1 /**************************************************************************** 2 * Driver for Solarflare Solarstorm network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2011 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/pci.h> 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/delay.h> 16 #include <linux/notifier.h> 17 #include <linux/ip.h> 18 #include <linux/tcp.h> 19 #include <linux/in.h> 20 #include <linux/crc32.h> 21 #include <linux/ethtool.h> 22 #include <linux/topology.h> 23 #include <linux/gfp.h> 24 #include <linux/cpu_rmap.h> 25 #include "net_driver.h" 26 #include "efx.h" 27 #include "nic.h" 28 #include "selftest.h" 29 30 #include "mcdi.h" 31 #include "workarounds.h" 32 33 /************************************************************************** 34 * 35 * Type name strings 36 * 37 ************************************************************************** 38 */ 39 40 /* Loopback mode names (see LOOPBACK_MODE()) */ 41 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; 42 const char *const efx_loopback_mode_names[] = { 43 [LOOPBACK_NONE] = "NONE", 44 [LOOPBACK_DATA] = "DATAPATH", 45 [LOOPBACK_GMAC] = "GMAC", 46 [LOOPBACK_XGMII] = "XGMII", 47 [LOOPBACK_XGXS] = "XGXS", 48 [LOOPBACK_XAUI] = "XAUI", 49 [LOOPBACK_GMII] = "GMII", 50 [LOOPBACK_SGMII] = "SGMII", 51 [LOOPBACK_XGBR] = "XGBR", 52 [LOOPBACK_XFI] = "XFI", 53 [LOOPBACK_XAUI_FAR] = "XAUI_FAR", 54 [LOOPBACK_GMII_FAR] = "GMII_FAR", 55 [LOOPBACK_SGMII_FAR] = "SGMII_FAR", 56 [LOOPBACK_XFI_FAR] = "XFI_FAR", 57 [LOOPBACK_GPHY] = "GPHY", 58 [LOOPBACK_PHYXS] = "PHYXS", 59 [LOOPBACK_PCS] = "PCS", 60 [LOOPBACK_PMAPMD] = "PMA/PMD", 61 [LOOPBACK_XPORT] = "XPORT", 62 [LOOPBACK_XGMII_WS] = "XGMII_WS", 63 [LOOPBACK_XAUI_WS] = "XAUI_WS", 64 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", 65 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", 66 [LOOPBACK_GMII_WS] = "GMII_WS", 67 [LOOPBACK_XFI_WS] = "XFI_WS", 68 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", 69 [LOOPBACK_PHYXS_WS] = "PHYXS_WS", 70 }; 71 72 const unsigned int efx_reset_type_max = RESET_TYPE_MAX; 73 const char *const efx_reset_type_names[] = { 74 [RESET_TYPE_INVISIBLE] = "INVISIBLE", 75 [RESET_TYPE_ALL] = "ALL", 76 [RESET_TYPE_WORLD] = "WORLD", 77 [RESET_TYPE_DISABLE] = "DISABLE", 78 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", 79 [RESET_TYPE_INT_ERROR] = "INT_ERROR", 80 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", 81 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH", 82 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH", 83 [RESET_TYPE_TX_SKIP] = "TX_SKIP", 84 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", 85 }; 86 87 #define EFX_MAX_MTU (9 * 1024) 88 89 /* Reset workqueue. If any NIC has a hardware failure then a reset will be 90 * queued onto this work queue. This is not a per-nic work queue, because 91 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. 92 */ 93 static struct workqueue_struct *reset_workqueue; 94 95 /************************************************************************** 96 * 97 * Configurable values 98 * 99 *************************************************************************/ 100 101 /* 102 * Use separate channels for TX and RX events 103 * 104 * Set this to 1 to use separate channels for TX and RX. It allows us 105 * to control interrupt affinity separately for TX and RX. 106 * 107 * This is only used in MSI-X interrupt mode 108 */ 109 static unsigned int separate_tx_channels; 110 module_param(separate_tx_channels, uint, 0444); 111 MODULE_PARM_DESC(separate_tx_channels, 112 "Use separate channels for TX and RX"); 113 114 /* This is the weight assigned to each of the (per-channel) virtual 115 * NAPI devices. 116 */ 117 static int napi_weight = 64; 118 119 /* This is the time (in jiffies) between invocations of the hardware 120 * monitor. On Falcon-based NICs, this will: 121 * - Check the on-board hardware monitor; 122 * - Poll the link state and reconfigure the hardware as necessary. 123 */ 124 static unsigned int efx_monitor_interval = 1 * HZ; 125 126 /* Initial interrupt moderation settings. They can be modified after 127 * module load with ethtool. 128 * 129 * The default for RX should strike a balance between increasing the 130 * round-trip latency and reducing overhead. 131 */ 132 static unsigned int rx_irq_mod_usec = 60; 133 134 /* Initial interrupt moderation settings. They can be modified after 135 * module load with ethtool. 136 * 137 * This default is chosen to ensure that a 10G link does not go idle 138 * while a TX queue is stopped after it has become full. A queue is 139 * restarted when it drops below half full. The time this takes (assuming 140 * worst case 3 descriptors per packet and 1024 descriptors) is 141 * 512 / 3 * 1.2 = 205 usec. 142 */ 143 static unsigned int tx_irq_mod_usec = 150; 144 145 /* This is the first interrupt mode to try out of: 146 * 0 => MSI-X 147 * 1 => MSI 148 * 2 => legacy 149 */ 150 static unsigned int interrupt_mode; 151 152 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), 153 * i.e. the number of CPUs among which we may distribute simultaneous 154 * interrupt handling. 155 * 156 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. 157 * The default (0) means to assign an interrupt to each core. 158 */ 159 static unsigned int rss_cpus; 160 module_param(rss_cpus, uint, 0444); 161 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 162 163 static int phy_flash_cfg; 164 module_param(phy_flash_cfg, int, 0644); 165 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 166 167 static unsigned irq_adapt_low_thresh = 8000; 168 module_param(irq_adapt_low_thresh, uint, 0644); 169 MODULE_PARM_DESC(irq_adapt_low_thresh, 170 "Threshold score for reducing IRQ moderation"); 171 172 static unsigned irq_adapt_high_thresh = 16000; 173 module_param(irq_adapt_high_thresh, uint, 0644); 174 MODULE_PARM_DESC(irq_adapt_high_thresh, 175 "Threshold score for increasing IRQ moderation"); 176 177 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 178 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 179 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 180 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 181 module_param(debug, uint, 0); 182 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 183 184 /************************************************************************** 185 * 186 * Utility functions and prototypes 187 * 188 *************************************************************************/ 189 190 static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq); 191 static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq); 192 static void efx_remove_channel(struct efx_channel *channel); 193 static void efx_remove_channels(struct efx_nic *efx); 194 static const struct efx_channel_type efx_default_channel_type; 195 static void efx_remove_port(struct efx_nic *efx); 196 static void efx_init_napi_channel(struct efx_channel *channel); 197 static void efx_fini_napi(struct efx_nic *efx); 198 static void efx_fini_napi_channel(struct efx_channel *channel); 199 static void efx_fini_struct(struct efx_nic *efx); 200 static void efx_start_all(struct efx_nic *efx); 201 static void efx_stop_all(struct efx_nic *efx); 202 203 #define EFX_ASSERT_RESET_SERIALISED(efx) \ 204 do { \ 205 if ((efx->state == STATE_RUNNING) || \ 206 (efx->state == STATE_DISABLED)) \ 207 ASSERT_RTNL(); \ 208 } while (0) 209 210 /************************************************************************** 211 * 212 * Event queue processing 213 * 214 *************************************************************************/ 215 216 /* Process channel's event queue 217 * 218 * This function is responsible for processing the event queue of a 219 * single channel. The caller must guarantee that this function will 220 * never be concurrently called more than once on the same channel, 221 * though different channels may be being processed concurrently. 222 */ 223 static int efx_process_channel(struct efx_channel *channel, int budget) 224 { 225 int spent; 226 227 if (unlikely(!channel->enabled)) 228 return 0; 229 230 spent = efx_nic_process_eventq(channel, budget); 231 if (spent && efx_channel_has_rx_queue(channel)) { 232 struct efx_rx_queue *rx_queue = 233 efx_channel_get_rx_queue(channel); 234 235 /* Deliver last RX packet. */ 236 if (channel->rx_pkt) { 237 __efx_rx_packet(channel, channel->rx_pkt); 238 channel->rx_pkt = NULL; 239 } 240 if (rx_queue->enabled) { 241 efx_rx_strategy(channel); 242 efx_fast_push_rx_descriptors(rx_queue); 243 } 244 } 245 246 return spent; 247 } 248 249 /* Mark channel as finished processing 250 * 251 * Note that since we will not receive further interrupts for this 252 * channel before we finish processing and call the eventq_read_ack() 253 * method, there is no need to use the interrupt hold-off timers. 254 */ 255 static inline void efx_channel_processed(struct efx_channel *channel) 256 { 257 /* The interrupt handler for this channel may set work_pending 258 * as soon as we acknowledge the events we've seen. Make sure 259 * it's cleared before then. */ 260 channel->work_pending = false; 261 smp_wmb(); 262 263 efx_nic_eventq_read_ack(channel); 264 } 265 266 /* NAPI poll handler 267 * 268 * NAPI guarantees serialisation of polls of the same device, which 269 * provides the guarantee required by efx_process_channel(). 270 */ 271 static int efx_poll(struct napi_struct *napi, int budget) 272 { 273 struct efx_channel *channel = 274 container_of(napi, struct efx_channel, napi_str); 275 struct efx_nic *efx = channel->efx; 276 int spent; 277 278 netif_vdbg(efx, intr, efx->net_dev, 279 "channel %d NAPI poll executing on CPU %d\n", 280 channel->channel, raw_smp_processor_id()); 281 282 spent = efx_process_channel(channel, budget); 283 284 if (spent < budget) { 285 if (efx_channel_has_rx_queue(channel) && 286 efx->irq_rx_adaptive && 287 unlikely(++channel->irq_count == 1000)) { 288 if (unlikely(channel->irq_mod_score < 289 irq_adapt_low_thresh)) { 290 if (channel->irq_moderation > 1) { 291 channel->irq_moderation -= 1; 292 efx->type->push_irq_moderation(channel); 293 } 294 } else if (unlikely(channel->irq_mod_score > 295 irq_adapt_high_thresh)) { 296 if (channel->irq_moderation < 297 efx->irq_rx_moderation) { 298 channel->irq_moderation += 1; 299 efx->type->push_irq_moderation(channel); 300 } 301 } 302 channel->irq_count = 0; 303 channel->irq_mod_score = 0; 304 } 305 306 efx_filter_rfs_expire(channel); 307 308 /* There is no race here; although napi_disable() will 309 * only wait for napi_complete(), this isn't a problem 310 * since efx_channel_processed() will have no effect if 311 * interrupts have already been disabled. 