xref: /openbmc/linux/drivers/net/ethernet/sfc/efx.c (revision 63dc02bd)
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include <linux/gfp.h>
24 #include <linux/cpu_rmap.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29 
30 #include "mcdi.h"
31 #include "workarounds.h"
32 
33 /**************************************************************************
34  *
35  * Type name strings
36  *
37  **************************************************************************
38  */
39 
40 /* Loopback mode names (see LOOPBACK_MODE()) */
41 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42 const char *const efx_loopback_mode_names[] = {
43 	[LOOPBACK_NONE]		= "NONE",
44 	[LOOPBACK_DATA]		= "DATAPATH",
45 	[LOOPBACK_GMAC]		= "GMAC",
46 	[LOOPBACK_XGMII]	= "XGMII",
47 	[LOOPBACK_XGXS]		= "XGXS",
48 	[LOOPBACK_XAUI]		= "XAUI",
49 	[LOOPBACK_GMII]		= "GMII",
50 	[LOOPBACK_SGMII]	= "SGMII",
51 	[LOOPBACK_XGBR]		= "XGBR",
52 	[LOOPBACK_XFI]		= "XFI",
53 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
54 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
55 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
56 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 	[LOOPBACK_GPHY]		= "GPHY",
58 	[LOOPBACK_PHYXS]	= "PHYXS",
59 	[LOOPBACK_PCS]		= "PCS",
60 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 	[LOOPBACK_XPORT]	= "XPORT",
62 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
65 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66 	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 	[LOOPBACK_XFI_WS]	= "XFI_WS",
68 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 };
71 
72 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73 const char *const efx_reset_type_names[] = {
74 	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
75 	[RESET_TYPE_ALL]           = "ALL",
76 	[RESET_TYPE_WORLD]         = "WORLD",
77 	[RESET_TYPE_DISABLE]       = "DISABLE",
78 	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
79 	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
80 	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
81 	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
82 	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
83 	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
84 	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
85 };
86 
87 #define EFX_MAX_MTU (9 * 1024)
88 
89 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
90  * queued onto this work queue. This is not a per-nic work queue, because
91  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
92  */
93 static struct workqueue_struct *reset_workqueue;
94 
95 /**************************************************************************
96  *
97  * Configurable values
98  *
99  *************************************************************************/
100 
101 /*
102  * Use separate channels for TX and RX events
103  *
104  * Set this to 1 to use separate channels for TX and RX. It allows us
105  * to control interrupt affinity separately for TX and RX.
106  *
107  * This is only used in MSI-X interrupt mode
108  */
109 static unsigned int separate_tx_channels;
110 module_param(separate_tx_channels, uint, 0444);
111 MODULE_PARM_DESC(separate_tx_channels,
112 		 "Use separate channels for TX and RX");
113 
114 /* This is the weight assigned to each of the (per-channel) virtual
115  * NAPI devices.
116  */
117 static int napi_weight = 64;
118 
119 /* This is the time (in jiffies) between invocations of the hardware
120  * monitor.  On Falcon-based NICs, this will:
121  * - Check the on-board hardware monitor;
122  * - Poll the link state and reconfigure the hardware as necessary.
123  */
124 static unsigned int efx_monitor_interval = 1 * HZ;
125 
126 /* Initial interrupt moderation settings.  They can be modified after
127  * module load with ethtool.
128  *
129  * The default for RX should strike a balance between increasing the
130  * round-trip latency and reducing overhead.
131  */
132 static unsigned int rx_irq_mod_usec = 60;
133 
134 /* Initial interrupt moderation settings.  They can be modified after
135  * module load with ethtool.
136  *
137  * This default is chosen to ensure that a 10G link does not go idle
138  * while a TX queue is stopped after it has become full.  A queue is
139  * restarted when it drops below half full.  The time this takes (assuming
140  * worst case 3 descriptors per packet and 1024 descriptors) is
141  *   512 / 3 * 1.2 = 205 usec.
142  */
143 static unsigned int tx_irq_mod_usec = 150;
144 
145 /* This is the first interrupt mode to try out of:
146  * 0 => MSI-X
147  * 1 => MSI
148  * 2 => legacy
149  */
150 static unsigned int interrupt_mode;
151 
152 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
153  * i.e. the number of CPUs among which we may distribute simultaneous
154  * interrupt handling.
155  *
156  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
157  * The default (0) means to assign an interrupt to each core.
158  */
159 static unsigned int rss_cpus;
160 module_param(rss_cpus, uint, 0444);
161 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
162 
163 static int phy_flash_cfg;
164 module_param(phy_flash_cfg, int, 0644);
165 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
166 
167 static unsigned irq_adapt_low_thresh = 8000;
168 module_param(irq_adapt_low_thresh, uint, 0644);
169 MODULE_PARM_DESC(irq_adapt_low_thresh,
170 		 "Threshold score for reducing IRQ moderation");
171 
172 static unsigned irq_adapt_high_thresh = 16000;
173 module_param(irq_adapt_high_thresh, uint, 0644);
174 MODULE_PARM_DESC(irq_adapt_high_thresh,
175 		 "Threshold score for increasing IRQ moderation");
176 
177 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
178 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
179 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
180 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
181 module_param(debug, uint, 0);
182 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
183 
184 /**************************************************************************
185  *
186  * Utility functions and prototypes
187  *
188  *************************************************************************/
189 
190 static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq);
191 static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq);
192 static void efx_remove_channel(struct efx_channel *channel);
193 static void efx_remove_channels(struct efx_nic *efx);
194 static const struct efx_channel_type efx_default_channel_type;
195 static void efx_remove_port(struct efx_nic *efx);
196 static void efx_init_napi_channel(struct efx_channel *channel);
197 static void efx_fini_napi(struct efx_nic *efx);
198 static void efx_fini_napi_channel(struct efx_channel *channel);
199 static void efx_fini_struct(struct efx_nic *efx);
200 static void efx_start_all(struct efx_nic *efx);
201 static void efx_stop_all(struct efx_nic *efx);
202 
203 #define EFX_ASSERT_RESET_SERIALISED(efx)		\
204 	do {						\
205 		if ((efx->state == STATE_RUNNING) ||	\
206 		    (efx->state == STATE_DISABLED))	\
207 			ASSERT_RTNL();			\
208 	} while (0)
209 
210 /**************************************************************************
211  *
212  * Event queue processing
213  *
214  *************************************************************************/
215 
216 /* Process channel's event queue
217  *
218  * This function is responsible for processing the event queue of a
219  * single channel.  The caller must guarantee that this function will
220  * never be concurrently called more than once on the same channel,
221  * though different channels may be being processed concurrently.
222  */
223 static int efx_process_channel(struct efx_channel *channel, int budget)
224 {
225 	int spent;
226 
227 	if (unlikely(!channel->enabled))
228 		return 0;
229 
230 	spent = efx_nic_process_eventq(channel, budget);
231 	if (spent && efx_channel_has_rx_queue(channel)) {
232 		struct efx_rx_queue *rx_queue =
233 			efx_channel_get_rx_queue(channel);
234 
235 		/* Deliver last RX packet. */
236 		if (channel->rx_pkt) {
237 			__efx_rx_packet(channel, channel->rx_pkt);
238 			channel->rx_pkt = NULL;
239 		}
240 		if (rx_queue->enabled) {
241 			efx_rx_strategy(channel);
242 			efx_fast_push_rx_descriptors(rx_queue);
243 		}
244 	}
245 
246 	return spent;
247 }
248 
249 /* Mark channel as finished processing
250  *
251  * Note that since we will not receive further interrupts for this
252  * channel before we finish processing and call the eventq_read_ack()
253  * method, there is no need to use the interrupt hold-off timers.
254  */
255 static inline void efx_channel_processed(struct efx_channel *channel)
256 {
257 	/* The interrupt handler for this channel may set work_pending
258 	 * as soon as we acknowledge the events we've seen.  Make sure
259 	 * it's cleared before then. */
260 	channel->work_pending = false;
261 	smp_wmb();
262 
263 	efx_nic_eventq_read_ack(channel);
264 }
265 
266 /* NAPI poll handler
267  *
268  * NAPI guarantees serialisation of polls of the same device, which
269  * provides the guarantee required by efx_process_channel().
270  */
271 static int efx_poll(struct napi_struct *napi, int budget)
272 {
273 	struct efx_channel *channel =
274 		container_of(napi, struct efx_channel, napi_str);
275 	struct efx_nic *efx = channel->efx;
276 	int spent;
277 
278 	netif_vdbg(efx, intr, efx->net_dev,
279 		   "channel %d NAPI poll executing on CPU %d\n",
280 		   channel->channel, raw_smp_processor_id());
281 
282 	spent = efx_process_channel(channel, budget);
283 
284 	if (spent < budget) {
285 		if (efx_channel_has_rx_queue(channel) &&
286 		    efx->irq_rx_adaptive &&
287 		    unlikely(++channel->irq_count == 1000)) {
288 			if (unlikely(channel->irq_mod_score <
289 				     irq_adapt_low_thresh)) {
290 				if (channel->irq_moderation > 1) {
291 					channel->irq_moderation -= 1;
292 					efx->type->push_irq_moderation(channel);
293 				}
294 			} else if (unlikely(channel->irq_mod_score >
295 					    irq_adapt_high_thresh)) {
296 				if (channel->irq_moderation <
297 				    efx->irq_rx_moderation) {
298 					channel->irq_moderation += 1;
299 					efx->type->push_irq_moderation(channel);
300 				}
301 			}
302 			channel->irq_count = 0;
303 			channel->irq_mod_score = 0;
304 		}
305 
306 		efx_filter_rfs_expire(channel);
307 
308 		/* There is no race here; although napi_disable() will
309 		 * only wait for napi_complete(), this isn't a problem
310 		 * since efx_channel_processed() will have no effect if
311 		 * interrupts have already been disabled.
312 		 */
313 		napi_complete(napi);
314 		efx_channel_processed(channel);
315 	}
316 
317 	return spent;
318 }
319 
320 /* Process the eventq of the specified channel immediately on this CPU
321  *
322  * Disable hardware generated interrupts, wait for any existing
323  * processing to finish, then directly poll (and ack ) the eventq.
324  * Finally reenable NAPI and interrupts.
325  *
326  * This is for use only during a loopback self-test.  It must not
327  * deliver any packets up the stack as this can result in deadlock.
328  */
329 void efx_process_channel_now(struct efx_channel *channel)
330 {
331 	struct efx_nic *efx = channel->efx;
332 
333 	BUG_ON(channel->channel >= efx->n_channels);
334 	BUG_ON(!channel->enabled);
335 	BUG_ON(!efx->loopback_selftest);
336 
337 	/* Disable interrupts and wait for ISRs to complete */
338 	efx_nic_disable_interrupts(efx);
339 	if (efx->legacy_irq) {
340 		synchronize_irq(efx->legacy_irq);
341 		efx->legacy_irq_enabled = false;
342 	}
343 	if (channel->irq)
344 		synchronize_irq(channel->irq);
345 
346 	/* Wait for any NAPI processing to complete */
347 	napi_disable(&channel->napi_str);
348 
349 	/* Poll the channel */
350 	efx_process_channel(channel, channel->eventq_mask + 1);
351 
352 	/* Ack the eventq. This may cause an interrupt to be generated
353 	 * when they are reenabled */
354 	efx_channel_processed(channel);
355 
356 	napi_enable(&channel->napi_str);
357 	if (efx->legacy_irq)
358 		efx->legacy_irq_enabled = true;
359 	efx_nic_enable_interrupts(efx);
360 }
361 
362 /* Create event queue
363  * Event queue memory allocations are done only once.  If the channel
364  * is reset, the memory buffer will be reused; this guards against
365  * errors during channel reset and also simplifies interrupt handling.
