320 	size_t i;
1321 
1322 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1323 		efx->rx_indir_table[i] =
1324 			ethtool_rxfh_indir_default(i, efx->rss_spread);
1325 }
1326 
1327 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1328 {
1329 	cpumask_var_t thread_mask;
1330 	unsigned int count;
1331 	int cpu;
1332 
1333 	if (rss_cpus) {
1334 		count = rss_cpus;
1335 	} else {
1336 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1337 			netif_warn(efx, probe, efx->net_dev,
1338 				   "RSS disabled due to allocation failure\n");
1339 			return 1;
1340 		}
1341 
1342 		count = 0;
1343 		for_each_online_cpu(cpu) {
1344 			if (!cpumask_test_cpu(cpu, thread_mask)) {
1345 				++count;
1346 				cpumask_or(thread_mask, thread_mask,
1347 					   topology_sibling_cpumask(cpu));
1348 			}
1349 		}
1350 
1351 		free_cpumask_var(thread_mask);
1352 	}
1353 
1354 	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1355 	 * table entries that are inaccessible to VFs
1356 	 */
1357 #ifdef CONFIG_SFC_SRIOV
1358 	if (efx->type->sriov_wanted) {
1359 		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1360 		    count > efx_vf_size(efx)) {
1361 			netif_warn(efx, probe, efx->net_dev,
1362 				   "Reducing number of RSS channels from %u to %u for "
1363 				   "VF support. Increase vf-msix-limit to use more "
1364 				   "channels on the PF.\n",
1365 				   count, efx_vf_size(efx));
1366 			count = efx_vf_size(efx);
1367 		}
1368 	}
1369 #endif
1370 
1371 	return count;
1372 }
1373 
1374 /* Probe the number and type of interrupts we are able to obtain, and
1375  * the resulting numbers of channels and RX queues.
1376  */
1377 static int efx_probe_interrupts(struct efx_nic *efx)
1378 {
1379 	unsigned int extra_channels = 0;
1380 	unsigned int i, j;
1381 	int rc;
1382 
1383 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1384 		if (efx->extra_channel_type[i])
1385 			++extra_channels;
1386 
1387 	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1388 		struct msix_entry xentries[EFX_MAX_CHANNELS];
1389 		unsigned int n_channels;
1390 
1391 		n_channels = efx_wanted_parallelism(efx);
1392 		if (efx_separate_tx_channels)
1393 			n_channels *= 2;
1394 		n_channels += extra_channels;
1395 		n_channels = min(n_channels, efx->max_channels);
1396 
1397 		for (i = 0; i < n_channels; i++)
1398 			xentries[i].entry = i;
1399 		rc = pci_enable_msix_range(efx->pci_dev,
1400 					   xentries, 1, n_channels);
1401 		if (rc < 0) {
1402 			/* Fall back to single channel MSI */
1403 			efx->interrupt_mode = EFX_INT_MODE_MSI;
1404 			netif_err(efx, drv, efx->net_dev,
1405 				  "could not enable MSI-X\n");
1406 		} else if (rc < n_channels) {
1407 			netif_err(efx, drv, efx->net_dev,
1408 				  "WARNING: Insufficient MSI-X vectors"
1409 				  " available (%d < %u).\n", rc, n_channels);
1410 			netif_err(efx, drv, efx->net_dev,
1411 				  "WARNING: Performance may be reduced.\n");
1412 			n_channels = rc;
1413 		}
1414 
1415 		if (rc > 0) {
1416 			efx->n_channels = n_channels;
1417 			if (n_channels > extra_channels)
1418 				n_channels -= extra_channels;
1419 			if (efx_separate_tx_channels) {
1420 				efx->n_tx_channels = min(max(n_channels / 2,
1421 							     1U),
1422 							 efx->max_tx_channels);
1423 				efx->n_rx_channels = max(n_channels -
1424 							 efx->n_tx_channels,
1425 							 1U);
1426 			} else {
1427 				efx->n_tx_channels = min(n_channels,
1428 							 efx->max_tx_channels);
1429 				efx->n_rx_channels = n_channels;
1430 			}
1431 			for (i = 0; i < efx->n_channels; i++)
1432 				efx_get_channel(efx, i)->irq =
1433 					xentries[i].vector;
1434 		}
1435 	}
1436 
1437 	/* Try single interrupt MSI */
1438 	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1439 		efx->n_channels = 1;
1440 		efx->n_rx_channels = 1;
1441 		efx->n_tx_channels = 1;
1442 		rc = pci_enable_msi(efx->pci_dev);
1443 		if (rc == 0) {
1444 			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1445 		} else {
1446 			netif_err(efx, drv, efx->net_dev,
1447 				  "could not enable MSI\n");
1448 			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1449 		}
1450 	}
1451 
1452 	/* Assume legacy interrupts */
1453 	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1454 		efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
1455 		efx->n_rx_channels = 1;
1456 		efx->n_tx_channels = 1;
1457 		efx->legacy_irq = efx->pci_dev->irq;
1458 	}
1459 
1460 	/* Assign extra channels if possible */
1461 	j = efx->n_channels;
1462 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1463 		if (!efx->extra_channel_type[i])
1464 			continue;
1465 		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1466 		    efx->n_channels <= extra_channels) {
1467 			efx->extra_channel_type[i]->handle_no_channel(efx);
1468 		} else {
1469 			--j;
1470 			efx_get_channel(efx, j)->type =
1471 				efx->extra_channel_type[i];
1472 		}
1473 	}
1474 
1475 	/* RSS might be usable on VFs even if it is disabled on the PF */
1476 #ifdef CONFIG_SFC_SRIOV
1477 	if (efx->type->sriov_wanted) {
1478 		efx->rss_spread = ((efx->n_rx_channels > 1 ||
1479 				    !efx->type->sriov_wanted(efx)) ?
1480 				   efx->n_rx_channels : efx_vf_size(efx));
1481 		return 0;
1482 	}
1483 #endif
1484 	efx->rss_spread = efx->n_rx_channels;
1485 
1486 	return 0;
1487 }
1488 
1489 static int efx_soft_enable_interrupts(struct efx_nic *efx)
1490 {
1491 	struct efx_channel *channel, *end_channel;
1492 	int rc;
1493 
1494 	BUG_ON(efx->state == STATE_DISABLED);
1495 
1496 	efx->irq_soft_enabled = true;
1497 	smp_wmb();
1498 
1499 	efx_for_each_channel(channel, efx) {
1500 		if (!channel->type->keep_eventq) {
1501 			rc = efx_init_eventq(channel);
1502 			if (rc)
1503 				goto fail;
1504 		}
1505 		efx_start_eventq(channel);
1506 	}
1507 
1508 	efx_mcdi_mode_event(efx);
1509 
1510 	return 0;
1511 fail:
1512 	end_channel = channel;
1513 	efx_for_each_channel(channel, efx) {
1514 		if (channel == end_channel)
1515 			break;
1516 		efx_stop_eventq(channel);
1517 		if (!channel->type->keep_eventq)
1518 			efx_fini_eventq(channel);
1519 	}
1520 
1521 	return rc;
1522 }
1523 
1524 static void efx_soft_disable_interrupts(struct efx_nic *efx)
1525 {
1526 	struct efx_channel *channel;
1527 
1528 	if (efx->state == STATE_DISABLED)
1529 		return;
1530 
1531 	efx_mcdi_mode_poll(efx);
1532 
1533 	efx->irq_soft_enabled = false;
1534 	smp_wmb();
1535 
1536 	if (efx->legacy_irq)
1537 		synchronize_irq(efx->legacy_irq);
1538 
1539 	efx_for_each_channel(channel, efx) {
1540 		if (channel->irq)
1541 			synchronize_irq(channel->irq);
1542 
1543 		efx_stop_eventq(channel);
1544 		if (!channel->type->keep_eventq)
1545 			efx_fini_eventq(channel);
1546 	}
1547 
1548 	/* Flush the asynchronous MCDI request queue */
1549 	efx_mcdi_flush_async(efx);
1550 }
1551 
1552 static int efx_enable_interrupts(struct efx_nic *efx)
1553 {
1554 	struct efx_channel *channel, *end_channel;
1555 	int rc;
1556 
1557 	BUG_ON(efx->state == STATE_DISABLED);
1558 
1559 	if (efx->eeh_disabled_legacy_irq) {
1560 		enable_irq(efx->legacy_irq);
1561 		efx->eeh_disabled_legacy_irq = false;
1562 	}
1563 
1564 	efx->type->irq_enable_master(efx);
1565 
1566 	efx_for_each_channel(channel, efx) {
1567 		if (channel->type->keep_eventq) {
1568 			rc = efx_init_eventq(channel);
1569 			if (rc)
1570 				goto fail;
1571 		}
1572 	}
1573 
1574 	rc = efx_soft_enable_interrupts(efx);
1575 	if (rc)
1576 		goto fail;
1577 
1578 	return 0;
1579 
1580 fail:
1581 	end_channel = channel;
1582 	efx_for_each_channel(channel, efx) {
1583 		if (channel == end_channel)
1584 			break;
1585 		if (channel->type->keep_eventq)
1586 			efx_fini_eventq(channel);
1587 	}
1588 
1589 	efx->type->irq_disable_non_ev(efx);
1590 
1591 	return rc;
1592 }
1593 
1594 static void efx_disable_interrupts(struct efx_nic *efx)
1595 {
1596 	struct efx_channel *channel;
1597 
1598 	efx_soft_disable_interrupts(efx);
1599 
1600 	efx_for_each_channel(channel, efx) {
1601 		if (channel->type->keep_eventq)
1602 			efx_fini_eventq(channel);
1603 	}
1604 
1605 	efx->type->irq_disable_non_ev(efx);
1606 }
1607 
1608 static void efx_remove_interrupts(struct efx_nic *efx)
1609 {
1610 	struct efx_channel *channel;
1611 
1612 	/* Remove MSI/MSI-X interrupts */
1613 	efx_for_each_channel(channel, efx)
1614 		channel->irq = 0;
1615 	pci_disable_msi(efx->pci_dev);
1616 	pci_disable_msix(efx->pci_dev);
1617 
1618 	/* Remove legacy interrupt */
1619 	efx->legacy_irq = 0;
1620 }
1621 
1622 static void efx_set_channels(struct efx_nic *efx)
1623 {
1624 	struct efx_channel *channel;
1625 	struct efx_tx_queue *tx_queue;
1626 
1627 	efx->tx_channel_offset =
1628 		efx_separate_tx_channels ?