312 */ 313 napi_complete(napi); 314 efx_channel_processed(channel); 315 } 316 317 return spent; 318 } 319 320 /* Process the eventq of the specified channel immediately on this CPU 321 * 322 * Disable hardware generated interrupts, wait for any existing 323 * processing to finish, then directly poll (and ack ) the eventq. 324 * Finally reenable NAPI and interrupts. 325 * 326 * This is for use only during a loopback self-test. It must not 327 * deliver any packets up the stack as this can result in deadlock. 328 */ 329 void efx_process_channel_now(struct efx_channel *channel) 330 { 331 struct efx_nic *efx = channel->efx; 332 333 BUG_ON(channel->channel >= efx->n_channels); 334 BUG_ON(!channel->enabled); 335 BUG_ON(!efx->loopback_selftest); 336 337 /* Disable interrupts and wait for ISRs to complete */ 338 efx_nic_disable_interrupts(efx); 339 if (efx->legacy_irq) { 340 synchronize_irq(efx->legacy_irq); 341 efx->legacy_irq_enabled = false; 342 } 343 if (channel->irq) 344 synchronize_irq(channel->irq); 345 346 /* Wait for any NAPI processing to complete */ 347 napi_disable(&channel->napi_str); 348 349 /* Poll the channel */ 350 efx_process_channel(channel, channel->eventq_mask + 1); 351 352 /* Ack the eventq. This may cause an interrupt to be generated 353 * when they are reenabled */ 354 efx_channel_processed(channel); 355 356 napi_enable(&channel->napi_str); 357 if (efx->legacy_irq) 358 efx->legacy_irq_enabled = true; 359 efx_nic_enable_interrupts(efx); 360 } 361 362 /* Create event queue 363 * Event queue memory allocations are done only once. If the channel 364 * is reset, the memory buffer will be reused; this guards against 365 * errors during channel reset and also simplifies interrupt handling. 366 */ 367 static int efx_probe_eventq(struct efx_channel *channel) 368 { 369 struct efx_nic *efx = channel->efx; 370 unsigned long entries; 371 372 netif_dbg(efx, probe, efx->net_dev, 373 "chan %d create event queue\n", channel->channel); 374 375 /* Build an event queue with room for one event per tx and rx buffer, 376 * plus some extra for link state events and MCDI completions. */ 377 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); 378 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); 379 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; 380 381 return efx_nic_probe_eventq(channel); 382 } 383 384 /* Prepare channel's event queue */ 385 static void efx_init_eventq(struct efx_channel *channel) 386 { 387 netif_dbg(channel->efx, drv, channel->efx->net_dev, 388 "chan %d init event queue\n", channel->channel); 389 390 channel->eventq_read_ptr = 0; 391 392 efx_nic_init_eventq(channel); 393 } 394 395 /* Enable event queue processing and NAPI */ 396 static void efx_start_eventq(struct efx_channel *channel) 397 { 398 netif_dbg(channel->efx, ifup, channel->efx->net_dev, 399 "chan %d start event queue\n", channel->channel); 400 401 /* The interrupt handler for this channel may set work_pending 402 * as soon as we enable it. Make sure it's cleared before 403 * then. Similarly, make sure it sees the enabled flag set. 404 */ 405 channel->work_pending = false; 406 channel->enabled = true; 407 smp_wmb(); 408 409 napi_enable(&channel->napi_str); 410 efx_nic_eventq_read_ack(channel); 411 } 412 413 /* Disable event queue processing and NAPI */ 414 static void efx_stop_eventq(struct efx_channel *channel) 415 { 416 if (!channel->enabled) 417 return; 418 419 napi_disable(&channel->napi_str); 420 channel->enabled = false; 421 } 422 423 static void efx_fini_eventq(struct efx_channel *channel) 424 { 425 netif_dbg(channel->efx, drv, channel->efx->net_dev, 426 "chan %d fini event queue\n", channel->channel); 427 428 efx_nic_fini_eventq(channel); 429 } 430 431 static void efx_remove_eventq(struct efx_channel *channel) 432 { 433 netif_dbg(channel->efx, drv, channel->efx->net_dev, 434 "chan %d remove event queue\n", channel->channel); 435 436 efx_nic_remove_eventq(channel); 437 } 438 439 /************************************************************************** 440 * 441 * Channel handling 442 * 443 *************************************************************************/ 444 445 /* Allocate and initialise a channel structure. */ 446 static struct efx_channel * 447 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) 448 { 449 struct efx_channel *channel; 450 struct efx_rx_queue *rx_queue; 451 struct efx_tx_queue *tx_queue; 452 int j; 453 454 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 455 if (!channel) 456 return NULL; 457 458 channel->efx = efx; 459 channel->channel = i; 460 channel->type = &efx_default_channel_type; 461 462 for (j = 0; j < EFX_TXQ_TYPES; j++) { 463 tx_queue = &channel->tx_queue[j]; 464 tx_queue->efx = efx; 465 tx_queue->queue = i * EFX_TXQ_TYPES + j; 466 tx_queue->channel = channel; 467 } 468 469 rx_queue = &channel->rx_queue; 470 rx_queue->efx = efx; 471 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, 472 (unsigned long)rx_queue); 473 474 return channel; 475 } 476 477 /* Allocate and initialise a channel structure, copying parameters 478 * (but not resources) from an old channel structure. 479 */ 480 static struct efx_channel * 481 efx_copy_channel(const struct efx_channel *old_channel) 482 { 483 struct efx_channel *channel; 484 struct efx_rx_queue *rx_queue; 485 struct efx_tx_queue *tx_queue; 486 int j; 487 488 channel = kmalloc(sizeof(*channel), GFP_KERNEL); 489 if (!channel) 490 return NULL; 491 492 *channel = *old_channel; 493 494 channel->napi_dev = NULL; 495 memset(&channel->eventq, 0, sizeof(channel->eventq)); 496 497 for (j = 0; j < EFX_TXQ_TYPES; j++) { 498 tx_queue = &channel->tx_queue[j]; 499 if (tx_queue->channel) 500 tx_queue->channel = channel; 501 tx_queue->buffer = NULL; 502 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); 503 } 504 505 rx_queue = &channel->rx_queue; 506 rx_queue->buffer = NULL; 507 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); 508 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, 509 (unsigned long)rx_queue); 510 511 return channel; 512 } 513 514 static int efx_probe_channel(struct efx_channel *channel) 515 { 516 struct efx_tx_queue *tx_queue; 517 struct efx_rx_queue *rx_queue; 518 int rc; 519 520 netif_dbg(channel->efx, probe, channel->efx->net_dev, 521 "creating channel %d\n", channel->channel); 522 523 rc = channel->type->pre_probe(channel); 524 if (rc) 525 goto fail; 526 527 rc = efx_probe_eventq(channel); 528 if (rc) 529 goto fail; 530 531 efx_for_each_channel_tx_queue(tx_queue, channel) { 532 rc = efx_probe_tx_queue(tx_queue); 533 if (rc) 534 goto fail; 535 } 536 537 efx_for_each_channel_rx_queue(rx_queue, channel) { 538 rc = efx_probe_rx_queue(rx_queue); 539 if (rc) 540 goto fail; 541 } 542 543 channel->n_rx_frm_trunc = 0; 544 545 return 0; 546 547 fail: 548 efx_remove_channel(channel); 549 return rc; 550 } 551 552 static void 553 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len) 554 { 555 struct efx_nic *efx = channel->efx; 556 const char *type; 557 int number; 558 559 number = channel->channel; 560 if (efx->tx_channel_offset == 0) { 561 type = ""; 562 } else if (channel->channel < efx->tx_channel_offset) { 563 type = "-rx"; 564 } else { 565 type = "-tx"; 566 number -= efx->tx_channel_offset; 567 } 568 snprintf(buf, len, "%s%s-%d", efx->name, type, number); 569 } 570 571 static void efx_set_channel_names(struct efx_nic *efx) 572 { 573 struct efx_channel *channel; 574 575 efx_for_each_channel(channel, efx) 576 channel->type->get_name(channel, 577 efx->channel_name[channel->channel], 578 sizeof(efx->channel_name[0])); 579 } 580 581 static int efx_probe_channels(struct efx_nic *efx) 582 { 583 struct efx_channel *channel; 584 int rc; 585 586 /* Restart special buffer allocation */ 587 efx->next_buffer_table = 0; 588 589 /* Probe channels in reverse, so that any 'extra' channels 590 * use the start of the buffer table. This allows the traffic 591 * channels to be resized without moving them or wasting the 592 * entries before them. 593 */ 594 efx_for_each_channel_rev(channel, efx) { 595 rc = efx_probe_channel(channel); 596 if (rc) { 597 netif_err(efx, probe, efx->net_dev, 598 "failed to create channel %d\n", 599 channel->channel); 600 goto fail; 601 } 602 } 603 efx_set_channel_names(efx); 604 605 return 0; 606 607 fail: 608 efx_remove_channels(efx); 609 return rc; 610 } 611 612 /* Channels are shutdown and reinitialised whilst the NIC is running 613 * to propagate configuration changes (mtu, checksum offload), or 614 * to clear hardware error conditions 615 */ 616 static void efx_start_datapath(struct efx_nic *efx) 617 { 618 struct efx_tx_queue *tx_queue; 619 struct efx_rx_queue *rx_queue; 620 struct efx_channel *channel; 621 622 /* Calculate the rx buffer allocation parameters required to 623 * support the current MTU, including padding for header 624 * alignment and overruns. 625 */ 626 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) + 627 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + 628 efx->type->rx_buffer_hash_size + 629 efx->type->rx_buffer_padding); 630 efx->rx_buffer_order = get_order(efx->rx_buffer_len + 631 sizeof(struct efx_rx_page_state)); 632 633 /* Initialise the channels */ 634 efx_for_each_channel(channel, efx) { 635 efx_for_each_channel_tx_queue(tx_queue, channel) 636 efx_init_tx_queue(tx_queue); 637 638 /* The rx buffer allocation strategy is MTU dependent */ 639 efx_rx_strategy(channel); 640 641 efx_for_each_channel_rx_queue(rx_queue, channel) { 642 efx_init_rx_queue(rx_queue); 643 efx_nic_generate_fill_event(rx_queue); 644 } 645 646 WARN_ON(channel->rx_pkt != NULL); 647 efx_rx_strategy(channel); 648 } 649 650 if (netif_device_present(efx->net_dev)) 651 netif_tx_wake_all_queues(efx->net_dev); 652 } 653 654 static void efx_stop_datapath(struct efx_nic *efx) 655 { 656 struct efx_channel *channel; 657 struct efx_tx_queue *tx_queue; 658 struct efx_rx_queue *rx_queue; 659 int rc; 660 661 EFX_ASSERT_RESET_SERIALISED(efx); 662 BUG_ON(efx->port_enabled); 663 664 rc = efx_nic_flush_queues(efx); 665 if (rc && EFX_WORKAROUND_7803(efx)) { 666 /* Schedule a reset to recover from the flush failure. The 667 * descriptor caches reference memory we're about to free, 668 * but falcon_reconfigure_mac_wrapper() won't reconnect 669 * the MACs because of the pending reset. */ 670 netif_err(efx, drv, efx->net_dev, 671 "Resetting to recover from flush failure\n"); 672 efx_schedule_reset(efx, RESET_TYPE_ALL); 673 } else if (rc) { 674 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); 675 } else { 676 netif_dbg(efx, drv, efx->net_dev, 677 "successfully flushed all queues\n"); 678 } 679 680 efx_for_each_channel(channel, efx) { 681 /* RX packet processing is pipelined, so wait for the 682 * NAPI handler to complete. At least event queue 0 683 * might be kept active by non-data events, so don't 684 * use napi_synchronize() but actually disable NAPI 685 * temporarily. 