xref: /openbmc/linux/drivers/net/ethernet/sfc/efx.c (revision 95acd4c7)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29 
30 #include "mcdi.h"
31 #include "workarounds.h"
32 
33 /**************************************************************************
34  *
35  * Type name strings
36  *
37  **************************************************************************
38  */
39 
40 /* Loopback mode names (see LOOPBACK_MODE()) */
41 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42 const char *const efx_loopback_mode_names[] = {
43 	[LOOPBACK_NONE]		= "NONE",
44 	[LOOPBACK_DATA]		= "DATAPATH",
45 	[LOOPBACK_GMAC]		= "GMAC",
46 	[LOOPBACK_XGMII]	= "XGMII",
47 	[LOOPBACK_XGXS]		= "XGXS",
48 	[LOOPBACK_XAUI]		= "XAUI",
49 	[LOOPBACK_GMII]		= "GMII",
50 	[LOOPBACK_SGMII]	= "SGMII",
51 	[LOOPBACK_XGBR]		= "XGBR",
52 	[LOOPBACK_XFI]		= "XFI",
53 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
54 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
55 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
56 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 	[LOOPBACK_GPHY]		= "GPHY",
58 	[LOOPBACK_PHYXS]	= "PHYXS",
59 	[LOOPBACK_PCS]		= "PCS",
60 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 	[LOOPBACK_XPORT]	= "XPORT",
62 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
65 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66 	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 	[LOOPBACK_XFI_WS]	= "XFI_WS",
68 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 };
71 
72 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73 const char *const efx_reset_type_names[] = {
74 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
75 	[RESET_TYPE_ALL]                = "ALL",
76 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
77 	[RESET_TYPE_WORLD]              = "WORLD",
78 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
79 	[RESET_TYPE_MC_BIST]		= "MC_BIST",
80 	[RESET_TYPE_DISABLE]            = "DISABLE",
81 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
82 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
83 	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
84 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
85 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
86 	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
87 	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
88 };
89 
90 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
91  * queued onto this work queue. This is not a per-nic work queue, because
92  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
93  */
94 static struct workqueue_struct *reset_workqueue;
95 
96 /* How often and how many times to poll for a reset while waiting for a
97  * BIST that another function started to complete.
98  */
99 #define BIST_WAIT_DELAY_MS	100
100 #define BIST_WAIT_DELAY_COUNT	100
101 
102 /**************************************************************************
103  *
104  * Configurable values
105  *
106  *************************************************************************/
107 
108 /*
109  * Use separate channels for TX and RX events
110  *
111  * Set this to 1 to use separate channels for TX and RX. It allows us
112  * to control interrupt affinity separately for TX and RX.
113  *
114  * This is only used in MSI-X interrupt mode
115  */
116 static bool separate_tx_channels;
117 module_param(separate_tx_channels, bool, 0444);
118 MODULE_PARM_DESC(separate_tx_channels,
119 		 "Use separate channels for TX and RX");
120 
121 /* This is the weight assigned to each of the (per-channel) virtual
122  * NAPI devices.
123  */
124 static int napi_weight = 64;
125 
126 /* This is the time (in jiffies) between invocations of the hardware
127  * monitor.
128  * On Falcon-based NICs, this will:
129  * - Check the on-board hardware monitor;
130  * - Poll the link state and reconfigure the hardware as necessary.
131  * On Siena-based NICs for power systems with EEH support, this will give EEH a
132  * chance to start.
133  */
134 static unsigned int efx_monitor_interval = 1 * HZ;
135 
136 /* Initial interrupt moderation settings.  They can be modified after
137  * module load with ethtool.
138  *
139  * The default for RX should strike a balance between increasing the
140  * round-trip latency and reducing overhead.
141  */
142 static unsigned int rx_irq_mod_usec = 60;
143 
144 /* Initial interrupt moderation settings.  They can be modified after
145  * module load with ethtool.
146  *
147  * This default is chosen to ensure that a 10G link does not go idle
148  * while a TX queue is stopped after it has become full.  A queue is
149  * restarted when it drops below half full.  The time this takes (assuming
150  * worst case 3 descriptors per packet and 1024 descriptors) is
151  *   512 / 3 * 1.2 = 205 usec.
152  */
153 static unsigned int tx_irq_mod_usec = 150;
154 
155 /* This is the first interrupt mode to try out of:
156  * 0 => MSI-X
157  * 1 => MSI
158  * 2 => legacy
159  */
160 static unsigned int interrupt_mode;
161 
162 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
163  * i.e. the number of CPUs among which we may distribute simultaneous
164  * interrupt handling.
165  *
166  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
167  * The default (0) means to assign an interrupt to each core.
168  */
169 static unsigned int rss_cpus;
170 module_param(rss_cpus, uint, 0444);
171 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
172 
173 static bool phy_flash_cfg;
174 module_param(phy_flash_cfg, bool, 0644);
175 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
176 
177 static unsigned irq_adapt_low_thresh = 8000;
178 module_param(irq_adapt_low_thresh, uint, 0644);
179 MODULE_PARM_DESC(irq_adapt_low_thresh,
180 		 "Threshold score for reducing IRQ moderation");
181 
182 static unsigned irq_adapt_high_thresh = 16000;
183 module_param(irq_adapt_high_thresh, uint, 0644);
184 MODULE_PARM_DESC(irq_adapt_high_thresh,
185 		 "Threshold score for increasing IRQ moderation");
186 
187 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
188 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
189 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
190 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
191 module_param(debug, uint, 0);
192 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
193 
194 /**************************************************************************
195  *
196  * Utility functions and prototypes
197  *
198  *************************************************************************/
199 
200 static int efx_soft_enable_interrupts(struct efx_nic *efx);
201 static void efx_soft_disable_interrupts(struct efx_nic *efx);
202 static void efx_remove_channel(struct efx_channel *channel);
203 static void efx_remove_channels(struct efx_nic *efx);
204 static const struct efx_channel_type efx_default_channel_type;
205 static void efx_remove_port(struct efx_nic *efx);
206 static void efx_init_napi_channel(struct efx_channel *channel);
207 static void efx_fini_napi(struct efx_nic *efx);
208 static void efx_fini_napi_channel(struct efx_channel *channel);
209 static void efx_fini_struct(struct efx_nic *efx);
210 static void efx_start_all(struct efx_nic *efx);
211 static void efx_stop_all(struct efx_nic *efx);
212 
213 #define EFX_ASSERT_RESET_SERIALISED(efx)		\
214 	do {						\
215 		if ((efx->state == STATE_READY) ||	\
216 		    (efx->state == STATE_RECOVERY) ||	\
217 		    (efx->state == STATE_DISABLED))	\
218 			ASSERT_RTNL();			\
219 	} while (0)
220 
221 static int efx_check_disabled(struct efx_nic *efx)
222 {
223 	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
224 		netif_err(efx, drv, efx->net_dev,
225 			  "device is disabled due to earlier errors\n");
226 		return -EIO;
227 	}
228 	return 0;
229 }
230 
231 /**************************************************************************
232  *
233  * Event queue processing
234  *
235  *************************************************************************/
236 
237 /* Process channel's event queue
238  *
239  * This function is responsible for processing the event queue of a
240  * single channel.  The caller must guarantee that this function will
241  * never be concurrently called more than once on the same channel,
242  * though different channels may be being processed concurrently.
243  */
244 static int efx_process_channel(struct efx_channel *channel, int budget)
245 {
246 	int spent;
247 
248 	if (unlikely(!channel->enabled))
249 		return 0;
250 
251 	spent = efx_nic_process_eventq(channel, budget);
252 	if (spent && efx_channel_has_rx_queue(channel)) {
253 		struct efx_rx_queue *rx_queue =
254 			efx_channel_get_rx_queue(channel);
255 
256 		efx_rx_flush_packet(channel);
257 		efx_fast_push_rx_descriptors(rx_queue, true);
258 	}
259 
260 	return spent;
261 }
262 
263 /* NAPI poll handler
264  *
265  * NAPI guarantees serialisation of polls of the same device, which
266  * provides the guarantee required by efx_process_channel().
267  */
268 static int efx_poll(struct napi_struct *napi, int budget)
269 {
270 	struct efx_channel *channel =
271 		container_of(napi, struct efx_channel, napi_str);
272 	struct efx_nic *efx = channel->efx;
273 	int spent;
274 
275 	if (!efx_channel_lock_napi(channel))
276 		return budget;
277 
278 	netif_vdbg(efx, intr, efx->net_dev,
279 		   "channel %d NAPI poll executing on CPU %d\n",
280 		   channel->channel, raw_smp_processor_id());
281 
282 	spent = efx_process_channel(channel, budget);
283 
284 	if (spent < budget) {
285 		if (efx_channel_has_rx_queue(channel) &&
286 		    efx->irq_rx_adaptive &&
287 		    unlikely(++channel->irq_count == 1000)) {
288 			if (unlikely(channel->irq_mod_score <
289 				     irq_adapt_low_thresh)) {
290 				if (channel->irq_moderation > 1) {
291 					channel->irq_moderation -= 1;
292 					efx->type->push_irq_moderation(channel);
293 				}
294 			} else if (unlikely(channel->irq_mod_score >
295 					    irq_adapt_high_thresh)) {
296 				if (channel->irq_moderation <
297 				    efx->irq_rx_moderation) {
298 					channel->irq_moderation += 1;
299 					efx->type->push_irq_moderation(channel);
300 				}
301 			}
302 			channel->irq_count = 0;
303 			channel->irq_mod_score = 0;
304 		}
305 
306 		efx_filter_rfs_expire(channel);
307 
308 		/* There is no race here; although napi_disable() will
309 		 * only wait for napi_complete(), this isn't a problem
310 		 * since efx_nic_eventq_read_ack() will have no effect if
311 		 * interrupts have already been disabled.
312 		 */
313 		napi_complete(napi);
314 		efx_nic_eventq_read_ack(channel);
315 	}
316 
317 	efx_channel_unlock_napi(channel);
318 	return spent;
319 }
320 
321 /* Create event queue
322  * Event queue memory allocations are done only once.  If the channel
323  * is reset, the memory buffer will be reused; this guards against
324  * errors during channel reset and also simplifies interrupt handling.
325  */
326 static int efx_probe_eventq(struct efx_channel *channel)
327 {
328 	struct efx_nic *efx = channel->efx;
329 	unsigned long entries;
330 
331 	netif_dbg(efx, probe, efx->net_dev,
332 		  "chan %d create event queue\n", channel->channel);
333 
334 	/* Build an event queue with room for one event per tx and rx buffer,
335 	 * plus some extra for link state events and MCDI completions. */
336 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
337 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
338 	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
339 
340 	return efx_nic_probe_eventq(channel);
341 }
342 
343 /* Prepare channel's event queue */
344 static int efx_init_eventq(struct efx_channel *channel)
345 {
346 	struct efx_nic *efx = channel->efx;
347 	int rc;
348 
349 	EFX_WARN_ON_PARANOID(channel->eventq_init);
350 
351 	netif_dbg(efx, drv, efx->net_dev,
352 		  "chan %d init event queue\n", channel->channel);
353 
354 	rc = efx_nic_init_eventq(channel);
355 	if (rc == 0) {
356 		efx->type->push_irq_moderation(channel);
357 		channel->eventq_read_ptr = 0;
358 		channel->eventq_init = true;
359 	}
360 	return rc;
361 }
362 
363 /* Enable event queue processing and NAPI */
364 void efx_start_eventq(struct efx_channel *channel)
365 {
366 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
367 		  "chan %d start event queue\n", channel->channel);
368 
369 	/* Make sure the NAPI handler sees the enabled flag set */
370 	channel->enabled = true;
371 	smp_wmb();
372 
373 	efx_channel_enable(channel);
374 	napi_enable(&channel->napi_str);
375 	efx_nic_eventq_read_ack(channel);
376 }
377 
378 /* Disable event queue processing and NAPI */
379 void efx_stop_eventq(struct efx_channel *channel)
380 {
381 	if (!channel->enabled)
382 		return;
383 
384 	napi_disable(&channel->napi_str);
385 	while (!efx_channel_disable(channel))
386 		usleep_range(1000, 20000);
387 	channel->enabled = false;
388 }
389 
390 static void efx_fini_eventq(struct efx_channel *channel)
391 {
392 	if (!channel->eventq_init)
393 		return;
394 
395 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
396 		  "chan %d fini event queue\n", channel->channel);
397 
398 	efx_nic_fini_eventq(channel);
399 	channel->eventq_init = false;
400 }
401 
402 static void efx_remove_eventq(struct efx_channel *channel)
403 {
404 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
405 		  "chan %d remove event queue\n", channel->channel);
406 
407 	efx_nic_remove_eventq(channel);
408 }
409 
410 /**************************************************************************
411  *
412  * Channel handling
413  *
414  *************************************************************************/
415 
416 /* Allocate and initialise a channel structure. */
417 static struct efx_channel *
418 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
419 {
420 	struct efx_channel *channel;
421 	struct efx_rx_queue *rx_queue;
422 	struct efx_tx_queue *tx_queue;
423 	int j;
424 
425 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
426 	if (!channel)
427 		return NULL;
428 
429 	channel->efx = efx;
430 	channel->channel = i;
431 	channel->type = &efx_default_channel_type;
432 
433 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
434 		tx_queue = &channel->tx_queue[j];
435 		tx_queue->efx = efx;
436 		tx_queue->queue = i * EFX_TXQ_TYPES + j;
437 		tx_queue->channel = channel;
438 	}
439 
440 	rx_queue = &channel->rx_queue;
441 	rx_queue->efx = efx;
442 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
443 		    (unsigned long)rx_queue);
444 
445 	return channel;
446 }
447 
448 /* Allocate and initialise a channel structure, copying parameters
449  * (but not resources) from an old channel structure.