366  */
367 static int efx_probe_eventq(struct efx_channel *channel)
368 {
369 	struct efx_nic *efx = channel->efx;
370 	unsigned long entries;
371 
372 	netif_dbg(efx, probe, efx->net_dev,
373 		  "chan %d create event queue\n", channel->channel);
374 
375 	/* Build an event queue with room for one event per tx and rx buffer,
376 	 * plus some extra for link state events and MCDI completions. */
377 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
378 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
379 	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
380 
381 	return efx_nic_probe_eventq(channel);
382 }
383 
384 /* Prepare channel's event queue */
385 static void efx_init_eventq(struct efx_channel *channel)
386 {
387 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
388 		  "chan %d init event queue\n", channel->channel);
389 
390 	channel->eventq_read_ptr = 0;
391 
392 	efx_nic_init_eventq(channel);
393 }
394 
395 /* Enable event queue processing and NAPI */
396 static void efx_start_eventq(struct efx_channel *channel)
397 {
398 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
399 		  "chan %d start event queue\n", channel->channel);
400 
401 	/* The interrupt handler for this channel may set work_pending
402 	 * as soon as we enable it.  Make sure it's cleared before
403 	 * then.  Similarly, make sure it sees the enabled flag set.
404 	 */
405 	channel->work_pending = false;
406 	channel->enabled = true;
407 	smp_wmb();
408 
409 	napi_enable(&channel->napi_str);
410 	efx_nic_eventq_read_ack(channel);
411 }
412 
413 /* Disable event queue processing and NAPI */
414 static void efx_stop_eventq(struct efx_channel *channel)
415 {
416 	if (!channel->enabled)
417 		return;
418 
419 	napi_disable(&channel->napi_str);
420 	channel->enabled = false;
421 }
422 
423 static void efx_fini_eventq(struct efx_channel *channel)
424 {
425 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
426 		  "chan %d fini event queue\n", channel->channel);
427 
428 	efx_nic_fini_eventq(channel);
429 }
430 
431 static void efx_remove_eventq(struct efx_channel *channel)
432 {
433 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
434 		  "chan %d remove event queue\n", channel->channel);
435 
436 	efx_nic_remove_eventq(channel);
437 }
438 
439 /**************************************************************************
440  *
441  * Channel handling
442  *
443  *************************************************************************/
444 
445 /* Allocate and initialise a channel structure. */
446 static struct efx_channel *
447 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
448 {
449 	struct efx_channel *channel;
450 	struct efx_rx_queue *rx_queue;
451 	struct efx_tx_queue *tx_queue;
452 	int j;
453 
454 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
455 	if (!channel)
456 		return NULL;
457 
458 	channel->efx = efx;
459 	channel->channel = i;
460 	channel->type = &efx_default_channel_type;
461 
462 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
463 		tx_queue = &channel->tx_queue[j];
464 		tx_queue->efx = efx;
465 		tx_queue->queue = i * EFX_TXQ_TYPES + j;
466 		tx_queue->channel = channel;
467 	}
468 
469 	rx_queue = &channel->rx_queue;
470 	rx_queue->efx = efx;
471 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
472 		    (unsigned long)rx_queue);
473 
474 	return channel;
475 }
476 
477 /* Allocate and initialise a channel structure, copying parameters
478  * (but not resources) from an old channel structure.
479  */
480 static struct efx_channel *
481 efx_copy_channel(const struct efx_channel *old_channel)
482 {
483 	struct efx_channel *channel;
484 	struct efx_rx_queue *rx_queue;
485 	struct efx_tx_queue *tx_queue;
486 	int j;
487 
488 	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
489 	if (!channel)
490 		return NULL;
491 
492 	*channel = *old_channel;
493 
494 	channel->napi_dev = NULL;
495 	memset(&channel->eventq, 0, sizeof(channel->eventq));
496 
497 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
498 		tx_queue = &channel->tx_queue[j];
499 		if (tx_queue->channel)
500 			tx_queue->channel = channel;
501 		tx_queue->buffer = NULL;
502 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
503 	}
504 
505 	rx_queue = &channel->rx_queue;
506 	rx_queue->buffer = NULL;
507 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
508 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
509 		    (unsigned long)rx_queue);
510 
511 	return channel;
512 }
513 
514 static int efx_probe_channel(struct efx_channel *channel)
515 {
516 	struct efx_tx_queue *tx_queue;
517 	struct efx_rx_queue *rx_queue;
518 	int rc;
519 
520 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
521 		  "creating channel %d\n", channel->channel);
522 
523 	rc = channel->type->pre_probe(channel);
524 	if (rc)
525 		goto fail;
526 
527 	rc = efx_probe_eventq(channel);
528 	if (rc)
529 		goto fail;
530 
531 	efx_for_each_channel_tx_queue(tx_queue, channel) {
532 		rc = efx_probe_tx_queue(tx_queue);
533 		if (rc)
534 			goto fail;
535 	}
536 
537 	efx_for_each_channel_rx_queue(rx_queue, channel) {
538 		rc = efx_probe_rx_queue(rx_queue);
539 		if (rc)
540 			goto fail;
541 	}
542 
543 	channel->n_rx_frm_trunc = 0;
544 
545 	return 0;
546 
547 fail:
548 	efx_remove_channel(channel);
549 	return rc;
550 }
551 
552 static void
553 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
554 {
555 	struct efx_nic *efx = channel->efx;
556 	const char *type;
557 	int number;
558 
559 	number = channel->channel;
560 	if (efx->tx_channel_offset == 0) {
561 		type = "";
562 	} else if (channel->channel < efx->tx_channel_offset) {
563 		type = "-rx";
564 	} else {
565 		type = "-tx";
566 		number -= efx->tx_channel_offset;
567 	}
568 	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
569 }
570 
571 static void efx_set_channel_names(struct efx_nic *efx)
572 {
573 	struct efx_channel *channel;
574 
575 	efx_for_each_channel(channel, efx)
576 		channel->type->get_name(channel,
577 					efx->channel_name[channel->channel],
578 					sizeof(efx->channel_name[0]));
579 }
580 
581 static int efx_probe_channels(struct efx_nic *efx)
582 {
583 	struct efx_channel *channel;
584 	int rc;
585 
586 	/* Restart special buffer allocation */
587 	efx->next_buffer_table = 0;
588 
589 	/* Probe channels in reverse, so that any 'extra' channels
590 	 * use the start of the buffer table. This allows the traffic
591 	 * channels to be resized without moving them or wasting the
592 	 * entries before them.
593 	 */
594 	efx_for_each_channel_rev(channel, efx) {
595 		rc = efx_probe_channel(channel);
596 		if (rc) {
597 			netif_err(efx, probe, efx->net_dev,
598 				  "failed to create channel %d\n",
599 				  channel->channel);
600 			goto fail;
601 		}
602 	}
603 	efx_set_channel_names(efx);
604 
605 	return 0;
606 
607 fail:
608 	efx_remove_channels(efx);
609 	return rc;
610 }
611 
612 /* Channels are shutdown and reinitialised whilst the NIC is running
613  * to propagate configuration changes (mtu, checksum offload), or
614  * to clear hardware error conditions
615  */
616 static void efx_start_datapath(struct efx_nic *efx)
617 {
618 	struct efx_tx_queue *tx_queue;
619 	struct efx_rx_queue *rx_queue;
620 	struct efx_channel *channel;
621 
622 	/* Calculate the rx buffer allocation parameters required to
623 	 * support the current MTU, including padding for header
624 	 * alignment and overruns.
625 	 */
626 	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
627 			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
628 			      efx->type->rx_buffer_hash_size +
629 			      efx->type->rx_buffer_padding);
630 	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
631 					 sizeof(struct efx_rx_page_state));
632 
633 	/* Initialise the channels */
634 	efx_for_each_channel(channel, efx) {
635 		efx_for_each_channel_tx_queue(tx_queue, channel)
636 			efx_init_tx_queue(tx_queue);
637 
638 		/* The rx buffer allocation strategy is MTU dependent */
639 		efx_rx_strategy(channel);
640 
641 		efx_for_each_channel_rx_queue(rx_queue, channel) {
642 			efx_init_rx_queue(rx_queue);
643 			efx_nic_generate_fill_event(rx_queue);
644 		}
645 
646 		WARN_ON(channel->rx_pkt != NULL);
647 		efx_rx_strategy(channel);
648 	}
649 
650 	if (netif_device_present(efx->net_dev))
651 		netif_tx_wake_all_queues(efx->net_dev);
652 }
653 
654 static void efx_stop_datapath(struct efx_nic *efx)
655 {
656 	struct efx_channel *channel;
657 	struct efx_tx_queue *tx_queue;
658 	struct efx_rx_queue *rx_queue;
659 	int rc;
660 
661 	EFX_ASSERT_RESET_SERIALISED(efx);
662 	BUG_ON(efx->port_enabled);
663 
664 	rc = efx_nic_flush_queues(efx);
665 	if (rc && EFX_WORKAROUND_7803(efx)) {
666 		/* Schedule a reset to recover from the flush failure. The
667 		 * descriptor caches reference memory we're about to free,
668 		 * but falcon_reconfigure_mac_wrapper() won't reconnect
669 		 * the MACs because of the pending reset. */
670 		netif_err(efx, drv, efx->net_dev,
671 			  "Resetting to recover from flush failure\n");
672 		efx_schedule_reset(efx, RESET_TYPE_ALL);
673 	} else if (rc) {
674 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
675 	} else {
676 		netif_dbg(efx, drv, efx->net_dev,
677 			  "successfully flushed all queues\n");
678 	}
679 
680 	efx_for_each_channel(channel, efx) {
681 		/* RX packet processing is pipelined, so wait for the
682 		 * NAPI handler to complete.  At least event queue 0
683 		 * might be kept active by non-data events, so don't
684 		 * use napi_synchronize() but actually disable NAPI
685 		 * temporarily.
686 		 */
687 		if (efx_channel_has_rx_queue(channel)) {
688 			efx_stop_eventq(channel);
689 			efx_start_eventq(channel);
690 		}
691 
692 		efx_for_each_channel_rx_queue(rx_queue, channel)
693 			efx_fini_rx_queue(rx_queue);
694 		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
695 			efx_fini_tx_queue(tx_queue);
696 	}
697 }
698 
699 static void efx_remove_channel(struct efx_channel *channel)
700 {
701 	struct efx_tx_queue *tx_queue;
702 	struct efx_rx_queue *rx_queue;
703 
704 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
705 		  "destroy chan %d\n", channel->channel);
706 
707 	efx_for_each_channel_rx_queue(rx_queue, channel)
708 		efx_remove_rx_queue(rx_queue);
709 	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
710 		efx_remove_tx_queue(tx_queue);
711 	efx_remove_eventq(channel);
712 }
713 
714 static void efx_remove_channels(struct efx_nic *efx)
715 {
716 	struct efx_channel *channel;
717 
718 	efx_for_each_channel(channel, efx)
719 		efx_remove_channel(channel);
720 }
721 
722 int
723 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
724 {
725 	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
726 	u32 old_rxq_entries, old_txq_entries;
727 	unsigned i, next_buffer_table = 0;
728 	int rc = 0;
729 
730 	/* Not all channels should be reallocated. We must avoid
731 	 * reallocating their buffer table entries.