686 */ 687 if (efx_channel_has_rx_queue(channel)) { 688 efx_stop_eventq(channel); 689 efx_start_eventq(channel); 690 } 691 692 efx_for_each_channel_rx_queue(rx_queue, channel) 693 efx_fini_rx_queue(rx_queue); 694 efx_for_each_possible_channel_tx_queue(tx_queue, channel) 695 efx_fini_tx_queue(tx_queue); 696 } 697 } 698 699 static void efx_remove_channel(struct efx_channel *channel) 700 { 701 struct efx_tx_queue *tx_queue; 702 struct efx_rx_queue *rx_queue; 703 704 netif_dbg(channel->efx, drv, channel->efx->net_dev, 705 "destroy chan %d\n", channel->channel); 706 707 efx_for_each_channel_rx_queue(rx_queue, channel) 708 efx_remove_rx_queue(rx_queue); 709 efx_for_each_possible_channel_tx_queue(tx_queue, channel) 710 efx_remove_tx_queue(tx_queue); 711 efx_remove_eventq(channel); 712 } 713 714 static void efx_remove_channels(struct efx_nic *efx) 715 { 716 struct efx_channel *channel; 717 718 efx_for_each_channel(channel, efx) 719 efx_remove_channel(channel); 720 } 721 722 int 723 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) 724 { 725 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; 726 u32 old_rxq_entries, old_txq_entries; 727 unsigned i, next_buffer_table = 0; 728 int rc = 0; 729 730 /* Not all channels should be reallocated. We must avoid 731 * reallocating their buffer table entries. 732 */ 733 efx_for_each_channel(channel, efx) { 734 struct efx_rx_queue *rx_queue; 735 struct efx_tx_queue *tx_queue; 736 737 if (channel->type->copy) 738 continue; 739 next_buffer_table = max(next_buffer_table, 740 channel->eventq.index + 741 channel->eventq.entries); 742 efx_for_each_channel_rx_queue(rx_queue, channel) 743 next_buffer_table = max(next_buffer_table, 744 rx_queue->rxd.index + 745 rx_queue->rxd.entries); 746 efx_for_each_channel_tx_queue(tx_queue, channel) 747 next_buffer_table = max(next_buffer_table, 748 tx_queue->txd.index + 749 tx_queue->txd.entries); 750 } 751 752 efx_stop_all(efx); 753 efx_stop_interrupts(efx, true); 754 755 /* Clone channels (where possible) */ 756 memset(other_channel, 0, sizeof(other_channel)); 757 for (i = 0; i < efx->n_channels; i++) { 758 channel = efx->channel[i]; 759 if (channel->type->copy) 760 channel = channel->type->copy(channel); 761 if (!channel) { 762 rc = -ENOMEM; 763 goto out; 764 } 765 other_channel[i] = channel; 766 } 767 768 /* Swap entry counts and channel pointers */ 769 old_rxq_entries = efx->rxq_entries; 770 old_txq_entries = efx->txq_entries; 771 efx->rxq_entries = rxq_entries; 772 efx->txq_entries = txq_entries; 773 for (i = 0; i < efx->n_channels; i++) { 774 channel = efx->channel[i]; 775 efx->channel[i] = other_channel[i]; 776 other_channel[i] = channel; 777 } 778 779 /* Restart buffer table allocation */ 780 efx->next_buffer_table = next_buffer_table; 781 782 for (i = 0; i < efx->n_channels; i++) { 783 channel = efx->channel[i]; 784 if (!channel->type->copy) 785 continue; 786 rc = efx_probe_channel(channel); 787 if (rc) 788 goto rollback; 789 efx_init_napi_channel(efx->channel[i]); 790 } 791 792 out: 793 /* Destroy unused channel structures */ 794 for (i = 0; i < efx->n_channels; i++) { 795 channel = other_channel[i]; 796 if (channel && channel->type->copy) { 797 efx_fini_napi_channel(channel); 798 efx_remove_channel(channel); 799 kfree(channel); 800 } 801 } 802 803 efx_start_interrupts(efx, true); 804 efx_start_all(efx); 805 return rc; 806 807 rollback: 808 /* Swap back */ 809 efx->rxq_entries = old_rxq_entries; 810 efx->txq_entries = old_txq_entries; 811 for (i = 0; i < efx->n_channels; i++) { 812 channel = efx->channel[i]; 813 efx->channel[i] = other_channel[i]; 814 other_channel[i] = channel; 815 } 816 goto out; 817 } 818 819 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) 820 { 821 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); 822 } 823 824 static const struct efx_channel_type efx_default_channel_type = { 825 .pre_probe = efx_channel_dummy_op_int, 826 .get_name = efx_get_channel_name, 827 .copy = efx_copy_channel, 828 .keep_eventq = false, 829 }; 830 831 int efx_channel_dummy_op_int(struct efx_channel *channel) 832 { 833 return 0; 834 } 835 836 /************************************************************************** 837 * 838 * Port handling 839 * 840 **************************************************************************/ 841 842 /* This ensures that the kernel is kept informed (via 843 * netif_carrier_on/off) of the link status, and also maintains the 844 * link status's stop on the port's TX queue. 845 */ 846 void efx_link_status_changed(struct efx_nic *efx) 847 { 848 struct efx_link_state *link_state = &efx->link_state; 849 850 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure 851 * that no events are triggered between unregister_netdev() and the 852 * driver unloading. A more general condition is that NETDEV_CHANGE 853 * can only be generated between NETDEV_UP and NETDEV_DOWN */ 854 if (!netif_running(efx->net_dev)) 855 return; 856 857 if (link_state->up != netif_carrier_ok(efx->net_dev)) { 858 efx->n_link_state_changes++; 859 860 if (link_state->up) 861 netif_carrier_on(efx->net_dev); 862 else 863 netif_carrier_off(efx->net_dev); 864 } 865 866 /* Status message for kernel log */ 867 if (link_state->up) 868 netif_info(efx, link, efx->net_dev, 869 "link up at %uMbps %s-duplex (MTU %d)%s\n", 870 link_state->speed, link_state->fd ? "full" : "half", 871 efx->net_dev->mtu, 872 (efx->promiscuous ? " [PROMISC]" : "")); 873 else 874 netif_info(efx, link, efx->net_dev, "link down\n"); 875 } 876 877 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising) 878 { 879 efx->link_advertising = advertising; 880 if (advertising) { 881 if (advertising & ADVERTISED_Pause) 882 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); 883 else 884 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); 885 if (advertising & ADVERTISED_Asym_Pause) 886 efx->wanted_fc ^= EFX_FC_TX; 887 } 888 } 889 890 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) 891 { 892 efx->wanted_fc = wanted_fc; 893 if (efx->link_advertising) { 894 if (wanted_fc & EFX_FC_RX) 895 efx->link_advertising |= (ADVERTISED_Pause | 896 ADVERTISED_Asym_Pause); 897 else 898 efx->link_advertising &= ~(ADVERTISED_Pause | 899 ADVERTISED_Asym_Pause); 900 if (wanted_fc & EFX_FC_TX) 901 efx->link_advertising ^= ADVERTISED_Asym_Pause; 902 } 903 } 904 905 static void efx_fini_port(struct efx_nic *efx); 906 907 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure 908 * the MAC appropriately. All other PHY configuration changes are pushed 909 * through phy_op->set_settings(), and pushed asynchronously to the MAC 910 * through efx_monitor(). 911 * 912 * Callers must hold the mac_lock 913 */ 914 int __efx_reconfigure_port(struct efx_nic *efx) 915 { 916 enum efx_phy_mode phy_mode; 917 int rc; 918 919 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 920 921 /* Serialise the promiscuous flag with efx_set_rx_mode. */ 922 netif_addr_lock_bh(efx->net_dev); 923 netif_addr_unlock_bh(efx->net_dev); 924 925 /* Disable PHY transmit in mac level loopbacks */ 926 phy_mode = efx->phy_mode; 927 if (LOOPBACK_INTERNAL(efx)) 928 efx->phy_mode |= PHY_MODE_TX_DISABLED; 929 else 930 efx->phy_mode &= ~PHY_MODE_TX_DISABLED; 931 932 rc = efx->type->reconfigure_port(efx); 933 934 if (rc) 935 efx->phy_mode = phy_mode; 936 937 return rc; 938 } 939 940 /* Reinitialise the MAC to pick up new PHY settings, even if the port is 941 * disabled. */ 942 int efx_reconfigure_port(struct efx_nic *efx) 943 { 944 int rc; 945 946 EFX_ASSERT_RESET_SERIALISED(efx); 947 948 mutex_lock(&efx->mac_lock); 949 rc = __efx_reconfigure_port(efx); 950 mutex_unlock(&efx->mac_lock); 951 952 return rc; 953 } 954 955 /* Asynchronous work item for changing MAC promiscuity and multicast 956 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current 957 * MAC directly. */ 958 static void efx_mac_work(struct work_struct *data) 959 { 960 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); 961 962 mutex_lock(&efx->mac_lock); 963 if (efx->port_enabled) 964 efx->type->reconfigure_mac(efx); 965 mutex_unlock(&efx->mac_lock); 966 } 967 968 static int efx_probe_port(struct efx_nic *efx) 969 { 970 int rc; 971 972 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 973 974 if (phy_flash_cfg) 975 efx->phy_mode = PHY_MODE_SPECIAL; 976 977 /* Connect up MAC/PHY operations table */ 978 rc = efx->type->probe_port(efx); 979 if (rc) 980 return rc; 981 982 /* Initialise MAC address to permanent address */ 983 memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN); 984 985 return 0; 986 } 987 988 static int efx_init_port(struct efx_nic *efx) 989 { 990 int rc; 991 992 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 993 994 mutex_lock(&efx->mac_lock); 995 996 rc = efx->phy_op->init(efx); 997 if (rc) 998 goto fail1; 999 1000 efx->port_initialized = true; 1001 1002 /* Reconfigure the MAC before creating dma queues (required for 1003 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ 1004 efx->type->reconfigure_mac(efx); 1005 1006 /* Ensure the PHY advertises the correct flow control settings */ 1007 rc = efx->phy_op->reconfigure(efx); 1008 if (rc) 1009 goto fail2; 1010 1011 mutex_unlock(&efx->mac_lock); 1012 return 0; 1013 1014 fail2: 1015 efx->phy_op->fini(efx); 1016 fail1: 1017 mutex_unlock(&efx->mac_lock); 1018 return rc; 1019 } 1020 1021 static void efx_start_port(struct efx_nic *efx) 1022 { 1023 netif_dbg(efx, ifup, efx->net_dev, "start port\n"); 1024 BUG_ON(efx->port_enabled); 1025 1026 mutex_lock(&efx->mac_lock); 1027 efx->port_enabled = true; 1028 1029 /* efx_mac_work() might have been scheduled after efx_stop_port(), 1030 * and then cancelled by efx_flush_all() */ 1031 efx->type->reconfigure_mac(efx); 1032 1033 mutex_unlock(&efx->mac_lock); 1034 } 1035 1036 /* Prevent efx_mac_work() and efx_monitor() from working */ 1037 static void efx_stop_port(struct efx_nic *efx) 1038 { 1039 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); 1040 1041 mutex_lock(&efx->mac_lock); 1042 efx->port_enabled = false; 1043 mutex_unlock(&efx->mac_lock); 1044 1045 /* Serialise against efx_set_multicast_list() */ 1046 netif_addr_lock_bh(efx->net_dev); 1047 netif_addr_unlock_bh(efx->net_dev); 1048 } 1049 1050 static void efx_fini_port(struct efx_nic *efx) 1051 { 1052 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 1053 1054 if (!efx->port_initialized) 1055 return; 1056 1057 efx->phy_op->fini(efx); 1058 efx->port_initialized = false; 1059 1060 efx->link_state.up = false; 1061 efx_link_status_changed(efx); 1062 } 1063 1064 static void efx_remove_port(struct efx_nic *efx) 1065 { 1066 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 1067 1068 efx->type->remove_port(efx); 1069 } 1070 1071 /************************************************************************** 1072 * 1073 * NIC handling 1074 * 1075 **************************************************************************/ 1076 1077 /* This configures the PCI device to enable I/O and DMA. */ 1078 static int efx_init_io(struct efx_nic *efx) 1079 { 1080 struct pci_dev *pci_dev = efx->pci_dev; 1081 dma_addr_t dma_mask = efx->type->max_dma_mask; 1082 int rc; 1083 1084 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); 1085 1086 rc = pci_enable_device(pci_dev); 1087 if (rc) { 1088 netif_err(efx, probe, efx->net_dev, 1089 "failed to enable PCI device\n"); 1090 goto fail1; 1091 } 1092 1093 pci_set_master(pci_dev); 1094 1095 /* Set the PCI DMA mask. Try all possibilities from our 1096 * genuine mask down to 32 bits, because some architectures 1097 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit 1098 * masks event though they reject 46 bit masks. 