1629 		efx->n_channels - efx->n_tx_channels : 0;
1630 
1631 	/* We need to mark which channels really have RX and TX
1632 	 * queues, and adjust the TX queue numbers if we have separate
1633 	 * RX-only and TX-only channels.
1634 	 */
1635 	efx_for_each_channel(channel, efx) {
1636 		if (channel->channel < efx->n_rx_channels)
1637 			channel->rx_queue.core_index = channel->channel;
1638 		else
1639 			channel->rx_queue.core_index = -1;
1640 
1641 		efx_for_each_channel_tx_queue(tx_queue, channel)
1642 			tx_queue->queue -= (efx->tx_channel_offset *
1643 					    EFX_TXQ_TYPES);
1644 	}
1645 }
1646 
1647 static int efx_probe_nic(struct efx_nic *efx)
1648 {
1649 	int rc;
1650 
1651 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1652 
1653 	/* Carry out hardware-type specific initialisation */
1654 	rc = efx->type->probe(efx);
1655 	if (rc)
1656 		return rc;
1657 
1658 	do {
1659 		if (!efx->max_channels || !efx->max_tx_channels) {
1660 			netif_err(efx, drv, efx->net_dev,
1661 				  "Insufficient resources to allocate"
1662 				  " any channels\n");
1663 			rc = -ENOSPC;
1664 			goto fail1;
1665 		}
1666 
1667 		/* Determine the number of channels and queues by trying
1668 		 * to hook in MSI-X interrupts.
1669 		 */
1670 		rc = efx_probe_interrupts(efx);
1671 		if (rc)
1672 			goto fail1;
1673 
1674 		efx_set_channels(efx);
1675 
1676 		/* dimension_resources can fail with EAGAIN */
1677 		rc = efx->type->dimension_resources(efx);
1678 		if (rc != 0 && rc != -EAGAIN)
1679 			goto fail2;
1680 
1681 		if (rc == -EAGAIN)
1682 			/* try again with new max_channels */
1683 			efx_remove_interrupts(efx);
1684 
1685 	} while (rc == -EAGAIN);
1686 
1687 	if (efx->n_channels > 1)
1688 		netdev_rss_key_fill(&efx->rx_hash_key,
1689 				    sizeof(efx->rx_hash_key));
1690 	efx_set_default_rx_indir_table(efx);
1691 
1692 	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1693 	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1694 
1695 	/* Initialise the interrupt moderation settings */
1696 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1697 				true);
1698 
1699 	return 0;
1700 
1701 fail2:
1702 	efx_remove_interrupts(efx);
1703 fail1:
1704 	efx->type->remove(efx);
1705 	return rc;
1706 }
1707 
1708 static void efx_remove_nic(struct efx_nic *efx)
1709 {
1710 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1711 
1712 	efx_remove_interrupts(efx);
1713 	efx->type->remove(efx);
1714 }
1715 
1716 static int efx_probe_filters(struct efx_nic *efx)
1717 {
1718 	int rc;
1719 
1720 	spin_lock_init(&efx->filter_lock);
1721 	init_rwsem(&efx->filter_sem);
1722 	down_write(&efx->filter_sem);
1723 	rc = efx->type->filter_table_probe(efx);
1724 	if (rc)
1725 		goto out_unlock;
1726 
1727 #ifdef CONFIG_RFS_ACCEL
1728 	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1729 		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1730 					   sizeof(*efx->rps_flow_id),
1731 					   GFP_KERNEL);
1732 		if (!efx->rps_flow_id) {
1733 			efx->type->filter_table_remove(efx);
1734 			rc = -ENOMEM;
1735 			goto out_unlock;
1736 		}
1737 	}
1738 #endif
1739 out_unlock:
1740 	up_write(&efx->filter_sem);
1741 	return rc;
1742 }
1743 
1744 static void efx_remove_filters(struct efx_nic *efx)
1745 {
1746 #ifdef CONFIG_RFS_ACCEL
1747 	kfree(efx->rps_flow_id);
1748 #endif
1749 	down_write(&efx->filter_sem);
1750 	efx->type->filter_table_remove(efx);
1751 	up_write(&efx->filter_sem);
1752 }
1753 
1754 static void efx_restore_filters(struct efx_nic *efx)
1755 {
1756 	down_read(&efx->filter_sem);
1757 	efx->type->filter_table_restore(efx);
1758 	up_read(&efx->filter_sem);
1759 }
1760 
1761 /**************************************************************************
1762  *
1763  * NIC startup/shutdown
1764  *
1765  *************************************************************************/
1766 
1767 static int efx_probe_all(struct efx_nic *efx)
1768 {
1769 	int rc;
1770 
1771 	rc = efx_probe_nic(efx);
1772 	if (rc) {
1773 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1774 		goto fail1;
1775 	}
1776 
1777 	rc = efx_probe_port(efx);
1778 	if (rc) {
1779 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1780 		goto fail2;
1781 	}
1782 
1783 	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1784 	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1785 		rc = -EINVAL;
1786 		goto fail3;
1787 	}
1788 	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1789 
1790 #ifdef CONFIG_SFC_SRIOV
1791 	rc = efx->type->vswitching_probe(efx);
1792 	if (rc) /* not fatal; the PF will still work fine */
1793 		netif_warn(efx, probe, efx->net_dev,
1794 			   "failed to setup vswitching rc=%d;"
1795 			   " VFs may not function\n", rc);
1796 #endif
1797 
1798 	rc = efx_probe_filters(efx);
1799 	if (rc) {
1800 		netif_err(efx, probe, efx->net_dev,
1801 			  "failed to create filter tables\n");
1802 		goto fail4;
1803 	}
1804 
1805 	rc = efx_probe_channels(efx);
1806 	if (rc)
1807 		goto fail5;
1808 
1809 	return 0;
1810 
1811  fail5:
1812 	efx_remove_filters(efx);
1813  fail4:
1814 #ifdef CONFIG_SFC_SRIOV
1815 	efx->type->vswitching_remove(efx);
1816 #endif
1817  fail3:
1818 	efx_remove_port(efx);
1819  fail2:
1820 	efx_remove_nic(efx);
1821  fail1:
1822 	return rc;
1823 }
1824 
1825 /* If the interface is supposed to be running but is not, start
1826  * the hardware and software data path, regular activity for the port
1827  * (MAC statistics, link polling, etc.) and schedule the port to be
1828  * reconfigured.  Interrupts must already be enabled.  This function
1829  * is safe to call multiple times, so long as the NIC is not disabled.
1830  * Requires the RTNL lock.
1831  */
1832 static void efx_start_all(struct efx_nic *efx)
1833 {
1834 	EFX_ASSERT_RESET_SERIALISED(efx);
1835 	BUG_ON(efx->state == STATE_DISABLED);
1836 
1837 	/* Check that it is appropriate to restart the interface. All
1838 	 * of these flags are safe to read under just the rtnl lock */
1839 	if (efx->port_enabled || !netif_running(efx->net_dev) ||
1840 	    efx->reset_pending)
1841 		return;
1842 
1843 	efx_start_port(efx);
1844 	efx_start_datapath(efx);
1845 
1846 	/* Start the hardware monitor if there is one */
1847 	if (efx->type->monitor != NULL)
1848 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1849 				   efx_monitor_interval);
1850 
1851 	/* If link state detection is normally event-driven, we have
1852 	 * to poll now because we could have missed a change
1853 	 */
1854 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1855 		mutex_lock(&efx->mac_lock);
1856 		if (efx->phy_op->poll(efx))
1857 			efx_link_status_changed(efx);
1858 		mutex_unlock(&efx->mac_lock);
1859 	}
1860 
1861 	efx->type->start_stats(efx);
1862 	efx->type->pull_stats(efx);
1863 	spin_lock_bh(&efx->stats_lock);
1864 	efx->type->update_stats(efx, NULL, NULL);
1865 	spin_unlock_bh(&efx->stats_lock);
1866 }
1867 
1868 /* Quiesce the hardware and software data path, and regular activity
1869  * for the port without bringing the link down.  Safe to call multiple
1870  * times with the NIC in almost any state, but interrupts should be
1871  * enabled.  Requires the RTNL lock.