450  */
451 static struct efx_channel *
452 efx_copy_channel(const struct efx_channel *old_channel)
453 {
454 	struct efx_channel *channel;
455 	struct efx_rx_queue *rx_queue;
456 	struct efx_tx_queue *tx_queue;
457 	int j;
458 
459 	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
460 	if (!channel)
461 		return NULL;
462 
463 	*channel = *old_channel;
464 
465 	channel->napi_dev = NULL;
466 	memset(&channel->eventq, 0, sizeof(channel->eventq));
467 
468 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
469 		tx_queue = &channel->tx_queue[j];
470 		if (tx_queue->channel)
471 			tx_queue->channel = channel;
472 		tx_queue->buffer = NULL;
473 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
474 	}
475 
476 	rx_queue = &channel->rx_queue;
477 	rx_queue->buffer = NULL;
478 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
479 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
480 		    (unsigned long)rx_queue);
481 
482 	return channel;
483 }
484 
485 static int efx_probe_channel(struct efx_channel *channel)
486 {
487 	struct efx_tx_queue *tx_queue;
488 	struct efx_rx_queue *rx_queue;
489 	int rc;
490 
491 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
492 		  "creating channel %d\n", channel->channel);
493 
494 	rc = channel->type->pre_probe(channel);
495 	if (rc)
496 		goto fail;
497 
498 	rc = efx_probe_eventq(channel);
499 	if (rc)
500 		goto fail;
501 
502 	efx_for_each_channel_tx_queue(tx_queue, channel) {
503 		rc = efx_probe_tx_queue(tx_queue);
504 		if (rc)
505 			goto fail;
506 	}
507 
508 	efx_for_each_channel_rx_queue(rx_queue, channel) {
509 		rc = efx_probe_rx_queue(rx_queue);
510 		if (rc)
511 			goto fail;
512 	}
513 
514 	return 0;
515 
516 fail:
517 	efx_remove_channel(channel);
518 	return rc;
519 }
520 
521 static void
522 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
523 {
524 	struct efx_nic *efx = channel->efx;
525 	const char *type;
526 	int number;
527 
528 	number = channel->channel;
529 	if (efx->tx_channel_offset == 0) {
530 		type = "";
531 	} else if (channel->channel < efx->tx_channel_offset) {
532 		type = "-rx";
533 	} else {
534 		type = "-tx";
535 		number -= efx->tx_channel_offset;
536 	}
537 	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
538 }
539 
540 static void efx_set_channel_names(struct efx_nic *efx)
541 {
542 	struct efx_channel *channel;
543 
544 	efx_for_each_channel(channel, efx)
545 		channel->type->get_name(channel,
546 					efx->msi_context[channel->channel].name,
547 					sizeof(efx->msi_context[0].name));
548 }
549 
550 static int efx_probe_channels(struct efx_nic *efx)
551 {
552 	struct efx_channel *channel;
553 	int rc;
554 
555 	/* Restart special buffer allocation */
556 	efx->next_buffer_table = 0;
557 
558 	/* Probe channels in reverse, so that any 'extra' channels
559 	 * use the start of the buffer table. This allows the traffic
560 	 * channels to be resized without moving them or wasting the
561 	 * entries before them.
562 	 */
563 	efx_for_each_channel_rev(channel, efx) {
564 		rc = efx_probe_channel(channel);
565 		if (rc) {
566 			netif_err(efx, probe, efx->net_dev,
567 				  "failed to create channel %d\n",
568 				  channel->channel);
569 			goto fail;
570 		}
571 	}
572 	efx_set_channel_names(efx);
573 
574 	return 0;
575 
576 fail:
577 	efx_remove_channels(efx);
578 	return rc;
579 }
580 
581 /* Channels are shutdown and reinitialised whilst the NIC is running
582  * to propagate configuration changes (mtu, checksum offload), or
583  * to clear hardware error conditions
584  */
585 static void efx_start_datapath(struct efx_nic *efx)
586 {
587 	bool old_rx_scatter = efx->rx_scatter;
588 	struct efx_tx_queue *tx_queue;
589 	struct efx_rx_queue *rx_queue;
590 	struct efx_channel *channel;
591 	size_t rx_buf_len;
592 
593 	/* Calculate the rx buffer allocation parameters required to
594 	 * support the current MTU, including padding for header
595 	 * alignment and overruns.
596 	 */
597 	efx->rx_dma_len = (efx->rx_prefix_size +
598 			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
599 			   efx->type->rx_buffer_padding);
600 	rx_buf_len = (sizeof(struct efx_rx_page_state) +
601 		      efx->rx_ip_align + efx->rx_dma_len);
602 	if (rx_buf_len <= PAGE_SIZE) {
603 		efx->rx_scatter = efx->type->always_rx_scatter;
604 		efx->rx_buffer_order = 0;
605 	} else if (efx->type->can_rx_scatter) {
606 		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
607 		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
608 			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
609 				       EFX_RX_BUF_ALIGNMENT) >
610 			     PAGE_SIZE);
611 		efx->rx_scatter = true;
612 		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
613 		efx->rx_buffer_order = 0;
614 	} else {
615 		efx->rx_scatter = false;
616 		efx->rx_buffer_order = get_order(rx_buf_len);
617 	}
618 
619 	efx_rx_config_page_split(efx);
620 	if (efx->rx_buffer_order)
621 		netif_dbg(efx, drv, efx->net_dev,
622 			  "RX buf len=%u; page order=%u batch=%u\n",
623 			  efx->rx_dma_len, efx->rx_buffer_order,
624 			  efx->rx_pages_per_batch);
625 	else
626 		netif_dbg(efx, drv, efx->net_dev,
627 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
628 			  efx->rx_dma_len, efx->rx_page_buf_step,
629 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
630 
631 	/* RX filters may also have scatter-enabled flags */
632 	if (efx->rx_scatter != old_rx_scatter)
633 		efx->type->filter_update_rx_scatter(efx);
634 
635 	/* We must keep at least one descriptor in a TX ring empty.
636 	 * We could avoid this when the queue size does not exactly
637 	 * match the hardware ring size, but it's not that important.
638 	 * Therefore we stop the queue when one more skb might fill
639 	 * the ring completely.  We wake it when half way back to
640 	 * empty.
641 	 */
642 	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
643 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
644 
645 	/* Initialise the channels */
646 	efx_for_each_channel(channel, efx) {
647 		efx_for_each_channel_tx_queue(tx_queue, channel) {
648 			efx_init_tx_queue(tx_queue);
649 			atomic_inc(&efx->active_queues);
650 		}
651 
652 		efx_for_each_channel_rx_queue(rx_queue, channel) {
653 			efx_init_rx_queue(rx_queue);
654 			atomic_inc(&efx->active_queues);
655 			efx_stop_eventq(channel);
656 			efx_fast_push_rx_descriptors(rx_queue, false);
657 			efx_start_eventq(channel);
658 		}
659 
660 		WARN_ON(channel->rx_pkt_n_frags);
661 	}
662 
663 	efx_ptp_start_datapath(efx);
664 
665 	if (netif_device_present(efx->net_dev))
666 		netif_tx_wake_all_queues(efx->net_dev);
667 }
668 
669 static void efx_stop_datapath(struct efx_nic *efx)
670 {
671 	struct efx_channel *channel;
672 	struct efx_tx_queue *tx_queue;
673 	struct efx_rx_queue *rx_queue;
674 	int rc;
675 
676 	EFX_ASSERT_RESET_SERIALISED(efx);
677 	BUG_ON(efx->port_enabled);
678 
679 	efx_ptp_stop_datapath(efx);
680 
681 	/* Stop RX refill */
682 	efx_for_each_channel(channel, efx) {
683 		efx_for_each_channel_rx_queue(rx_queue, channel)
684 			rx_queue->refill_enabled = false;
685 	}
686 
687 	efx_for_each_channel(channel, efx) {
688 		/* RX packet processing is pipelined, so wait for the
689 		 * NAPI handler to complete.  At least event queue 0
690 		 * might be kept active by non-data events, so don't
691 		 * use napi_synchronize() but actually disable NAPI
692 		 * temporarily.
693 		 */
694 		if (efx_channel_has_rx_queue(channel)) {
695 			efx_stop_eventq(channel);
696 			efx_start_eventq(channel);
697 		}
698 	}
699 
700 	rc = efx->type->fini_dmaq(efx);
701 	if (rc && EFX_WORKAROUND_7803(efx)) {
702 		/* Schedule a reset to recover from the flush failure. The
703 		 * descriptor caches reference memory we're about to free,
704 		 * but falcon_reconfigure_mac_wrapper() won't reconnect
705 		 * the MACs because of the pending reset.
706 		 */
707 		netif_err(efx, drv, efx->net_dev,
708 			  "Resetting to recover from flush failure\n");
709 		efx_schedule_reset(efx, RESET_TYPE_ALL);
710 	} else if (rc) {
711 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
712 	} else {
713 		netif_dbg(efx, drv, efx->net_dev,
714 			  "successfully flushed all queues\n");
715 	}
716 
717 	efx_for_each_channel(channel, efx) {
718 		efx_for_each_channel_rx_queue(rx_queue, channel)
719 			efx_fini_rx_queue(rx_queue);
720 		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
721 			efx_fini_tx_queue(tx_queue);
722 	}
723 }
724 
725 static void efx_remove_channel(struct efx_channel *channel)
726 {
727 	struct efx_tx_queue *tx_queue;
728 	struct efx_rx_queue *rx_queue;
729 
730 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
731 		  "destroy chan %d\n", channel->channel);
732 
733 	efx_for_each_channel_rx_queue(rx_queue, channel)
734 		efx_remove_rx_queue(rx_queue);
735 	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
736 		efx_remove_tx_queue(tx_queue);
737 	efx_remove_eventq(channel);
738 	channel->type->post_remove(channel);
739 }
740 
741 static void efx_remove_channels(struct efx_nic *efx)
742 {
743 	struct efx_channel *channel;
744 
745 	efx_for_each_channel(channel, efx)
746 		efx_remove_channel(channel);
747 }
748 
749 int
750 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
751 {
752 	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
753 	u32 old_rxq_entries, old_txq_entries;
754 	unsigned i, next_buffer_table = 0;
755 	int rc, rc2;
756 
757 	rc = efx_check_disabled(efx);
758 	if (rc)
759 		return rc;
760 
761 	/* Not all channels should be reallocated. We must avoid
762 	 * reallocating their buffer table entries.
763 	 */
764 	efx_for_each_channel(channel, efx) {
765 		struct efx_rx_queue *rx_queue;
766 		struct efx_tx_queue *tx_queue;
767 
768 		if (channel->type->copy)
769 			continue;
770 		next_buffer_table = max(next_buffer_table,
771 					channel->eventq.index +
772 					channel->eventq.entries);
773 		efx_for_each_channel_rx_queue(rx_queue, channel)
774 			next_buffer_table = max(next_buffer_table,
775 						rx_queue->rxd.index +
776 						rx_queue->rxd.entries);
777 		efx_for_each_channel_tx_queue(tx_queue, channel)
778 			next_buffer_table = max(next_buffer_table,
779 						tx_queue->txd.index +
780 						tx_queue->txd.entries);
781 	}
782 
783 	efx_device_detach_sync(efx);
784 	efx_stop_all(efx);
785 	efx_soft_disable_interrupts(efx);
786 
787 	/* Clone channels (where possible) */
788 	memset(other_channel, 0, sizeof(other_channel));
789 	for (i = 0; i < efx->n_channels; i++) {
790 		channel = efx->channel[i];
791 		if (channel->type->copy)
792 			channel = channel->type->copy(channel);
793 		if (!channel) {
794 			rc = -ENOMEM;
795 			goto out;
796 		}
797 		other_channel[i] = channel;
798 	}
799 
800 	/* Swap entry counts and channel pointers */
801 	old_rxq_entries = efx->rxq_entries;
802 	old_txq_entries = efx->txq_entries;
803 	efx->rxq_entries = rxq_entries;
804 	efx->txq_entries = txq_entries;
805 	for (i = 0; i < efx->n_channels; i++) {
806 		channel = efx->channel[i];
807 		efx->channel[i] = other_channel[i];
808 		other_channel[i] = channel;
809 	}
810 
811 	/* Restart buffer table allocation */
812 	efx->next_buffer_table = next_buffer_table;
813 
814 	for (i = 0; i < efx->n_channels; i++) {
815 		channel = efx->channel[i];
816 		if (!channel->type->copy)
817 			continue;
818 		rc = efx_probe_channel(channel);
819 		if (rc)
820 			goto rollback;
821 		efx_init_napi_channel(efx->channel[i]);
822 	}
823 
824 out:
825 	/* Destroy unused channel structures */
826 	for (i = 0; i < efx->n_channels; i++) {
827 		channel = other_channel[i];
828 		if (channel && channel->type->copy) {
829 			efx_fini_napi_channel(channel);
830 			efx_remove_channel(channel);
831 			kfree(channel);
832 		}
833 	}
834 
835 	rc2 = efx_soft_enable_interrupts(efx);
836 	if (rc2) {
837 		rc = rc ? rc : rc2;
838 		netif_err(efx, drv, efx->net_dev,
839 			  "unable to restart interrupts on channel reallocation\n");
840 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
841 	} else {
842 		efx_start_all(efx);
843 		netif_device_attach(efx->net_dev);
844 	}
845 	return rc;
846 
847 rollback:
848 	/* Swap back */
849 	efx->rxq_entries = old_rxq_entries;
850 	efx->txq_entries = old_txq_entries;
851 	for (i = 0; i < efx->n_channels; i++) {
852 		channel = efx->channel[i];
853 		efx->channel[i] = other_channel[i];
854 		other_channel[i] = channel;
855 	}
856 	goto out;
857 }
858 
859 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
860 {
861 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
862 }
863 
864 static const struct efx_channel_type efx_default_channel_type = {
865 	.pre_probe		= efx_channel_dummy_op_int,
866 	.post_remove		= efx_channel_dummy_op_void,
867 	.get_name		= efx_get_channel_name,
868 	.copy			= efx_copy_channel,
869 	.keep_eventq		= false,
870 };
871 
872 int efx_channel_dummy_op_int(struct efx_channel *channel)
873 {
874 	return 0;
875 }
876 
877 void efx_channel_dummy_op_void(struct efx_channel *channel)
878 {
879 }
880 
881 /**************************************************************************
882  *
883  * Port handling
884  *
885  **************************************************************************/
886 
887 /* This ensures that the kernel is kept informed (via
888  * netif_carrier_on/off) of the link status, and also maintains the
889  * link status's stop on the port's TX queue.