1099 */ 1100 while (dma_mask > 0x7fffffffUL) { 1101 if (pci_dma_supported(pci_dev, dma_mask)) { 1102 rc = pci_set_dma_mask(pci_dev, dma_mask); 1103 if (rc == 0) 1104 break; 1105 } 1106 dma_mask >>= 1; 1107 } 1108 if (rc) { 1109 netif_err(efx, probe, efx->net_dev, 1110 "could not find a suitable DMA mask\n"); 1111 goto fail2; 1112 } 1113 netif_dbg(efx, probe, efx->net_dev, 1114 "using DMA mask %llx\n", (unsigned long long) dma_mask); 1115 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask); 1116 if (rc) { 1117 /* pci_set_consistent_dma_mask() is not *allowed* to 1118 * fail with a mask that pci_set_dma_mask() accepted, 1119 * but just in case... 1120 */ 1121 netif_err(efx, probe, efx->net_dev, 1122 "failed to set consistent DMA mask\n"); 1123 goto fail2; 1124 } 1125 1126 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR); 1127 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc"); 1128 if (rc) { 1129 netif_err(efx, probe, efx->net_dev, 1130 "request for memory BAR failed\n"); 1131 rc = -EIO; 1132 goto fail3; 1133 } 1134 efx->membase = ioremap_nocache(efx->membase_phys, 1135 efx->type->mem_map_size); 1136 if (!efx->membase) { 1137 netif_err(efx, probe, efx->net_dev, 1138 "could not map memory BAR at %llx+%x\n", 1139 (unsigned long long)efx->membase_phys, 1140 efx->type->mem_map_size); 1141 rc = -ENOMEM; 1142 goto fail4; 1143 } 1144 netif_dbg(efx, probe, efx->net_dev, 1145 "memory BAR at %llx+%x (virtual %p)\n", 1146 (unsigned long long)efx->membase_phys, 1147 efx->type->mem_map_size, efx->membase); 1148 1149 return 0; 1150 1151 fail4: 1152 pci_release_region(efx->pci_dev, EFX_MEM_BAR); 1153 fail3: 1154 efx->membase_phys = 0; 1155 fail2: 1156 pci_disable_device(efx->pci_dev); 1157 fail1: 1158 return rc; 1159 } 1160 1161 static void efx_fini_io(struct efx_nic *efx) 1162 { 1163 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); 1164 1165 if (efx->membase) { 1166 iounmap(efx->membase); 1167 efx->membase = NULL; 1168 } 1169 1170 if (efx->membase_phys) { 1171 pci_release_region(efx->pci_dev, EFX_MEM_BAR); 1172 efx->membase_phys = 0; 1173 } 1174 1175 pci_disable_device(efx->pci_dev); 1176 } 1177 1178 static unsigned int efx_wanted_parallelism(struct efx_nic *efx) 1179 { 1180 cpumask_var_t thread_mask; 1181 unsigned int count; 1182 int cpu; 1183 1184 if (rss_cpus) { 1185 count = rss_cpus; 1186 } else { 1187 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { 1188 netif_warn(efx, probe, efx->net_dev, 1189 "RSS disabled due to allocation failure\n"); 1190 return 1; 1191 } 1192 1193 count = 0; 1194 for_each_online_cpu(cpu) { 1195 if (!cpumask_test_cpu(cpu, thread_mask)) { 1196 ++count; 1197 cpumask_or(thread_mask, thread_mask, 1198 topology_thread_cpumask(cpu)); 1199 } 1200 } 1201 1202 free_cpumask_var(thread_mask); 1203 } 1204 1205 /* If RSS is requested for the PF *and* VFs then we can't write RSS 1206 * table entries that are inaccessible to VFs 1207 */ 1208 if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 && 1209 count > efx_vf_size(efx)) { 1210 netif_warn(efx, probe, efx->net_dev, 1211 "Reducing number of RSS channels from %u to %u for " 1212 "VF support. Increase vf-msix-limit to use more " 1213 "channels on the PF.\n", 1214 count, efx_vf_size(efx)); 1215 count = efx_vf_size(efx); 1216 } 1217 1218 return count; 1219 } 1220 1221 static int 1222 efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries) 1223 { 1224 #ifdef CONFIG_RFS_ACCEL 1225 unsigned int i; 1226 int rc; 1227 1228 efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels); 1229 if (!efx->net_dev->rx_cpu_rmap) 1230 return -ENOMEM; 1231 for (i = 0; i < efx->n_rx_channels; i++) { 1232 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap, 1233 xentries[i].vector); 1234 if (rc) { 1235 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); 1236 efx->net_dev->rx_cpu_rmap = NULL; 1237 return rc; 1238 } 1239 } 1240 #endif 1241 return 0; 1242 } 1243 1244 /* Probe the number and type of interrupts we are able to obtain, and 1245 * the resulting numbers of channels and RX queues. 1246 */ 1247 static int efx_probe_interrupts(struct efx_nic *efx) 1248 { 1249 unsigned int max_channels = 1250 min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS); 1251 unsigned int extra_channels = 0; 1252 unsigned int i, j; 1253 int rc; 1254 1255 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) 1256 if (efx->extra_channel_type[i]) 1257 ++extra_channels; 1258 1259 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { 1260 struct msix_entry xentries[EFX_MAX_CHANNELS]; 1261 unsigned int n_channels; 1262 1263 n_channels = efx_wanted_parallelism(efx); 1264 if (separate_tx_channels) 1265 n_channels *= 2; 1266 n_channels += extra_channels; 1267 n_channels = min(n_channels, max_channels); 1268 1269 for (i = 0; i < n_channels; i++) 1270 xentries[i].entry = i; 1271 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels); 1272 if (rc > 0) { 1273 netif_err(efx, drv, efx->net_dev, 1274 "WARNING: Insufficient MSI-X vectors" 1275 " available (%d < %u).\n", rc, n_channels); 1276 netif_err(efx, drv, efx->net_dev, 1277 "WARNING: Performance may be reduced.\n"); 1278 EFX_BUG_ON_PARANOID(rc >= n_channels); 1279 n_channels = rc; 1280 rc = pci_enable_msix(efx->pci_dev, xentries, 1281 n_channels); 1282 } 1283 1284 if (rc == 0) { 1285 efx->n_channels = n_channels; 1286 if (n_channels > extra_channels) 1287 n_channels -= extra_channels; 1288 if (separate_tx_channels) { 1289 efx->n_tx_channels = max(n_channels / 2, 1U); 1290 efx->n_rx_channels = max(n_channels - 1291 efx->n_tx_channels, 1292 1U); 1293 } else { 1294 efx->n_tx_channels = n_channels; 1295 efx->n_rx_channels = n_channels; 1296 } 1297 rc = efx_init_rx_cpu_rmap(efx, xentries); 1298 if (rc) { 1299 pci_disable_msix(efx->pci_dev); 1300 return rc; 1301 } 1302 for (i = 0; i < efx->n_channels; i++) 1303 efx_get_channel(efx, i)->irq = 1304 xentries[i].vector; 1305 } else { 1306 /* Fall back to single channel MSI */ 1307 efx->interrupt_mode = EFX_INT_MODE_MSI; 1308 netif_err(efx, drv, efx->net_dev, 1309 "could not enable MSI-X\n"); 1310 } 1311 } 1312 1313 /* Try single interrupt MSI */ 1314 if (efx->interrupt_mode == EFX_INT_MODE_MSI) { 1315 efx->n_channels = 1; 1316 efx->n_rx_channels = 1; 1317 efx->n_tx_channels = 1; 1318 rc = pci_enable_msi(efx->pci_dev); 1319 if (rc == 0) { 1320 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; 1321 } else { 1322 netif_err(efx, drv, efx->net_dev, 1323 "could not enable MSI\n"); 1324 efx->interrupt_mode = EFX_INT_MODE_LEGACY; 1325 } 1326 } 1327 1328 /* Assume legacy interrupts */ 1329 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { 1330 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0); 1331 efx->n_rx_channels = 1; 1332 efx->n_tx_channels = 1; 1333 efx->legacy_irq = efx->pci_dev->irq; 1334 } 1335 1336 /* Assign extra channels if possible */ 1337 j = efx->n_channels; 1338 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) { 1339 if (!efx->extra_channel_type[i]) 1340 continue; 1341 if (efx->interrupt_mode != EFX_INT_MODE_MSIX || 1342 efx->n_channels <= extra_channels) { 1343 efx->extra_channel_type[i]->handle_no_channel(efx); 1344 } else { 1345 --j; 1346 efx_get_channel(efx, j)->type = 1347 efx->extra_channel_type[i]; 1348 } 1349 } 1350 1351 /* RSS might be usable on VFs even if it is disabled on the PF */ 1352 efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ? 1353 efx->n_rx_channels : efx_vf_size(efx)); 1354 1355 return 0; 1356 } 1357 1358 /* Enable interrupts, then probe and start the event queues */ 1359 static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq) 1360 { 1361 struct efx_channel *channel; 1362 1363 if (efx->legacy_irq) 1364 efx->legacy_irq_enabled = true; 1365 efx_nic_enable_interrupts(efx); 1366 1367 efx_for_each_channel(channel, efx) { 1368 if (!channel->type->keep_eventq || !may_keep_eventq) 1369 efx_init_eventq(channel); 1370 efx_start_eventq(channel); 1371 } 1372 1373 efx_mcdi_mode_event(efx); 1374 } 1375 1376 static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq) 1377 { 1378 struct efx_channel *channel; 1379 1380 efx_mcdi_mode_poll(efx); 1381 1382 efx_nic_disable_interrupts(efx); 1383 if (efx->legacy_irq) { 1384 synchronize_irq(efx->legacy_irq); 1385 efx->legacy_irq_enabled = false; 1386 } 1387 1388 efx_for_each_channel(channel, efx) { 1389 if (channel->irq) 1390 synchronize_irq(channel->irq); 1391 1392 efx_stop_eventq(channel); 1393 if (!channel->type->keep_eventq || !may_keep_eventq) 1394 efx_fini_eventq(channel); 1395 } 1396 } 1397 1398 static void efx_remove_interrupts(struct efx_nic *efx) 1399 { 1400 struct efx_channel *channel; 1401 1402 /* Remove MSI/MSI-X interrupts */ 1403 efx_for_each_channel(channel, efx) 1404 channel->irq = 0; 1405 pci_disable_msi(efx->pci_dev); 1406 pci_disable_msix(efx->pci_dev); 1407 1408 /* Remove legacy interrupt */ 1409 efx->legacy_irq = 0; 1410 } 1411 1412 static void efx_set_channels(struct efx_nic *efx) 1413 { 1414 struct efx_channel *channel; 1415 struct efx_tx_queue *tx_queue; 1416 1417 efx->tx_channel_offset = 1418 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0; 1419 1420 /* We need to adjust the TX queue numbers if we have separate 1421 * RX-only and TX-only channels. 