732 	 */
733 	efx_for_each_channel(channel, efx) {
734 		struct efx_rx_queue *rx_queue;
735 		struct efx_tx_queue *tx_queue;
736 
737 		if (channel->type->copy)
738 			continue;
739 		next_buffer_table = max(next_buffer_table,
740 					channel->eventq.index +
741 					channel->eventq.entries);
742 		efx_for_each_channel_rx_queue(rx_queue, channel)
743 			next_buffer_table = max(next_buffer_table,
744 						rx_queue->rxd.index +
745 						rx_queue->rxd.entries);
746 		efx_for_each_channel_tx_queue(tx_queue, channel)
747 			next_buffer_table = max(next_buffer_table,
748 						tx_queue->txd.index +
749 						tx_queue->txd.entries);
750 	}
751 
752 	efx_stop_all(efx);
753 	efx_stop_interrupts(efx, true);
754 
755 	/* Clone channels (where possible) */
756 	memset(other_channel, 0, sizeof(other_channel));
757 	for (i = 0; i < efx->n_channels; i++) {
758 		channel = efx->channel[i];
759 		if (channel->type->copy)
760 			channel = channel->type->copy(channel);
761 		if (!channel) {
762 			rc = -ENOMEM;
763 			goto out;
764 		}
765 		other_channel[i] = channel;
766 	}
767 
768 	/* Swap entry counts and channel pointers */
769 	old_rxq_entries = efx->rxq_entries;
770 	old_txq_entries = efx->txq_entries;
771 	efx->rxq_entries = rxq_entries;
772 	efx->txq_entries = txq_entries;
773 	for (i = 0; i < efx->n_channels; i++) {
774 		channel = efx->channel[i];
775 		efx->channel[i] = other_channel[i];
776 		other_channel[i] = channel;
777 	}
778 
779 	/* Restart buffer table allocation */
780 	efx->next_buffer_table = next_buffer_table;
781 
782 	for (i = 0; i < efx->n_channels; i++) {
783 		channel = efx->channel[i];
784 		if (!channel->type->copy)
785 			continue;
786 		rc = efx_probe_channel(channel);
787 		if (rc)
788 			goto rollback;
789 		efx_init_napi_channel(efx->channel[i]);
790 	}
791 
792 out:
793 	/* Destroy unused channel structures */
794 	for (i = 0; i < efx->n_channels; i++) {
795 		channel = other_channel[i];
796 		if (channel && channel->type->copy) {
797 			efx_fini_napi_channel(channel);
798 			efx_remove_channel(channel);
799 			kfree(channel);
800 		}
801 	}
802 
803 	efx_start_interrupts(efx, true);
804 	efx_start_all(efx);
805 	return rc;
806 
807 rollback:
808 	/* Swap back */
809 	efx->rxq_entries = old_rxq_entries;
810 	efx->txq_entries = old_txq_entries;
811 	for (i = 0; i < efx->n_channels; i++) {
812 		channel = efx->channel[i];
813 		efx->channel[i] = other_channel[i];
814 		other_channel[i] = channel;
815 	}
816 	goto out;
817 }
818 
819 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
820 {
821 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
822 }
823 
824 static const struct efx_channel_type efx_default_channel_type = {
825 	.pre_probe		= efx_channel_dummy_op_int,
826 	.get_name		= efx_get_channel_name,
827 	.copy			= efx_copy_channel,
828 	.keep_eventq		= false,
829 };
830 
831 int efx_channel_dummy_op_int(struct efx_channel *channel)
832 {
833 	return 0;
834 }
835 
836 /**************************************************************************
837  *
838  * Port handling
839  *
840  **************************************************************************/
841 
842 /* This ensures that the kernel is kept informed (via
843  * netif_carrier_on/off) of the link status, and also maintains the
844  * link status's stop on the port's TX queue.
845  */
846 void efx_link_status_changed(struct efx_nic *efx)
847 {
848 	struct efx_link_state *link_state = &efx->link_state;
849 
850 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
851 	 * that no events are triggered between unregister_netdev() and the
852 	 * driver unloading. A more general condition is that NETDEV_CHANGE
853 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
854 	if (!netif_running(efx->net_dev))
855 		return;
856 
857 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
858 		efx->n_link_state_changes++;
859 
860 		if (link_state->up)
861 			netif_carrier_on(efx->net_dev);
862 		else
863 			netif_carrier_off(efx->net_dev);
864 	}
865 
866 	/* Status message for kernel log */
867 	if (link_state->up)
868 		netif_info(efx, link, efx->net_dev,
869 			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
870 			   link_state->speed, link_state->fd ? "full" : "half",
871 			   efx->net_dev->mtu,
872 			   (efx->promiscuous ? " [PROMISC]" : ""));
873 	else
874 		netif_info(efx, link, efx->net_dev, "link down\n");
875 }
876 
877 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
878 {
879 	efx->link_advertising = advertising;
880 	if (advertising) {
881 		if (advertising & ADVERTISED_Pause)
882 			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
883 		else
884 			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
885 		if (advertising & ADVERTISED_Asym_Pause)
886 			efx->wanted_fc ^= EFX_FC_TX;
887 	}
888 }
889 
890 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
891 {
892 	efx->wanted_fc = wanted_fc;
893 	if (efx->link_advertising) {
894 		if (wanted_fc & EFX_FC_RX)
895 			efx->link_advertising |= (ADVERTISED_Pause |
896 						  ADVERTISED_Asym_Pause);
897 		else
898 			efx->link_advertising &= ~(ADVERTISED_Pause |
899 						   ADVERTISED_Asym_Pause);
900 		if (wanted_fc & EFX_FC_TX)
901 			efx->link_advertising ^= ADVERTISED_Asym_Pause;
902 	}
903 }
904 
905 static void efx_fini_port(struct efx_nic *efx);
906 
907 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
908  * the MAC appropriately. All other PHY configuration changes are pushed
909  * through phy_op->set_settings(), and pushed asynchronously to the MAC
910  * through efx_monitor().
911  *
912  * Callers must hold the mac_lock
913  */
914 int __efx_reconfigure_port(struct efx_nic *efx)
915 {
916 	enum efx_phy_mode phy_mode;
917 	int rc;
918 
919 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
920 
921 	/* Serialise the promiscuous flag with efx_set_rx_mode. */
922 	netif_addr_lock_bh(efx->net_dev);
923 	netif_addr_unlock_bh(efx->net_dev);
924 
925 	/* Disable PHY transmit in mac level loopbacks */
926 	phy_mode = efx->phy_mode;
927 	if (LOOPBACK_INTERNAL(efx))
928 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
929 	else
930 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
931 
932 	rc = efx->type->reconfigure_port(efx);
933 
934 	if (rc)
935 		efx->phy_mode = phy_mode;
936 
937 	return rc;
938 }
939 
940 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
941  * disabled. */
942 int efx_reconfigure_port(struct efx_nic *efx)
943 {
944 	int rc;
945 
946 	EFX_ASSERT_RESET_SERIALISED(efx);
947 
948 	mutex_lock(&efx->mac_lock);
949 	rc = __efx_reconfigure_port(efx);
950 	mutex_unlock(&efx->mac_lock);
951 
952 	return rc;
953 }
954 
955 /* Asynchronous work item for changing MAC promiscuity and multicast
956  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
957  * MAC directly. */
958 static void efx_mac_work(struct work_struct *data)
959 {
960 	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
961 
962 	mutex_lock(&efx->mac_lock);
963 	if (efx->port_enabled)
964 		efx->type->reconfigure_mac(efx);
965 	mutex_unlock(&efx->mac_lock);
966 }
967 
968 static int efx_probe_port(struct efx_nic *efx)
969 {
970 	int rc;
971 
972 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
973 
974 	if (phy_flash_cfg)
975 		efx->phy_mode = PHY_MODE_SPECIAL;
976 
977 	/* Connect up MAC/PHY operations table */
978 	rc = efx->type->probe_port(efx);
979 	if (rc)
980 		return rc;
981 
982 	/* Initialise MAC address to permanent address */
983 	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
984 
985 	return 0;
986 }
987 
988 static int efx_init_port(struct efx_nic *efx)
989 {
990 	int rc;
991 
992 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
993 
994 	mutex_lock(&efx->mac_lock);
995 
996 	rc = efx->phy_op->init(efx);
997 	if (rc)
998 		goto fail1;
999 
1000 	efx->port_initialized = true;
1001 
1002 	/* Reconfigure the MAC before creating dma queues (required for
1003 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1004 	efx->type->reconfigure_mac(efx);
1005 
1006 	/* Ensure the PHY advertises the correct flow control settings */
1007 	rc = efx->phy_op->reconfigure(efx);
1008 	if (rc)
1009 		goto fail2;
1010 
1011 	mutex_unlock(&efx->mac_lock);
1012 	return 0;
1013 
1014 fail2:
1015 	efx->phy_op->fini(efx);
1016 fail1:
1017 	mutex_unlock(&efx->mac_lock);
1018 	return rc;
1019 }
1020 
1021 static void efx_start_port(struct efx_nic *efx)
1022 {
1023 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1024 	BUG_ON(efx->port_enabled);
1025 
1026 	mutex_lock(&efx->mac_lock);
1027 	efx->port_enabled = true;
1028 
1029 	/* efx_mac_work() might have been scheduled after efx_stop_port(),
1030 	 * and then cancelled by efx_flush_all() */
1031 	efx->type->reconfigure_mac(efx);
1032 
1033 	mutex_unlock(&efx->mac_lock);
1034 }
1035 
1036 /* Prevent efx_mac_work() and efx_monitor() from working */
1037 static void efx_stop_port(struct efx_nic *efx)
1038 {
1039 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1040 
1041 	mutex_lock(&efx->mac_lock);
1042 	efx->port_enabled = false;
1043 	mutex_unlock(&efx->mac_lock);
1044 
1045 	/* Serialise against efx_set_multicast_list() */
1046 	netif_addr_lock_bh(efx->net_dev);
1047 	netif_addr_unlock_bh(efx->net_dev);
1048 }
1049 
1050 static void efx_fini_port(struct efx_nic *efx)
1051 {
1052 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1053 
1054 	if (!efx->port_initialized)
1055 		return;
1056 
1057 	efx->phy_op->fini(efx);
1058 	efx->port_initialized = false;
1059 
1060 	efx->link_state.up = false;
1061 	efx_link_status_changed(efx);
1062 }
1063 
1064 static void efx_remove_port(struct efx_nic *efx)
1065 {
1066 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1067 
1068 	efx->type->remove_port(efx);
1069 }
1070 
1071 /**************************************************************************
1072  *
1073  * NIC handling
1074  *
1075  **************************************************************************/
1076 
1077 /* This configures the PCI device to enable I/O and DMA. */
1078 static int efx_init_io(struct efx_nic *efx)
1079 {
1080 	struct pci_dev *pci_dev = efx->pci_dev;
1081 	dma_addr_t dma_mask = efx->type->max_dma_mask;
1082 	int rc;
1083 
1084 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1085 
1086 	rc = pci_enable_device(pci_dev);
1087 	if (rc) {
1088 		netif_err(efx, probe, efx->net_dev,
1089 			  "failed to enable PCI device\n");
1090 		goto fail1;
1091 	}
1092 
1093 	pci_set_master(pci_dev);
1094 
1095 	/* Set the PCI DMA mask.  Try all possibilities from our
1096 	 * genuine mask down to 32 bits, because some architectures
1097 	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1098 	 * masks event though they reject 46 bit masks.