890  */
891 void efx_link_status_changed(struct efx_nic *efx)
892 {
893 	struct efx_link_state *link_state = &efx->link_state;
894 
895 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
896 	 * that no events are triggered between unregister_netdev() and the
897 	 * driver unloading. A more general condition is that NETDEV_CHANGE
898 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
899 	if (!netif_running(efx->net_dev))
900 		return;
901 
902 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
903 		efx->n_link_state_changes++;
904 
905 		if (link_state->up)
906 			netif_carrier_on(efx->net_dev);
907 		else
908 			netif_carrier_off(efx->net_dev);
909 	}
910 
911 	/* Status message for kernel log */
912 	if (link_state->up)
913 		netif_info(efx, link, efx->net_dev,
914 			   "link up at %uMbps %s-duplex (MTU %d)\n",
915 			   link_state->speed, link_state->fd ? "full" : "half",
916 			   efx->net_dev->mtu);
917 	else
918 		netif_info(efx, link, efx->net_dev, "link down\n");
919 }
920 
921 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
922 {
923 	efx->link_advertising = advertising;
924 	if (advertising) {
925 		if (advertising & ADVERTISED_Pause)
926 			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
927 		else
928 			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
929 		if (advertising & ADVERTISED_Asym_Pause)
930 			efx->wanted_fc ^= EFX_FC_TX;
931 	}
932 }
933 
934 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
935 {
936 	efx->wanted_fc = wanted_fc;
937 	if (efx->link_advertising) {
938 		if (wanted_fc & EFX_FC_RX)
939 			efx->link_advertising |= (ADVERTISED_Pause |
940 						  ADVERTISED_Asym_Pause);
941 		else
942 			efx->link_advertising &= ~(ADVERTISED_Pause |
943 						   ADVERTISED_Asym_Pause);
944 		if (wanted_fc & EFX_FC_TX)
945 			efx->link_advertising ^= ADVERTISED_Asym_Pause;
946 	}
947 }
948 
949 static void efx_fini_port(struct efx_nic *efx);
950 
951 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
952  * the MAC appropriately. All other PHY configuration changes are pushed
953  * through phy_op->set_settings(), and pushed asynchronously to the MAC
954  * through efx_monitor().
955  *
956  * Callers must hold the mac_lock
957  */
958 int __efx_reconfigure_port(struct efx_nic *efx)
959 {
960 	enum efx_phy_mode phy_mode;
961 	int rc;
962 
963 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
964 
965 	/* Disable PHY transmit in mac level loopbacks */
966 	phy_mode = efx->phy_mode;
967 	if (LOOPBACK_INTERNAL(efx))
968 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
969 	else
970 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
971 
972 	rc = efx->type->reconfigure_port(efx);
973 
974 	if (rc)
975 		efx->phy_mode = phy_mode;
976 
977 	return rc;
978 }
979 
980 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
981  * disabled. */
982 int efx_reconfigure_port(struct efx_nic *efx)
983 {
984 	int rc;
985 
986 	EFX_ASSERT_RESET_SERIALISED(efx);
987 
988 	mutex_lock(&efx->mac_lock);
989 	rc = __efx_reconfigure_port(efx);
990 	mutex_unlock(&efx->mac_lock);
991 
992 	return rc;
993 }
994 
995 /* Asynchronous work item for changing MAC promiscuity and multicast
996  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
997  * MAC directly. */
998 static void efx_mac_work(struct work_struct *data)
999 {
1000 	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1001 
1002 	mutex_lock(&efx->mac_lock);
1003 	if (efx->port_enabled)
1004 		efx->type->reconfigure_mac(efx);
1005 	mutex_unlock(&efx->mac_lock);
1006 }
1007 
1008 static int efx_probe_port(struct efx_nic *efx)
1009 {
1010 	int rc;
1011 
1012 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1013 
1014 	if (phy_flash_cfg)
1015 		efx->phy_mode = PHY_MODE_SPECIAL;
1016 
1017 	/* Connect up MAC/PHY operations table */
1018 	rc = efx->type->probe_port(efx);
1019 	if (rc)
1020 		return rc;
1021 
1022 	/* Initialise MAC address to permanent address */
1023 	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1024 
1025 	return 0;
1026 }
1027 
1028 static int efx_init_port(struct efx_nic *efx)
1029 {
1030 	int rc;
1031 
1032 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1033 
1034 	mutex_lock(&efx->mac_lock);
1035 
1036 	rc = efx->phy_op->init(efx);
1037 	if (rc)
1038 		goto fail1;
1039 
1040 	efx->port_initialized = true;
1041 
1042 	/* Reconfigure the MAC before creating dma queues (required for
1043 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1044 	efx->type->reconfigure_mac(efx);
1045 
1046 	/* Ensure the PHY advertises the correct flow control settings */
1047 	rc = efx->phy_op->reconfigure(efx);
1048 	if (rc)
1049 		goto fail2;
1050 
1051 	mutex_unlock(&efx->mac_lock);
1052 	return 0;
1053 
1054 fail2:
1055 	efx->phy_op->fini(efx);
1056 fail1:
1057 	mutex_unlock(&efx->mac_lock);
1058 	return rc;
1059 }
1060 
1061 static void efx_start_port(struct efx_nic *efx)
1062 {
1063 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1064 	BUG_ON(efx->port_enabled);
1065 
1066 	mutex_lock(&efx->mac_lock);
1067 	efx->port_enabled = true;
1068 
1069 	/* Ensure MAC ingress/egress is enabled */
1070 	efx->type->reconfigure_mac(efx);
1071 
1072 	mutex_unlock(&efx->mac_lock);
1073 }
1074 
1075 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1076  * and the async self-test, wait for them to finish and prevent them
1077  * being scheduled again.  This doesn't cover online resets, which
1078  * should only be cancelled when removing the device.
1079  */
1080 static void efx_stop_port(struct efx_nic *efx)
1081 {
1082 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1083 
1084 	EFX_ASSERT_RESET_SERIALISED(efx);
1085 
1086 	mutex_lock(&efx->mac_lock);
1087 	efx->port_enabled = false;
1088 	mutex_unlock(&efx->mac_lock);
1089 
1090 	/* Serialise against efx_set_multicast_list() */
1091 	netif_addr_lock_bh(efx->net_dev);
1092 	netif_addr_unlock_bh(efx->net_dev);
1093 
1094 	cancel_delayed_work_sync(&efx->monitor_work);
1095 	efx_selftest_async_cancel(efx);
1096 	cancel_work_sync(&efx->mac_work);
1097 }
1098 
1099 static void efx_fini_port(struct efx_nic *efx)
1100 {
1101 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1102 
1103 	if (!efx->port_initialized)
1104 		return;
1105 
1106 	efx->phy_op->fini(efx);
1107 	efx->port_initialized = false;
1108 
1109 	efx->link_state.up = false;
1110 	efx_link_status_changed(efx);
1111 }
1112 
1113 static void efx_remove_port(struct efx_nic *efx)
1114 {
1115 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1116 
1117 	efx->type->remove_port(efx);
1118 }
1119 
1120 /**************************************************************************
1121  *
1122  * NIC handling
1123  *
1124  **************************************************************************/
1125 
1126 static LIST_HEAD(efx_primary_list);
1127 static LIST_HEAD(efx_unassociated_list);
1128 
1129 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1130 {
1131 	return left->type == right->type &&
1132 		left->vpd_sn && right->vpd_sn &&
1133 		!strcmp(left->vpd_sn, right->vpd_sn);
1134 }
1135 
1136 static void efx_associate(struct efx_nic *efx)
1137 {
1138 	struct efx_nic *other, *next;
1139 
1140 	if (efx->primary == efx) {
1141 		/* Adding primary function; look for secondaries */
1142 
1143 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1144 		list_add_tail(&efx->node, &efx_primary_list);
1145 
1146 		list_for_each_entry_safe(other, next, &efx_unassociated_list,
1147 					 node) {
1148 			if (efx_same_controller(efx, other)) {
1149 				list_del(&other->node);
1150 				netif_dbg(other, probe, other->net_dev,
1151 					  "moving to secondary list of %s %s\n",
1152 					  pci_name(efx->pci_dev),
1153 					  efx->net_dev->name);
1154 				list_add_tail(&other->node,
1155 					      &efx->secondary_list);
1156 				other->primary = efx;
1157 			}
1158 		}
1159 	} else {
1160 		/* Adding secondary function; look for primary */
1161 
1162 		list_for_each_entry(other, &efx_primary_list, node) {
1163 			if (efx_same_controller(efx, other)) {
1164 				netif_dbg(efx, probe, efx->net_dev,
1165 					  "adding to secondary list of %s %s\n",
1166 					  pci_name(other->pci_dev),
1167 					  other->net_dev->name);
1168 				list_add_tail(&efx->node,
1169 					      &other->secondary_list);
1170 				efx->primary = other;
1171 				return;
1172 			}
1173 		}
1174 
1175 		netif_dbg(efx, probe, efx->net_dev,
1176 			  "adding to unassociated list\n");
1177 		list_add_tail(&efx->node, &efx_unassociated_list);
1178 	}
1179 }
1180 
1181 static void efx_dissociate(struct efx_nic *efx)
1182 {
1183 	struct efx_nic *other, *next;
1184 
1185 	list_del(&efx->node);
1186 	efx->primary = NULL;
1187 
1188 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1189 		list_del(&other->node);
1190 		netif_dbg(other, probe, other->net_dev,
1191 			  "moving to unassociated list\n");
1192 		list_add_tail(&other->node, &efx_unassociated_list);
1193 		other->primary = NULL;
1194 	}
1195 }
1196 
1197 /* This configures the PCI device to enable I/O and DMA. */
1198 static int efx_init_io(struct efx_nic *efx)
1199 {
1200 	struct pci_dev *pci_dev = efx->pci_dev;
1201 	dma_addr_t dma_mask = efx->type->max_dma_mask;
1202 	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1203 	int rc;
1204 
1205 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1206 
1207 	rc = pci_enable_device(pci_dev);
1208 	if (rc) {
1209 		netif_err(efx, probe, efx->net_dev,
1210 			  "failed to enable PCI device\n");
1211 		goto fail1;
1212 	}
1213 
1214 	pci_set_master(pci_dev);
1215 
1216 	/* Set the PCI DMA mask.  Try all possibilities from our
1217 	 * genuine mask down to 32 bits, because some architectures
1218 	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1219 	 * masks event though they reject 46 bit masks.
1220 	 */
1221 	while (dma_mask > 0x7fffffffUL) {
1222 		if (dma_supported(&pci_dev->dev, dma_mask)) {
1223 			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1224 			if (rc == 0)
1225 				break;
1226 		}
1227 		dma_mask >>= 1;
1228 	}
1229 	if (rc) {
1230 		netif_err(efx, probe, efx->net_dev,
1231 			  "could not find a suitable DMA mask\n");
1232 		goto fail2;
1233 	}
1234 	netif_dbg(efx, probe, efx->net_dev,
1235 		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1236 
1237 	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1238 	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1239 	if (rc) {
1240 		netif_err(efx, probe, efx->net_dev,
1241 			  "request for memory BAR failed\n");
1242 		rc = -EIO;
1243 		goto fail3;
1244 	}
1245 	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1246 	if (!efx->membase) {
1247 		netif_err(efx, probe, efx->net_dev,
1248 			  "could not map memory BAR at %llx+%x\n",
1249 			  (unsigned long long)efx->membase_phys, mem_map_size);
1250 		rc = -ENOMEM;
1251 		goto fail4;
1252 	}
1253 	netif_dbg(efx, probe, efx->net_dev,
1254 		  "memory BAR at %llx+%x (virtual %p)\n",
1255 		  (unsigned long long)efx->membase_phys, mem_map_size,
1256 		  efx->membase);
1257 
1258 	return 0;
1259 
1260  fail4:
1261 	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1262  fail3:
1263 	efx->membase_phys = 0;
1264  fail2:
1265 	pci_disable_device(efx->pci_dev);
1266  fail1:
1267 	return rc;
1268 }
1269 
1270 static void efx_fini_io(struct efx_nic *efx)
1271 {
1272 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1273 
1274 	if (efx->membase) {
1275 		iounmap(efx->membase);
1276 		efx->membase = NULL;
1277 	}
1278 
1279 	if (efx->membase_phys) {
1280 		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1281 		efx->membase_phys = 0;
1282 	}
1283 
1284 	pci_disable_device(efx->pci_dev);
1285 }
1286 
1287 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1288 {
1289 	cpumask_var_t thread_mask;
1290 	unsigned int count;
1291 	int cpu;
1292 
1293 	if (rss_cpus) {
1294 		count = rss_cpus;
1295 	} else {
1296 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1297 			netif_warn(efx, probe, efx->net_dev,
1298 				   "RSS disabled due to allocation failure\n");
1299 			return 1;
1300 		}
1301 
1302 		count = 0;
1303 		for_each_online_cpu(cpu) {
1304 			if (!cpumask_test_cpu(cpu, thread_mask)) {
1305 				++count;
1306 				cpumask_or(thread_mask, thread_mask,
1307 					   topology_thread_cpumask(cpu));
1308 			}
1309 		}
1310 
1311 		free_cpumask_var(thread_mask);
1312 	}
1313 
1314 	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1315 	 * table entries that are inaccessible to VFs
1316 	 */
1317 	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1318 	    count > efx_vf_size(efx)) {
1319 		netif_warn(efx, probe, efx->net_dev,
1320 			   "Reducing number of RSS channels from %u to %u for "
1321 			   "VF support. Increase vf-msix-limit to use more "
1322 			   "channels on the PF.\n",
1323 			   count, efx_vf_size(efx));
1324 		count = efx_vf_size(efx);
1325 	}
1326 
1327 	return count;
1328 }
1329 
1330 /* Probe the number and type of interrupts we are able to obtain, and
1331  * the resulting numbers of channels and RX queues.