1422 */ 1423 efx_for_each_channel(channel, efx) { 1424 efx_for_each_channel_tx_queue(tx_queue, channel) 1425 tx_queue->queue -= (efx->tx_channel_offset * 1426 EFX_TXQ_TYPES); 1427 } 1428 } 1429 1430 static int efx_probe_nic(struct efx_nic *efx) 1431 { 1432 size_t i; 1433 int rc; 1434 1435 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 1436 1437 /* Carry out hardware-type specific initialisation */ 1438 rc = efx->type->probe(efx); 1439 if (rc) 1440 return rc; 1441 1442 /* Determine the number of channels and queues by trying to hook 1443 * in MSI-X interrupts. */ 1444 rc = efx_probe_interrupts(efx); 1445 if (rc) 1446 goto fail; 1447 1448 efx->type->dimension_resources(efx); 1449 1450 if (efx->n_channels > 1) 1451 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key)); 1452 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) 1453 efx->rx_indir_table[i] = 1454 ethtool_rxfh_indir_default(i, efx->rss_spread); 1455 1456 efx_set_channels(efx); 1457 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); 1458 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); 1459 1460 /* Initialise the interrupt moderation settings */ 1461 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 1462 true); 1463 1464 return 0; 1465 1466 fail: 1467 efx->type->remove(efx); 1468 return rc; 1469 } 1470 1471 static void efx_remove_nic(struct efx_nic *efx) 1472 { 1473 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 1474 1475 efx_remove_interrupts(efx); 1476 efx->type->remove(efx); 1477 } 1478 1479 /************************************************************************** 1480 * 1481 * NIC startup/shutdown 1482 * 1483 *************************************************************************/ 1484 1485 static int efx_probe_all(struct efx_nic *efx) 1486 { 1487 int rc; 1488 1489 rc = efx_probe_nic(efx); 1490 if (rc) { 1491 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 1492 goto fail1; 1493 } 1494 1495 rc = efx_probe_port(efx); 1496 if (rc) { 1497 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 1498 goto fail2; 1499 } 1500 1501 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; 1502 1503 rc = efx_probe_filters(efx); 1504 if (rc) { 1505 netif_err(efx, probe, efx->net_dev, 1506 "failed to create filter tables\n"); 1507 goto fail3; 1508 } 1509 1510 rc = efx_probe_channels(efx); 1511 if (rc) 1512 goto fail4; 1513 1514 return 0; 1515 1516 fail4: 1517 efx_remove_filters(efx); 1518 fail3: 1519 efx_remove_port(efx); 1520 fail2: 1521 efx_remove_nic(efx); 1522 fail1: 1523 return rc; 1524 } 1525 1526 /* Called after previous invocation(s) of efx_stop_all, restarts the port, 1527 * kernel transmit queues and NAPI processing, and ensures that the port is 1528 * scheduled to be reconfigured. This function is safe to call multiple 1529 * times when the NIC is in any state. 1530 */ 1531 static void efx_start_all(struct efx_nic *efx) 1532 { 1533 EFX_ASSERT_RESET_SERIALISED(efx); 1534 1535 /* Check that it is appropriate to restart the interface. All 1536 * of these flags are safe to read under just the rtnl lock */ 1537 if (efx->port_enabled) 1538 return; 1539 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT)) 1540 return; 1541 if (!netif_running(efx->net_dev)) 1542 return; 1543 1544 efx_start_port(efx); 1545 efx_start_datapath(efx); 1546 1547 /* Start the hardware monitor if there is one. Otherwise (we're link 1548 * event driven), we have to poll the PHY because after an event queue 1549 * flush, we could have a missed a link state change */ 1550 if (efx->type->monitor != NULL) { 1551 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1552 efx_monitor_interval); 1553 } else { 1554 mutex_lock(&efx->mac_lock); 1555 if (efx->phy_op->poll(efx)) 1556 efx_link_status_changed(efx); 1557 mutex_unlock(&efx->mac_lock); 1558 } 1559 1560 efx->type->start_stats(efx); 1561 } 1562 1563 /* Flush all delayed work. Should only be called when no more delayed work 1564 * will be scheduled. This doesn't flush pending online resets (efx_reset), 1565 * since we're holding the rtnl_lock at this point. */ 1566 static void efx_flush_all(struct efx_nic *efx) 1567 { 1568 /* Make sure the hardware monitor and event self-test are stopped */ 1569 cancel_delayed_work_sync(&efx->monitor_work); 1570 efx_selftest_async_cancel(efx); 1571 /* Stop scheduled port reconfigurations */ 1572 cancel_work_sync(&efx->mac_work); 1573 } 1574 1575 /* Quiesce hardware and software without bringing the link down. 1576 * Safe to call multiple times, when the nic and interface is in any 1577 * state. The caller is guaranteed to subsequently be in a position 1578 * to modify any hardware and software state they see fit without 1579 * taking locks. */ 1580 static void efx_stop_all(struct efx_nic *efx) 1581 { 1582 EFX_ASSERT_RESET_SERIALISED(efx); 1583 1584 /* port_enabled can be read safely under the rtnl lock */ 1585 if (!efx->port_enabled) 1586 return; 1587 1588 efx->type->stop_stats(efx); 1589 efx_stop_port(efx); 1590 1591 /* Flush efx_mac_work(), refill_workqueue, monitor_work */ 1592 efx_flush_all(efx); 1593 1594 /* Stop the kernel transmit interface late, so the watchdog 1595 * timer isn't ticking over the flush */ 1596 netif_tx_disable(efx->net_dev); 1597 1598 efx_stop_datapath(efx); 1599 } 1600 1601 static void efx_remove_all(struct efx_nic *efx) 1602 { 1603 efx_remove_channels(efx); 1604 efx_remove_filters(efx); 1605 efx_remove_port(efx); 1606 efx_remove_nic(efx); 1607 } 1608 1609 /************************************************************************** 1610 * 1611 * Interrupt moderation 1612 * 1613 **************************************************************************/ 1614 1615 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns) 1616 { 1617 if (usecs == 0) 1618 return 0; 1619 if (usecs * 1000 < quantum_ns) 1620 return 1; /* never round down to 0 */ 1621 return usecs * 1000 / quantum_ns; 1622 } 1623 1624 /* Set interrupt moderation parameters */ 1625 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, 1626 unsigned int rx_usecs, bool rx_adaptive, 1627 bool rx_may_override_tx) 1628 { 1629 struct efx_channel *channel; 1630 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max * 1631 efx->timer_quantum_ns, 1632 1000); 1633 unsigned int tx_ticks; 1634 unsigned int rx_ticks; 1635 1636 EFX_ASSERT_RESET_SERIALISED(efx); 1637 1638 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max) 1639 return -EINVAL; 1640 1641 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns); 1642 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns); 1643 1644 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 && 1645 !rx_may_override_tx) { 1646 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 1647 "RX and TX IRQ moderation must be equal\n"); 1648 return -EINVAL; 1649 } 1650 1651 efx->irq_rx_adaptive = rx_adaptive; 1652 efx->irq_rx_moderation = rx_ticks; 1653 efx_for_each_channel(channel, efx) { 1654 if (efx_channel_has_rx_queue(channel)) 1655 channel->irq_moderation = rx_ticks; 1656 else if (efx_channel_has_tx_queues(channel)) 1657 channel->irq_moderation = tx_ticks; 1658 } 1659 1660 return 0; 1661 } 1662 1663 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, 1664 unsigned int *rx_usecs, bool *rx_adaptive) 1665 { 1666 /* We must round up when converting ticks to microseconds 1667 * because we round down when converting the other way. 1668 */ 1669 1670 *rx_adaptive = efx->irq_rx_adaptive; 1671 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation * 1672 efx->timer_quantum_ns, 1673 1000); 1674 1675 /* If channels are shared between RX and TX, so is IRQ 1676 * moderation. Otherwise, IRQ moderation is the same for all 1677 * TX channels and is not adaptive. 1678 */ 1679 if (efx->tx_channel_offset == 0) 1680 *tx_usecs = *rx_usecs; 1681 else 1682 *tx_usecs = DIV_ROUND_UP( 1683 efx->channel[efx->tx_channel_offset]->irq_moderation * 1684 efx->timer_quantum_ns, 1685 1000); 1686 } 1687 1688 /************************************************************************** 1689 * 1690 * Hardware monitor 1691 * 1692 **************************************************************************/ 1693 1694 /* Run periodically off the general workqueue */ 1695 static void efx_monitor(struct work_struct *data) 1696 { 1697 struct efx_nic *efx = container_of(data, struct efx_nic, 1698 monitor_work.work); 1699 1700 netif_vdbg(efx, timer, efx->net_dev, 1701 "hardware monitor executing on CPU %d\n", 1702 raw_smp_processor_id()); 1703 BUG_ON(efx->type->monitor == NULL); 1704 1705 /* If the mac_lock is already held then it is likely a port 1706 * reconfiguration is already in place, which will likely do 1707 * most of the work of monitor() anyway. */ 1708 if (mutex_trylock(&efx->mac_lock)) { 1709 if (efx->port_enabled) 1710 efx->type->monitor(efx); 1711 mutex_unlock(&efx->mac_lock); 1712 } 1713 1714 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1715 efx_monitor_interval); 1716 } 1717 1718 /************************************************************************** 1719 * 1720 * ioctls 1721 * 1722 *************************************************************************/ 1723 1724 /* Net device ioctl 1725 * Context: process, rtnl_lock() held. 1726 */ 1727 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 1728 { 1729 struct efx_nic *efx = netdev_priv(net_dev); 1730 struct mii_ioctl_data *data = if_mii(ifr); 1731 1732 EFX_ASSERT_RESET_SERIALISED(efx); 1733 1734 /* Convert phy_id from older PRTAD/DEVAD format */ 1735 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 1736 (data->phy_id & 0xfc00) == 0x0400) 1737 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 1738 1739 return mdio_mii_ioctl(&efx->mdio, data, cmd); 1740 } 1741 1742 /************************************************************************** 1743 * 1744 * NAPI interface 1745 * 1746 **************************************************************************/ 1747 1748 static void efx_init_napi_channel(struct efx_channel *channel) 1749 { 1750 struct efx_nic *efx = channel->efx; 1751 1752 channel->napi_dev = efx->net_dev; 1753 netif_napi_add(channel->napi_dev, &channel->napi_str, 1754 efx_poll, napi_weight); 1755 } 1756 1757 static void efx_init_napi(struct efx_nic *efx) 1758 { 1759 struct efx_channel *channel; 1760 1761 efx_for_each_channel(channel, efx) 1762 efx_init_napi_channel(channel); 1763 } 1764 1765 static void efx_fini_napi_channel(struct efx_channel *channel) 1766 { 1767 if (channel->napi_dev) 1768 netif_napi_del(&channel->napi_str); 1769 channel->napi_dev = NULL; 1770 } 1771 1772 static void efx_fini_napi(struct efx_nic *efx) 1773 { 1774 struct efx_channel *channel; 1775 1776 efx_for_each_channel(channel, efx) 1777 efx_fini_napi_channel(channel); 1778 } 1779 1780 /************************************************************************** 1781 * 1782 * Kernel netpoll interface 1783 * 1784 *************************************************************************/ 1785 1786 #ifdef CONFIG_NET_POLL_CONTROLLER 1787 1788 /* Although in the common case interrupts will be disabled, this is not 1789 * guaranteed. However, all our work happens inside the NAPI callback, 1790 * so no locking is required. 