1099 	 */
1100 	while (dma_mask > 0x7fffffffUL) {
1101 		if (pci_dma_supported(pci_dev, dma_mask)) {
1102 			rc = pci_set_dma_mask(pci_dev, dma_mask);
1103 			if (rc == 0)
1104 				break;
1105 		}
1106 		dma_mask >>= 1;
1107 	}
1108 	if (rc) {
1109 		netif_err(efx, probe, efx->net_dev,
1110 			  "could not find a suitable DMA mask\n");
1111 		goto fail2;
1112 	}
1113 	netif_dbg(efx, probe, efx->net_dev,
1114 		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1115 	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1116 	if (rc) {
1117 		/* pci_set_consistent_dma_mask() is not *allowed* to
1118 		 * fail with a mask that pci_set_dma_mask() accepted,
1119 		 * but just in case...
1120 		 */
1121 		netif_err(efx, probe, efx->net_dev,
1122 			  "failed to set consistent DMA mask\n");
1123 		goto fail2;
1124 	}
1125 
1126 	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1127 	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1128 	if (rc) {
1129 		netif_err(efx, probe, efx->net_dev,
1130 			  "request for memory BAR failed\n");
1131 		rc = -EIO;
1132 		goto fail3;
1133 	}
1134 	efx->membase = ioremap_nocache(efx->membase_phys,
1135 				       efx->type->mem_map_size);
1136 	if (!efx->membase) {
1137 		netif_err(efx, probe, efx->net_dev,
1138 			  "could not map memory BAR at %llx+%x\n",
1139 			  (unsigned long long)efx->membase_phys,
1140 			  efx->type->mem_map_size);
1141 		rc = -ENOMEM;
1142 		goto fail4;
1143 	}
1144 	netif_dbg(efx, probe, efx->net_dev,
1145 		  "memory BAR at %llx+%x (virtual %p)\n",
1146 		  (unsigned long long)efx->membase_phys,
1147 		  efx->type->mem_map_size, efx->membase);
1148 
1149 	return 0;
1150 
1151  fail4:
1152 	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1153  fail3:
1154 	efx->membase_phys = 0;
1155  fail2:
1156 	pci_disable_device(efx->pci_dev);
1157  fail1:
1158 	return rc;
1159 }
1160 
1161 static void efx_fini_io(struct efx_nic *efx)
1162 {
1163 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1164 
1165 	if (efx->membase) {
1166 		iounmap(efx->membase);
1167 		efx->membase = NULL;
1168 	}
1169 
1170 	if (efx->membase_phys) {
1171 		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1172 		efx->membase_phys = 0;
1173 	}
1174 
1175 	pci_disable_device(efx->pci_dev);
1176 }
1177 
1178 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1179 {
1180 	cpumask_var_t thread_mask;
1181 	unsigned int count;
1182 	int cpu;
1183 
1184 	if (rss_cpus) {
1185 		count = rss_cpus;
1186 	} else {
1187 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1188 			netif_warn(efx, probe, efx->net_dev,
1189 				   "RSS disabled due to allocation failure\n");
1190 			return 1;
1191 		}
1192 
1193 		count = 0;
1194 		for_each_online_cpu(cpu) {
1195 			if (!cpumask_test_cpu(cpu, thread_mask)) {
1196 				++count;
1197 				cpumask_or(thread_mask, thread_mask,
1198 					   topology_thread_cpumask(cpu));
1199 			}
1200 		}
1201 
1202 		free_cpumask_var(thread_mask);
1203 	}
1204 
1205 	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1206 	 * table entries that are inaccessible to VFs
1207 	 */
1208 	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1209 	    count > efx_vf_size(efx)) {
1210 		netif_warn(efx, probe, efx->net_dev,
1211 			   "Reducing number of RSS channels from %u to %u for "
1212 			   "VF support. Increase vf-msix-limit to use more "
1213 			   "channels on the PF.\n",
1214 			   count, efx_vf_size(efx));
1215 		count = efx_vf_size(efx);
1216 	}
1217 
1218 	return count;
1219 }
1220 
1221 static int
1222 efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1223 {
1224 #ifdef CONFIG_RFS_ACCEL
1225 	unsigned int i;
1226 	int rc;
1227 
1228 	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1229 	if (!efx->net_dev->rx_cpu_rmap)
1230 		return -ENOMEM;
1231 	for (i = 0; i < efx->n_rx_channels; i++) {
1232 		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1233 				      xentries[i].vector);
1234 		if (rc) {
1235 			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1236 			efx->net_dev->rx_cpu_rmap = NULL;
1237 			return rc;
1238 		}
1239 	}
1240 #endif
1241 	return 0;
1242 }
1243 
1244 /* Probe the number and type of interrupts we are able to obtain, and
1245  * the resulting numbers of channels and RX queues.
1246  */
1247 static int efx_probe_interrupts(struct efx_nic *efx)
1248 {
1249 	unsigned int max_channels =
1250 		min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1251 	unsigned int extra_channels = 0;
1252 	unsigned int i, j;
1253 	int rc;
1254 
1255 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1256 		if (efx->extra_channel_type[i])
1257 			++extra_channels;
1258 
1259 	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1260 		struct msix_entry xentries[EFX_MAX_CHANNELS];
1261 		unsigned int n_channels;
1262 
1263 		n_channels = efx_wanted_parallelism(efx);
1264 		if (separate_tx_channels)
1265 			n_channels *= 2;
1266 		n_channels += extra_channels;
1267 		n_channels = min(n_channels, max_channels);
1268 
1269 		for (i = 0; i < n_channels; i++)
1270 			xentries[i].entry = i;
1271 		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1272 		if (rc > 0) {
1273 			netif_err(efx, drv, efx->net_dev,
1274 				  "WARNING: Insufficient MSI-X vectors"
1275 				  " available (%d < %u).\n", rc, n_channels);
1276 			netif_err(efx, drv, efx->net_dev,
1277 				  "WARNING: Performance may be reduced.\n");
1278 			EFX_BUG_ON_PARANOID(rc >= n_channels);
1279 			n_channels = rc;
1280 			rc = pci_enable_msix(efx->pci_dev, xentries,
1281 					     n_channels);
1282 		}
1283 
1284 		if (rc == 0) {
1285 			efx->n_channels = n_channels;
1286 			if (n_channels > extra_channels)
1287 				n_channels -= extra_channels;
1288 			if (separate_tx_channels) {
1289 				efx->n_tx_channels = max(n_channels / 2, 1U);
1290 				efx->n_rx_channels = max(n_channels -
1291 							 efx->n_tx_channels,
1292 							 1U);
1293 			} else {
1294 				efx->n_tx_channels = n_channels;
1295 				efx->n_rx_channels = n_channels;
1296 			}
1297 			rc = efx_init_rx_cpu_rmap(efx, xentries);
1298 			if (rc) {
1299 				pci_disable_msix(efx->pci_dev);
1300 				return rc;
1301 			}
1302 			for (i = 0; i < efx->n_channels; i++)
1303 				efx_get_channel(efx, i)->irq =
1304 					xentries[i].vector;
1305 		} else {
1306 			/* Fall back to single channel MSI */
1307 			efx->interrupt_mode = EFX_INT_MODE_MSI;
1308 			netif_err(efx, drv, efx->net_dev,
1309 				  "could not enable MSI-X\n");
1310 		}
1311 	}
1312 
1313 	/* Try single interrupt MSI */
1314 	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1315 		efx->n_channels = 1;
1316 		efx->n_rx_channels = 1;
1317 		efx->n_tx_channels = 1;
1318 		rc = pci_enable_msi(efx->pci_dev);
1319 		if (rc == 0) {
1320 			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1321 		} else {
1322 			netif_err(efx, drv, efx->net_dev,
1323 				  "could not enable MSI\n");
1324 			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1325 		}
1326 	}
1327 
1328 	/* Assume legacy interrupts */
1329 	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1330 		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1331 		efx->n_rx_channels = 1;
1332 		efx->n_tx_channels = 1;
1333 		efx->legacy_irq = efx->pci_dev->irq;
1334 	}
1335 
1336 	/* Assign extra channels if possible */
1337 	j = efx->n_channels;
1338 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1339 		if (!efx->extra_channel_type[i])
1340 			continue;
1341 		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1342 		    efx->n_channels <= extra_channels) {
1343 			efx->extra_channel_type[i]->handle_no_channel(efx);
1344 		} else {
1345 			--j;
1346 			efx_get_channel(efx, j)->type =
1347 				efx->extra_channel_type[i];
1348 		}
1349 	}
1350 
1351 	/* RSS might be usable on VFs even if it is disabled on the PF */
1352 	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1353 			   efx->n_rx_channels : efx_vf_size(efx));
1354 
1355 	return 0;
1356 }
1357 
1358 /* Enable interrupts, then probe and start the event queues */
1359 static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1360 {
1361 	struct efx_channel *channel;
1362 
1363 	if (efx->legacy_irq)
1364 		efx->legacy_irq_enabled = true;
1365 	efx_nic_enable_interrupts(efx);
1366 
1367 	efx_for_each_channel(channel, efx) {
1368 		if (!channel->type->keep_eventq || !may_keep_eventq)
1369 			efx_init_eventq(channel);
1370 		efx_start_eventq(channel);
1371 	}
1372 
1373 	efx_mcdi_mode_event(efx);
1374 }
1375 
1376 static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1377 {
1378 	struct efx_channel *channel;
1379 
1380 	efx_mcdi_mode_poll(efx);
1381 
1382 	efx_nic_disable_interrupts(efx);
1383 	if (efx->legacy_irq) {
1384 		synchronize_irq(efx->legacy_irq);
1385 		efx->legacy_irq_enabled = false;
1386 	}
1387 
1388 	efx_for_each_channel(channel, efx) {
1389 		if (channel->irq)
1390 			synchronize_irq(channel->irq);
1391 
1392 		efx_stop_eventq(channel);
1393 		if (!channel->type->keep_eventq || !may_keep_eventq)
1394 			efx_fini_eventq(channel);
1395 	}
1396 }
1397 
1398 static void efx_remove_interrupts(struct efx_nic *efx)
1399 {
1400 	struct efx_channel *channel;
1401 
1402 	/* Remove MSI/MSI-X interrupts */
1403 	efx_for_each_channel(channel, efx)
1404 		channel->irq = 0;
1405 	pci_disable_msi(efx->pci_dev);
1406 	pci_disable_msix(efx->pci_dev);
1407 
1408 	/* Remove legacy interrupt */
1409 	efx->legacy_irq = 0;
1410 }
1411 
1412 static void efx_set_channels(struct efx_nic *efx)
1413 {
1414 	struct efx_channel *channel;
1415 	struct efx_tx_queue *tx_queue;
1416 
1417 	efx->tx_channel_offset =
1418 		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1419 
1420 	/* We need to adjust the TX queue numbers if we have separate
1421 	 * RX-only and TX-only channels.