1872  */
1873 static void efx_stop_all(struct efx_nic *efx)
1874 {
1875 	EFX_ASSERT_RESET_SERIALISED(efx);
1876 
1877 	/* port_enabled can be read safely under the rtnl lock */
1878 	if (!efx->port_enabled)
1879 		return;
1880 
1881 	/* update stats before we go down so we can accurately count
1882 	 * rx_nodesc_drops
1883 	 */
1884 	efx->type->pull_stats(efx);
1885 	spin_lock_bh(&efx->stats_lock);
1886 	efx->type->update_stats(efx, NULL, NULL);
1887 	spin_unlock_bh(&efx->stats_lock);
1888 	efx->type->stop_stats(efx);
1889 	efx_stop_port(efx);
1890 
1891 	/* Stop the kernel transmit interface.  This is only valid if
1892 	 * the device is stopped or detached; otherwise the watchdog
1893 	 * may fire immediately.
1894 	 */
1895 	WARN_ON(netif_running(efx->net_dev) &&
1896 		netif_device_present(efx->net_dev));
1897 	netif_tx_disable(efx->net_dev);
1898 
1899 	efx_stop_datapath(efx);
1900 }
1901 
1902 static void efx_remove_all(struct efx_nic *efx)
1903 {
1904 	efx_remove_channels(efx);
1905 	efx_remove_filters(efx);
1906 #ifdef CONFIG_SFC_SRIOV
1907 	efx->type->vswitching_remove(efx);
1908 #endif
1909 	efx_remove_port(efx);
1910 	efx_remove_nic(efx);
1911 }
1912 
1913 /**************************************************************************
1914  *
1915  * Interrupt moderation
1916  *
1917  **************************************************************************/
1918 
1919 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1920 {
1921 	if (usecs == 0)
1922 		return 0;
1923 	if (usecs * 1000 < quantum_ns)
1924 		return 1; /* never round down to 0 */
1925 	return usecs * 1000 / quantum_ns;
1926 }
1927 
1928 /* Set interrupt moderation parameters */
1929 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1930 			    unsigned int rx_usecs, bool rx_adaptive,
1931 			    bool rx_may_override_tx)
1932 {
1933 	struct efx_channel *channel;
1934 	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1935 						efx->timer_quantum_ns,
1936 						1000);
1937 	unsigned int tx_ticks;
1938 	unsigned int rx_ticks;
1939 
1940 	EFX_ASSERT_RESET_SERIALISED(efx);
1941 
1942 	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1943 		return -EINVAL;
1944 
1945 	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1946 	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1947 
1948 	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1949 	    !rx_may_override_tx) {
1950 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1951 			  "RX and TX IRQ moderation must be equal\n");
1952 		return -EINVAL;
1953 	}
1954 
1955 	efx->irq_rx_adaptive = rx_adaptive;
1956 	efx->irq_rx_moderation = rx_ticks;
1957 	efx_for_each_channel(channel, efx) {
1958 		if (efx_channel_has_rx_queue(channel))
1959 			channel->irq_moderation = rx_ticks;
1960 		else if (efx_channel_has_tx_queues(channel))
1961 			channel->irq_moderation = tx_ticks;
1962 	}
1963 
1964 	return 0;
1965 }
1966 
1967 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1968 			    unsigned int *rx_usecs, bool *rx_adaptive)
1969 {
1970 	/* We must round up when converting ticks to microseconds
1971 	 * because we round down when converting the other way.
1972 	 */
1973 
1974 	*rx_adaptive = efx->irq_rx_adaptive;
1975 	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1976 				 efx->timer_quantum_ns,
1977 				 1000);
1978 
1979 	/* If channels are shared between RX and TX, so is IRQ
1980 	 * moderation.  Otherwise, IRQ moderation is the same for all
1981 	 * TX channels and is not adaptive.
1982 	 */
1983 	if (efx->tx_channel_offset == 0)
1984 		*tx_usecs = *rx_usecs;
1985 	else
1986 		*tx_usecs = DIV_ROUND_UP(
1987 			efx->channel[efx->tx_channel_offset]->irq_moderation *
1988 			efx->timer_quantum_ns,
1989 			1000);
1990 }
1991 
1992 /**************************************************************************
1993  *
1994  * Hardware monitor
1995  *
1996  **************************************************************************/
1997 
1998 /* Run periodically off the general workqueue */
1999 static void efx_monitor(struct work_struct *data)
2000 {
2001 	struct efx_nic *efx = container_of(data, struct efx_nic,
2002 					   monitor_work.work);
2003 
2004 	netif_vdbg(efx, timer, efx->net_dev,
2005 		   "hardware monitor executing on CPU %d\n",
2006 		   raw_smp_processor_id());
2007 	BUG_ON(efx->type->monitor == NULL);
2008 
2009 	/* If the mac_lock is already held then it is likely a port
2010 	 * reconfiguration is already in place, which will likely do
2011 	 * most of the work of monitor() anyway. */
2012 	if (mutex_trylock(&efx->mac_lock)) {
2013 		if (efx->port_enabled)
2014 			efx->type->monitor(efx);
2015 		mutex_unlock(&efx->mac_lock);
2016 	}
2017 
2018 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
2019 			   efx_monitor_interval);
2020 }
2021 
2022 /**************************************************************************
2023  *
2024  * ioctls
2025  *
2026  *************************************************************************/
2027 
2028 /* Net device ioctl
2029  * Context: process, rtnl_lock() held.
2030  */
2031 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2032 {
2033 	struct efx_nic *efx = netdev_priv(net_dev);
2034 	struct mii_ioctl_data *data = if_mii(ifr);
2035 
2036 	if (cmd == SIOCSHWTSTAMP)
2037 		return efx_ptp_set_ts_config(efx, ifr);
2038 	if (cmd == SIOCGHWTSTAMP)
2039 		return efx_ptp_get_ts_config(efx, ifr);
2040 
2041 	/* Convert phy_id from older PRTAD/DEVAD format */
2042 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2043 	    (data->phy_id & 0xfc00) == 0x0400)
2044 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2045 
2046 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2047 }
2048 
2049 /**************************************************************************
2050  *
2051  * NAPI interface
2052  *
2053  **************************************************************************/
2054 
2055 static void efx_init_napi_channel(struct efx_channel *channel)
2056 {
2057 	struct efx_nic *efx = channel->efx;
2058 
2059 	channel->napi_dev = efx->net_dev;
2060 	netif_napi_add(channel->napi_dev, &channel->napi_str,
2061 		       efx_poll, napi_weight);
2062 	napi_hash_add(&channel->napi_str);
2063 	efx_channel_busy_poll_init(channel);
2064 }
2065 
2066 static void efx_init_napi(struct efx_nic *efx)
2067 {
2068 	struct efx_channel *channel;
2069 
2070 	efx_for_each_channel(channel, efx)
2071 		efx_init_napi_channel(channel);
2072 }
2073 
2074 static void efx_fini_napi_channel(struct efx_channel *channel)
2075 {
2076 	if (channel->napi_dev) {
2077 		netif_napi_del(&channel->napi_str);
2078 		napi_hash_del(&channel->napi_str);
2079 	}
2080 	channel->napi_dev = NULL;
2081 }
2082 
2083 static void efx_fini_napi(struct efx_nic *efx)
2084 {
2085 	struct efx_channel *channel;
2086 
2087 	efx_for_each_channel(channel, efx)
2088 		efx_fini_napi_channel(channel);
2089 }
2090 
2091 /**************************************************************************
2092  *
2093  * Kernel netpoll interface
2094  *
2095  *************************************************************************/
2096 
2097 #ifdef CONFIG_NET_POLL_CONTROLLER
2098 
2099 /* Although in the common case interrupts will be disabled, this is not
2100  * guaranteed. However, all our work happens inside the NAPI callback,
2101  * so no locking is required.
2102  */
2103 static void efx_netpoll(struct net_device *net_dev)
2104 {
2105 	struct efx_nic *efx = netdev_priv(net_dev);
2106 	struct efx_channel *channel;
2107 
2108 	efx_for_each_channel(channel, efx)
2109 		efx_schedule_channel(channel);
2110 }
2111 
2112 #endif
2113 
2114 #ifdef CONFIG_NET_RX_BUSY_POLL
2115 static int efx_busy_poll(struct napi_struct *napi)
2116 {
2117 	struct efx_channel *channel =
2118 		container_of(napi, struct efx_channel, napi_str);
2119 	struct efx_nic *efx = channel->efx;
2120 	int budget = 4;
2121 	int old_rx_packets, rx_packets;
2122 
2123 	if (!netif_running(efx->net_dev))
2124 		return LL_FLUSH_FAILED;
2125 
2126 	if (!efx_channel_try_lock_poll(channel))
2127 		return LL_FLUSH_BUSY;
2128 
2129 	old_rx_packets = channel->rx_queue.rx_packets;
2130 	efx_process_channel(channel, budget);
2131 
2132 	rx_packets = channel->rx_queue.rx_packets - old_rx_packets;
2133 
2134 	/* There is no race condition with NAPI here.