1791 */ 1792 static void efx_netpoll(struct net_device *net_dev) 1793 { 1794 struct efx_nic *efx = netdev_priv(net_dev); 1795 struct efx_channel *channel; 1796 1797 efx_for_each_channel(channel, efx) 1798 efx_schedule_channel(channel); 1799 } 1800 1801 #endif 1802 1803 /************************************************************************** 1804 * 1805 * Kernel net device interface 1806 * 1807 *************************************************************************/ 1808 1809 /* Context: process, rtnl_lock() held. */ 1810 static int efx_net_open(struct net_device *net_dev) 1811 { 1812 struct efx_nic *efx = netdev_priv(net_dev); 1813 EFX_ASSERT_RESET_SERIALISED(efx); 1814 1815 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 1816 raw_smp_processor_id()); 1817 1818 if (efx->state == STATE_DISABLED) 1819 return -EIO; 1820 if (efx->phy_mode & PHY_MODE_SPECIAL) 1821 return -EBUSY; 1822 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) 1823 return -EIO; 1824 1825 /* Notify the kernel of the link state polled during driver load, 1826 * before the monitor starts running */ 1827 efx_link_status_changed(efx); 1828 1829 efx_start_all(efx); 1830 efx_selftest_async_start(efx); 1831 return 0; 1832 } 1833 1834 /* Context: process, rtnl_lock() held. 1835 * Note that the kernel will ignore our return code; this method 1836 * should really be a void. 1837 */ 1838 static int efx_net_stop(struct net_device *net_dev) 1839 { 1840 struct efx_nic *efx = netdev_priv(net_dev); 1841 1842 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 1843 raw_smp_processor_id()); 1844 1845 if (efx->state != STATE_DISABLED) { 1846 /* Stop the device and flush all the channels */ 1847 efx_stop_all(efx); 1848 } 1849 1850 return 0; 1851 } 1852 1853 /* Context: process, dev_base_lock or RTNL held, non-blocking. */ 1854 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, 1855 struct rtnl_link_stats64 *stats) 1856 { 1857 struct efx_nic *efx = netdev_priv(net_dev); 1858 struct efx_mac_stats *mac_stats = &efx->mac_stats; 1859 1860 spin_lock_bh(&efx->stats_lock); 1861 1862 efx->type->update_stats(efx); 1863 1864 stats->rx_packets = mac_stats->rx_packets; 1865 stats->tx_packets = mac_stats->tx_packets; 1866 stats->rx_bytes = mac_stats->rx_bytes; 1867 stats->tx_bytes = mac_stats->tx_bytes; 1868 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt; 1869 stats->multicast = mac_stats->rx_multicast; 1870 stats->collisions = mac_stats->tx_collision; 1871 stats->rx_length_errors = (mac_stats->rx_gtjumbo + 1872 mac_stats->rx_length_error); 1873 stats->rx_crc_errors = mac_stats->rx_bad; 1874 stats->rx_frame_errors = mac_stats->rx_align_error; 1875 stats->rx_fifo_errors = mac_stats->rx_overflow; 1876 stats->rx_missed_errors = mac_stats->rx_missed; 1877 stats->tx_window_errors = mac_stats->tx_late_collision; 1878 1879 stats->rx_errors = (stats->rx_length_errors + 1880 stats->rx_crc_errors + 1881 stats->rx_frame_errors + 1882 mac_stats->rx_symbol_error); 1883 stats->tx_errors = (stats->tx_window_errors + 1884 mac_stats->tx_bad); 1885 1886 spin_unlock_bh(&efx->stats_lock); 1887 1888 return stats; 1889 } 1890 1891 /* Context: netif_tx_lock held, BHs disabled. */ 1892 static void efx_watchdog(struct net_device *net_dev) 1893 { 1894 struct efx_nic *efx = netdev_priv(net_dev); 1895 1896 netif_err(efx, tx_err, efx->net_dev, 1897 "TX stuck with port_enabled=%d: resetting channels\n", 1898 efx->port_enabled); 1899 1900 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 1901 } 1902 1903 1904 /* Context: process, rtnl_lock() held. */ 1905 static int efx_change_mtu(struct net_device *net_dev, int new_mtu) 1906 { 1907 struct efx_nic *efx = netdev_priv(net_dev); 1908 1909 EFX_ASSERT_RESET_SERIALISED(efx); 1910 1911 if (new_mtu > EFX_MAX_MTU) 1912 return -EINVAL; 1913 1914 efx_stop_all(efx); 1915 1916 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); 1917 1918 mutex_lock(&efx->mac_lock); 1919 /* Reconfigure the MAC before enabling the dma queues so that 1920 * the RX buffers don't overflow */ 1921 net_dev->mtu = new_mtu; 1922 efx->type->reconfigure_mac(efx); 1923 mutex_unlock(&efx->mac_lock); 1924 1925 efx_start_all(efx); 1926 return 0; 1927 } 1928 1929 static int efx_set_mac_address(struct net_device *net_dev, void *data) 1930 { 1931 struct efx_nic *efx = netdev_priv(net_dev); 1932 struct sockaddr *addr = data; 1933 char *new_addr = addr->sa_data; 1934 1935 EFX_ASSERT_RESET_SERIALISED(efx); 1936 1937 if (!is_valid_ether_addr(new_addr)) { 1938 netif_err(efx, drv, efx->net_dev, 1939 "invalid ethernet MAC address requested: %pM\n", 1940 new_addr); 1941 return -EADDRNOTAVAIL; 1942 } 1943 1944 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len); 1945 efx_sriov_mac_address_changed(efx); 1946 1947 /* Reconfigure the MAC */ 1948 mutex_lock(&efx->mac_lock); 1949 efx->type->reconfigure_mac(efx); 1950 mutex_unlock(&efx->mac_lock); 1951 1952 return 0; 1953 } 1954 1955 /* Context: netif_addr_lock held, BHs disabled. */ 1956 static void efx_set_rx_mode(struct net_device *net_dev) 1957 { 1958 struct efx_nic *efx = netdev_priv(net_dev); 1959 struct netdev_hw_addr *ha; 1960 union efx_multicast_hash *mc_hash = &efx->multicast_hash; 1961 u32 crc; 1962 int bit; 1963 1964 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC); 1965 1966 /* Build multicast hash table */ 1967 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) { 1968 memset(mc_hash, 0xff, sizeof(*mc_hash)); 1969 } else { 1970 memset(mc_hash, 0x00, sizeof(*mc_hash)); 1971 netdev_for_each_mc_addr(ha, net_dev) { 1972 crc = ether_crc_le(ETH_ALEN, ha->addr); 1973 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1); 1974 set_bit_le(bit, mc_hash->byte); 1975 } 1976 1977 /* Broadcast packets go through the multicast hash filter. 1978 * ether_crc_le() of the broadcast address is 0xbe2612ff 1979 * so we always add bit 0xff to the mask. 1980 */ 1981 set_bit_le(0xff, mc_hash->byte); 1982 } 1983 1984 if (efx->port_enabled) 1985 queue_work(efx->workqueue, &efx->mac_work); 1986 /* Otherwise efx_start_port() will do this */ 1987 } 1988 1989 static int efx_set_features(struct net_device *net_dev, netdev_features_t data) 1990 { 1991 struct efx_nic *efx = netdev_priv(net_dev); 1992 1993 /* If disabling RX n-tuple filtering, clear existing filters */ 1994 if (net_dev->features & ~data & NETIF_F_NTUPLE) 1995 efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); 1996 1997 return 0; 1998 } 1999 2000 static const struct net_device_ops efx_netdev_ops = { 2001 .ndo_open = efx_net_open, 2002 .ndo_stop = efx_net_stop, 2003 .ndo_get_stats64 = efx_net_stats, 2004 .ndo_tx_timeout = efx_watchdog, 2005 .ndo_start_xmit = efx_hard_start_xmit, 2006 .ndo_validate_addr = eth_validate_addr, 2007 .ndo_do_ioctl = efx_ioctl, 2008 .ndo_change_mtu = efx_change_mtu, 2009 .ndo_set_mac_address = efx_set_mac_address, 2010 .ndo_set_rx_mode = efx_set_rx_mode, 2011 .ndo_set_features = efx_set_features, 2012 #ifdef CONFIG_SFC_SRIOV 2013 .ndo_set_vf_mac = efx_sriov_set_vf_mac, 2014 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, 2015 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, 2016 .ndo_get_vf_config = efx_sriov_get_vf_config, 2017 #endif 2018 #ifdef CONFIG_NET_POLL_CONTROLLER 2019 .ndo_poll_controller = efx_netpoll, 2020 #endif 2021 .ndo_setup_tc = efx_setup_tc, 2022 #ifdef CONFIG_RFS_ACCEL 2023 .ndo_rx_flow_steer = efx_filter_rfs, 2024 #endif 2025 }; 2026 2027 static void efx_update_name(struct efx_nic *efx) 2028 { 2029 strcpy(efx->name, efx->net_dev->name); 2030 efx_mtd_rename(efx); 2031 efx_set_channel_names(efx); 2032 } 2033 2034 static int efx_netdev_event(struct notifier_block *this, 2035 unsigned long event, void *ptr) 2036 { 2037 struct net_device *net_dev = ptr; 2038 2039 if (net_dev->netdev_ops == &efx_netdev_ops && 2040 event == NETDEV_CHANGENAME) 2041 efx_update_name(netdev_priv(net_dev)); 2042 2043 return NOTIFY_DONE; 2044 } 2045 2046 static struct notifier_block efx_netdev_notifier = { 2047 .notifier_call = efx_netdev_event, 2048 }; 2049 2050 static ssize_t 2051 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) 2052 { 2053 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2054 return sprintf(buf, "%d\n", efx->phy_type); 2055 } 2056 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL); 2057 2058 static int efx_register_netdev(struct efx_nic *efx) 2059 { 2060 struct net_device *net_dev = efx->net_dev; 2061 struct efx_channel *channel; 2062 int rc; 2063 2064 net_dev->watchdog_timeo = 5 * HZ; 2065 net_dev->irq = efx->pci_dev->irq; 2066 net_dev->netdev_ops = &efx_netdev_ops; 2067 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops); 2068 2069 rtnl_lock(); 2070 2071 rc = dev_alloc_name(net_dev, net_dev->name); 2072 if (rc < 0) 2073 goto fail_locked; 2074 efx_update_name(efx); 2075 2076 rc = register_netdevice(net_dev); 2077 if (rc) 2078 goto fail_locked; 2079 2080 efx_for_each_channel(channel, efx) { 2081 struct efx_tx_queue *tx_queue; 2082 efx_for_each_channel_tx_queue(tx_queue, channel) 2083 efx_init_tx_queue_core_txq(tx_queue); 2084 } 2085 2086 /* Always start with carrier off; PHY events will detect the link */ 2087 netif_carrier_off(net_dev); 2088 2089 rtnl_unlock(); 2090 2091 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2092 if (rc) { 2093 netif_err(efx, drv, efx->net_dev, 2094 "failed to init net dev attributes\n"); 2095 goto fail_registered; 2096 } 2097 2098 return 0; 2099 2100 fail_locked: 2101 rtnl_unlock(); 2102 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 2103 return rc; 2104 2105 fail_registered: 2106 unregister_netdev(net_dev); 2107 return rc; 2108 } 2109 2110 static void efx_unregister_netdev(struct efx_nic *efx) 2111 { 2112 struct efx_channel *channel; 2113 struct efx_tx_queue *tx_queue; 2114 2115 if (!efx->net_dev) 2116 return; 2117 2118 BUG_ON(netdev_priv(efx->net_dev) != efx); 2119 2120 /* Free up any skbs still remaining. This has to happen before 2121 * we try to unregister the netdev as running their destructors 2122 * may be needed to get the device ref. count to 0. */ 2123 efx_for_each_channel(channel, efx) { 2124 efx_for_each_channel_tx_queue(tx_queue, channel) 2125 efx_release_tx_buffers(tx_queue); 2126 } 2127 2128 