1422 	 */
1423 	efx_for_each_channel(channel, efx) {
1424 		efx_for_each_channel_tx_queue(tx_queue, channel)
1425 			tx_queue->queue -= (efx->tx_channel_offset *
1426 					    EFX_TXQ_TYPES);
1427 	}
1428 }
1429 
1430 static int efx_probe_nic(struct efx_nic *efx)
1431 {
1432 	size_t i;
1433 	int rc;
1434 
1435 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1436 
1437 	/* Carry out hardware-type specific initialisation */
1438 	rc = efx->type->probe(efx);
1439 	if (rc)
1440 		return rc;
1441 
1442 	/* Determine the number of channels and queues by trying to hook
1443 	 * in MSI-X interrupts. */
1444 	rc = efx_probe_interrupts(efx);
1445 	if (rc)
1446 		goto fail;
1447 
1448 	efx->type->dimension_resources(efx);
1449 
1450 	if (efx->n_channels > 1)
1451 		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1452 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1453 		efx->rx_indir_table[i] =
1454 			ethtool_rxfh_indir_default(i, efx->rss_spread);
1455 
1456 	efx_set_channels(efx);
1457 	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1458 	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1459 
1460 	/* Initialise the interrupt moderation settings */
1461 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1462 				true);
1463 
1464 	return 0;
1465 
1466 fail:
1467 	efx->type->remove(efx);
1468 	return rc;
1469 }
1470 
1471 static void efx_remove_nic(struct efx_nic *efx)
1472 {
1473 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1474 
1475 	efx_remove_interrupts(efx);
1476 	efx->type->remove(efx);
1477 }
1478 
1479 /**************************************************************************
1480  *
1481  * NIC startup/shutdown
1482  *
1483  *************************************************************************/
1484 
1485 static int efx_probe_all(struct efx_nic *efx)
1486 {
1487 	int rc;
1488 
1489 	rc = efx_probe_nic(efx);
1490 	if (rc) {
1491 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1492 		goto fail1;
1493 	}
1494 
1495 	rc = efx_probe_port(efx);
1496 	if (rc) {
1497 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1498 		goto fail2;
1499 	}
1500 
1501 	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1502 
1503 	rc = efx_probe_filters(efx);
1504 	if (rc) {
1505 		netif_err(efx, probe, efx->net_dev,
1506 			  "failed to create filter tables\n");
1507 		goto fail3;
1508 	}
1509 
1510 	rc = efx_probe_channels(efx);
1511 	if (rc)
1512 		goto fail4;
1513 
1514 	return 0;
1515 
1516  fail4:
1517 	efx_remove_filters(efx);
1518  fail3:
1519 	efx_remove_port(efx);
1520  fail2:
1521 	efx_remove_nic(efx);
1522  fail1:
1523 	return rc;
1524 }
1525 
1526 /* Called after previous invocation(s) of efx_stop_all, restarts the port,
1527  * kernel transmit queues and NAPI processing, and ensures that the port is
1528  * scheduled to be reconfigured. This function is safe to call multiple
1529  * times when the NIC is in any state.
1530  */
1531 static void efx_start_all(struct efx_nic *efx)
1532 {
1533 	EFX_ASSERT_RESET_SERIALISED(efx);
1534 
1535 	/* Check that it is appropriate to restart the interface. All
1536 	 * of these flags are safe to read under just the rtnl lock */
1537 	if (efx->port_enabled)
1538 		return;
1539 	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1540 		return;
1541 	if (!netif_running(efx->net_dev))
1542 		return;
1543 
1544 	efx_start_port(efx);
1545 	efx_start_datapath(efx);
1546 
1547 	/* Start the hardware monitor if there is one. Otherwise (we're link
1548 	 * event driven), we have to poll the PHY because after an event queue
1549 	 * flush, we could have a missed a link state change */
1550 	if (efx->type->monitor != NULL) {
1551 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1552 				   efx_monitor_interval);
1553 	} else {
1554 		mutex_lock(&efx->mac_lock);
1555 		if (efx->phy_op->poll(efx))
1556 			efx_link_status_changed(efx);
1557 		mutex_unlock(&efx->mac_lock);
1558 	}
1559 
1560 	efx->type->start_stats(efx);
1561 }
1562 
1563 /* Flush all delayed work. Should only be called when no more delayed work
1564  * will be scheduled. This doesn't flush pending online resets (efx_reset),
1565  * since we're holding the rtnl_lock at this point. */
1566 static void efx_flush_all(struct efx_nic *efx)
1567 {
1568 	/* Make sure the hardware monitor and event self-test are stopped */
1569 	cancel_delayed_work_sync(&efx->monitor_work);
1570 	efx_selftest_async_cancel(efx);
1571 	/* Stop scheduled port reconfigurations */
1572 	cancel_work_sync(&efx->mac_work);
1573 }
1574 
1575 /* Quiesce hardware and software without bringing the link down.
1576  * Safe to call multiple times, when the nic and interface is in any
1577  * state. The caller is guaranteed to subsequently be in a position
1578  * to modify any hardware and software state they see fit without
1579  * taking locks. */
1580 static void efx_stop_all(struct efx_nic *efx)
1581 {
1582 	EFX_ASSERT_RESET_SERIALISED(efx);
1583 
1584 	/* port_enabled can be read safely under the rtnl lock */
1585 	if (!efx->port_enabled)
1586 		return;
1587 
1588 	efx->type->stop_stats(efx);
1589 	efx_stop_port(efx);
1590 
1591 	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1592 	efx_flush_all(efx);
1593 
1594 	/* Stop the kernel transmit interface late, so the watchdog
1595 	 * timer isn't ticking over the flush */
1596 	netif_tx_disable(efx->net_dev);
1597 
1598 	efx_stop_datapath(efx);
1599 }
1600 
1601 static void efx_remove_all(struct efx_nic *efx)
1602 {
1603 	efx_remove_channels(efx);
1604 	efx_remove_filters(efx);
1605 	efx_remove_port(efx);
1606 	efx_remove_nic(efx);
1607 }
1608 
1609 /**************************************************************************
1610  *
1611  * Interrupt moderation
1612  *
1613  **************************************************************************/
1614 
1615 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1616 {
1617 	if (usecs == 0)
1618 		return 0;
1619 	if (usecs * 1000 < quantum_ns)
1620 		return 1; /* never round down to 0 */
1621 	return usecs * 1000 / quantum_ns;
1622 }
1623 
1624 /* Set interrupt moderation parameters */
1625 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1626 			    unsigned int rx_usecs, bool rx_adaptive,
1627 			    bool rx_may_override_tx)
1628 {
1629 	struct efx_channel *channel;
1630 	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1631 						efx->timer_quantum_ns,
1632 						1000);
1633 	unsigned int tx_ticks;
1634 	unsigned int rx_ticks;
1635 
1636 	EFX_ASSERT_RESET_SERIALISED(efx);
1637 
1638 	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1639 		return -EINVAL;
1640 
1641 	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1642 	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1643 
1644 	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1645 	    !rx_may_override_tx) {
1646 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1647 			  "RX and TX IRQ moderation must be equal\n");
1648 		return -EINVAL;
1649 	}
1650 
1651 	efx->irq_rx_adaptive = rx_adaptive;
1652 	efx->irq_rx_moderation = rx_ticks;
1653 	efx_for_each_channel(channel, efx) {
1654 		if (efx_channel_has_rx_queue(channel))
1655 			channel->irq_moderation = rx_ticks;
1656 		else if (efx_channel_has_tx_queues(channel))
1657 			channel->irq_moderation = tx_ticks;
1658 	}
1659 
1660 	return 0;
1661 }
1662 
1663 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1664 			    unsigned int *rx_usecs, bool *rx_adaptive)
1665 {
1666 	/* We must round up when converting ticks to microseconds
1667 	 * because we round down when converting the other way.
1668 	 */
1669 
1670 	*rx_adaptive = efx->irq_rx_adaptive;
1671 	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1672 				 efx->timer_quantum_ns,
1673 				 1000);
1674 
1675 	/* If channels are shared between RX and TX, so is IRQ
1676 	 * moderation.  Otherwise, IRQ moderation is the same for all
1677 	 * TX channels and is not adaptive.
1678 	 */
1679 	if (efx->tx_channel_offset == 0)
1680 		*tx_usecs = *rx_usecs;
1681 	else
1682 		*tx_usecs = DIV_ROUND_UP(
1683 			efx->channel[efx->tx_channel_offset]->irq_moderation *
1684 			efx->timer_quantum_ns,
1685 			1000);
1686 }
1687 
1688 /**************************************************************************
1689  *
1690  * Hardware monitor
1691  *
1692  **************************************************************************/
1693 
1694 /* Run periodically off the general workqueue */
1695 static void efx_monitor(struct work_struct *data)
1696 {
1697 	struct efx_nic *efx = container_of(data, struct efx_nic,
1698 					   monitor_work.work);
1699 
1700 	netif_vdbg(efx, timer, efx->net_dev,
1701 		   "hardware monitor executing on CPU %d\n",
1702 		   raw_smp_processor_id());
1703 	BUG_ON(efx->type->monitor == NULL);
1704 
1705 	/* If the mac_lock is already held then it is likely a port
1706 	 * reconfiguration is already in place, which will likely do
1707 	 * most of the work of monitor() anyway. */
1708 	if (mutex_trylock(&efx->mac_lock)) {
1709 		if (efx->port_enabled)
1710 			efx->type->monitor(efx);
1711 		mutex_unlock(&efx->mac_lock);
1712 	}
1713 
1714 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1715 			   efx_monitor_interval);
1716 }
1717 
1718 /**************************************************************************
1719  *
1720  * ioctls
1721  *
1722  *************************************************************************/
1723 
1724 /* Net device ioctl
1725  * Context: process, rtnl_lock() held.
1726  */
1727 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1728 {
1729 	struct efx_nic *efx = netdev_priv(net_dev);
1730 	struct mii_ioctl_data *data = if_mii(ifr);
1731 
1732 	EFX_ASSERT_RESET_SERIALISED(efx);
1733 
1734 	/* Convert phy_id from older PRTAD/DEVAD format */
1735 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1736 	    (data->phy_id & 0xfc00) == 0x0400)
1737 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1738 
1739 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1740 }
1741 
1742 /**************************************************************************
1743  *
1744  * NAPI interface
1745  *
1746  **************************************************************************/
1747 
1748 static void efx_init_napi_channel(struct efx_channel *channel)
1749 {
1750 	struct efx_nic *efx = channel->efx;
1751 
1752 	channel->napi_dev = efx->net_dev;
1753 	netif_napi_add(channel->napi_dev, &channel->napi_str,
1754 		       efx_poll, napi_weight);
1755 }
1756 
1757 static void efx_init_napi(struct efx_nic *efx)
1758 {
1759 	struct efx_channel *channel;
1760 
1761 	efx_for_each_channel(channel, efx)
1762 		efx_init_napi_channel(channel);
1763 }
1764 
1765 static void efx_fini_napi_channel(struct efx_channel *channel)
1766 {
1767 	if (channel->napi_dev)
1768 		netif_napi_del(&channel->napi_str);
1769 	channel->napi_dev = NULL;
1770 }
1771 
1772 static void efx_fini_napi(struct efx_nic *efx)
1773 {
1774 	struct efx_channel *channel;
1775 
1776 	efx_for_each_channel(channel, efx)
1777 		efx_fini_napi_channel(channel);
1778 }
1779 
1780 /**************************************************************************
1781  *
1782  * Kernel netpoll interface
1783  *
1784  *************************************************************************/
1785 
1786 #ifdef CONFIG_NET_POLL_CONTROLLER
1787 
1788 /* Although in the common case interrupts will be disabled, this is not
1789  * guaranteed. However, all our work happens inside the NAPI callback,
1790  * so no locking is required.