1332  */
1333 static int efx_probe_interrupts(struct efx_nic *efx)
1334 {
1335 	unsigned int extra_channels = 0;
1336 	unsigned int i, j;
1337 	int rc;
1338 
1339 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1340 		if (efx->extra_channel_type[i])
1341 			++extra_channels;
1342 
1343 	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1344 		struct msix_entry xentries[EFX_MAX_CHANNELS];
1345 		unsigned int n_channels;
1346 
1347 		n_channels = efx_wanted_parallelism(efx);
1348 		if (separate_tx_channels)
1349 			n_channels *= 2;
1350 		n_channels += extra_channels;
1351 		n_channels = min(n_channels, efx->max_channels);
1352 
1353 		for (i = 0; i < n_channels; i++)
1354 			xentries[i].entry = i;
1355 		rc = pci_enable_msix_range(efx->pci_dev,
1356 					   xentries, 1, n_channels);
1357 		if (rc < 0) {
1358 			/* Fall back to single channel MSI */
1359 			efx->interrupt_mode = EFX_INT_MODE_MSI;
1360 			netif_err(efx, drv, efx->net_dev,
1361 				  "could not enable MSI-X\n");
1362 		} else if (rc < n_channels) {
1363 			netif_err(efx, drv, efx->net_dev,
1364 				  "WARNING: Insufficient MSI-X vectors"
1365 				  " available (%d < %u).\n", rc, n_channels);
1366 			netif_err(efx, drv, efx->net_dev,
1367 				  "WARNING: Performance may be reduced.\n");
1368 			n_channels = rc;
1369 		}
1370 
1371 		if (rc > 0) {
1372 			efx->n_channels = n_channels;
1373 			if (n_channels > extra_channels)
1374 				n_channels -= extra_channels;
1375 			if (separate_tx_channels) {
1376 				efx->n_tx_channels = max(n_channels / 2, 1U);
1377 				efx->n_rx_channels = max(n_channels -
1378 							 efx->n_tx_channels,
1379 							 1U);
1380 			} else {
1381 				efx->n_tx_channels = n_channels;
1382 				efx->n_rx_channels = n_channels;
1383 			}
1384 			for (i = 0; i < efx->n_channels; i++)
1385 				efx_get_channel(efx, i)->irq =
1386 					xentries[i].vector;
1387 		}
1388 	}
1389 
1390 	/* Try single interrupt MSI */
1391 	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1392 		efx->n_channels = 1;
1393 		efx->n_rx_channels = 1;
1394 		efx->n_tx_channels = 1;
1395 		rc = pci_enable_msi(efx->pci_dev);
1396 		if (rc == 0) {
1397 			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1398 		} else {
1399 			netif_err(efx, drv, efx->net_dev,
1400 				  "could not enable MSI\n");
1401 			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1402 		}
1403 	}
1404 
1405 	/* Assume legacy interrupts */
1406 	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1407 		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1408 		efx->n_rx_channels = 1;
1409 		efx->n_tx_channels = 1;
1410 		efx->legacy_irq = efx->pci_dev->irq;
1411 	}
1412 
1413 	/* Assign extra channels if possible */
1414 	j = efx->n_channels;
1415 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1416 		if (!efx->extra_channel_type[i])
1417 			continue;
1418 		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1419 		    efx->n_channels <= extra_channels) {
1420 			efx->extra_channel_type[i]->handle_no_channel(efx);
1421 		} else {
1422 			--j;
1423 			efx_get_channel(efx, j)->type =
1424 				efx->extra_channel_type[i];
1425 		}
1426 	}
1427 
1428 	/* RSS might be usable on VFs even if it is disabled on the PF */
1429 	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1430 			   efx->n_rx_channels : efx_vf_size(efx));
1431 
1432 	return 0;
1433 }
1434 
1435 static int efx_soft_enable_interrupts(struct efx_nic *efx)
1436 {
1437 	struct efx_channel *channel, *end_channel;
1438 	int rc;
1439 
1440 	BUG_ON(efx->state == STATE_DISABLED);
1441 
1442 	efx->irq_soft_enabled = true;
1443 	smp_wmb();
1444 
1445 	efx_for_each_channel(channel, efx) {
1446 		if (!channel->type->keep_eventq) {
1447 			rc = efx_init_eventq(channel);
1448 			if (rc)
1449 				goto fail;
1450 		}
1451 		efx_start_eventq(channel);
1452 	}
1453 
1454 	efx_mcdi_mode_event(efx);
1455 
1456 	return 0;
1457 fail:
1458 	end_channel = channel;
1459 	efx_for_each_channel(channel, efx) {
1460 		if (channel == end_channel)
1461 			break;
1462 		efx_stop_eventq(channel);
1463 		if (!channel->type->keep_eventq)
1464 			efx_fini_eventq(channel);
1465 	}
1466 
1467 	return rc;
1468 }
1469 
1470 static void efx_soft_disable_interrupts(struct efx_nic *efx)
1471 {
1472 	struct efx_channel *channel;
1473 
1474 	if (efx->state == STATE_DISABLED)
1475 		return;
1476 
1477 	efx_mcdi_mode_poll(efx);
1478 
1479 	efx->irq_soft_enabled = false;
1480 	smp_wmb();
1481 
1482 	if (efx->legacy_irq)
1483 		synchronize_irq(efx->legacy_irq);
1484 
1485 	efx_for_each_channel(channel, efx) {
1486 		if (channel->irq)
1487 			synchronize_irq(channel->irq);
1488 
1489 		efx_stop_eventq(channel);
1490 		if (!channel->type->keep_eventq)
1491 			efx_fini_eventq(channel);
1492 	}
1493 
1494 	/* Flush the asynchronous MCDI request queue */
1495 	efx_mcdi_flush_async(efx);
1496 }
1497 
1498 static int efx_enable_interrupts(struct efx_nic *efx)
1499 {
1500 	struct efx_channel *channel, *end_channel;
1501 	int rc;
1502 
1503 	BUG_ON(efx->state == STATE_DISABLED);
1504 
1505 	if (efx->eeh_disabled_legacy_irq) {
1506 		enable_irq(efx->legacy_irq);
1507 		efx->eeh_disabled_legacy_irq = false;
1508 	}
1509 
1510 	efx->type->irq_enable_master(efx);
1511 
1512 	efx_for_each_channel(channel, efx) {
1513 		if (channel->type->keep_eventq) {
1514 			rc = efx_init_eventq(channel);
1515 			if (rc)
1516 				goto fail;
1517 		}
1518 	}
1519 
1520 	rc = efx_soft_enable_interrupts(efx);
1521 	if (rc)
1522 		goto fail;
1523 
1524 	return 0;
1525 
1526 fail:
1527 	end_channel = channel;
1528 	efx_for_each_channel(channel, efx) {
1529 		if (channel == end_channel)
1530 			break;
1531 		if (channel->type->keep_eventq)
1532 			efx_fini_eventq(channel);
1533 	}
1534 
1535 	efx->type->irq_disable_non_ev(efx);
1536 
1537 	return rc;
1538 }
1539 
1540 static void efx_disable_interrupts(struct efx_nic *efx)
1541 {
1542 	struct efx_channel *channel;
1543 
1544 	efx_soft_disable_interrupts(efx);
1545 
1546 	efx_for_each_channel(channel, efx) {
1547 		if (channel->type->keep_eventq)
1548 			efx_fini_eventq(channel);
1549 	}
1550 
1551 	efx->type->irq_disable_non_ev(efx);
1552 }
1553 
1554 static void efx_remove_interrupts(struct efx_nic *efx)
1555 {
1556 	struct efx_channel *channel;
1557 
1558 	/* Remove MSI/MSI-X interrupts */
1559 	efx_for_each_channel(channel, efx)
1560 		channel->irq = 0;
1561 	pci_disable_msi(efx->pci_dev);
1562 	pci_disable_msix(efx->pci_dev);
1563 
1564 	/* Remove legacy interrupt */
1565 	efx->legacy_irq = 0;
1566 }
1567 
1568 static void efx_set_channels(struct efx_nic *efx)
1569 {
1570 	struct efx_channel *channel;
1571 	struct efx_tx_queue *tx_queue;
1572 
1573 	efx->tx_channel_offset =
1574 		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1575 
1576 	/* We need to mark which channels really have RX and TX
1577 	 * queues, and adjust the TX queue numbers if we have separate
1578 	 * RX-only and TX-only channels.
1579 	 */
1580 	efx_for_each_channel(channel, efx) {
1581 		if (channel->channel < efx->n_rx_channels)
1582 			channel->rx_queue.core_index = channel->channel;
1583 		else
1584 			channel->rx_queue.core_index = -1;
1585 
1586 		efx_for_each_channel_tx_queue(tx_queue, channel)
1587 			tx_queue->queue -= (efx->tx_channel_offset *
1588 					    EFX_TXQ_TYPES);
1589 	}
1590 }
1591 
1592 static int efx_probe_nic(struct efx_nic *efx)
1593 {
1594 	size_t i;
1595 	int rc;
1596 
1597 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1598 
1599 	/* Carry out hardware-type specific initialisation */
1600 	rc = efx->type->probe(efx);
1601 	if (rc)
1602 		return rc;
1603 
1604 	/* Determine the number of channels and queues by trying to hook
1605 	 * in MSI-X interrupts. */
1606 	rc = efx_probe_interrupts(efx);
1607 	if (rc)
1608 		goto fail1;
1609 
1610 	efx_set_channels(efx);
1611 
1612 	rc = efx->type->dimension_resources(efx);
1613 	if (rc)
1614 		goto fail2;
1615 
1616 	if (efx->n_channels > 1)
1617 		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1618 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1619 		efx->rx_indir_table[i] =
1620 			ethtool_rxfh_indir_default(i, efx->rss_spread);
1621 
1622 	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1623 	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1624 
1625 	/* Initialise the interrupt moderation settings */
1626 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1627 				true);
1628 
1629 	return 0;
1630 
1631 fail2:
1632 	efx_remove_interrupts(efx);
1633 fail1:
1634 	efx->type->remove(efx);
1635 	return rc;
1636 }
1637 
1638 static void efx_remove_nic(struct efx_nic *efx)
1639 {
1640 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1641 
1642 	efx_remove_interrupts(efx);
1643 	efx->type->remove(efx);
1644 }
1645 
1646 static int efx_probe_filters(struct efx_nic *efx)
1647 {
1648 	int rc;
1649 
1650 	spin_lock_init(&efx->filter_lock);
1651 
1652 	rc = efx->type->filter_table_probe(efx);
1653 	if (rc)
1654 		return rc;
1655 
1656 #ifdef CONFIG_RFS_ACCEL
1657 	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1658 		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1659 					   sizeof(*efx->rps_flow_id),
1660 					   GFP_KERNEL);
1661 		if (!efx->rps_flow_id) {
1662 			efx->type->filter_table_remove(efx);
1663 			return -ENOMEM;
1664 		}
1665 	}
1666 #endif
1667 
1668 	return 0;
1669 }
1670 
1671 static void efx_remove_filters(struct efx_nic *efx)
1672 {
1673 #ifdef CONFIG_RFS_ACCEL
1674 	kfree(efx->rps_flow_id);
1675 #endif
1676 	efx->type->filter_table_remove(efx);
1677 }
1678 
1679 static void efx_restore_filters(struct efx_nic *efx)
1680 {
1681 	efx->type->filter_table_restore(efx);
1682 }
1683 
1684 /**************************************************************************
1685  *
1686  * NIC startup/shutdown
1687  *
1688  *************************************************************************/
1689 
1690 static int efx_probe_all(struct efx_nic *efx)
1691 {
1692 	int rc;
1693 
1694 	rc = efx_probe_nic(efx);
1695 	if (rc) {
1696 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1697 		goto fail1;
1698 	}
1699 
1700 	rc = efx_probe_port(efx);
1701 	if (rc) {
1702 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1703 		goto fail2;
1704 	}
1705 
1706 	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1707 	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1708 		rc = -EINVAL;
1709 		goto fail3;
1710 	}
1711 	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1712 
1713 	rc = efx_probe_filters(efx);
1714 	if (rc) {
1715 		netif_err(efx, probe, efx->net_dev,
1716 			  "failed to create filter tables\n");
1717 		goto fail3;
1718 	}
1719 
1720 	rc = efx_probe_channels(efx);
1721 	if (rc)
1722 		goto fail4;
1723 
1724 	return 0;
1725 
1726  fail4:
1727 	efx_remove_filters(efx);
1728  fail3:
1729 	efx_remove_port(efx);
1730  fail2:
1731 	efx_remove_nic(efx);
1732  fail1:
1733 	return rc;
1734 }
1735 
1736 /* If the interface is supposed to be running but is not, start
1737  * the hardware and software data path, regular activity for the port
1738  * (MAC statistics, link polling, etc.) and schedule the port to be
1739  * reconfigured.  Interrupts must already be enabled.  This function
1740  * is safe to call multiple times, so long as the NIC is not disabled.