2135 	 * NAPI will automatically be rescheduled if it yielded during busy
2136 	 * polling, because it was not able to take the lock and thus returned
2137 	 * the full budget.
2138 	 */
2139 	efx_channel_unlock_poll(channel);
2140 
2141 	return rx_packets;
2142 }
2143 #endif
2144 
2145 /**************************************************************************
2146  *
2147  * Kernel net device interface
2148  *
2149  *************************************************************************/
2150 
2151 /* Context: process, rtnl_lock() held. */
2152 int efx_net_open(struct net_device *net_dev)
2153 {
2154 	struct efx_nic *efx = netdev_priv(net_dev);
2155 	int rc;
2156 
2157 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2158 		  raw_smp_processor_id());
2159 
2160 	rc = efx_check_disabled(efx);
2161 	if (rc)
2162 		return rc;
2163 	if (efx->phy_mode & PHY_MODE_SPECIAL)
2164 		return -EBUSY;
2165 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2166 		return -EIO;
2167 
2168 	/* Notify the kernel of the link state polled during driver load,
2169 	 * before the monitor starts running */
2170 	efx_link_status_changed(efx);
2171 
2172 	efx_start_all(efx);
2173 	efx_selftest_async_start(efx);
2174 	return 0;
2175 }
2176 
2177 /* Context: process, rtnl_lock() held.
2178  * Note that the kernel will ignore our return code; this method
2179  * should really be a void.
2180  */
2181 int efx_net_stop(struct net_device *net_dev)
2182 {
2183 	struct efx_nic *efx = netdev_priv(net_dev);
2184 
2185 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2186 		  raw_smp_processor_id());
2187 
2188 	/* Stop the device and flush all the channels */
2189 	efx_stop_all(efx);
2190 
2191 	return 0;
2192 }
2193 
2194 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2195 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2196 					       struct rtnl_link_stats64 *stats)
2197 {
2198 	struct efx_nic *efx = netdev_priv(net_dev);
2199 
2200 	spin_lock_bh(&efx->stats_lock);
2201 	efx->type->update_stats(efx, NULL, stats);
2202 	spin_unlock_bh(&efx->stats_lock);
2203 
2204 	return stats;
2205 }
2206 
2207 /* Context: netif_tx_lock held, BHs disabled. */
2208 static void efx_watchdog(struct net_device *net_dev)
2209 {
2210 	struct efx_nic *efx = netdev_priv(net_dev);
2211 
2212 	netif_err(efx, tx_err, efx->net_dev,
2213 		  "TX stuck with port_enabled=%d: resetting channels\n",
2214 		  efx->port_enabled);
2215 
2216 	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2217 }
2218 
2219 
2220 /* Context: process, rtnl_lock() held. */
2221 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2222 {
2223 	struct efx_nic *efx = netdev_priv(net_dev);
2224 	int rc;
2225 
2226 	rc = efx_check_disabled(efx);
2227 	if (rc)
2228 		return rc;
2229 	if (new_mtu > EFX_MAX_MTU)
2230 		return -EINVAL;
2231 
2232 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2233 
2234 	efx_device_detach_sync(efx);
2235 	efx_stop_all(efx);
2236 
2237 	mutex_lock(&efx->mac_lock);
2238 	net_dev->mtu = new_mtu;
2239 	efx_mac_reconfigure(efx);
2240 	mutex_unlock(&efx->mac_lock);
2241 
2242 	efx_start_all(efx);
2243 	netif_device_attach(efx->net_dev);
2244 	return 0;
2245 }
2246 
2247 static int efx_set_mac_address(struct net_device *net_dev, void *data)
2248 {
2249 	struct efx_nic *efx = netdev_priv(net_dev);
2250 	struct sockaddr *addr = data;
2251 	u8 *new_addr = addr->sa_data;
2252 	u8 old_addr[6];
2253 	int rc;
2254 
2255 	if (!is_valid_ether_addr(new_addr)) {
2256 		netif_err(efx, drv, efx->net_dev,
2257 			  "invalid ethernet MAC address requested: %pM\n",
2258 			  new_addr);
2259 		return -EADDRNOTAVAIL;
2260 	}
2261 
2262 	/* save old address */
2263 	ether_addr_copy(old_addr, net_dev->dev_addr);
2264 	ether_addr_copy(net_dev->dev_addr, new_addr);
2265 	if (efx->type->set_mac_address) {
2266 		rc = efx->type->set_mac_address(efx);
2267 		if (rc) {
2268 			ether_addr_copy(net_dev->dev_addr, old_addr);
2269 			return rc;
2270 		}
2271 	}
2272 
2273 	/* Reconfigure the MAC */
2274 	mutex_lock(&efx->mac_lock);
2275 	efx_mac_reconfigure(efx);
2276 	mutex_unlock(&efx->mac_lock);
2277 
2278 	return 0;
2279 }
2280 
2281 /* Context: netif_addr_lock held, BHs disabled. */
2282 static void efx_set_rx_mode(struct net_device *net_dev)
2283 {
2284 	struct efx_nic *efx = netdev_priv(net_dev);
2285 
2286 	if (efx->port_enabled)
2287 		queue_work(efx->workqueue, &efx->mac_work);
2288 	/* Otherwise efx_start_port() will do this */
2289 }
2290 
2291 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2292 {
2293 	struct efx_nic *efx = netdev_priv(net_dev);
2294 
2295 	/* If disabling RX n-tuple filtering, clear existing filters */
2296 	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2297 		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2298 
2299 	return 0;
2300 }
2301 
2302 static const struct net_device_ops efx_netdev_ops = {
2303 	.ndo_open		= efx_net_open,
2304 	.ndo_stop		= efx_net_stop,
2305 	.ndo_get_stats64	= efx_net_stats,
2306 	.ndo_tx_timeout		= efx_watchdog,
2307 	.ndo_start_xmit		= efx_hard_start_xmit,
2308 	.ndo_validate_addr	= eth_validate_addr,
2309 	.ndo_do_ioctl		= efx_ioctl,
2310 	.ndo_change_mtu		= efx_change_mtu,
2311 	.ndo_set_mac_address	= efx_set_mac_address,
2312 	.ndo_set_rx_mode	= efx_set_rx_mode,
2313 	.ndo_set_features	= efx_set_features,
2314 #ifdef CONFIG_SFC_SRIOV
2315 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2316 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2317 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2318 	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2319 	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
2320 	.ndo_get_phys_port_id   = efx_sriov_get_phys_port_id,
2321 #endif
2322 #ifdef CONFIG_NET_POLL_CONTROLLER
2323 	.ndo_poll_controller = efx_netpoll,
2324 #endif
2325 	.ndo_setup_tc		= efx_setup_tc,
2326 #ifdef CONFIG_NET_RX_BUSY_POLL
2327 	.ndo_busy_poll		= efx_busy_poll,
2328 #endif
2329 #ifdef CONFIG_RFS_ACCEL
2330 	.ndo_rx_flow_steer	= efx_filter_rfs,
2331 #endif
2332 };
2333 
2334 static void efx_update_name(struct efx_nic *efx)
2335 {
2336 	strcpy(efx->name, efx->net_dev->name);
2337 	efx_mtd_rename(efx);
2338 	efx_set_channel_names(efx);
2339 }
2340 
2341 static int efx_netdev_event(struct notifier_block *this,
2342 			    unsigned long event, void *ptr)
2343 {
2344 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2345 
2346 	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2347 	    event == NETDEV_CHANGENAME)
2348 		efx_update_name(netdev_priv(net_dev));
2349 
2350 	return NOTIFY_DONE;
2351 }
2352 
2353 static struct notifier_block efx_netdev_notifier = {
2354 	.notifier_call = efx_netdev_event,
2355 };
2356 
2357 static ssize_t
2358 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2359 {
2360 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2361 	return sprintf(buf, "%d\n", efx->phy_type);
2362 }
2363 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2364 
2365 #ifdef CONFIG_SFC_MCDI_LOGGING
2366 static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
2367 			     char *buf)
2368 {
2369 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2370 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2371 
2372 	return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
2373 }
2374 static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
2375 			    const char *buf, size_t count)
2376 {
2377 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2378 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2379 	bool enable = count > 0 && *buf != '0';
2380 
2381 	mcdi->logging_enabled = enable;
2382 	return count;
2383 }
2384 static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
2385 #endif
2386 
2387 static int efx_register_netdev(struct efx_nic *efx)
2388 {
2389 	struct net_device *net_dev = efx->net_dev;
2390 	struct efx_channel *channel;
2391 	int rc;
2392 
2393 	net_dev->watchdog_timeo = 5 * HZ;
2394 	net_dev->irq = efx->pci_dev->irq;
2395 	net_dev->netdev_ops = &efx_netdev_ops;
2396 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2397 		net_dev->priv_flags |= IFF_UNICAST_FLT;
2398 	net_dev->ethtool_ops = &efx_ethtool_ops;
2399 	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2400 
2401 	rtnl_lock();
2402 
2403 	/* Enable resets to be scheduled and check whether any were
2404 	 * already requested.  If so, the NIC is probably hosed so we
2405 	 * abort.