1791  */
1792 static void efx_netpoll(struct net_device *net_dev)
1793 {
1794 	struct efx_nic *efx = netdev_priv(net_dev);
1795 	struct efx_channel *channel;
1796 
1797 	efx_for_each_channel(channel, efx)
1798 		efx_schedule_channel(channel);
1799 }
1800 
1801 #endif
1802 
1803 /**************************************************************************
1804  *
1805  * Kernel net device interface
1806  *
1807  *************************************************************************/
1808 
1809 /* Context: process, rtnl_lock() held. */
1810 static int efx_net_open(struct net_device *net_dev)
1811 {
1812 	struct efx_nic *efx = netdev_priv(net_dev);
1813 	EFX_ASSERT_RESET_SERIALISED(efx);
1814 
1815 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1816 		  raw_smp_processor_id());
1817 
1818 	if (efx->state == STATE_DISABLED)
1819 		return -EIO;
1820 	if (efx->phy_mode & PHY_MODE_SPECIAL)
1821 		return -EBUSY;
1822 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1823 		return -EIO;
1824 
1825 	/* Notify the kernel of the link state polled during driver load,
1826 	 * before the monitor starts running */
1827 	efx_link_status_changed(efx);
1828 
1829 	efx_start_all(efx);
1830 	efx_selftest_async_start(efx);
1831 	return 0;
1832 }
1833 
1834 /* Context: process, rtnl_lock() held.
1835  * Note that the kernel will ignore our return code; this method
1836  * should really be a void.
1837  */
1838 static int efx_net_stop(struct net_device *net_dev)
1839 {
1840 	struct efx_nic *efx = netdev_priv(net_dev);
1841 
1842 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1843 		  raw_smp_processor_id());
1844 
1845 	if (efx->state != STATE_DISABLED) {
1846 		/* Stop the device and flush all the channels */
1847 		efx_stop_all(efx);
1848 	}
1849 
1850 	return 0;
1851 }
1852 
1853 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1854 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
1855 					       struct rtnl_link_stats64 *stats)
1856 {
1857 	struct efx_nic *efx = netdev_priv(net_dev);
1858 	struct efx_mac_stats *mac_stats = &efx->mac_stats;
1859 
1860 	spin_lock_bh(&efx->stats_lock);
1861 
1862 	efx->type->update_stats(efx);
1863 
1864 	stats->rx_packets = mac_stats->rx_packets;
1865 	stats->tx_packets = mac_stats->tx_packets;
1866 	stats->rx_bytes = mac_stats->rx_bytes;
1867 	stats->tx_bytes = mac_stats->tx_bytes;
1868 	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1869 	stats->multicast = mac_stats->rx_multicast;
1870 	stats->collisions = mac_stats->tx_collision;
1871 	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1872 				   mac_stats->rx_length_error);
1873 	stats->rx_crc_errors = mac_stats->rx_bad;
1874 	stats->rx_frame_errors = mac_stats->rx_align_error;
1875 	stats->rx_fifo_errors = mac_stats->rx_overflow;
1876 	stats->rx_missed_errors = mac_stats->rx_missed;
1877 	stats->tx_window_errors = mac_stats->tx_late_collision;
1878 
1879 	stats->rx_errors = (stats->rx_length_errors +
1880 			    stats->rx_crc_errors +
1881 			    stats->rx_frame_errors +
1882 			    mac_stats->rx_symbol_error);
1883 	stats->tx_errors = (stats->tx_window_errors +
1884 			    mac_stats->tx_bad);
1885 
1886 	spin_unlock_bh(&efx->stats_lock);
1887 
1888 	return stats;
1889 }
1890 
1891 /* Context: netif_tx_lock held, BHs disabled. */
1892 static void efx_watchdog(struct net_device *net_dev)
1893 {
1894 	struct efx_nic *efx = netdev_priv(net_dev);
1895 
1896 	netif_err(efx, tx_err, efx->net_dev,
1897 		  "TX stuck with port_enabled=%d: resetting channels\n",
1898 		  efx->port_enabled);
1899 
1900 	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1901 }
1902 
1903 
1904 /* Context: process, rtnl_lock() held. */
1905 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1906 {
1907 	struct efx_nic *efx = netdev_priv(net_dev);
1908 
1909 	EFX_ASSERT_RESET_SERIALISED(efx);
1910 
1911 	if (new_mtu > EFX_MAX_MTU)
1912 		return -EINVAL;
1913 
1914 	efx_stop_all(efx);
1915 
1916 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1917 
1918 	mutex_lock(&efx->mac_lock);
1919 	/* Reconfigure the MAC before enabling the dma queues so that
1920 	 * the RX buffers don't overflow */
1921 	net_dev->mtu = new_mtu;
1922 	efx->type->reconfigure_mac(efx);
1923 	mutex_unlock(&efx->mac_lock);
1924 
1925 	efx_start_all(efx);
1926 	return 0;
1927 }
1928 
1929 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1930 {
1931 	struct efx_nic *efx = netdev_priv(net_dev);
1932 	struct sockaddr *addr = data;
1933 	char *new_addr = addr->sa_data;
1934 
1935 	EFX_ASSERT_RESET_SERIALISED(efx);
1936 
1937 	if (!is_valid_ether_addr(new_addr)) {
1938 		netif_err(efx, drv, efx->net_dev,
1939 			  "invalid ethernet MAC address requested: %pM\n",
1940 			  new_addr);
1941 		return -EADDRNOTAVAIL;
1942 	}
1943 
1944 	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1945 	efx_sriov_mac_address_changed(efx);
1946 
1947 	/* Reconfigure the MAC */
1948 	mutex_lock(&efx->mac_lock);
1949 	efx->type->reconfigure_mac(efx);
1950 	mutex_unlock(&efx->mac_lock);
1951 
1952 	return 0;
1953 }
1954 
1955 /* Context: netif_addr_lock held, BHs disabled. */
1956 static void efx_set_rx_mode(struct net_device *net_dev)
1957 {
1958 	struct efx_nic *efx = netdev_priv(net_dev);
1959 	struct netdev_hw_addr *ha;
1960 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1961 	u32 crc;
1962 	int bit;
1963 
1964 	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1965 
1966 	/* Build multicast hash table */
1967 	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1968 		memset(mc_hash, 0xff, sizeof(*mc_hash));
1969 	} else {
1970 		memset(mc_hash, 0x00, sizeof(*mc_hash));
1971 		netdev_for_each_mc_addr(ha, net_dev) {
1972 			crc = ether_crc_le(ETH_ALEN, ha->addr);
1973 			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1974 			set_bit_le(bit, mc_hash->byte);
1975 		}
1976 
1977 		/* Broadcast packets go through the multicast hash filter.
1978 		 * ether_crc_le() of the broadcast address is 0xbe2612ff
1979 		 * so we always add bit 0xff to the mask.
1980 		 */
1981 		set_bit_le(0xff, mc_hash->byte);
1982 	}
1983 
1984 	if (efx->port_enabled)
1985 		queue_work(efx->workqueue, &efx->mac_work);
1986 	/* Otherwise efx_start_port() will do this */
1987 }
1988 
1989 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
1990 {
1991 	struct efx_nic *efx = netdev_priv(net_dev);
1992 
1993 	/* If disabling RX n-tuple filtering, clear existing filters */
1994 	if (net_dev->features & ~data & NETIF_F_NTUPLE)
1995 		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
1996 
1997 	return 0;
1998 }
1999 
2000 static const struct net_device_ops efx_netdev_ops = {
2001 	.ndo_open		= efx_net_open,
2002 	.ndo_stop		= efx_net_stop,
2003 	.ndo_get_stats64	= efx_net_stats,
2004 	.ndo_tx_timeout		= efx_watchdog,
2005 	.ndo_start_xmit		= efx_hard_start_xmit,
2006 	.ndo_validate_addr	= eth_validate_addr,
2007 	.ndo_do_ioctl		= efx_ioctl,
2008 	.ndo_change_mtu		= efx_change_mtu,
2009 	.ndo_set_mac_address	= efx_set_mac_address,
2010 	.ndo_set_rx_mode	= efx_set_rx_mode,
2011 	.ndo_set_features	= efx_set_features,
2012 #ifdef CONFIG_SFC_SRIOV
2013 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2014 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2015 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2016 	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2017 #endif
2018 #ifdef CONFIG_NET_POLL_CONTROLLER
2019 	.ndo_poll_controller = efx_netpoll,
2020 #endif
2021 	.ndo_setup_tc		= efx_setup_tc,
2022 #ifdef CONFIG_RFS_ACCEL
2023 	.ndo_rx_flow_steer	= efx_filter_rfs,
2024 #endif
2025 };
2026 
2027 static void efx_update_name(struct efx_nic *efx)
2028 {
2029 	strcpy(efx->name, efx->net_dev->name);
2030 	efx_mtd_rename(efx);
2031 	efx_set_channel_names(efx);
2032 }
2033 
2034 static int efx_netdev_event(struct notifier_block *this,
2035 			    unsigned long event, void *ptr)
2036 {
2037 	struct net_device *net_dev = ptr;
2038 
2039 	if (net_dev->netdev_ops == &efx_netdev_ops &&
2040 	    event == NETDEV_CHANGENAME)
2041 		efx_update_name(netdev_priv(net_dev));
2042 
2043 	return NOTIFY_DONE;
2044 }
2045 
2046 static struct notifier_block efx_netdev_notifier = {
2047 	.notifier_call = efx_netdev_event,
2048 };
2049 
2050 static ssize_t
2051 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2052 {
2053 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2054 	return sprintf(buf, "%d\n", efx->phy_type);
2055 }
2056 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
2057 
2058 static int efx_register_netdev(struct efx_nic *efx)
2059 {
2060 	struct net_device *net_dev = efx->net_dev;
2061 	struct efx_channel *channel;
2062 	int rc;
2063 
2064 	net_dev->watchdog_timeo = 5 * HZ;
2065 	net_dev->irq = efx->pci_dev->irq;
2066 	net_dev->netdev_ops = &efx_netdev_ops;
2067 	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2068 
2069 	rtnl_lock();
2070 
2071 	rc = dev_alloc_name(net_dev, net_dev->name);
2072 	if (rc < 0)
2073 		goto fail_locked;
2074 	efx_update_name(efx);
2075 
2076 	rc = register_netdevice(net_dev);
2077 	if (rc)
2078 		goto fail_locked;
2079 
2080 	efx_for_each_channel(channel, efx) {
2081 		struct efx_tx_queue *tx_queue;
2082 		efx_for_each_channel_tx_queue(tx_queue, channel)
2083 			efx_init_tx_queue_core_txq(tx_queue);
2084 	}
2085 
2086 	/* Always start with carrier off; PHY events will detect the link */
2087 	netif_carrier_off(net_dev);
2088 
2089 	rtnl_unlock();
2090 
2091 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2092 	if (rc) {
2093 		netif_err(efx, drv, efx->net_dev,
2094 			  "failed to init net dev attributes\n");
2095 		goto fail_registered;
2096 	}
2097 
2098 	return 0;
2099 
2100 fail_locked:
2101 	rtnl_unlock();
2102 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2103 	return rc;
2104 
2105 fail_registered:
2106 	unregister_netdev(net_dev);
2107 	return rc;
2108 }
2109 
2110 static void efx_unregister_netdev(struct efx_nic *efx)
2111 {
2112 	struct efx_channel *channel;
2113 	struct efx_tx_queue *tx_queue;
2114 
2115 	if (!efx->net_dev)
2116 		return;
2117 
2118 	BUG_ON(netdev_priv(efx->net_dev) != efx);
2119 
2120 	/* Free up any skbs still remaining. This has to happen before
2121 	 * we try to unregister the netdev as running their destructors
2122 	 * may be needed to get the device ref. count to 0. */
2123 	efx_for_each_channel(channel, efx) {
2124 		efx_for_each_channel_tx_queue(tx_queue, channel)
2125 			efx_release_tx_buffers(tx_queue);
2126 	}
2127 
2128 	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2129 	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2130 	unregister_netdev(efx->net_dev);
2131 }
2132 
2133 /**************************************************************************
2134  *
2135  * Device reset and suspend
2136  *
2137  **************************************************************************/
2138 
2139 /* Tears down the entire software state and most of the hardware state
2140  * before reset.  */
2141 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2142 {
2143 	EFX_ASSERT_RESET_SERIALISED(efx);
2144 
2145 	efx_stop_all(efx);
2146 	mutex_lock(&efx->mac_lock);
2147 
2148 	efx_stop_interrupts(efx, false);
2149 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2150 		efx->phy_op->fini(efx);
2151 	efx->type->fini(efx);
2152 }
2153 
2154 /* This function will always ensure that the locks acquired in
2155  * efx_reset_down() are released. A failure return code indicates
2156  * that we were unable to reinitialise the hardware, and the
2157  * driver should be disabled. If ok is false, then the rx and tx
2158  * engines are not restarted, pending a RESET_DISABLE. */
2159 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2160 {
2161 	int rc;
2162 
2163 	EFX_ASSERT_RESET_SERIALISED(efx);
2164 
2165 	rc = efx->type->init(efx);
2166 	if (rc) {
2167 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2168 		goto fail;
2169 	}
2170 
2171 	if (!ok)
2172 		goto fail;
2173 
2174 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2175 		rc = efx->phy_op->init(efx);
2176 		if (rc)
2177 			goto fail;
2178 		if (efx->phy_op->reconfigure(efx))
2179 			netif_err(efx, drv, efx->net_dev,
2180 				  "could not restore PHY settings\n");
2181 	}
2182 
2183 	efx->type->reconfigure_mac(efx);
2184 
2185 	efx_start_interrupts(efx, false);
2186 	efx_restore_filters(efx);
2187 	efx_sriov_reset(efx);
2188 
2189 	mutex_unlock(&efx->mac_lock);
2190 
2191 	efx_start_all(efx);
2192 
2193 	return 0;
2194 
2195 fail:
2196 	efx->port_initialized = false;
2197 
2198 	mutex_unlock(&efx->mac_lock);
2199 
2200 	return rc;
2201 }
2202 
2203 /* Reset the NIC using the specified method.  Note that the reset may
2204  * fail, in which case the card will be left in an unusable state.