1741  * Requires the RTNL lock.
1742  */
1743 static void efx_start_all(struct efx_nic *efx)
1744 {
1745 	EFX_ASSERT_RESET_SERIALISED(efx);
1746 	BUG_ON(efx->state == STATE_DISABLED);
1747 
1748 	/* Check that it is appropriate to restart the interface. All
1749 	 * of these flags are safe to read under just the rtnl lock */
1750 	if (efx->port_enabled || !netif_running(efx->net_dev) ||
1751 	    efx->reset_pending)
1752 		return;
1753 
1754 	efx_start_port(efx);
1755 	efx_start_datapath(efx);
1756 
1757 	/* Start the hardware monitor if there is one */
1758 	if (efx->type->monitor != NULL)
1759 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1760 				   efx_monitor_interval);
1761 
1762 	/* If link state detection is normally event-driven, we have
1763 	 * to poll now because we could have missed a change
1764 	 */
1765 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1766 		mutex_lock(&efx->mac_lock);
1767 		if (efx->phy_op->poll(efx))
1768 			efx_link_status_changed(efx);
1769 		mutex_unlock(&efx->mac_lock);
1770 	}
1771 
1772 	efx->type->start_stats(efx);
1773 	efx->type->pull_stats(efx);
1774 	spin_lock_bh(&efx->stats_lock);
1775 	efx->type->update_stats(efx, NULL, NULL);
1776 	spin_unlock_bh(&efx->stats_lock);
1777 }
1778 
1779 /* Quiesce the hardware and software data path, and regular activity
1780  * for the port without bringing the link down.  Safe to call multiple
1781  * times with the NIC in almost any state, but interrupts should be
1782  * enabled.  Requires the RTNL lock.
1783  */
1784 static void efx_stop_all(struct efx_nic *efx)
1785 {
1786 	EFX_ASSERT_RESET_SERIALISED(efx);
1787 
1788 	/* port_enabled can be read safely under the rtnl lock */
1789 	if (!efx->port_enabled)
1790 		return;
1791 
1792 	/* update stats before we go down so we can accurately count
1793 	 * rx_nodesc_drops
1794 	 */
1795 	efx->type->pull_stats(efx);
1796 	spin_lock_bh(&efx->stats_lock);
1797 	efx->type->update_stats(efx, NULL, NULL);
1798 	spin_unlock_bh(&efx->stats_lock);
1799 	efx->type->stop_stats(efx);
1800 	efx_stop_port(efx);
1801 
1802 	/* Stop the kernel transmit interface.  This is only valid if
1803 	 * the device is stopped or detached; otherwise the watchdog
1804 	 * may fire immediately.
1805 	 */
1806 	WARN_ON(netif_running(efx->net_dev) &&
1807 		netif_device_present(efx->net_dev));
1808 	netif_tx_disable(efx->net_dev);
1809 
1810 	efx_stop_datapath(efx);
1811 }
1812 
1813 static void efx_remove_all(struct efx_nic *efx)
1814 {
1815 	efx_remove_channels(efx);
1816 	efx_remove_filters(efx);
1817 	efx_remove_port(efx);
1818 	efx_remove_nic(efx);
1819 }
1820 
1821 /**************************************************************************
1822  *
1823  * Interrupt moderation
1824  *
1825  **************************************************************************/
1826 
1827 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1828 {
1829 	if (usecs == 0)
1830 		return 0;
1831 	if (usecs * 1000 < quantum_ns)
1832 		return 1; /* never round down to 0 */
1833 	return usecs * 1000 / quantum_ns;
1834 }
1835 
1836 /* Set interrupt moderation parameters */
1837 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1838 			    unsigned int rx_usecs, bool rx_adaptive,
1839 			    bool rx_may_override_tx)
1840 {
1841 	struct efx_channel *channel;
1842 	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1843 						efx->timer_quantum_ns,
1844 						1000);
1845 	unsigned int tx_ticks;
1846 	unsigned int rx_ticks;
1847 
1848 	EFX_ASSERT_RESET_SERIALISED(efx);
1849 
1850 	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1851 		return -EINVAL;
1852 
1853 	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1854 	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1855 
1856 	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1857 	    !rx_may_override_tx) {
1858 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1859 			  "RX and TX IRQ moderation must be equal\n");
1860 		return -EINVAL;
1861 	}
1862 
1863 	efx->irq_rx_adaptive = rx_adaptive;
1864 	efx->irq_rx_moderation = rx_ticks;
1865 	efx_for_each_channel(channel, efx) {
1866 		if (efx_channel_has_rx_queue(channel))
1867 			channel->irq_moderation = rx_ticks;
1868 		else if (efx_channel_has_tx_queues(channel))
1869 			channel->irq_moderation = tx_ticks;
1870 	}
1871 
1872 	return 0;
1873 }
1874 
1875 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1876 			    unsigned int *rx_usecs, bool *rx_adaptive)
1877 {
1878 	/* We must round up when converting ticks to microseconds
1879 	 * because we round down when converting the other way.
1880 	 */
1881 
1882 	*rx_adaptive = efx->irq_rx_adaptive;
1883 	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1884 				 efx->timer_quantum_ns,
1885 				 1000);
1886 
1887 	/* If channels are shared between RX and TX, so is IRQ
1888 	 * moderation.  Otherwise, IRQ moderation is the same for all
1889 	 * TX channels and is not adaptive.
1890 	 */
1891 	if (efx->tx_channel_offset == 0)
1892 		*tx_usecs = *rx_usecs;
1893 	else
1894 		*tx_usecs = DIV_ROUND_UP(
1895 			efx->channel[efx->tx_channel_offset]->irq_moderation *
1896 			efx->timer_quantum_ns,
1897 			1000);
1898 }
1899 
1900 /**************************************************************************
1901  *
1902  * Hardware monitor
1903  *
1904  **************************************************************************/
1905 
1906 /* Run periodically off the general workqueue */
1907 static void efx_monitor(struct work_struct *data)
1908 {
1909 	struct efx_nic *efx = container_of(data, struct efx_nic,
1910 					   monitor_work.work);
1911 
1912 	netif_vdbg(efx, timer, efx->net_dev,
1913 		   "hardware monitor executing on CPU %d\n",
1914 		   raw_smp_processor_id());
1915 	BUG_ON(efx->type->monitor == NULL);
1916 
1917 	/* If the mac_lock is already held then it is likely a port
1918 	 * reconfiguration is already in place, which will likely do
1919 	 * most of the work of monitor() anyway. */
1920 	if (mutex_trylock(&efx->mac_lock)) {
1921 		if (efx->port_enabled)
1922 			efx->type->monitor(efx);
1923 		mutex_unlock(&efx->mac_lock);
1924 	}
1925 
1926 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1927 			   efx_monitor_interval);
1928 }
1929 
1930 /**************************************************************************
1931  *
1932  * ioctls
1933  *
1934  *************************************************************************/
1935 
1936 /* Net device ioctl
1937  * Context: process, rtnl_lock() held.
1938  */
1939 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1940 {
1941 	struct efx_nic *efx = netdev_priv(net_dev);
1942 	struct mii_ioctl_data *data = if_mii(ifr);
1943 
1944 	if (cmd == SIOCSHWTSTAMP)
1945 		return efx_ptp_set_ts_config(efx, ifr);
1946 	if (cmd == SIOCGHWTSTAMP)
1947 		return efx_ptp_get_ts_config(efx, ifr);
1948 
1949 	/* Convert phy_id from older PRTAD/DEVAD format */
1950 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1951 	    (data->phy_id & 0xfc00) == 0x0400)
1952 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1953 
1954 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1955 }
1956 
1957 /**************************************************************************
1958  *
1959  * NAPI interface
1960  *
1961  **************************************************************************/
1962 
1963 static void efx_init_napi_channel(struct efx_channel *channel)
1964 {
1965 	struct efx_nic *efx = channel->efx;
1966 
1967 	channel->napi_dev = efx->net_dev;
1968 	netif_napi_add(channel->napi_dev, &channel->napi_str,
1969 		       efx_poll, napi_weight);
1970 	napi_hash_add(&channel->napi_str);
1971 	efx_channel_init_lock(channel);
1972 }
1973 
1974 static void efx_init_napi(struct efx_nic *efx)
1975 {
1976 	struct efx_channel *channel;
1977 
1978 	efx_for_each_channel(channel, efx)
1979 		efx_init_napi_channel(channel);
1980 }
1981 
1982 static void efx_fini_napi_channel(struct efx_channel *channel)
1983 {
1984 	if (channel->napi_dev) {
1985 		netif_napi_del(&channel->napi_str);
1986 		napi_hash_del(&channel->napi_str);
1987 	}
1988 	channel->napi_dev = NULL;
1989 }
1990 
1991 static void efx_fini_napi(struct efx_nic *efx)
1992 {
1993 	struct efx_channel *channel;
1994 
1995 	efx_for_each_channel(channel, efx)
1996 		efx_fini_napi_channel(channel);
1997 }
1998 
1999 /**************************************************************************
2000  *
2001  * Kernel netpoll interface
2002  *
2003  *************************************************************************/
2004 
2005 #ifdef CONFIG_NET_POLL_CONTROLLER
2006 
2007 /* Although in the common case interrupts will be disabled, this is not
2008  * guaranteed. However, all our work happens inside the NAPI callback,
2009  * so no locking is required.
2010  */
2011 static void efx_netpoll(struct net_device *net_dev)
2012 {
2013 	struct efx_nic *efx = netdev_priv(net_dev);
2014 	struct efx_channel *channel;
2015 
2016 	efx_for_each_channel(channel, efx)
2017 		efx_schedule_channel(channel);
2018 }
2019 
2020 #endif
2021 
2022 #ifdef CONFIG_NET_RX_BUSY_POLL
2023 static int efx_busy_poll(struct napi_struct *napi)
2024 {
2025 	struct efx_channel *channel =
2026 		container_of(napi, struct efx_channel, napi_str);
2027 	struct efx_nic *efx = channel->efx;
2028 	int budget = 4;
2029 	int old_rx_packets, rx_packets;
2030 
2031 	if (!netif_running(efx->net_dev))
2032 		return LL_FLUSH_FAILED;
2033 
2034 	if (!efx_channel_lock_poll(channel))
2035 		return LL_FLUSH_BUSY;
2036 
2037 	old_rx_packets = channel->rx_queue.rx_packets;
2038 	efx_process_channel(channel, budget);
2039 
2040 	rx_packets = channel->rx_queue.rx_packets - old_rx_packets;
2041 
2042 	/* There is no race condition with NAPI here.
2043 	 * NAPI will automatically be rescheduled if it yielded during busy
2044 	 * polling, because it was not able to take the lock and thus returned
2045 	 * the full budget.
2046 	 */
2047 	efx_channel_unlock_poll(channel);
2048 
2049 	return rx_packets;
2050 }
2051 #endif
2052 
2053 /**************************************************************************
2054  *
2055  * Kernel net device interface
2056  *
2057  *************************************************************************/
2058 
2059 /* Context: process, rtnl_lock() held. */
2060 static int efx_net_open(struct net_device *net_dev)
2061 {
2062 	struct efx_nic *efx = netdev_priv(net_dev);
2063 	int rc;
2064 
2065 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2066 		  raw_smp_processor_id());
2067 
2068 	rc = efx_check_disabled(efx);
2069 	if (rc)
2070 		return rc;
2071 	if (efx->phy_mode & PHY_MODE_SPECIAL)
2072 		return -EBUSY;
2073 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2074 		return -EIO;
2075 
2076 	/* Notify the kernel of the link state polled during driver load,
2077 	 * before the monitor starts running */
2078 	efx_link_status_changed(efx);
2079 
2080 	efx_start_all(efx);
2081 	efx_selftest_async_start(efx);
2082 	return 0;
2083 }
2084 
2085 /* Context: process, rtnl_lock() held.
2086  * Note that the kernel will ignore our return code; this method
2087  * should really be a void.