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 2129 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2130 unregister_netdev(efx->net_dev); 2131 } 2132 2133 /************************************************************************** 2134 * 2135 * Device reset and suspend 2136 * 2137 **************************************************************************/ 2138 2139 /* Tears down the entire software state and most of the hardware state 2140 * before reset. */ 2141 void efx_reset_down(struct efx_nic *efx, enum reset_type method) 2142 { 2143 EFX_ASSERT_RESET_SERIALISED(efx); 2144 2145 efx_stop_all(efx); 2146 mutex_lock(&efx->mac_lock); 2147 2148 efx_stop_interrupts(efx, false); 2149 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) 2150 efx->phy_op->fini(efx); 2151 efx->type->fini(efx); 2152 } 2153 2154 /* This function will always ensure that the locks acquired in 2155 * efx_reset_down() are released. A failure return code indicates 2156 * that we were unable to reinitialise the hardware, and the 2157 * driver should be disabled. If ok is false, then the rx and tx 2158 * engines are not restarted, pending a RESET_DISABLE. */ 2159 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) 2160 { 2161 int rc; 2162 2163 EFX_ASSERT_RESET_SERIALISED(efx); 2164 2165 rc = efx->type->init(efx); 2166 if (rc) { 2167 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); 2168 goto fail; 2169 } 2170 2171 if (!ok) 2172 goto fail; 2173 2174 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) { 2175 rc = efx->phy_op->init(efx); 2176 if (rc) 2177 goto fail; 2178 if (efx->phy_op->reconfigure(efx)) 2179 netif_err(efx, drv, efx->net_dev, 2180 "could not restore PHY settings\n"); 2181 } 2182 2183 efx->type->reconfigure_mac(efx); 2184 2185 efx_start_interrupts(efx, false); 2186 efx_restore_filters(efx); 2187 efx_sriov_reset(efx); 2188 2189 mutex_unlock(&efx->mac_lock); 2190 2191 efx_start_all(efx); 2192 2193 return 0; 2194 2195 fail: 2196 efx->port_initialized = false; 2197 2198 mutex_unlock(&efx->mac_lock); 2199 2200 return rc; 2201 } 2202 2203 /* Reset the NIC using the specified method. Note that the reset may 2204 * fail, in which case the card will be left in an unusable state. 2205 * 2206 * Caller must hold the rtnl_lock. 2207 */ 2208 int efx_reset(struct efx_nic *efx, enum reset_type method) 2209 { 2210 int rc, rc2; 2211 bool disabled; 2212 2213 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", 2214 RESET_TYPE(method)); 2215 2216 netif_device_detach(efx->net_dev); 2217 efx_reset_down(efx, method); 2218 2219 rc = efx->type->reset(efx, method); 2220 if (rc) { 2221 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); 2222 goto out; 2223 } 2224 2225 /* Clear flags for the scopes we covered. We assume the NIC and 2226 * driver are now quiescent so that there is no race here. 2227 */ 2228 efx->reset_pending &= -(1 << (method + 1)); 2229 2230 /* Reinitialise bus-mastering, which may have been turned off before 2231 * the reset was scheduled. This is still appropriate, even in the 2232 * RESET_TYPE_DISABLE since this driver generally assumes the hardware 2233 * can respond to requests. */ 2234 pci_set_master(efx->pci_dev); 2235 2236 out: 2237 /* Leave device stopped if necessary */ 2238 disabled = rc || method == RESET_TYPE_DISABLE; 2239 rc2 = efx_reset_up(efx, method, !disabled); 2240 if (rc2) { 2241 disabled = true; 2242 if (!rc) 2243 rc = rc2; 2244 } 2245 2246 if (disabled) { 2247 dev_close(efx->net_dev); 2248 netif_err(efx, drv, efx->net_dev, "has been disabled\n"); 2249 efx->state = STATE_DISABLED; 2250 } else { 2251 netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); 2252 netif_device_attach(efx->net_dev); 2253 } 2254 return rc; 2255 } 2256 2257 /* The worker thread exists so that code that cannot sleep can 2258 * schedule a reset for later. 2259 */ 2260 static void efx_reset_work(struct work_struct *data) 2261 { 2262 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); 2263 unsigned long pending = ACCESS_ONCE(efx->reset_pending); 2264 2265 if (!pending) 2266 return; 2267 2268 /* If we're not RUNNING then don't reset. Leave the reset_pending 2269 * flags set so that efx_pci_probe_main will be retried */ 2270 if (efx->state != STATE_RUNNING) { 2271 netif_info(efx, drv, efx->net_dev, 2272 "scheduled reset quenched. NIC not RUNNING\n"); 2273 return; 2274 } 2275 2276 rtnl_lock(); 2277 (void)efx_reset(efx, fls(pending) - 1); 2278 rtnl_unlock(); 2279 } 2280 2281 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) 2282 { 2283 enum reset_type method; 2284 2285 switch (type) { 2286 case RESET_TYPE_INVISIBLE: 2287 case RESET_TYPE_ALL: 2288 case RESET_TYPE_WORLD: 2289 case RESET_TYPE_DISABLE: 2290 method = type; 2291 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", 2292 RESET_TYPE(method)); 2293 break; 2294 default: 2295 method = efx->type->map_reset_reason(type); 2296 netif_dbg(efx, drv, efx->net_dev, 2297 "scheduling %s reset for %s\n", 2298 RESET_TYPE(method), RESET_TYPE(type)); 2299 break; 2300 } 2301 2302 set_bit(method, &efx->reset_pending); 2303 2304 /* efx_process_channel() will no longer read events once a 2305 * reset is scheduled. So switch back to poll'd MCDI completions. */ 2306 efx_mcdi_mode_poll(efx); 2307 2308 queue_work(reset_workqueue, &efx->reset_work); 2309 } 2310 2311 /************************************************************************** 2312 * 2313 * List of NICs we support 2314 * 2315 **************************************************************************/ 2316 2317 /* PCI device ID table */ 2318 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = { 2319 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2320 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), 2321 .driver_data = (unsigned long) &falcon_a1_nic_type}, 2322 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2323 PCI_DEVICE_ID_SOLARFLARE_SFC4000B), 2324 .driver_data = (unsigned long) &falcon_b0_nic_type}, 2325 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ 2326 .driver_data = (unsigned long) &siena_a0_nic_type}, 2327 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ 2328 .driver_data = (unsigned long) &siena_a0_nic_type}, 2329 {0} /* end of list */ 2330 }; 2331 2332 /************************************************************************** 2333 * 2334 * Dummy PHY/MAC operations 2335 * 2336 * Can be used for some unimplemented operations 2337 * Needed so all function pointers are valid and do not have to be tested 2338 * before use 2339 * 2340 **************************************************************************/ 2341 int efx_port_dummy_op_int(struct efx_nic *efx) 2342 { 2343 return 0; 2344 } 2345 void efx_port_dummy_op_void(struct efx_nic *efx) {} 2346 2347 static bool efx_port_dummy_op_poll(struct efx_nic *efx) 2348 { 2349 return false; 2350 } 2351 2352 static const struct efx_phy_operations efx_dummy_phy_operations = { 2353 .init = efx_port_dummy_op_int, 2354 .reconfigure = efx_port_dummy_op_int, 2355 .poll = efx_port_dummy_op_poll, 2356 .fini = efx_port_dummy_op_void, 2357 }; 2358 2359 /************************************************************************** 2360 * 2361 * Data housekeeping 2362 * 2363 **************************************************************************/ 2364 2365 /* This zeroes out and then fills in the invariants in a struct 2366 * efx_nic (including all sub-structures). 2367 */ 2368 static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type, 2369 struct pci_dev *pci_dev, struct net_device *net_dev) 2370 { 2371 int i; 2372 2373 /* Initialise common structures */ 2374 memset(efx, 0, sizeof(*efx)); 2375 spin_lock_init(&efx->biu_lock); 2376 #ifdef CONFIG_SFC_MTD 2377 INIT_LIST_HEAD(&efx->mtd_list); 2378 #endif 2379 INIT_WORK(&efx->reset_work, efx_reset_work); 2380 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); 2381 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work); 2382 efx->pci_dev = pci_dev; 2383 efx->msg_enable = debug; 2384 efx->state = STATE_INIT; 2385 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); 2386 2387 efx->net_dev = net_dev; 2388 spin_lock_init(&efx->stats_lock); 2389 mutex_init(&efx->mac_lock); 2390 efx->phy_op = &efx_dummy_phy_operations; 2391 efx->mdio.dev = net_dev; 2392 INIT_WORK(&efx->mac_work, efx_mac_work); 2393 init_waitqueue_head(&efx->flush_wq); 2394 2395 for (i = 0; i < EFX_MAX_CHANNELS; i++) { 2396 efx->channel[i] = efx_alloc_channel(efx, i, NULL); 2397 if (!efx->channel[i]) 2398 goto fail; 2399 } 2400 2401 efx->type = type; 2402 2403 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS); 2404 2405 /* Higher numbered interrupt modes are less capable! */ 2406 efx->interrupt_mode = max(efx->type->max_interrupt_mode, 2407 interrupt_mode); 2408 2409 /* Would be good to use the net_dev name, but we're too early */ 2410 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", 2411 pci_name(pci_dev)); 2412 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); 2413 if (!efx->workqueue) 2414 goto fail; 2415 2416 return 0; 2417 2418 fail: 2419 efx_fini_struct(efx); 2420 return -ENOMEM; 2421 } 2422 2423 static void efx_fini_struct(struct efx_nic *efx) 2424 { 2425 int i; 2426 2427 for (i = 0; i < EFX_MAX_CHANNELS; i++) 2428 kfree(efx->channel[i]); 2429 2430 if (efx->workqueue) { 2431 destroy_workqueue(efx->workqueue); 2432 efx->workqueue = NULL; 2433 } 2434 } 2435 2436 /************************************************************************** 2437 * 2438 * PCI interface 2439 * 2440 **************************************************************************/ 2441 2442 /* Main body of final NIC shutdown code 2443 * This is called only at module unload (or hotplug removal). 2444 */ 2445 static void efx_pci_remove_main(struct efx_nic *efx) 2446 { 2447 #ifdef CONFIG_RFS_ACCEL 2448 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); 2449 efx->net_dev->rx_cpu_rmap = NULL; 2450 #endif 2451 efx_stop_interrupts(efx, false); 2452 efx_nic_fini_interrupt(efx); 2453 efx_fini_port(efx); 2454 efx->type->fini(efx); 2455 efx_fini_napi(efx); 2456 efx_remove_all(efx); 2457 } 2458 2459 /* Final NIC shutdown 2460 * This is called only at module unload (or hotplug removal). 