2205  *
2206  * Caller must hold the rtnl_lock.
2207  */
2208 int efx_reset(struct efx_nic *efx, enum reset_type method)
2209 {
2210 	int rc, rc2;
2211 	bool disabled;
2212 
2213 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2214 		   RESET_TYPE(method));
2215 
2216 	netif_device_detach(efx->net_dev);
2217 	efx_reset_down(efx, method);
2218 
2219 	rc = efx->type->reset(efx, method);
2220 	if (rc) {
2221 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2222 		goto out;
2223 	}
2224 
2225 	/* Clear flags for the scopes we covered.  We assume the NIC and
2226 	 * driver are now quiescent so that there is no race here.
2227 	 */
2228 	efx->reset_pending &= -(1 << (method + 1));
2229 
2230 	/* Reinitialise bus-mastering, which may have been turned off before
2231 	 * the reset was scheduled. This is still appropriate, even in the
2232 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2233 	 * can respond to requests. */
2234 	pci_set_master(efx->pci_dev);
2235 
2236 out:
2237 	/* Leave device stopped if necessary */
2238 	disabled = rc || method == RESET_TYPE_DISABLE;
2239 	rc2 = efx_reset_up(efx, method, !disabled);
2240 	if (rc2) {
2241 		disabled = true;
2242 		if (!rc)
2243 			rc = rc2;
2244 	}
2245 
2246 	if (disabled) {
2247 		dev_close(efx->net_dev);
2248 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2249 		efx->state = STATE_DISABLED;
2250 	} else {
2251 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2252 		netif_device_attach(efx->net_dev);
2253 	}
2254 	return rc;
2255 }
2256 
2257 /* The worker thread exists so that code that cannot sleep can
2258  * schedule a reset for later.
2259  */
2260 static void efx_reset_work(struct work_struct *data)
2261 {
2262 	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2263 	unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2264 
2265 	if (!pending)
2266 		return;
2267 
2268 	/* If we're not RUNNING then don't reset. Leave the reset_pending
2269 	 * flags set so that efx_pci_probe_main will be retried */
2270 	if (efx->state != STATE_RUNNING) {
2271 		netif_info(efx, drv, efx->net_dev,
2272 			   "scheduled reset quenched. NIC not RUNNING\n");
2273 		return;
2274 	}
2275 
2276 	rtnl_lock();
2277 	(void)efx_reset(efx, fls(pending) - 1);
2278 	rtnl_unlock();
2279 }
2280 
2281 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2282 {
2283 	enum reset_type method;
2284 
2285 	switch (type) {
2286 	case RESET_TYPE_INVISIBLE:
2287 	case RESET_TYPE_ALL:
2288 	case RESET_TYPE_WORLD:
2289 	case RESET_TYPE_DISABLE:
2290 		method = type;
2291 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2292 			  RESET_TYPE(method));
2293 		break;
2294 	default:
2295 		method = efx->type->map_reset_reason(type);
2296 		netif_dbg(efx, drv, efx->net_dev,
2297 			  "scheduling %s reset for %s\n",
2298 			  RESET_TYPE(method), RESET_TYPE(type));
2299 		break;
2300 	}
2301 
2302 	set_bit(method, &efx->reset_pending);
2303 
2304 	/* efx_process_channel() will no longer read events once a
2305 	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2306 	efx_mcdi_mode_poll(efx);
2307 
2308 	queue_work(reset_workqueue, &efx->reset_work);
2309 }
2310 
2311 /**************************************************************************
2312  *
2313  * List of NICs we support
2314  *
2315  **************************************************************************/
2316 
2317 /* PCI device ID table */
2318 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2319 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2320 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2321 	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2322 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2323 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2324 	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2325 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2326 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2327 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2328 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2329 	{0}			/* end of list */
2330 };
2331 
2332 /**************************************************************************
2333  *
2334  * Dummy PHY/MAC operations
2335  *
2336  * Can be used for some unimplemented operations
2337  * Needed so all function pointers are valid and do not have to be tested
2338  * before use
2339  *
2340  **************************************************************************/
2341 int efx_port_dummy_op_int(struct efx_nic *efx)
2342 {
2343 	return 0;
2344 }
2345 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2346 
2347 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2348 {
2349 	return false;
2350 }
2351 
2352 static const struct efx_phy_operations efx_dummy_phy_operations = {
2353 	.init		 = efx_port_dummy_op_int,
2354 	.reconfigure	 = efx_port_dummy_op_int,
2355 	.poll		 = efx_port_dummy_op_poll,
2356 	.fini		 = efx_port_dummy_op_void,
2357 };
2358 
2359 /**************************************************************************
2360  *
2361  * Data housekeeping
2362  *
2363  **************************************************************************/
2364 
2365 /* This zeroes out and then fills in the invariants in a struct
2366  * efx_nic (including all sub-structures).
2367  */
2368 static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2369 			   struct pci_dev *pci_dev, struct net_device *net_dev)
2370 {
2371 	int i;
2372 
2373 	/* Initialise common structures */
2374 	memset(efx, 0, sizeof(*efx));
2375 	spin_lock_init(&efx->biu_lock);
2376 #ifdef CONFIG_SFC_MTD
2377 	INIT_LIST_HEAD(&efx->mtd_list);
2378 #endif
2379 	INIT_WORK(&efx->reset_work, efx_reset_work);
2380 	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2381 	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2382 	efx->pci_dev = pci_dev;
2383 	efx->msg_enable = debug;
2384 	efx->state = STATE_INIT;
2385 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2386 
2387 	efx->net_dev = net_dev;
2388 	spin_lock_init(&efx->stats_lock);
2389 	mutex_init(&efx->mac_lock);
2390 	efx->phy_op = &efx_dummy_phy_operations;
2391 	efx->mdio.dev = net_dev;
2392 	INIT_WORK(&efx->mac_work, efx_mac_work);
2393 	init_waitqueue_head(&efx->flush_wq);
2394 
2395 	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2396 		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2397 		if (!efx->channel[i])
2398 			goto fail;
2399 	}
2400 
2401 	efx->type = type;
2402 
2403 	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2404 
2405 	/* Higher numbered interrupt modes are less capable! */
2406 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2407 				  interrupt_mode);
2408 
2409 	/* Would be good to use the net_dev name, but we're too early */
2410 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2411 		 pci_name(pci_dev));
2412 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2413 	if (!efx->workqueue)
2414 		goto fail;
2415 
2416 	return 0;
2417 
2418 fail:
2419 	efx_fini_struct(efx);
2420 	return -ENOMEM;
2421 }
2422 
2423 static void efx_fini_struct(struct efx_nic *efx)
2424 {
2425 	int i;
2426 
2427 	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2428 		kfree(efx->channel[i]);
2429 
2430 	if (efx->workqueue) {
2431 		destroy_workqueue(efx->workqueue);
2432 		efx->workqueue = NULL;
2433 	}
2434 }
2435 
2436 /**************************************************************************
2437  *
2438  * PCI interface
2439  *
2440  **************************************************************************/
2441 
2442 /* Main body of final NIC shutdown code
2443  * This is called only at module unload (or hotplug removal).
2444  */
2445 static void efx_pci_remove_main(struct efx_nic *efx)
2446 {
2447 #ifdef CONFIG_RFS_ACCEL
2448 	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2449 	efx->net_dev->rx_cpu_rmap = NULL;
2450 #endif
2451 	efx_stop_interrupts(efx, false);
2452 	efx_nic_fini_interrupt(efx);
2453 	efx_fini_port(efx);
2454 	efx->type->fini(efx);
2455 	efx_fini_napi(efx);
2456 	efx_remove_all(efx);
2457 }
2458 
2459 /* Final NIC shutdown
2460  * This is called only at module unload (or hotplug removal).
2461  */
2462 static void efx_pci_remove(struct pci_dev *pci_dev)
2463 {
2464 	struct efx_nic *efx;
2465 
2466 	efx = pci_get_drvdata(pci_dev);
2467 	if (!efx)
2468 		return;
2469 
2470 	/* Mark the NIC as fini, then stop the interface */
2471 	rtnl_lock();
2472 	efx->state = STATE_FINI;
2473 	dev_close(efx->net_dev);
2474 
2475 	/* Allow any queued efx_resets() to complete */
2476 	rtnl_unlock();
2477 
2478 	efx_stop_interrupts(efx, false);
2479 	efx_sriov_fini(efx);
2480 	efx_unregister_netdev(efx);
2481 
2482 	efx_mtd_remove(efx);
2483 
2484 	/* Wait for any scheduled resets to complete. No more will be
2485 	 * scheduled from this point because efx_stop_all() has been
2486 	 * called, we are no longer registered with driverlink, and
2487 	 * the net_device's have been removed. */
2488 	cancel_work_sync(&efx->reset_work);
2489 
2490 	efx_pci_remove_main(efx);
2491 
2492 	efx_fini_io(efx);
2493 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2494 
2495 	pci_set_drvdata(pci_dev, NULL);
2496 	efx_fini_struct(efx);
2497 	free_netdev(efx->net_dev);
2498 };
2499 
2500 /* NIC VPD information
2501  * Called during probe to display the part number of the
2502  * installed NIC.  VPD is potentially very large but this should
2503  * always appear within the first 512 bytes.