2088  */
2089 static int efx_net_stop(struct net_device *net_dev)
2090 {
2091 	struct efx_nic *efx = netdev_priv(net_dev);
2092 
2093 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2094 		  raw_smp_processor_id());
2095 
2096 	/* Stop the device and flush all the channels */
2097 	efx_stop_all(efx);
2098 
2099 	return 0;
2100 }
2101 
2102 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2103 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2104 					       struct rtnl_link_stats64 *stats)
2105 {
2106 	struct efx_nic *efx = netdev_priv(net_dev);
2107 
2108 	spin_lock_bh(&efx->stats_lock);
2109 	efx->type->update_stats(efx, NULL, stats);
2110 	spin_unlock_bh(&efx->stats_lock);
2111 
2112 	return stats;
2113 }
2114 
2115 /* Context: netif_tx_lock held, BHs disabled. */
2116 static void efx_watchdog(struct net_device *net_dev)
2117 {
2118 	struct efx_nic *efx = netdev_priv(net_dev);
2119 
2120 	netif_err(efx, tx_err, efx->net_dev,
2121 		  "TX stuck with port_enabled=%d: resetting channels\n",
2122 		  efx->port_enabled);
2123 
2124 	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2125 }
2126 
2127 
2128 /* Context: process, rtnl_lock() held. */
2129 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2130 {
2131 	struct efx_nic *efx = netdev_priv(net_dev);
2132 	int rc;
2133 
2134 	rc = efx_check_disabled(efx);
2135 	if (rc)
2136 		return rc;
2137 	if (new_mtu > EFX_MAX_MTU)
2138 		return -EINVAL;
2139 
2140 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2141 
2142 	efx_device_detach_sync(efx);
2143 	efx_stop_all(efx);
2144 
2145 	mutex_lock(&efx->mac_lock);
2146 	net_dev->mtu = new_mtu;
2147 	efx->type->reconfigure_mac(efx);
2148 	mutex_unlock(&efx->mac_lock);
2149 
2150 	efx_start_all(efx);
2151 	netif_device_attach(efx->net_dev);
2152 	return 0;
2153 }
2154 
2155 static int efx_set_mac_address(struct net_device *net_dev, void *data)
2156 {
2157 	struct efx_nic *efx = netdev_priv(net_dev);
2158 	struct sockaddr *addr = data;
2159 	u8 *new_addr = addr->sa_data;
2160 
2161 	if (!is_valid_ether_addr(new_addr)) {
2162 		netif_err(efx, drv, efx->net_dev,
2163 			  "invalid ethernet MAC address requested: %pM\n",
2164 			  new_addr);
2165 		return -EADDRNOTAVAIL;
2166 	}
2167 
2168 	ether_addr_copy(net_dev->dev_addr, new_addr);
2169 	efx_sriov_mac_address_changed(efx);
2170 
2171 	/* Reconfigure the MAC */
2172 	mutex_lock(&efx->mac_lock);
2173 	efx->type->reconfigure_mac(efx);
2174 	mutex_unlock(&efx->mac_lock);
2175 
2176 	return 0;
2177 }
2178 
2179 /* Context: netif_addr_lock held, BHs disabled. */
2180 static void efx_set_rx_mode(struct net_device *net_dev)
2181 {
2182 	struct efx_nic *efx = netdev_priv(net_dev);
2183 
2184 	if (efx->port_enabled)
2185 		queue_work(efx->workqueue, &efx->mac_work);
2186 	/* Otherwise efx_start_port() will do this */
2187 }
2188 
2189 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2190 {
2191 	struct efx_nic *efx = netdev_priv(net_dev);
2192 
2193 	/* If disabling RX n-tuple filtering, clear existing filters */
2194 	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2195 		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2196 
2197 	return 0;
2198 }
2199 
2200 static const struct net_device_ops efx_farch_netdev_ops = {
2201 	.ndo_open		= efx_net_open,
2202 	.ndo_stop		= efx_net_stop,
2203 	.ndo_get_stats64	= efx_net_stats,
2204 	.ndo_tx_timeout		= efx_watchdog,
2205 	.ndo_start_xmit		= efx_hard_start_xmit,
2206 	.ndo_validate_addr	= eth_validate_addr,
2207 	.ndo_do_ioctl		= efx_ioctl,
2208 	.ndo_change_mtu		= efx_change_mtu,
2209 	.ndo_set_mac_address	= efx_set_mac_address,
2210 	.ndo_set_rx_mode	= efx_set_rx_mode,
2211 	.ndo_set_features	= efx_set_features,
2212 #ifdef CONFIG_SFC_SRIOV
2213 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2214 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2215 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2216 	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2217 #endif
2218 #ifdef CONFIG_NET_POLL_CONTROLLER
2219 	.ndo_poll_controller = efx_netpoll,
2220 #endif
2221 	.ndo_setup_tc		= efx_setup_tc,
2222 #ifdef CONFIG_NET_RX_BUSY_POLL
2223 	.ndo_busy_poll		= efx_busy_poll,
2224 #endif
2225 #ifdef CONFIG_RFS_ACCEL
2226 	.ndo_rx_flow_steer	= efx_filter_rfs,
2227 #endif
2228 };
2229 
2230 static const struct net_device_ops efx_ef10_netdev_ops = {
2231 	.ndo_open		= efx_net_open,
2232 	.ndo_stop		= efx_net_stop,
2233 	.ndo_get_stats64	= efx_net_stats,
2234 	.ndo_tx_timeout		= efx_watchdog,
2235 	.ndo_start_xmit		= efx_hard_start_xmit,
2236 	.ndo_validate_addr	= eth_validate_addr,
2237 	.ndo_do_ioctl		= efx_ioctl,
2238 	.ndo_change_mtu		= efx_change_mtu,
2239 	.ndo_set_mac_address	= efx_set_mac_address,
2240 	.ndo_set_rx_mode	= efx_set_rx_mode,
2241 	.ndo_set_features	= efx_set_features,
2242 #ifdef CONFIG_NET_POLL_CONTROLLER
2243 	.ndo_poll_controller	= efx_netpoll,
2244 #endif
2245 #ifdef CONFIG_NET_RX_BUSY_POLL
2246 	.ndo_busy_poll		= efx_busy_poll,
2247 #endif
2248 #ifdef CONFIG_RFS_ACCEL
2249 	.ndo_rx_flow_steer	= efx_filter_rfs,
2250 #endif
2251 };
2252 
2253 static void efx_update_name(struct efx_nic *efx)
2254 {
2255 	strcpy(efx->name, efx->net_dev->name);
2256 	efx_mtd_rename(efx);
2257 	efx_set_channel_names(efx);
2258 }
2259 
2260 static int efx_netdev_event(struct notifier_block *this,
2261 			    unsigned long event, void *ptr)
2262 {
2263 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2264 
2265 	if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
2266 	     net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2267 	    event == NETDEV_CHANGENAME)
2268 		efx_update_name(netdev_priv(net_dev));
2269 
2270 	return NOTIFY_DONE;
2271 }
2272 
2273 static struct notifier_block efx_netdev_notifier = {
2274 	.notifier_call = efx_netdev_event,
2275 };
2276 
2277 static ssize_t
2278 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2279 {
2280 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2281 	return sprintf(buf, "%d\n", efx->phy_type);
2282 }
2283 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2284 
2285 static int efx_register_netdev(struct efx_nic *efx)
2286 {
2287 	struct net_device *net_dev = efx->net_dev;
2288 	struct efx_channel *channel;
2289 	int rc;
2290 
2291 	net_dev->watchdog_timeo = 5 * HZ;
2292 	net_dev->irq = efx->pci_dev->irq;
2293 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
2294 		net_dev->netdev_ops = &efx_ef10_netdev_ops;
2295 		net_dev->priv_flags |= IFF_UNICAST_FLT;
2296 	} else {
2297 		net_dev->netdev_ops = &efx_farch_netdev_ops;
2298 	}
2299 	net_dev->ethtool_ops = &efx_ethtool_ops;
2300 	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2301 
2302 	rtnl_lock();
2303 
2304 	/* Enable resets to be scheduled and check whether any were
2305 	 * already requested.  If so, the NIC is probably hosed so we
2306 	 * abort.
2307 	 */
2308 	efx->state = STATE_READY;
2309 	smp_mb(); /* ensure we change state before checking reset_pending */
2310 	if (efx->reset_pending) {
2311 		netif_err(efx, probe, efx->net_dev,
2312 			  "aborting probe due to scheduled reset\n");
2313 		rc = -EIO;
2314 		goto fail_locked;
2315 	}
2316 
2317 	rc = dev_alloc_name(net_dev, net_dev->name);
2318 	if (rc < 0)
2319 		goto fail_locked;
2320 	efx_update_name(efx);
2321 
2322 	/* Always start with carrier off; PHY events will detect the link */
2323 	netif_carrier_off(net_dev);
2324 
2325 	rc = register_netdevice(net_dev);
2326 	if (rc)
2327 		goto fail_locked;
2328 
2329 	efx_for_each_channel(channel, efx) {
2330 		struct efx_tx_queue *tx_queue;
2331 		efx_for_each_channel_tx_queue(tx_queue, channel)
2332 			efx_init_tx_queue_core_txq(tx_queue);
2333 	}
2334 
2335 	efx_associate(efx);
2336 
2337 	rtnl_unlock();
2338 
2339 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2340 	if (rc) {
2341 		netif_err(efx, drv, efx->net_dev,
2342 			  "failed to init net dev attributes\n");
2343 		goto fail_registered;
2344 	}
2345 
2346 	return 0;
2347 
2348 fail_registered:
2349 	rtnl_lock();
2350 	efx_dissociate(efx);
2351 	unregister_netdevice(net_dev);
2352 fail_locked:
2353 	efx->state = STATE_UNINIT;
2354 	rtnl_unlock();
2355 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2356 	return rc;
2357 }
2358 
2359 static void efx_unregister_netdev(struct efx_nic *efx)
2360 {
2361 	if (!efx->net_dev)
2362 		return;
2363 
2364 	BUG_ON(netdev_priv(efx->net_dev) != efx);
2365 
2366 	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2367 	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2368 
2369 	rtnl_lock();
2370 	unregister_netdevice(efx->net_dev);
2371 	efx->state = STATE_UNINIT;
2372 	rtnl_unlock();
2373 }
2374 
2375 /**************************************************************************
2376  *
2377  * Device reset and suspend
2378  *
2379  **************************************************************************/
2380 
2381 /* Tears down the entire software state and most of the hardware state
2382  * before reset.  */
2383 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2384 {
2385 	EFX_ASSERT_RESET_SERIALISED(efx);
2386 
2387 	if (method == RESET_TYPE_MCDI_TIMEOUT)
2388 		efx->type->prepare_flr(efx);
2389 
2390 	efx_stop_all(efx);
2391 	efx_disable_interrupts(efx);
2392 
2393 	mutex_lock(&efx->mac_lock);
2394 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2395 		efx->phy_op->fini(efx);
2396 	efx->type->fini(efx);
2397 }
2398 
2399 /* This function will always ensure that the locks acquired in
2400  * efx_reset_down() are released. A failure return code indicates
2401  * that we were unable to reinitialise the hardware, and the
2402  * driver should be disabled. If ok is false, then the rx and tx
2403  * engines are not restarted, pending a RESET_DISABLE. */
2404 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2405 {
2406 	int rc;
2407 
2408 	EFX_ASSERT_RESET_SERIALISED(efx);
2409 
2410 	if (method == RESET_TYPE_MCDI_TIMEOUT)
2411 		efx->type->finish_flr(efx);
2412 
2413 	/* Ensure that SRAM is initialised even if we're disabling the device */
2414 	rc = efx->type->init(efx);
2415 	if (rc) {
2416 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2417 		goto fail;
2418 	}
2419 
2420 	if (!ok)
2421 		goto fail;
2422 
2423 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2424 		rc = efx->phy_op->init(efx);
2425 		if (rc)
2426 			goto fail;
2427 		if (efx->phy_op->reconfigure(efx))
2428 			netif_err(efx, drv, efx->net_dev,
2429 				  "could not restore PHY settings\n");
2430 	}
2431 
2432 	rc = efx_enable_interrupts(efx);
2433 	if (rc)
2434 		goto fail;
2435 	efx_restore_filters(efx);
2436 	efx_sriov_reset(efx);
2437 
2438 	mutex_unlock(&efx->mac_lock);
2439 
2440 	efx_start_all(efx);
2441 
2442 	return 0;
2443 
2444 fail:
2445 	efx->port_initialized = false;
2446 
2447 	mutex_unlock(&efx->mac_lock);
2448 
2449 	return rc;
2450 }
2451 
2452 /* Reset the NIC using the specified method.  Note that the reset may
2453  * fail, in which case the card will be left in an unusable state.
2454  *
2455  * Caller must hold the rtnl_lock.
2456  */
2457 int efx_reset(struct efx_nic *efx, enum reset_type method)
2458 {
2459 	int rc, rc2;
2460 	bool disabled;
2461 
2462 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2463 		   RESET_TYPE(method));
2464 
2465 	efx_device_detach_sync(efx);
2466 	efx_reset_down(efx, method);
2467 
2468 	rc = efx->type->reset(efx, method);
2469 	if (rc) {
2470 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2471 		goto out;
2472 	}
2473 
2474 	/* Clear flags for the scopes we covered.  We assume the NIC and
2475 	 * driver are now quiescent so that there is no race here.