2461 */ 2462 static void efx_pci_remove(struct pci_dev *pci_dev) 2463 { 2464 struct efx_nic *efx; 2465 2466 efx = pci_get_drvdata(pci_dev); 2467 if (!efx) 2468 return; 2469 2470 /* Mark the NIC as fini, then stop the interface */ 2471 rtnl_lock(); 2472 efx->state = STATE_FINI; 2473 dev_close(efx->net_dev); 2474 2475 /* Allow any queued efx_resets() to complete */ 2476 rtnl_unlock(); 2477 2478 efx_stop_interrupts(efx, false); 2479 efx_sriov_fini(efx); 2480 efx_unregister_netdev(efx); 2481 2482 efx_mtd_remove(efx); 2483 2484 /* Wait for any scheduled resets to complete. No more will be 2485 * scheduled from this point because efx_stop_all() has been 2486 * called, we are no longer registered with driverlink, and 2487 * the net_device's have been removed. */ 2488 cancel_work_sync(&efx->reset_work); 2489 2490 efx_pci_remove_main(efx); 2491 2492 efx_fini_io(efx); 2493 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 2494 2495 pci_set_drvdata(pci_dev, NULL); 2496 efx_fini_struct(efx); 2497 free_netdev(efx->net_dev); 2498 }; 2499 2500 /* NIC VPD information 2501 * Called during probe to display the part number of the 2502 * installed NIC. VPD is potentially very large but this should 2503 * always appear within the first 512 bytes. 2504 */ 2505 #define SFC_VPD_LEN 512 2506 static void efx_print_product_vpd(struct efx_nic *efx) 2507 { 2508 struct pci_dev *dev = efx->pci_dev; 2509 char vpd_data[SFC_VPD_LEN]; 2510 ssize_t vpd_size; 2511 int i, j; 2512 2513 /* Get the vpd data from the device */ 2514 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); 2515 if (vpd_size <= 0) { 2516 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); 2517 return; 2518 } 2519 2520 /* Get the Read only section */ 2521 i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 2522 if (i < 0) { 2523 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); 2524 return; 2525 } 2526 2527 j = pci_vpd_lrdt_size(&vpd_data[i]); 2528 i += PCI_VPD_LRDT_TAG_SIZE; 2529 if (i + j > vpd_size) 2530 j = vpd_size - i; 2531 2532 /* Get the Part number */ 2533 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); 2534 if (i < 0) { 2535 netif_err(efx, drv, efx->net_dev, "Part number not found\n"); 2536 return; 2537 } 2538 2539 j = pci_vpd_info_field_size(&vpd_data[i]); 2540 i += PCI_VPD_INFO_FLD_HDR_SIZE; 2541 if (i + j > vpd_size) { 2542 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); 2543 return; 2544 } 2545 2546 netif_info(efx, drv, efx->net_dev, 2547 "Part Number : %.*s\n", j, &vpd_data[i]); 2548 } 2549 2550 2551 /* Main body of NIC initialisation 2552 * This is called at module load (or hotplug insertion, theoretically). 2553 */ 2554 static int efx_pci_probe_main(struct efx_nic *efx) 2555 { 2556 int rc; 2557 2558 /* Do start-of-day initialisation */ 2559 rc = efx_probe_all(efx); 2560 if (rc) 2561 goto fail1; 2562 2563 efx_init_napi(efx); 2564 2565 rc = efx->type->init(efx); 2566 if (rc) { 2567 netif_err(efx, probe, efx->net_dev, 2568 "failed to initialise NIC\n"); 2569 goto fail3; 2570 } 2571 2572 rc = efx_init_port(efx); 2573 if (rc) { 2574 netif_err(efx, probe, efx->net_dev, 2575 "failed to initialise port\n"); 2576 goto fail4; 2577 } 2578 2579 rc = efx_nic_init_interrupt(efx); 2580 if (rc) 2581 goto fail5; 2582 efx_start_interrupts(efx, false); 2583 2584 return 0; 2585 2586 fail5: 2587 efx_fini_port(efx); 2588 fail4: 2589 efx->type->fini(efx); 2590 fail3: 2591 efx_fini_napi(efx); 2592 efx_remove_all(efx); 2593 fail1: 2594 return rc; 2595 } 2596 2597 /* NIC initialisation 2598 * 2599 * This is called at module load (or hotplug insertion, 2600 * theoretically). It sets up PCI mappings, resets the NIC, 2601 * sets up and registers the network devices with the kernel and hooks 2602 * the interrupt service routine. It does not prepare the device for 2603 * transmission; this is left to the first time one of the network 2604 * interfaces is brought up (i.e. efx_net_open). 2605 */ 2606 static int __devinit efx_pci_probe(struct pci_dev *pci_dev, 2607 const struct pci_device_id *entry) 2608 { 2609 const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data; 2610 struct net_device *net_dev; 2611 struct efx_nic *efx; 2612 int rc; 2613 2614 /* Allocate and initialise a struct net_device and struct efx_nic */ 2615 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, 2616 EFX_MAX_RX_QUEUES); 2617 if (!net_dev) 2618 return -ENOMEM; 2619 net_dev->features |= (type->offload_features | NETIF_F_SG | 2620 NETIF_F_HIGHDMA | NETIF_F_TSO | 2621 NETIF_F_RXCSUM); 2622 if (type->offload_features & NETIF_F_V6_CSUM) 2623 net_dev->features |= NETIF_F_TSO6; 2624 /* Mask for features that also apply to VLAN devices */ 2625 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG | 2626 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | 2627 NETIF_F_RXCSUM); 2628 /* All offloads can be toggled */ 2629 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA; 2630 efx = netdev_priv(net_dev); 2631 pci_set_drvdata(pci_dev, efx); 2632 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 2633 rc = efx_init_struct(efx, type, pci_dev, net_dev); 2634 if (rc) 2635 goto fail1; 2636 2637 netif_info(efx, probe, efx->net_dev, 2638 "Solarflare NIC detected\n"); 2639 2640 efx_print_product_vpd(efx); 2641 2642 /* Set up basic I/O (BAR mappings etc) */ 2643 rc = efx_init_io(efx); 2644 if (rc) 2645 goto fail2; 2646 2647 rc = efx_pci_probe_main(efx); 2648 2649 /* Serialise against efx_reset(). No more resets will be 2650 * scheduled since efx_stop_all() has been called, and we have 2651 * not and never have been registered. 2652 */ 2653 cancel_work_sync(&efx->reset_work); 2654 2655 if (rc) 2656 goto fail3; 2657 2658 /* If there was a scheduled reset during probe, the NIC is 2659 * probably hosed anyway. 2660 */ 2661 if (efx->reset_pending) { 2662 rc = -EIO; 2663 goto fail4; 2664 } 2665 2666 /* Switch to the running state before we expose the device to the OS, 2667 * so that dev_open()|efx_start_all() will actually start the device */ 2668 efx->state = STATE_RUNNING; 2669 2670 rc = efx_register_netdev(efx); 2671 if (rc) 2672 goto fail4; 2673 2674 rc = efx_sriov_init(efx); 2675 if (rc) 2676 netif_err(efx, probe, efx->net_dev, 2677 "SR-IOV can't be enabled rc %d\n", rc); 2678 2679 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 2680 2681 /* Try to create MTDs, but allow this to fail */ 2682 rtnl_lock(); 2683 rc = efx_mtd_probe(efx); 2684 rtnl_unlock(); 2685 if (rc) 2686 netif_warn(efx, probe, efx->net_dev, 2687 "failed to create MTDs (%d)\n", rc); 2688 2689 return 0; 2690 2691 fail4: 2692 efx_pci_remove_main(efx); 2693 fail3: 2694 efx_fini_io(efx); 2695 fail2: 2696 efx_fini_struct(efx); 2697 fail1: 2698 WARN_ON(rc > 0); 2699 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 2700 free_netdev(net_dev); 2701 return rc; 2702 } 2703 2704 static int efx_pm_freeze(struct device *dev) 2705 { 2706 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2707 2708 efx->state = STATE_FINI; 2709 2710 netif_device_detach(efx->net_dev); 2711 2712 efx_stop_all(efx); 2713 efx_stop_interrupts(efx, false); 2714 2715 return 0; 2716 } 2717 2718 static int efx_pm_thaw(struct device *dev) 2719 { 2720 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2721 2722 efx->state = STATE_INIT; 2723 2724 efx_start_interrupts(efx, false); 2725 2726 mutex_lock(&efx->mac_lock); 2727 efx->phy_op->reconfigure(efx); 2728 mutex_unlock(&efx->mac_lock); 2729 2730 efx_start_all(efx); 2731 2732 netif_device_attach(efx->net_dev); 2733 2734 efx->state = STATE_RUNNING; 2735 2736 efx->type->resume_wol(efx); 2737 2738 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ 2739 queue_work(reset_workqueue, &efx->reset_work); 2740 2741 return 0; 2742 } 2743 2744 static int efx_pm_poweroff(struct device *dev) 2745 { 2746 struct pci_dev *pci_dev = to_pci_dev(dev); 2747 struct efx_nic *efx = pci_get_drvdata(pci_dev); 2748 2749 efx->type->fini(efx); 2750 2751 efx->reset_pending = 0; 2752 2753 pci_save_state(pci_dev); 2754 return pci_set_power_state(pci_dev, PCI_D3hot); 2755 } 2756 2757 /* Used for both resume and restore */ 2758 static int efx_pm_resume(struct device *dev) 2759 { 2760 struct pci_dev *pci_dev = to_pci_dev(dev); 2761 struct efx_nic *efx = pci_get_drvdata(pci_dev); 2762 int rc; 2763 2764 rc = pci_set_power_state(pci_dev, PCI_D0); 2765 if (rc) 2766 return rc; 2767 pci_restore_state(pci_dev); 2768 rc = pci_enable_device(pci_dev); 2769 if (rc) 2770 return rc; 2771 pci_set_master(efx->pci_dev); 2772 rc = efx->type->reset(efx, RESET_TYPE_ALL); 2773 if (rc) 2774 return rc; 2775 rc = efx->type->init(efx); 2776 if (rc) 2777 return rc; 2778 efx_pm_thaw(dev); 2779 return 0; 2780 } 2781 2782 static int efx_pm_suspend(struct device *dev) 2783 { 2784 int rc; 2785 2786 efx_pm_freeze(dev); 2787 rc = efx_pm_poweroff(dev); 2788 if (rc) 2789 efx_pm_resume(dev); 2790 return rc; 2791 } 2792 2793 static const struct dev_pm_ops efx_pm_ops = { 2794 .suspend = efx_pm_suspend, 2795 .resume = efx_pm_resume, 2796 .freeze = efx_pm_freeze, 2797 .thaw = efx_pm_thaw, 2798 .poweroff = efx_pm_poweroff, 2799 .restore = efx_pm_resume, 2800 }; 2801 2802 static struct pci_driver efx_pci_driver = { 2803 .name = KBUILD_MODNAME, 2804 .id_table = efx_pci_table, 2805 .probe = efx_pci_probe, 2806 .remove = efx_pci_remove, 2807 .driver.pm = &efx_pm_ops, 2808 }; 2809 2810 /************************************************************************** 2811 * 2812 * Kernel module interface 2813 * 2814 *************************************************************************/ 2815 2816 module_param(interrupt_mode, uint, 0444); 2817 MODULE_PARM_DESC(interrupt_mode, 2818 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 2819 2820 static int __init efx_init_module(void) 2821 { 2822 int rc; 2823 2824 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); 2825 2826 rc = register_netdevice_notifier(&efx_netdev_notifier); 2827 if (rc) 2828 goto err_notifier; 2829 2830 rc = efx_init_sriov(); 2831 if (rc) 2832 goto err_sriov; 2833 2834 reset_workqueue = create_singlethread_workqueue("sfc_reset"); 2835 if (!reset_workqueue) { 2836 rc = -ENOMEM; 2837 goto err_reset; 2838 } 2839 2840 rc = pci_register_driver(&efx_pci_driver); 2841 if (rc < 0) 2842 goto err_pci; 2843 2844 return 0; 2845 2846 err_pci: 2847 destroy_workqueue(reset_workqueue); 2848 err_reset: 2849 efx_fini_sriov(); 2850 err_sriov: 2851 unregister_netdevice_notifier(&efx_netdev_notifier); 2852 err_notifier: 2853 return rc; 2854 } 2855 2856 static void __exit efx_exit_module(void) 2857 { 2858 printk(KERN_INFO "Solarflare NET driver unloading\n"); 2859 2860 pci_unregister_driver(&efx_pci_driver); 2861 destroy_workqueue(reset_workqueue); 2862 efx_fini_sriov(); 2863 unregister_netdevice_notifier(&efx_netdev_notifier); 2864 2865 } 2866 2867 module_init(efx_init_module); 2868 module_exit(efx_exit_module); 2869 2870 MODULE_AUTHOR("Solarflare Communications and " 2871 "Michael Brown <mbrown@fensystems.co.uk>"); 2872 MODULE_DESCRIPTION("Solarflare Communications network driver"); 2873 MODULE_LICENSE("GPL"); 2874 MODULE_DEVICE_TABLE(pci, efx_pci_table); 2875