2406 	 */
2407 	efx->state = STATE_READY;
2408 	smp_mb(); /* ensure we change state before checking reset_pending */
2409 	if (efx->reset_pending) {
2410 		netif_err(efx, probe, efx->net_dev,
2411 			  "aborting probe due to scheduled reset\n");
2412 		rc = -EIO;
2413 		goto fail_locked;
2414 	}
2415 
2416 	rc = dev_alloc_name(net_dev, net_dev->name);
2417 	if (rc < 0)
2418 		goto fail_locked;
2419 	efx_update_name(efx);
2420 
2421 	/* Always start with carrier off; PHY events will detect the link */
2422 	netif_carrier_off(net_dev);
2423 
2424 	rc = register_netdevice(net_dev);
2425 	if (rc)
2426 		goto fail_locked;
2427 
2428 	efx_for_each_channel(channel, efx) {
2429 		struct efx_tx_queue *tx_queue;
2430 		efx_for_each_channel_tx_queue(tx_queue, channel)
2431 			efx_init_tx_queue_core_txq(tx_queue);
2432 	}
2433 
2434 	efx_associate(efx);
2435 
2436 	rtnl_unlock();
2437 
2438 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2439 	if (rc) {
2440 		netif_err(efx, drv, efx->net_dev,
2441 			  "failed to init net dev attributes\n");
2442 		goto fail_registered;
2443 	}
2444 #ifdef CONFIG_SFC_MCDI_LOGGING
2445 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2446 	if (rc) {
2447 		netif_err(efx, drv, efx->net_dev,
2448 			  "failed to init net dev attributes\n");
2449 		goto fail_attr_mcdi_logging;
2450 	}
2451 #endif
2452 
2453 	return 0;
2454 
2455 #ifdef CONFIG_SFC_MCDI_LOGGING
2456 fail_attr_mcdi_logging:
2457 	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2458 #endif
2459 fail_registered:
2460 	rtnl_lock();
2461 	efx_dissociate(efx);
2462 	unregister_netdevice(net_dev);
2463 fail_locked:
2464 	efx->state = STATE_UNINIT;
2465 	rtnl_unlock();
2466 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2467 	return rc;
2468 }
2469 
2470 static void efx_unregister_netdev(struct efx_nic *efx)
2471 {
2472 	if (!efx->net_dev)
2473 		return;
2474 
2475 	BUG_ON(netdev_priv(efx->net_dev) != efx);
2476 
2477 	if (efx_dev_registered(efx)) {
2478 		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2479 #ifdef CONFIG_SFC_MCDI_LOGGING
2480 		device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2481 #endif
2482 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2483 		unregister_netdev(efx->net_dev);
2484 	}
2485 }
2486 
2487 /**************************************************************************
2488  *
2489  * Device reset and suspend
2490  *
2491  **************************************************************************/
2492 
2493 /* Tears down the entire software state and most of the hardware state
2494  * before reset.  */
2495 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2496 {
2497 	EFX_ASSERT_RESET_SERIALISED(efx);
2498 
2499 	if (method == RESET_TYPE_MCDI_TIMEOUT)
2500 		efx->type->prepare_flr(efx);
2501 
2502 	efx_stop_all(efx);
2503 	efx_disable_interrupts(efx);
2504 
2505 	mutex_lock(&efx->mac_lock);
2506 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2507 	    method != RESET_TYPE_DATAPATH)
2508 		efx->phy_op->fini(efx);
2509 	efx->type->fini(efx);
2510 }
2511 
2512 /* This function will always ensure that the locks acquired in
2513  * efx_reset_down() are released. A failure return code indicates
2514  * that we were unable to reinitialise the hardware, and the
2515  * driver should be disabled. If ok is false, then the rx and tx
2516  * engines are not restarted, pending a RESET_DISABLE. */
2517 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2518 {
2519 	int rc;
2520 
2521 	EFX_ASSERT_RESET_SERIALISED(efx);
2522 
2523 	if (method == RESET_TYPE_MCDI_TIMEOUT)
2524 		efx->type->finish_flr(efx);
2525 
2526 	/* Ensure that SRAM is initialised even if we're disabling the device */
2527 	rc = efx->type->init(efx);
2528 	if (rc) {
2529 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2530 		goto fail;
2531 	}
2532 
2533 	if (!ok)
2534 		goto fail;
2535 
2536 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2537 	    method != RESET_TYPE_DATAPATH) {
2538 		rc = efx->phy_op->init(efx);
2539 		if (rc)
2540 			goto fail;
2541 		rc = efx->phy_op->reconfigure(efx);
2542 		if (rc && rc != -EPERM)
2543 			netif_err(efx, drv, efx->net_dev,
2544 				  "could not restore PHY settings\n");
2545 	}
2546 
2547 	rc = efx_enable_interrupts(efx);
2548 	if (rc)
2549 		goto fail;
2550 
2551 #ifdef CONFIG_SFC_SRIOV
2552 	rc = efx->type->vswitching_restore(efx);
2553 	if (rc) /* not fatal; the PF will still work fine */
2554 		netif_warn(efx, probe, efx->net_dev,
2555 			   "failed to restore vswitching rc=%d;"
2556 			   " VFs may not function\n", rc);
2557 #endif
2558 
2559 	down_read(&efx->filter_sem);
2560 	efx_restore_filters(efx);
2561 	up_read(&efx->filter_sem);
2562 	if (efx->type->sriov_reset)
2563 		efx->type->sriov_reset(efx);
2564 
2565 	mutex_unlock(&efx->mac_lock);
2566 
2567 	efx_start_all(efx);
2568 
2569 	return 0;
2570 
2571 fail:
2572 	efx->port_initialized = false;
2573 
2574 	mutex_unlock(&efx->mac_lock);
2575 
2576 	return rc;
2577 }
2578 
2579 /* Reset the NIC using the specified method.  Note that the reset may
2580  * fail, in which case the card will be left in an unusable state.
2581  *
2582  * Caller must hold the rtnl_lock.
2583  */
2584 int efx_reset(struct efx_nic *efx, enum reset_type method)
2585 {
2586 	int rc, rc2;
2587 	bool disabled;
2588 
2589 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2590 		   RESET_TYPE(method));
2591 
2592 	efx_device_detach_sync(efx);
2593 	efx_reset_down(efx, method);
2594 
2595 	rc = efx->type->reset(efx, method);
2596 	if (rc) {
2597 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2598 		goto out;
2599 	}
2600 
2601 	/* Clear flags for the scopes we covered.  We assume the NIC and
2602 	 * driver are now quiescent so that there is no race here.
2603 	 */
2604 	if (method < RESET_TYPE_MAX_METHOD)
2605 		efx->reset_pending &= -(1 << (method + 1));
2606 	else /* it doesn't fit into the well-ordered scope hierarchy */
2607 		__clear_bit(method, &efx->reset_pending);
2608 
2609 	/* Reinitialise bus-mastering, which may have been turned off before
2610 	 * the reset was scheduled. This is still appropriate, even in the
2611 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2612 	 * can respond to requests. */
2613 	pci_set_master(efx->pci_dev);
2614 
2615 out:
2616 	/* Leave device stopped if necessary */
2617 	disabled = rc ||
2618 		method == RESET_TYPE_DISABLE ||
2619 		method == RESET_TYPE_RECOVER_OR_DISABLE;
2620 	rc2 = efx_reset_up(efx, method, !disabled);
2621 	if (rc2) {
2622 		disabled = true;
2623 		if (!rc)
2624 			rc = rc2;
2625 	}
2626 
2627 	if (disabled) {
2628 		dev_close(efx->net_dev);
2629 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2630 		efx->state = STATE_DISABLED;
2631 	} else {
2632 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2633 		netif_device_attach(efx->net_dev);
2634 	}
2635 	return rc;
2636 }
2637 
2638 /* Try recovery mechanisms.
2639  * For now only EEH is supported.
2640  * Returns 0 if the recovery mechanisms are unsuccessful.
2641  * Returns a non-zero value otherwise.
2642  */
2643 int efx_try_recovery(struct efx_nic *efx)
2644 {
2645 #ifdef CONFIG_EEH
2646 	/* A PCI error can occur and not be seen by EEH because nothing
2647 	 * happens on the PCI bus. In this case the driver may fail and
2648 	 * schedule a 'recover or reset', leading to this recovery handler.
2649 	 * Manually call the eeh failure check function.
2650 	 */
2651 	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2652 	if (eeh_dev_check_failure(eehdev)) {
2653 		/* The EEH mechanisms will handle the error and reset the
2654 		 * device if necessary.