2476 	 */
2477 	if (method < RESET_TYPE_MAX_METHOD)
2478 		efx->reset_pending &= -(1 << (method + 1));
2479 	else /* it doesn't fit into the well-ordered scope hierarchy */
2480 		__clear_bit(method, &efx->reset_pending);
2481 
2482 	/* Reinitialise bus-mastering, which may have been turned off before
2483 	 * the reset was scheduled. This is still appropriate, even in the
2484 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2485 	 * can respond to requests. */
2486 	pci_set_master(efx->pci_dev);
2487 
2488 out:
2489 	/* Leave device stopped if necessary */
2490 	disabled = rc ||
2491 		method == RESET_TYPE_DISABLE ||
2492 		method == RESET_TYPE_RECOVER_OR_DISABLE;
2493 	rc2 = efx_reset_up(efx, method, !disabled);
2494 	if (rc2) {
2495 		disabled = true;
2496 		if (!rc)
2497 			rc = rc2;
2498 	}
2499 
2500 	if (disabled) {
2501 		dev_close(efx->net_dev);
2502 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2503 		efx->state = STATE_DISABLED;
2504 	} else {
2505 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2506 		netif_device_attach(efx->net_dev);
2507 	}
2508 	return rc;
2509 }
2510 
2511 /* Try recovery mechanisms.
2512  * For now only EEH is supported.
2513  * Returns 0 if the recovery mechanisms are unsuccessful.
2514  * Returns a non-zero value otherwise.
2515  */
2516 int efx_try_recovery(struct efx_nic *efx)
2517 {
2518 #ifdef CONFIG_EEH
2519 	/* A PCI error can occur and not be seen by EEH because nothing
2520 	 * happens on the PCI bus. In this case the driver may fail and
2521 	 * schedule a 'recover or reset', leading to this recovery handler.
2522 	 * Manually call the eeh failure check function.
2523 	 */
2524 	struct eeh_dev *eehdev =
2525 		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
2526 
2527 	if (eeh_dev_check_failure(eehdev)) {
2528 		/* The EEH mechanisms will handle the error and reset the
2529 		 * device if necessary.
2530 		 */
2531 		return 1;
2532 	}
2533 #endif
2534 	return 0;
2535 }
2536 
2537 static void efx_wait_for_bist_end(struct efx_nic *efx)
2538 {
2539 	int i;
2540 
2541 	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2542 		if (efx_mcdi_poll_reboot(efx))
2543 			goto out;
2544 		msleep(BIST_WAIT_DELAY_MS);
2545 	}
2546 
2547 	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2548 out:
2549 	/* Either way unset the BIST flag. If we found no reboot we probably
2550 	 * won't recover, but we should try.
2551 	 */
2552 	efx->mc_bist_for_other_fn = false;
2553 }
2554 
2555 /* The worker thread exists so that code that cannot sleep can
2556  * schedule a reset for later.
2557  */
2558 static void efx_reset_work(struct work_struct *data)
2559 {
2560 	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2561 	unsigned long pending;
2562 	enum reset_type method;
2563 
2564 	pending = ACCESS_ONCE(efx->reset_pending);
2565 	method = fls(pending) - 1;
2566 
2567 	if (method == RESET_TYPE_MC_BIST)
2568 		efx_wait_for_bist_end(efx);
2569 
2570 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2571 	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2572 	    efx_try_recovery(efx))
2573 		return;
2574 
2575 	if (!pending)
2576 		return;
2577 
2578 	rtnl_lock();
2579 
2580 	/* We checked the state in efx_schedule_reset() but it may
2581 	 * have changed by now.  Now that we have the RTNL lock,
2582 	 * it cannot change again.
2583 	 */
2584 	if (efx->state == STATE_READY)
2585 		(void)efx_reset(efx, method);
2586 
2587 	rtnl_unlock();
2588 }
2589 
2590 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2591 {
2592 	enum reset_type method;
2593 
2594 	if (efx->state == STATE_RECOVERY) {
2595 		netif_dbg(efx, drv, efx->net_dev,
2596 			  "recovering: skip scheduling %s reset\n",
2597 			  RESET_TYPE(type));
2598 		return;
2599 	}
2600 
2601 	switch (type) {
2602 	case RESET_TYPE_INVISIBLE:
2603 	case RESET_TYPE_ALL:
2604 	case RESET_TYPE_RECOVER_OR_ALL:
2605 	case RESET_TYPE_WORLD:
2606 	case RESET_TYPE_DISABLE:
2607 	case RESET_TYPE_RECOVER_OR_DISABLE:
2608 	case RESET_TYPE_MC_BIST:
2609 	case RESET_TYPE_MCDI_TIMEOUT:
2610 		method = type;
2611 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2612 			  RESET_TYPE(method));
2613 		break;
2614 	default:
2615 		method = efx->type->map_reset_reason(type);
2616 		netif_dbg(efx, drv, efx->net_dev,
2617 			  "scheduling %s reset for %s\n",
2618 			  RESET_TYPE(method), RESET_TYPE(type));
2619 		break;
2620 	}
2621 
2622 	set_bit(method, &efx->reset_pending);
2623 	smp_mb(); /* ensure we change reset_pending before checking state */
2624 
2625 	/* If we're not READY then just leave the flags set as the cue
2626 	 * to abort probing or reschedule the reset later.
2627 	 */
2628 	if (ACCESS_ONCE(efx->state) != STATE_READY)
2629 		return;
2630 
2631 	/* efx_process_channel() will no longer read events once a
2632 	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2633 	efx_mcdi_mode_poll(efx);
2634 
2635 	queue_work(reset_workqueue, &efx->reset_work);
2636 }
2637 
2638 /**************************************************************************
2639  *
2640  * List of NICs we support
2641  *
2642  **************************************************************************/
2643 
2644 /* PCI device ID table */
2645 static const struct pci_device_id efx_pci_table[] = {
2646 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2647 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2648 	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2649 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2650 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2651 	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2652 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2653 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2654 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2655 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2656 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2657 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2658 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
2659 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2660 	{0}			/* end of list */
2661 };
2662 
2663 /**************************************************************************
2664  *
2665  * Dummy PHY/MAC operations
2666  *
2667  * Can be used for some unimplemented operations
2668  * Needed so all function pointers are valid and do not have to be tested
2669  * before use
2670  *
2671  **************************************************************************/
2672 int efx_port_dummy_op_int(struct efx_nic *efx)
2673 {
2674 	return 0;
2675 }
2676 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2677 
2678 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2679 {
2680 	return false;
2681 }
2682 
2683 static const struct efx_phy_operations efx_dummy_phy_operations = {
2684 	.init		 = efx_port_dummy_op_int,
2685 	.reconfigure	 = efx_port_dummy_op_int,
2686 	.poll		 = efx_port_dummy_op_poll,
2687 	.fini		 = efx_port_dummy_op_void,
2688 };
2689 
2690 /**************************************************************************
2691  *
2692  * Data housekeeping
2693  *
2694  **************************************************************************/
2695 
2696 /* This zeroes out and then fills in the invariants in a struct
2697  * efx_nic (including all sub-structures).
2698  */
2699 static int efx_init_struct(struct efx_nic *efx,
2700 			   struct pci_dev *pci_dev, struct net_device *net_dev)
2701 {
2702 	int i;
2703 
2704 	/* Initialise common structures */
2705 	INIT_LIST_HEAD(&efx->node);
2706 	INIT_LIST_HEAD(&efx->secondary_list);
2707 	spin_lock_init(&efx->biu_lock);
2708 #ifdef CONFIG_SFC_MTD
2709 	INIT_LIST_HEAD(&efx->mtd_list);
2710 #endif
2711 	INIT_WORK(&efx->reset_work, efx_reset_work);
2712 	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2713 	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2714 	efx->pci_dev = pci_dev;
2715 	efx->msg_enable = debug;
2716 	efx->state = STATE_UNINIT;
2717 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2718 
2719 	efx->net_dev = net_dev;
2720 	efx->rx_prefix_size = efx->type->rx_prefix_size;
2721 	efx->rx_ip_align =
2722 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2723 	efx->rx_packet_hash_offset =
2724 		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2725 	efx->rx_packet_ts_offset =
2726 		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2727 	spin_lock_init(&efx->stats_lock);
2728 	mutex_init(&efx->mac_lock);
2729 	efx->phy_op = &efx_dummy_phy_operations;
2730 	efx->mdio.dev = net_dev;
2731 	INIT_WORK(&efx->mac_work, efx_mac_work);
2732 	init_waitqueue_head(&efx->flush_wq);
2733 
2734 	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2735 		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2736 		if (!efx->channel[i])
2737 			goto fail;
2738 		efx->msi_context[i].efx = efx;
2739 		efx->msi_context[i].index = i;
2740 	}
2741 
2742 	/* Higher numbered interrupt modes are less capable! */
2743 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2744 				  interrupt_mode);
2745 
2746 	/* Would be good to use the net_dev name, but we're too early */
2747 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2748 		 pci_name(pci_dev));
2749 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2750 	if (!efx->workqueue)
2751 		goto fail;
2752 
2753 	return 0;
2754 
2755 fail:
2756 	efx_fini_struct(efx);
2757 	return -ENOMEM;
2758 }
2759 
2760 static void efx_fini_struct(struct efx_nic *efx)
2761 {
2762 	int i;
2763 
2764 	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2765 		kfree(efx->channel[i]);
2766 
2767 	kfree(efx->vpd_sn);
2768 
2769 	if (efx->workqueue) {
2770 		destroy_workqueue(efx->workqueue);
2771 		efx->workqueue = NULL;
2772 	}
2773 }
2774 
2775 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
2776 {
2777 	u64 n_rx_nodesc_trunc = 0;
2778 	struct efx_channel *channel;
2779 
2780 	efx_for_each_channel(channel, efx)
2781 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2782 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2783 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2784 }
2785 
2786 /**************************************************************************
2787  *
2788  * PCI interface
2789  *
2790  **************************************************************************/
2791 
2792 /* Main body of final NIC shutdown code
2793  * This is called only at module unload (or hotplug removal).
2794  */
2795 static void efx_pci_remove_main(struct efx_nic *efx)
2796 {
2797 	/* Flush reset_work. It can no longer be scheduled since we
2798 	 * are not READY.
2799 	 */
2800 	BUG_ON(efx->state == STATE_READY);
2801 	cancel_work_sync(&efx->reset_work);
2802 
2803 	efx_disable_interrupts(efx);
2804 	efx_nic_fini_interrupt(efx);
2805 	efx_fini_port(efx);
2806 	efx->type->fini(efx);
2807 	efx_fini_napi(efx);
2808 	efx_remove_all(efx);
2809 }
2810 
2811 /* Final NIC shutdown
2812  * This is called only at module unload (or hotplug removal).
2813  */
2814 static void efx_pci_remove(struct pci_dev *pci_dev)
2815 {
2816 	struct efx_nic *efx;
2817 
2818 	efx = pci_get_drvdata(pci_dev);
2819 	if (!efx)
2820 		return;
2821 
2822 	/* Mark the NIC as fini, then stop the interface */
2823 	rtnl_lock();
2824 	efx_dissociate(efx);
2825 	dev_close(efx->net_dev);
2826 	efx_disable_interrupts(efx);
2827 	rtnl_unlock();
2828 
2829 	efx_sriov_fini(efx);
2830 	efx_unregister_netdev(efx);
2831 
2832 	efx_mtd_remove(efx);
2833 
2834 	efx_pci_remove_main(efx);
2835 
2836 	efx_fini_io(efx);
2837 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2838 
2839 	efx_fini_struct(efx);
2840 	free_netdev(efx->net_dev);
2841 
2842 	pci_disable_pcie_error_reporting(pci_dev);
2843 };
2844 
2845 /* NIC VPD information
2846  * Called during probe to display the part number of the
2847  * installed NIC.  VPD is potentially very large but this should
2848  * always appear within the first 512 bytes.
2849  */
2850 #define SFC_VPD_LEN 512
2851 static void efx_probe_vpd_strings(struct efx_nic *efx)
2852 {
2853 	struct pci_dev *dev = efx->pci_dev;
2854 	char vpd_data[SFC_VPD_LEN];
2855 	ssize_t vpd_size;
2856 	int ro_start, ro_size, i, j;
2857 
2858 	/* Get the vpd data from the device */
2859 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2860 	if (vpd_size <= 0) {
2861 		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2862 		return;
2863 	}
2864 
2865 	/* Get the Read only section */
2866 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2867 	if (ro_start < 0) {
2868 		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2869 		return;
2870 	}
2871 
2872 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2873 	j = ro_size;
2874 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2875 	if (i + j > vpd_size)
2876 		j = vpd_size - i;
2877 
2878 	/* Get the Part number */
2879 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2880 	if (i < 0) {
2881 		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2882 		return;
2883 	}
2884 
2885 	j = pci_vpd_info_field_size(&vpd_data[i]);
2886 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2887 	if (i + j > vpd_size) {
2888 		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2889 		return;
2890 	}
2891 
2892 	netif_info(efx, drv, efx->net_dev,
2893 		   "Part Number : %.*s\n", j, &vpd_data[i]);
2894 
2895 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2896 	j = ro_size;
2897 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
2898 	if (i < 0) {
2899 		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
2900 		return;
2901 	}
2902 
2903 	j = pci_vpd_info_field_size(&vpd_data[i]);
2904 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2905 	if (i + j > vpd_size) {
2906 		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
2907 		return;
2908 	}
2909 
2910 	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
2911 	if (!efx->vpd_sn)
2912 		return;
2913 
2914 	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2915 }
2916 
2917 
2918 /* Main body of NIC initialisation
2919  * This is called at module load (or hotplug insertion, theoretically).