2504  */
2505 #define SFC_VPD_LEN 512
2506 static void efx_print_product_vpd(struct efx_nic *efx)
2507 {
2508 	struct pci_dev *dev = efx->pci_dev;
2509 	char vpd_data[SFC_VPD_LEN];
2510 	ssize_t vpd_size;
2511 	int i, j;
2512 
2513 	/* Get the vpd data from the device */
2514 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2515 	if (vpd_size <= 0) {
2516 		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2517 		return;
2518 	}
2519 
2520 	/* Get the Read only section */
2521 	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2522 	if (i < 0) {
2523 		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2524 		return;
2525 	}
2526 
2527 	j = pci_vpd_lrdt_size(&vpd_data[i]);
2528 	i += PCI_VPD_LRDT_TAG_SIZE;
2529 	if (i + j > vpd_size)
2530 		j = vpd_size - i;
2531 
2532 	/* Get the Part number */
2533 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2534 	if (i < 0) {
2535 		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2536 		return;
2537 	}
2538 
2539 	j = pci_vpd_info_field_size(&vpd_data[i]);
2540 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2541 	if (i + j > vpd_size) {
2542 		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2543 		return;
2544 	}
2545 
2546 	netif_info(efx, drv, efx->net_dev,
2547 		   "Part Number : %.*s\n", j, &vpd_data[i]);
2548 }
2549 
2550 
2551 /* Main body of NIC initialisation
2552  * This is called at module load (or hotplug insertion, theoretically).
2553  */
2554 static int efx_pci_probe_main(struct efx_nic *efx)
2555 {
2556 	int rc;
2557 
2558 	/* Do start-of-day initialisation */
2559 	rc = efx_probe_all(efx);
2560 	if (rc)
2561 		goto fail1;
2562 
2563 	efx_init_napi(efx);
2564 
2565 	rc = efx->type->init(efx);
2566 	if (rc) {
2567 		netif_err(efx, probe, efx->net_dev,
2568 			  "failed to initialise NIC\n");
2569 		goto fail3;
2570 	}
2571 
2572 	rc = efx_init_port(efx);
2573 	if (rc) {
2574 		netif_err(efx, probe, efx->net_dev,
2575 			  "failed to initialise port\n");
2576 		goto fail4;
2577 	}
2578 
2579 	rc = efx_nic_init_interrupt(efx);
2580 	if (rc)
2581 		goto fail5;
2582 	efx_start_interrupts(efx, false);
2583 
2584 	return 0;
2585 
2586  fail5:
2587 	efx_fini_port(efx);
2588  fail4:
2589 	efx->type->fini(efx);
2590  fail3:
2591 	efx_fini_napi(efx);
2592 	efx_remove_all(efx);
2593  fail1:
2594 	return rc;
2595 }
2596 
2597 /* NIC initialisation
2598  *
2599  * This is called at module load (or hotplug insertion,
2600  * theoretically).  It sets up PCI mappings, resets the NIC,
2601  * sets up and registers the network devices with the kernel and hooks
2602  * the interrupt service routine.  It does not prepare the device for
2603  * transmission; this is left to the first time one of the network
2604  * interfaces is brought up (i.e. efx_net_open).
2605  */
2606 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2607 				   const struct pci_device_id *entry)
2608 {
2609 	const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2610 	struct net_device *net_dev;
2611 	struct efx_nic *efx;
2612 	int rc;
2613 
2614 	/* Allocate and initialise a struct net_device and struct efx_nic */
2615 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2616 				     EFX_MAX_RX_QUEUES);
2617 	if (!net_dev)
2618 		return -ENOMEM;
2619 	net_dev->features |= (type->offload_features | NETIF_F_SG |
2620 			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2621 			      NETIF_F_RXCSUM);
2622 	if (type->offload_features & NETIF_F_V6_CSUM)
2623 		net_dev->features |= NETIF_F_TSO6;
2624 	/* Mask for features that also apply to VLAN devices */
2625 	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2626 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2627 				   NETIF_F_RXCSUM);
2628 	/* All offloads can be toggled */
2629 	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2630 	efx = netdev_priv(net_dev);
2631 	pci_set_drvdata(pci_dev, efx);
2632 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2633 	rc = efx_init_struct(efx, type, pci_dev, net_dev);
2634 	if (rc)
2635 		goto fail1;
2636 
2637 	netif_info(efx, probe, efx->net_dev,
2638 		   "Solarflare NIC detected\n");
2639 
2640 	efx_print_product_vpd(efx);
2641 
2642 	/* Set up basic I/O (BAR mappings etc) */
2643 	rc = efx_init_io(efx);
2644 	if (rc)
2645 		goto fail2;
2646 
2647 	rc = efx_pci_probe_main(efx);
2648 
2649 	/* Serialise against efx_reset(). No more resets will be
2650 	 * scheduled since efx_stop_all() has been called, and we have
2651 	 * not and never have been registered.
2652 	 */
2653 	cancel_work_sync(&efx->reset_work);
2654 
2655 	if (rc)
2656 		goto fail3;
2657 
2658 	/* If there was a scheduled reset during probe, the NIC is
2659 	 * probably hosed anyway.
2660 	 */
2661 	if (efx->reset_pending) {
2662 		rc = -EIO;
2663 		goto fail4;
2664 	}
2665 
2666 	/* Switch to the running state before we expose the device to the OS,
2667 	 * so that dev_open()|efx_start_all() will actually start the device */
2668 	efx->state = STATE_RUNNING;
2669 
2670 	rc = efx_register_netdev(efx);
2671 	if (rc)
2672 		goto fail4;
2673 
2674 	rc = efx_sriov_init(efx);
2675 	if (rc)
2676 		netif_err(efx, probe, efx->net_dev,
2677 			  "SR-IOV can't be enabled rc %d\n", rc);
2678 
2679 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2680 
2681 	/* Try to create MTDs, but allow this to fail */
2682 	rtnl_lock();
2683 	rc = efx_mtd_probe(efx);
2684 	rtnl_unlock();
2685 	if (rc)
2686 		netif_warn(efx, probe, efx->net_dev,
2687 			   "failed to create MTDs (%d)\n", rc);
2688 
2689 	return 0;
2690 
2691  fail4:
2692 	efx_pci_remove_main(efx);
2693  fail3:
2694 	efx_fini_io(efx);
2695  fail2:
2696 	efx_fini_struct(efx);
2697  fail1:
2698 	WARN_ON(rc > 0);
2699 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2700 	free_netdev(net_dev);
2701 	return rc;
2702 }
2703 
2704 static int efx_pm_freeze(struct device *dev)
2705 {
2706 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2707 
2708 	efx->state = STATE_FINI;
2709 
2710 	netif_device_detach(efx->net_dev);
2711 
2712 	efx_stop_all(efx);
2713 	efx_stop_interrupts(efx, false);
2714 
2715 	return 0;
2716 }
2717 
2718 static int efx_pm_thaw(struct device *dev)
2719 {
2720 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2721 
2722 	efx->state = STATE_INIT;
2723 
2724 	efx_start_interrupts(efx, false);
2725 
2726 	mutex_lock(&efx->mac_lock);
2727 	efx->phy_op->reconfigure(efx);
2728 	mutex_unlock(&efx->mac_lock);
2729 
2730 	efx_start_all(efx);
2731 
2732 	netif_device_attach(efx->net_dev);
2733 
2734 	efx->state = STATE_RUNNING;
2735 
2736 	efx->type->resume_wol(efx);
2737 
2738 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2739 	queue_work(reset_workqueue, &efx->reset_work);
2740 
2741 	return 0;
2742 }
2743 
2744 static int efx_pm_poweroff(struct device *dev)
2745 {
2746 	struct pci_dev *pci_dev = to_pci_dev(dev);
2747 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2748 
2749 	efx->type->fini(efx);
2750 
2751 	efx->reset_pending = 0;
2752 
2753 	pci_save_state(pci_dev);
2754 	return pci_set_power_state(pci_dev, PCI_D3hot);
2755 }
2756 
2757 /* Used for both resume and restore */
2758 static int efx_pm_resume(struct device *dev)
2759 {
2760 	struct pci_dev *pci_dev = to_pci_dev(dev);
2761 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2762 	int rc;
2763 
2764 	rc = pci_set_power_state(pci_dev, PCI_D0);
2765 	if (rc)
2766 		return rc;
2767 	pci_restore_state(pci_dev);
2768 	rc = pci_enable_device(pci_dev);
2769 	if (rc)
2770 		return rc;
2771 	pci_set_master(efx->pci_dev);
2772 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
2773 	if (rc)
2774 		return rc;
2775 	rc = efx->type->init(efx);
2776 	if (rc)
2777 		return rc;
2778 	efx_pm_thaw(dev);
2779 	return 0;
2780 }
2781 
2782 static int efx_pm_suspend(struct device *dev)
2783 {
2784 	int rc;
2785 
2786 	efx_pm_freeze(dev);
2787 	rc = efx_pm_poweroff(dev);
2788 	if (rc)
2789 		efx_pm_resume(dev);
2790 	return rc;
2791 }
2792 
2793 static const struct dev_pm_ops efx_pm_ops = {
2794 	.suspend	= efx_pm_suspend,
2795 	.resume		= efx_pm_resume,
2796 	.freeze		= efx_pm_freeze,
2797 	.thaw		= efx_pm_thaw,
2798 	.poweroff	= efx_pm_poweroff,
2799 	.restore	= efx_pm_resume,
2800 };
2801 
2802 static struct pci_driver efx_pci_driver = {
2803 	.name		= KBUILD_MODNAME,
2804 	.id_table	= efx_pci_table,
2805 	.probe		= efx_pci_probe,
2806 	.remove		= efx_pci_remove,
2807 	.driver.pm	= &efx_pm_ops,
2808 };
2809 
2810 /**************************************************************************
2811  *
2812  * Kernel module interface
2813  *
2814  *************************************************************************/
2815 
2816 module_param(interrupt_mode, uint, 0444);
2817 MODULE_PARM_DESC(interrupt_mode,
2818 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2819 
2820 static int __init efx_init_module(void)
2821 {
2822 	int rc;
2823 
2824 	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2825 
2826 	rc = register_netdevice_notifier(&efx_netdev_notifier);
2827 	if (rc)
2828 		goto err_notifier;
2829 
2830 	rc = efx_init_sriov();
2831 	if (rc)
2832 		goto err_sriov;
2833 
2834 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
2835 	if (!reset_workqueue) {
2836 		rc = -ENOMEM;
2837 		goto err_reset;
2838 	}
2839 
2840 	rc = pci_register_driver(&efx_pci_driver);
2841 	if (rc < 0)
2842 		goto err_pci;
2843 
2844 	return 0;
2845 
2846  err_pci:
2847 	destroy_workqueue(reset_workqueue);
2848  err_reset:
2849 	efx_fini_sriov();
2850  err_sriov:
2851 	unregister_netdevice_notifier(&efx_netdev_notifier);
2852  err_notifier:
2853 	return rc;
2854 }
2855 
2856 static void __exit efx_exit_module(void)
2857 {
2858 	printk(KERN_INFO "Solarflare NET driver unloading\n");
2859 
2860 	pci_unregister_driver(&efx_pci_driver);
2861 	destroy_workqueue(reset_workqueue);
2862 	efx_fini_sriov();
2863 	unregister_netdevice_notifier(&efx_netdev_notifier);
2864 
2865 }
2866 
2867 module_init(efx_init_module);
2868 module_exit(efx_exit_module);
2869 
2870 MODULE_AUTHOR("Solarflare Communications and "
2871 	      "Michael Brown <mbrown@fensystems.co.uk>");
2872 MODULE_DESCRIPTION("Solarflare Communications network driver");
2873 MODULE_LICENSE("GPL");
2874 MODULE_DEVICE_TABLE(pci, efx_pci_table);
2875