2655 		 */
2656 		return 1;
2657 	}
2658 #endif
2659 	return 0;
2660 }
2661 
2662 static void efx_wait_for_bist_end(struct efx_nic *efx)
2663 {
2664 	int i;
2665 
2666 	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2667 		if (efx_mcdi_poll_reboot(efx))
2668 			goto out;
2669 		msleep(BIST_WAIT_DELAY_MS);
2670 	}
2671 
2672 	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2673 out:
2674 	/* Either way unset the BIST flag. If we found no reboot we probably
2675 	 * won't recover, but we should try.
2676 	 */
2677 	efx->mc_bist_for_other_fn = false;
2678 }
2679 
2680 /* The worker thread exists so that code that cannot sleep can
2681  * schedule a reset for later.
2682  */
2683 static void efx_reset_work(struct work_struct *data)
2684 {
2685 	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2686 	unsigned long pending;
2687 	enum reset_type method;
2688 
2689 	pending = ACCESS_ONCE(efx->reset_pending);
2690 	method = fls(pending) - 1;
2691 
2692 	if (method == RESET_TYPE_MC_BIST)
2693 		efx_wait_for_bist_end(efx);
2694 
2695 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2696 	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2697 	    efx_try_recovery(efx))
2698 		return;
2699 
2700 	if (!pending)
2701 		return;
2702 
2703 	rtnl_lock();
2704 
2705 	/* We checked the state in efx_schedule_reset() but it may
2706 	 * have changed by now.  Now that we have the RTNL lock,
2707 	 * it cannot change again.
2708 	 */
2709 	if (efx->state == STATE_READY)
2710 		(void)efx_reset(efx, method);
2711 
2712 	rtnl_unlock();
2713 }
2714 
2715 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2716 {
2717 	enum reset_type method;
2718 
2719 	if (efx->state == STATE_RECOVERY) {
2720 		netif_dbg(efx, drv, efx->net_dev,
2721 			  "recovering: skip scheduling %s reset\n",
2722 			  RESET_TYPE(type));
2723 		return;
2724 	}
2725 
2726 	switch (type) {
2727 	case RESET_TYPE_INVISIBLE:
2728 	case RESET_TYPE_ALL:
2729 	case RESET_TYPE_RECOVER_OR_ALL:
2730 	case RESET_TYPE_WORLD:
2731 	case RESET_TYPE_DISABLE:
2732 	case RESET_TYPE_RECOVER_OR_DISABLE:
2733 	case RESET_TYPE_DATAPATH:
2734 	case RESET_TYPE_MC_BIST:
2735 	case RESET_TYPE_MCDI_TIMEOUT:
2736 		method = type;
2737 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2738 			  RESET_TYPE(method));
2739 		break;
2740 	default:
2741 		method = efx->type->map_reset_reason(type);
2742 		netif_dbg(efx, drv, efx->net_dev,
2743 			  "scheduling %s reset for %s\n",
2744 			  RESET_TYPE(method), RESET_TYPE(type));
2745 		break;
2746 	}
2747 
2748 	set_bit(method, &efx->reset_pending);
2749 	smp_mb(); /* ensure we change reset_pending before checking state */
2750 
2751 	/* If we're not READY then just leave the flags set as the cue
2752 	 * to abort probing or reschedule the reset later.
2753 	 */
2754 	if (ACCESS_ONCE(efx->state) != STATE_READY)
2755 		return;
2756 
2757 	/* efx_process_channel() will no longer read events once a
2758 	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2759 	efx_mcdi_mode_poll(efx);
2760 
2761 	queue_work(reset_workqueue, &efx->reset_work);
2762 }
2763 
2764 /**************************************************************************
2765  *
2766  * List of NICs we support
2767  *
2768  **************************************************************************/
2769 
2770 /* PCI device ID table */
2771 static const struct pci_device_id efx_pci_table[] = {
2772 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2773 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2774 	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2775 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2776 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2777 	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2778 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2779 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2780 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2781 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2782 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2783 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2784 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
2785 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2786 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
2787 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2788 	{0}			/* end of list */
2789 };
2790 
2791 /**************************************************************************
2792  *
2793  * Dummy PHY/MAC operations
2794  *
2795  * Can be used for some unimplemented operations
2796  * Needed so all function pointers are valid and do not have to be tested
2797  * before use
2798  *
2799  **************************************************************************/
2800 int efx_port_dummy_op_int(struct efx_nic *efx)
2801 {
2802 	return 0;
2803 }
2804 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2805 
2806 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2807 {
2808 	return false;
2809 }
2810 
2811 static const struct efx_phy_operations efx_dummy_phy_operations = {
2812 	.init		 = efx_port_dummy_op_int,
2813 	.reconfigure	 = efx_port_dummy_op_int,
2814 	.poll		 = efx_port_dummy_op_poll,
2815 	.fini		 = efx_port_dummy_op_void,
2816 };
2817 
2818 /**************************************************************************
2819  *
2820  * Data housekeeping
2821  *
2822  **************************************************************************/
2823 
2824 /* This zeroes out and then fills in the invariants in a struct
2825  * efx_nic (including all sub-structures).
2826  */
2827 static int efx_init_struct(struct efx_nic *efx,
2828 			   struct pci_dev *pci_dev, struct net_device *net_dev)
2829 {
2830 	int i;
2831 
2832 	/* Initialise common structures */
2833 	INIT_LIST_HEAD(&efx->node);
2834 	INIT_LIST_HEAD(&efx->secondary_list);
2835 	spin_lock_init(&efx->biu_lock);
2836 #ifdef CONFIG_SFC_MTD
2837 	INIT_LIST_HEAD(&efx->mtd_list);
2838 #endif
2839 	INIT_WORK(&efx->reset_work, efx_reset_work);
2840 	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2841 	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2842 	efx->pci_dev = pci_dev;
2843 	efx->msg_enable = debug;
2844 	efx->state = STATE_UNINIT;
2845 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2846 
2847 	efx->net_dev = net_dev;
2848 	efx->rx_prefix_size = efx->type->rx_prefix_size;
2849 	efx->rx_ip_align =
2850 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2851 	efx->rx_packet_hash_offset =
2852 		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2853 	efx->rx_packet_ts_offset =
2854 		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2855 	spin_lock_init(&efx->stats_lock);
2856 	mutex_init(&efx->mac_lock);
2857 	efx->phy_op = &efx_dummy_phy_operations;
2858 	efx->mdio.dev = net_dev;
2859 	INIT_WORK(&efx->mac_work, efx_mac_work);
2860 	init_waitqueue_head(&efx->flush_wq);
2861 
2862 	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2863 		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2864 		if (!efx->channel[i])
2865 			goto fail;
2866 		efx->msi_context[i].efx = efx;
2867 		efx->msi_context[i].index = i;
2868 	}
2869 
2870 	/* Higher numbered interrupt modes are less capable! */
2871 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2872 				  interrupt_mode);
2873 
2874 	/* Would be good to use the net_dev name, but we're too early */
2875 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2876 		 pci_name(pci_dev));
2877 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2878 	if (!efx->workqueue)
2879 		goto fail;
2880 
2881 	return 0;
2882 
2883 fail:
2884 	efx_fini_struct(efx);
2885 	return -ENOMEM;
2886 }
2887 
2888 static void efx_fini_struct(struct efx_nic *efx)
2889 {
2890 	int i;
2891 
2892 	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2893 		kfree(efx->channel[i]);
2894 
2895 	kfree(efx->vpd_sn);
2896 
2897 	if (efx->workqueue) {
2898 		destroy_workqueue(efx->workqueue);
2899 		efx->workqueue = NULL;
2900 	}
2901 }
2902 
2903 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
2904 {
2905 	u64 n_rx_nodesc_trunc = 0;
2906 	struct efx_channel *channel;
2907 
2908 	efx_for_each_channel(channel, efx)
2909 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2910 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2911 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2912 }
2913 
2914 /**************************************************************************
2915  *
2916  * PCI interface
2917  *
2918  **************************************************************************/
2919 
2920 /* Main body of final NIC shutdown code
2921  * This is called only at module unload (or hotplug removal).
2922  */
2923 static void efx_pci_remove_main(struct efx_nic *efx)
2924 {
2925 	/* Flush reset_work. It can no longer be scheduled since we
2926 	 * are not READY.
2927 	 */
2928 	BUG_ON(efx->state == STATE_READY);
2929 	cancel_work_sync(&efx->reset_work);
2930 
2931 	efx_disable_interrupts(efx);
2932 	efx_nic_fini_interrupt(efx);
2933 	efx_fini_port(efx);
2934 	efx->type->fini(efx);
2935 	efx_fini_napi(efx);
2936 	efx_remove_all(efx);
2937 }
2938 
2939 /* Final NIC shutdown
2940  * This is called only at module unload (or hotplug removal).  A PF can call
2941  * this on its VFs to ensure they are unbound first.