2920  */
2921 static int efx_pci_probe_main(struct efx_nic *efx)
2922 {
2923 	int rc;
2924 
2925 	/* Do start-of-day initialisation */
2926 	rc = efx_probe_all(efx);
2927 	if (rc)
2928 		goto fail1;
2929 
2930 	efx_init_napi(efx);
2931 
2932 	rc = efx->type->init(efx);
2933 	if (rc) {
2934 		netif_err(efx, probe, efx->net_dev,
2935 			  "failed to initialise NIC\n");
2936 		goto fail3;
2937 	}
2938 
2939 	rc = efx_init_port(efx);
2940 	if (rc) {
2941 		netif_err(efx, probe, efx->net_dev,
2942 			  "failed to initialise port\n");
2943 		goto fail4;
2944 	}
2945 
2946 	rc = efx_nic_init_interrupt(efx);
2947 	if (rc)
2948 		goto fail5;
2949 	rc = efx_enable_interrupts(efx);
2950 	if (rc)
2951 		goto fail6;
2952 
2953 	return 0;
2954 
2955  fail6:
2956 	efx_nic_fini_interrupt(efx);
2957  fail5:
2958 	efx_fini_port(efx);
2959  fail4:
2960 	efx->type->fini(efx);
2961  fail3:
2962 	efx_fini_napi(efx);
2963 	efx_remove_all(efx);
2964  fail1:
2965 	return rc;
2966 }
2967 
2968 /* NIC initialisation
2969  *
2970  * This is called at module load (or hotplug insertion,
2971  * theoretically).  It sets up PCI mappings, resets the NIC,
2972  * sets up and registers the network devices with the kernel and hooks
2973  * the interrupt service routine.  It does not prepare the device for
2974  * transmission; this is left to the first time one of the network
2975  * interfaces is brought up (i.e. efx_net_open).
2976  */
2977 static int efx_pci_probe(struct pci_dev *pci_dev,
2978 			 const struct pci_device_id *entry)
2979 {
2980 	struct net_device *net_dev;
2981 	struct efx_nic *efx;
2982 	int rc;
2983 
2984 	/* Allocate and initialise a struct net_device and struct efx_nic */
2985 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2986 				     EFX_MAX_RX_QUEUES);
2987 	if (!net_dev)
2988 		return -ENOMEM;
2989 	efx = netdev_priv(net_dev);
2990 	efx->type = (const struct efx_nic_type *) entry->driver_data;
2991 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2992 			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2993 			      NETIF_F_RXCSUM);
2994 	if (efx->type->offload_features & NETIF_F_V6_CSUM)
2995 		net_dev->features |= NETIF_F_TSO6;
2996 	/* Mask for features that also apply to VLAN devices */
2997 	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2998 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2999 				   NETIF_F_RXCSUM);
3000 	/* All offloads can be toggled */
3001 	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
3002 	pci_set_drvdata(pci_dev, efx);
3003 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3004 	rc = efx_init_struct(efx, pci_dev, net_dev);
3005 	if (rc)
3006 		goto fail1;
3007 
3008 	netif_info(efx, probe, efx->net_dev,
3009 		   "Solarflare NIC detected\n");
3010 
3011 	efx_probe_vpd_strings(efx);
3012 
3013 	/* Set up basic I/O (BAR mappings etc) */
3014 	rc = efx_init_io(efx);
3015 	if (rc)
3016 		goto fail2;
3017 
3018 	rc = efx_pci_probe_main(efx);
3019 	if (rc)
3020 		goto fail3;
3021 
3022 	rc = efx_register_netdev(efx);
3023 	if (rc)
3024 		goto fail4;
3025 
3026 	rc = efx_sriov_init(efx);
3027 	if (rc)
3028 		netif_err(efx, probe, efx->net_dev,
3029 			  "SR-IOV can't be enabled rc %d\n", rc);
3030 
3031 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3032 
3033 	/* Try to create MTDs, but allow this to fail */
3034 	rtnl_lock();
3035 	rc = efx_mtd_probe(efx);
3036 	rtnl_unlock();
3037 	if (rc)
3038 		netif_warn(efx, probe, efx->net_dev,
3039 			   "failed to create MTDs (%d)\n", rc);
3040 
3041 	rc = pci_enable_pcie_error_reporting(pci_dev);
3042 	if (rc && rc != -EINVAL)
3043 		netif_warn(efx, probe, efx->net_dev,
3044 			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);
3045 
3046 	return 0;
3047 
3048  fail4:
3049 	efx_pci_remove_main(efx);
3050  fail3:
3051 	efx_fini_io(efx);
3052  fail2:
3053 	efx_fini_struct(efx);
3054  fail1:
3055 	WARN_ON(rc > 0);
3056 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3057 	free_netdev(net_dev);
3058 	return rc;
3059 }
3060 
3061 static int efx_pm_freeze(struct device *dev)
3062 {
3063 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3064 
3065 	rtnl_lock();
3066 
3067 	if (efx->state != STATE_DISABLED) {
3068 		efx->state = STATE_UNINIT;
3069 
3070 		efx_device_detach_sync(efx);
3071 
3072 		efx_stop_all(efx);
3073 		efx_disable_interrupts(efx);
3074 	}
3075 
3076 	rtnl_unlock();
3077 
3078 	return 0;
3079 }
3080 
3081 static int efx_pm_thaw(struct device *dev)
3082 {
3083 	int rc;
3084 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3085 
3086 	rtnl_lock();
3087 
3088 	if (efx->state != STATE_DISABLED) {
3089 		rc = efx_enable_interrupts(efx);
3090 		if (rc)
3091 			goto fail;
3092 
3093 		mutex_lock(&efx->mac_lock);
3094 		efx->phy_op->reconfigure(efx);
3095 		mutex_unlock(&efx->mac_lock);
3096 
3097 		efx_start_all(efx);
3098 
3099 		netif_device_attach(efx->net_dev);
3100 
3101 		efx->state = STATE_READY;
3102 
3103 		efx->type->resume_wol(efx);
3104 	}
3105 
3106 	rtnl_unlock();
3107 
3108 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3109 	queue_work(reset_workqueue, &efx->reset_work);
3110 
3111 	return 0;
3112 
3113 fail:
3114 	rtnl_unlock();
3115 
3116 	return rc;
3117 }
3118 
3119 static int efx_pm_poweroff(struct device *dev)
3120 {
3121 	struct pci_dev *pci_dev = to_pci_dev(dev);
3122 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3123 
3124 	efx->type->fini(efx);
3125 
3126 	efx->reset_pending = 0;
3127 
3128 	pci_save_state(pci_dev);
3129 	return pci_set_power_state(pci_dev, PCI_D3hot);
3130 }
3131 
3132 /* Used for both resume and restore */
3133 static int efx_pm_resume(struct device *dev)
3134 {
3135 	struct pci_dev *pci_dev = to_pci_dev(dev);
3136 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3137 	int rc;
3138 
3139 	rc = pci_set_power_state(pci_dev, PCI_D0);
3140 	if (rc)
3141 		return rc;
3142 	pci_restore_state(pci_dev);
3143 	rc = pci_enable_device(pci_dev);
3144 	if (rc)
3145 		return rc;
3146 	pci_set_master(efx->pci_dev);
3147 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3148 	if (rc)
3149 		return rc;
3150 	rc = efx->type->init(efx);
3151 	if (rc)
3152 		return rc;
3153 	rc = efx_pm_thaw(dev);
3154 	return rc;
3155 }
3156 
3157 static int efx_pm_suspend(struct device *dev)
3158 {
3159 	int rc;
3160 
3161 	efx_pm_freeze(dev);
3162 	rc = efx_pm_poweroff(dev);
3163 	if (rc)
3164 		efx_pm_resume(dev);
3165 	return rc;
3166 }
3167 
3168 static const struct dev_pm_ops efx_pm_ops = {
3169 	.suspend	= efx_pm_suspend,
3170 	.resume		= efx_pm_resume,
3171 	.freeze		= efx_pm_freeze,
3172 	.thaw		= efx_pm_thaw,
3173 	.poweroff	= efx_pm_poweroff,
3174 	.restore	= efx_pm_resume,
3175 };
3176 
3177 /* A PCI error affecting this device was detected.
3178  * At this point MMIO and DMA may be disabled.
3179  * Stop the software path and request a slot reset.
3180  */
3181 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3182 					      enum pci_channel_state state)
3183 {
3184 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3185 	struct efx_nic *efx = pci_get_drvdata(pdev);
3186 
3187 	if (state == pci_channel_io_perm_failure)
3188 		return PCI_ERS_RESULT_DISCONNECT;
3189 
3190 	rtnl_lock();
3191 
3192 	if (efx->state != STATE_DISABLED) {
3193 		efx->state = STATE_RECOVERY;
3194 		efx->reset_pending = 0;
3195 
3196 		efx_device_detach_sync(efx);
3197 
3198 		efx_stop_all(efx);
3199 		efx_disable_interrupts(efx);
3200 
3201 		status = PCI_ERS_RESULT_NEED_RESET;
3202 	} else {
3203 		/* If the interface is disabled we don't want to do anything
3204 		 * with it.
3205 		 */
3206 		status = PCI_ERS_RESULT_RECOVERED;
3207 	}
3208 
3209 	rtnl_unlock();
3210 
3211 	pci_disable_device(pdev);
3212 
3213 	return status;
3214 }
3215 
3216 /* Fake a successfull reset, which will be performed later in efx_io_resume. */
3217 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3218 {
3219 	struct efx_nic *efx = pci_get_drvdata(pdev);
3220 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3221 	int rc;
3222 
3223 	if (pci_enable_device(pdev)) {
3224 		netif_err(efx, hw, efx->net_dev,
3225 			  "Cannot re-enable PCI device after reset.\n");
3226 		status =  PCI_ERS_RESULT_DISCONNECT;
3227 	}
3228 
3229 	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3230 	if (rc) {
3231 		netif_err(efx, hw, efx->net_dev,
3232 		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3233 		/* Non-fatal error. Continue. */
3234 	}
3235 
3236 	return status;
3237 }
3238 
3239 /* Perform the actual reset and resume I/O operations. */
3240 static void efx_io_resume(struct pci_dev *pdev)
3241 {
3242 	struct efx_nic *efx = pci_get_drvdata(pdev);
3243 	int rc;
3244 
3245 	rtnl_lock();
3246 
3247 	if (efx->state == STATE_DISABLED)
3248 		goto out;
3249 
3250 	rc = efx_reset(efx, RESET_TYPE_ALL);
3251 	if (rc) {
3252 		netif_err(efx, hw, efx->net_dev,
3253 			  "efx_reset failed after PCI error (%d)\n", rc);
3254 	} else {
3255 		efx->state = STATE_READY;
3256 		netif_dbg(efx, hw, efx->net_dev,
3257 			  "Done resetting and resuming IO after PCI error.\n");
3258 	}
3259 
3260 out:
3261 	rtnl_unlock();
3262 }
3263 
3264 /* For simplicity and reliability, we always require a slot reset and try to
3265  * reset the hardware when a pci error affecting the device is detected.
3266  * We leave both the link_reset and mmio_enabled callback unimplemented:
3267  * with our request for slot reset the mmio_enabled callback will never be
3268  * called, and the link_reset callback is not used by AER or EEH mechanisms.
3269  */
3270 static struct pci_error_handlers efx_err_handlers = {
3271 	.error_detected = efx_io_error_detected,
3272 	.slot_reset	= efx_io_slot_reset,
3273 	.resume		= efx_io_resume,
3274 };
3275 
3276 static struct pci_driver efx_pci_driver = {
3277 	.name		= KBUILD_MODNAME,
3278 	.id_table	= efx_pci_table,
3279 	.probe		= efx_pci_probe,
3280 	.remove		= efx_pci_remove,
3281 	.driver.pm	= &efx_pm_ops,
3282 	.err_handler	= &efx_err_handlers,
3283 };
3284 
3285 /**************************************************************************
3286  *
3287  * Kernel module interface
3288  *
3289  *************************************************************************/
3290 
3291 module_param(interrupt_mode, uint, 0444);
3292 MODULE_PARM_DESC(interrupt_mode,
3293 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3294 
3295 static int __init efx_init_module(void)
3296 {
3297 	int rc;
3298 
3299 	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3300 
3301 	rc = register_netdevice_notifier(&efx_netdev_notifier);
3302 	if (rc)
3303 		goto err_notifier;
3304 
3305 	rc = efx_init_sriov();
3306 	if (rc)
3307 		goto err_sriov;
3308 
3309 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3310 	if (!reset_workqueue) {
3311 		rc = -ENOMEM;
3312 		goto err_reset;
3313 	}
3314 
3315 	rc = pci_register_driver(&efx_pci_driver);
3316 	if (rc < 0)
3317 		goto err_pci;
3318 
3319 	return 0;
3320 
3321  err_pci:
3322 	destroy_workqueue(reset_workqueue);
3323  err_reset:
3324 	efx_fini_sriov();
3325  err_sriov:
3326 	unregister_netdevice_notifier(&efx_netdev_notifier);
3327  err_notifier:
3328 	return rc;
3329 }
3330 
3331 static void __exit efx_exit_module(void)
3332 {
3333 	printk(KERN_INFO "Solarflare NET driver unloading\n");
3334 
3335 	pci_unregister_driver(&efx_pci_driver);
3336 	destroy_workqueue(reset_workqueue);
3337 	efx_fini_sriov();
3338 	unregister_netdevice_notifier(&efx_netdev_notifier);
3339 
3340 }
3341 
3342 module_init(efx_init_module);
3343 module_exit(efx_exit_module);
3344 
3345 MODULE_AUTHOR("Solarflare Communications and "
3346 	      "Michael Brown <mbrown@fensystems.co.uk>");
3347 MODULE_DESCRIPTION("Solarflare network driver");
3348 MODULE_LICENSE("GPL");
3349 MODULE_DEVICE_TABLE(pci, efx_pci_table);
3350