2942  */
2943 static void efx_pci_remove(struct pci_dev *pci_dev)
2944 {
2945 	struct efx_nic *efx;
2946 
2947 	efx = pci_get_drvdata(pci_dev);
2948 	if (!efx)
2949 		return;
2950 
2951 	/* Mark the NIC as fini, then stop the interface */
2952 	rtnl_lock();
2953 	efx_dissociate(efx);
2954 	dev_close(efx->net_dev);
2955 	efx_disable_interrupts(efx);
2956 	efx->state = STATE_UNINIT;
2957 	rtnl_unlock();
2958 
2959 	if (efx->type->sriov_fini)
2960 		efx->type->sriov_fini(efx);
2961 
2962 	efx_unregister_netdev(efx);
2963 
2964 	efx_mtd_remove(efx);
2965 
2966 	efx_pci_remove_main(efx);
2967 
2968 	efx_fini_io(efx);
2969 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2970 
2971 	efx_fini_struct(efx);
2972 	free_netdev(efx->net_dev);
2973 
2974 	pci_disable_pcie_error_reporting(pci_dev);
2975 };
2976 
2977 /* NIC VPD information
2978  * Called during probe to display the part number of the
2979  * installed NIC.  VPD is potentially very large but this should
2980  * always appear within the first 512 bytes.
2981  */
2982 #define SFC_VPD_LEN 512
2983 static void efx_probe_vpd_strings(struct efx_nic *efx)
2984 {
2985 	struct pci_dev *dev = efx->pci_dev;
2986 	char vpd_data[SFC_VPD_LEN];
2987 	ssize_t vpd_size;
2988 	int ro_start, ro_size, i, j;
2989 
2990 	/* Get the vpd data from the device */
2991 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2992 	if (vpd_size <= 0) {
2993 		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2994 		return;
2995 	}
2996 
2997 	/* Get the Read only section */
2998 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2999 	if (ro_start < 0) {
3000 		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
3001 		return;
3002 	}
3003 
3004 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
3005 	j = ro_size;
3006 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3007 	if (i + j > vpd_size)
3008 		j = vpd_size - i;
3009 
3010 	/* Get the Part number */
3011 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
3012 	if (i < 0) {
3013 		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
3014 		return;
3015 	}
3016 
3017 	j = pci_vpd_info_field_size(&vpd_data[i]);
3018 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
3019 	if (i + j > vpd_size) {
3020 		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
3021 		return;
3022 	}
3023 
3024 	netif_info(efx, drv, efx->net_dev,
3025 		   "Part Number : %.*s\n", j, &vpd_data[i]);
3026 
3027 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3028 	j = ro_size;
3029 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
3030 	if (i < 0) {
3031 		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
3032 		return;
3033 	}
3034 
3035 	j = pci_vpd_info_field_size(&vpd_data[i]);
3036 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
3037 	if (i + j > vpd_size) {
3038 		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
3039 		return;
3040 	}
3041 
3042 	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
3043 	if (!efx->vpd_sn)
3044 		return;
3045 
3046 	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3047 }
3048 
3049 
3050 /* Main body of NIC initialisation
3051  * This is called at module load (or hotplug insertion, theoretically).
3052  */
3053 static int efx_pci_probe_main(struct efx_nic *efx)
3054 {
3055 	int rc;
3056 
3057 	/* Do start-of-day initialisation */
3058 	rc = efx_probe_all(efx);
3059 	if (rc)
3060 		goto fail1;
3061 
3062 	efx_init_napi(efx);
3063 
3064 	rc = efx->type->init(efx);
3065 	if (rc) {
3066 		netif_err(efx, probe, efx->net_dev,
3067 			  "failed to initialise NIC\n");
3068 		goto fail3;
3069 	}
3070 
3071 	rc = efx_init_port(efx);
3072 	if (rc) {
3073 		netif_err(efx, probe, efx->net_dev,
3074 			  "failed to initialise port\n");
3075 		goto fail4;
3076 	}
3077 
3078 	rc = efx_nic_init_interrupt(efx);
3079 	if (rc)
3080 		goto fail5;
3081 	rc = efx_enable_interrupts(efx);
3082 	if (rc)
3083 		goto fail6;
3084 
3085 	return 0;
3086 
3087  fail6:
3088 	efx_nic_fini_interrupt(efx);
3089  fail5:
3090 	efx_fini_port(efx);
3091  fail4:
3092 	efx->type->fini(efx);
3093  fail3:
3094 	efx_fini_napi(efx);
3095 	efx_remove_all(efx);
3096  fail1:
3097 	return rc;
3098 }
3099 
3100 /* NIC initialisation
3101  *
3102  * This is called at module load (or hotplug insertion,
3103  * theoretically).  It sets up PCI mappings, resets the NIC,
3104  * sets up and registers the network devices with the kernel and hooks
3105  * the interrupt service routine.  It does not prepare the device for
3106  * transmission; this is left to the first time one of the network
3107  * interfaces is brought up (i.e. efx_net_open).
3108  */
3109 static int efx_pci_probe(struct pci_dev *pci_dev,
3110 			 const struct pci_device_id *entry)
3111 {
3112 	struct net_device *net_dev;
3113 	struct efx_nic *efx;
3114 	int rc;
3115 
3116 	/* Allocate and initialise a struct net_device and struct efx_nic */
3117 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
3118 				     EFX_MAX_RX_QUEUES);
3119 	if (!net_dev)
3120 		return -ENOMEM;
3121 	efx = netdev_priv(net_dev);
3122 	efx->type = (const struct efx_nic_type *) entry->driver_data;
3123 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
3124 			      NETIF_F_HIGHDMA | NETIF_F_TSO |
3125 			      NETIF_F_RXCSUM);
3126 	if (efx->type->offload_features & NETIF_F_V6_CSUM)
3127 		net_dev->features |= NETIF_F_TSO6;
3128 	/* Mask for features that also apply to VLAN devices */
3129 	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
3130 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
3131 				   NETIF_F_RXCSUM);
3132 	/* All offloads can be toggled */
3133 	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
3134 	pci_set_drvdata(pci_dev, efx);
3135 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3136 	rc = efx_init_struct(efx, pci_dev, net_dev);
3137 	if (rc)
3138 		goto fail1;
3139 
3140 	netif_info(efx, probe, efx->net_dev,
3141 		   "Solarflare NIC detected\n");
3142 
3143 	if (!efx->type->is_vf)
3144 		efx_probe_vpd_strings(efx);
3145 
3146 	/* Set up basic I/O (BAR mappings etc) */
3147 	rc = efx_init_io(efx);
3148 	if (rc)
3149 		goto fail2;
3150 
3151 	rc = efx_pci_probe_main(efx);
3152 	if (rc)
3153 		goto fail3;
3154 
3155 	rc = efx_register_netdev(efx);
3156 	if (rc)
3157 		goto fail4;
3158 
3159 	if (efx->type->sriov_init) {
3160 		rc = efx->type->sriov_init(efx);
3161 		if (rc)
3162 			netif_err(efx, probe, efx->net_dev,
3163 				  "SR-IOV can't be enabled rc %d\n", rc);
3164 	}
3165 
3166 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3167 
3168 	/* Try to create MTDs, but allow this to fail */
3169 	rtnl_lock();
3170 	rc = efx_mtd_probe(efx);
3171 	rtnl_unlock();
3172 	if (rc)
3173 		netif_warn(efx, probe, efx->net_dev,
3174 			   "failed to create MTDs (%d)\n", rc);
3175 
3176 	rc = pci_enable_pcie_error_reporting(pci_dev);
3177 	if (rc && rc != -EINVAL)
3178 		netif_warn(efx, probe, efx->net_dev,
3179 			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);
3180 
3181 	return 0;
3182 
3183  fail4:
3184 	efx_pci_remove_main(efx);
3185  fail3:
3186 	efx_fini_io(efx);
3187  fail2:
3188 	efx_fini_struct(efx);
3189  fail1:
3190 	WARN_ON(rc > 0);
3191 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3192 	free_netdev(net_dev);
3193 	return rc;
3194 }
3195 
3196 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
3197  * enabled on success
3198  */
3199 #ifdef CONFIG_SFC_SRIOV
3200 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
3201 {
3202 	int rc;
3203 	struct efx_nic *efx = pci_get_drvdata(dev);
3204 
3205 	if (efx->type->sriov_configure) {
3206 		rc = efx->type->sriov_configure(efx, num_vfs);
3207 		if (rc)
3208 			return rc;
3209 		else
3210 			return num_vfs;
3211 	} else
3212 		return -EOPNOTSUPP;
3213 }
3214 #endif
3215 
3216 static int efx_pm_freeze(struct device *dev)
3217 {
3218 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3219 
3220 	rtnl_lock();
3221 
3222 	if (efx->state != STATE_DISABLED) {
3223 		efx->state = STATE_UNINIT;
3224 
3225 		efx_device_detach_sync(efx);
3226 
3227 		efx_stop_all(efx);
3228 		efx_disable_interrupts(efx);
3229 	}
3230 
3231 	rtnl_unlock();
3232 
3233 	return 0;
3234 }
3235 
3236 static int efx_pm_thaw(struct device *dev)
3237 {
3238 	int rc;
3239 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3240 
3241 	rtnl_lock();
3242 
3243 	if (efx->state != STATE_DISABLED) {
3244 		rc = efx_enable_interrupts(efx);
3245 		if (rc)
3246 			goto fail;
3247 
3248 		mutex_lock(&efx->mac_lock);
3249 		efx->phy_op->reconfigure(efx);
3250 		mutex_unlock(&efx->mac_lock);
3251 
3252 		efx_start_all(efx);
3253 
3254 		netif_device_attach(efx->net_dev);
3255 
3256 		efx->state = STATE_READY;
3257 
3258 		efx->type->resume_wol(efx);
3259 	}
3260 
3261 	rtnl_unlock();
3262 
3263 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3264 	queue_work(reset_workqueue, &efx->reset_work);
3265 
3266 	return 0;
3267 
3268 fail:
3269 	rtnl_unlock();
3270 
3271 	return rc;
3272 }
3273 
3274 static int efx_pm_poweroff(struct device *dev)
3275 {
3276 	struct pci_dev *pci_dev = to_pci_dev(dev);
3277 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3278 
3279 	efx->type->fini(efx);
3280 
3281 	efx->reset_pending = 0;
3282 
3283 	pci_save_state(pci_dev);
3284 	return pci_set_power_state(pci_dev, PCI_D3hot);
3285 }
3286 
3287 /* Used for both resume and restore */
3288 static int efx_pm_resume(struct device *dev)
3289 {
3290 	struct pci_dev *pci_dev = to_pci_dev(dev);
3291 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3292 	int rc;
3293 
3294 	rc = pci_set_power_state(pci_dev, PCI_D0);
3295 	if (rc)
3296 		return rc;
3297 	pci_restore_state(pci_dev);
3298 	rc = pci_enable_device(pci_dev);
3299 	if (rc)
3300 		return rc;
3301 	pci_set_master(efx->pci_dev);
3302 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3303 	if (rc)
3304 		return rc;
3305 	rc = efx->type->init(efx);
3306 	if (rc)
3307 		return rc;
3308 	rc = efx_pm_thaw(dev);
3309 	return rc;
3310 }
3311 
3312 static int efx_pm_suspend(struct device *dev)
3313 {
3314 	int rc;
3315 
3316 	efx_pm_freeze(dev);
3317 	rc = efx_pm_poweroff(dev);
3318 	if (rc)
3319 		efx_pm_resume(dev);
3320 	return rc;
3321 }
3322 
3323 static const struct dev_pm_ops efx_pm_ops = {
3324 	.suspend	= efx_pm_suspend,
3325 	.resume		= efx_pm_resume,
3326 	.freeze		= efx_pm_freeze,
3327 	.thaw		= efx_pm_thaw,
3328 	.poweroff	= efx_pm_poweroff,
3329 	.restore	= efx_pm_resume,
3330 };
3331 
3332 /* A PCI error affecting this device was detected.
3333  * At this point MMIO and DMA may be disabled.
3334  * Stop the software path and request a slot reset.
3335  */
3336 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3337 					      enum pci_channel_state state)
3338 {
3339 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3340 	struct efx_nic *efx = pci_get_drvdata(pdev);
3341 
3342 	if (state == pci_channel_io_perm_failure)
3343 		return PCI_ERS_RESULT_DISCONNECT;
3344 
3345 	rtnl_lock();
3346 
3347 	if (efx->state != STATE_DISABLED) {
3348 		efx->state = STATE_RECOVERY;
3349 		efx->reset_pending = 0;
3350 
3351 		efx_device_detach_sync(efx);
3352 
3353 		efx_stop_all(efx);
3354 		efx_disable_interrupts(efx);
3355 
3356 		status = PCI_ERS_RESULT_NEED_RESET;
3357 	} else {
3358 		/* If the interface is disabled we don't want to do anything
3359 		 * with it.
3360 		 */
3361 		status = PCI_ERS_RESULT_RECOVERED;
3362 	}
3363 
3364 	rtnl_unlock();
3365 
3366 	pci_disable_device(pdev);
3367 
3368 	return status;
3369 }
3370 
3371 /* Fake a successful reset, which will be performed later in efx_io_resume. */
3372 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3373 {
3374 	struct efx_nic *efx = pci_get_drvdata(pdev);
3375 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3376 	int rc;
3377 
3378 	if (pci_enable_device(pdev)) {
3379 		netif_err(efx, hw, efx->net_dev,
3380 			  "Cannot re-enable PCI device after reset.\n");
3381 		status =  PCI_ERS_RESULT_DISCONNECT;
3382 	}
3383 
3384 	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3385 	if (rc) {
3386 		netif_err(efx, hw, efx->net_dev,
3387 		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3388 		/* Non-fatal error. Continue. */
3389 	}
3390 
3391 	return status;
3392 }
3393 
3394 /* Perform the actual reset and resume I/O operations. */
3395 static void efx_io_resume(struct pci_dev *pdev)
3396 {
3397 	struct efx_nic *efx = pci_get_drvdata(pdev);
3398 	int rc;
3399 
3400 	rtnl_lock();
3401 
3402 	if (efx->state == STATE_DISABLED)
3403 		goto out;
3404 
3405 	rc = efx_reset(efx, RESET_TYPE_ALL);
3406 	if (rc) {
3407 		netif_err(efx, hw, efx->net_dev,
3408 			  "efx_reset failed after PCI error (%d)\n", rc);
3409 	} else {
3410 		efx->state = STATE_READY;
3411 		netif_dbg(efx, hw, efx->net_dev,
3412 			  "Done resetting and resuming IO after PCI error.\n");
3413 	}
3414 
3415 out:
3416 	rtnl_unlock();
3417 }
3418 
3419 /* For simplicity and reliability, we always require a slot reset and try to
3420  * reset the hardware when a pci error affecting the device is detected.
3421  * We leave both the link_reset and mmio_enabled callback unimplemented:
3422  * with our request for slot reset the mmio_enabled callback will never be
3423  * called, and the link_reset callback is not used by AER or EEH mechanisms.
3424  */
3425 static const struct pci_error_handlers efx_err_handlers = {
3426 	.error_detected = efx_io_error_detected,
3427 	.slot_reset	= efx_io_slot_reset,
3428 	.resume		= efx_io_resume,
3429 };
3430 
3431 static struct pci_driver efx_pci_driver = {
3432 	.name		= KBUILD_MODNAME,
3433 	.id_table	= efx_pci_table,
3434 	.probe		= efx_pci_probe,
3435 	.remove		= efx_pci_remove,
3436 	.driver.pm	= &efx_pm_ops,
3437 	.err_handler	= &efx_err_handlers,
3438 #ifdef CONFIG_SFC_SRIOV
3439 	.sriov_configure = efx_pci_sriov_configure,
3440 #endif
3441 };
3442 
3443 /**************************************************************************
3444  *
3445  * Kernel module interface
3446  *
3447  *************************************************************************/
3448 
3449 module_param(interrupt_mode, uint, 0444);
3450 MODULE_PARM_DESC(interrupt_mode,
3451 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3452 
3453 static int __init efx_init_module(void)
3454 {
3455 	int rc;
3456 
3457 	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3458 
3459 	rc = register_netdevice_notifier(&efx_netdev_notifier);
3460 	if (rc)
3461 		goto err_notifier;
3462 
3463 #ifdef CONFIG_SFC_SRIOV
3464 	rc = efx_init_sriov();
3465 	if (rc)
3466 		goto err_sriov;
3467 #endif
3468 
3469 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3470 	if (!reset_workqueue) {
3471 		rc = -ENOMEM;
3472 		goto err_reset;
3473 	}
3474 
3475 	rc = pci_register_driver(&efx_pci_driver);
3476 	if (rc < 0)
3477 		goto err_pci;
3478 
3479 	return 0;
3480 
3481  err_pci:
3482 	destroy_workqueue(reset_workqueue);
3483  err_reset:
3484 #ifdef CONFIG_SFC_SRIOV
3485 	efx_fini_sriov();
3486  err_sriov:
3487 #endif
3488 	unregister_netdevice_notifier(&efx_netdev_notifier);
3489  err_notifier:
3490 	return rc;
3491 }
3492 
3493 static void __exit efx_exit_module(void)
3494 {
3495 	printk(KERN_INFO "Solarflare NET driver unloading\n");
3496 
3497 	pci_unregister_driver(&efx_pci_driver);
3498 	destroy_workqueue(reset_workqueue);
3499 #ifdef CONFIG_SFC_SRIOV
3500 	efx_fini_sriov();
3501 #endif
3502 	unregister_netdevice_notifier(&efx_netdev_notifier);
3503 
3504 }
3505 
3506 module_init(efx_init_module);
3507 module_exit(efx_exit_module);
3508 
3509 MODULE_AUTHOR("Solarflare Communications and "
3510 	      "Michael Brown <mbrown@fensystems.co.uk>");
3511 MODULE_DESCRIPTION("Solarflare network driver");
3512 MODULE_LICENSE("GPL");
3513 MODULE_DEVICE_TABLE(pci, efx_pci_table);
3514