xref: /openbmc/linux/drivers/net/ethernet/sfc/efx.c (revision 5e18b9737004ef6f34862f6fb39d3c9027a4044a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/notifier.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/in.h>
17 #include <linux/ethtool.h>
18 #include <linux/topology.h>
19 #include <linux/gfp.h>
20 #include <linux/aer.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include <net/gre.h>
24 #include <net/udp_tunnel.h>
25 #include "efx.h"
26 #include "efx_common.h"
27 #include "efx_channels.h"
28 #include "ef100.h"
29 #include "rx_common.h"
30 #include "tx_common.h"
31 #include "nic.h"
32 #include "io.h"
33 #include "selftest.h"
34 #include "sriov.h"
35 
36 #include "mcdi_port_common.h"
37 #include "mcdi_pcol.h"
38 #include "workarounds.h"
39 
40 /**************************************************************************
41  *
42  * Configurable values
43  *
44  *************************************************************************/
45 
46 module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
47 MODULE_PARM_DESC(interrupt_mode,
48 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
49 
50 module_param(rss_cpus, uint, 0444);
51 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
52 
53 /*
54  * Use separate channels for TX and RX events
55  *
56  * Set this to 1 to use separate channels for TX and RX. It allows us
57  * to control interrupt affinity separately for TX and RX.
58  *
59  * This is only used in MSI-X interrupt mode
60  */
61 bool efx_separate_tx_channels;
62 module_param(efx_separate_tx_channels, bool, 0444);
63 MODULE_PARM_DESC(efx_separate_tx_channels,
64 		 "Use separate channels for TX and RX");
65 
66 /* Initial interrupt moderation settings.  They can be modified after
67  * module load with ethtool.
68  *
69  * The default for RX should strike a balance between increasing the
70  * round-trip latency and reducing overhead.
71  */
72 static unsigned int rx_irq_mod_usec = 60;
73 
74 /* Initial interrupt moderation settings.  They can be modified after
75  * module load with ethtool.
76  *
77  * This default is chosen to ensure that a 10G link does not go idle
78  * while a TX queue is stopped after it has become full.  A queue is
79  * restarted when it drops below half full.  The time this takes (assuming
80  * worst case 3 descriptors per packet and 1024 descriptors) is
81  *   512 / 3 * 1.2 = 205 usec.
82  */
83 static unsigned int tx_irq_mod_usec = 150;
84 
85 static bool phy_flash_cfg;
86 module_param(phy_flash_cfg, bool, 0644);
87 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
88 
89 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
91 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
92 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
93 module_param(debug, uint, 0);
94 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
95 
96 /**************************************************************************
97  *
98  * Utility functions and prototypes
99  *
100  *************************************************************************/
101 
102 static void efx_remove_port(struct efx_nic *efx);
103 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
104 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
105 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
106 			u32 flags);
107 
108 #define EFX_ASSERT_RESET_SERIALISED(efx)		\
109 	do {						\
110 		if ((efx->state == STATE_READY) ||	\
111 		    (efx->state == STATE_RECOVERY) ||	\
112 		    (efx->state == STATE_DISABLED))	\
113 			ASSERT_RTNL();			\
114 	} while (0)
115 
116 /**************************************************************************
117  *
118  * Port handling
119  *
120  **************************************************************************/
121 
122 static void efx_fini_port(struct efx_nic *efx);
123 
124 static int efx_probe_port(struct efx_nic *efx)
125 {
126 	int rc;
127 
128 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
129 
130 	if (phy_flash_cfg)
131 		efx->phy_mode = PHY_MODE_SPECIAL;
132 
133 	/* Connect up MAC/PHY operations table */
134 	rc = efx->type->probe_port(efx);
135 	if (rc)
136 		return rc;
137 
138 	/* Initialise MAC address to permanent address */
139 	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
140 
141 	return 0;
142 }
143 
144 static int efx_init_port(struct efx_nic *efx)
145 {
146 	int rc;
147 
148 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
149 
150 	mutex_lock(&efx->mac_lock);
151 
152 	efx->port_initialized = true;
153 
154 	/* Ensure the PHY advertises the correct flow control settings */
155 	rc = efx_mcdi_port_reconfigure(efx);
156 	if (rc && rc != -EPERM)
157 		goto fail;
158 
159 	mutex_unlock(&efx->mac_lock);
160 	return 0;
161 
162 fail:
163 	mutex_unlock(&efx->mac_lock);
164 	return rc;
165 }
166 
167 static void efx_fini_port(struct efx_nic *efx)
168 {
169 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
170 
171 	if (!efx->port_initialized)
172 		return;
173 
174 	efx->port_initialized = false;
175 
176 	efx->link_state.up = false;
177 	efx_link_status_changed(efx);
178 }
179 
180 static void efx_remove_port(struct efx_nic *efx)
181 {
182 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
183 
184 	efx->type->remove_port(efx);
185 }
186 
187 /**************************************************************************
188  *
189  * NIC handling
190  *
191  **************************************************************************/
192 
193 static LIST_HEAD(efx_primary_list);
194 static LIST_HEAD(efx_unassociated_list);
195 
196 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
197 {
198 	return left->type == right->type &&
199 		left->vpd_sn && right->vpd_sn &&
200 		!strcmp(left->vpd_sn, right->vpd_sn);
201 }
202 
203 static void efx_associate(struct efx_nic *efx)
204 {
205 	struct efx_nic *other, *next;
206 
207 	if (efx->primary == efx) {
208 		/* Adding primary function; look for secondaries */
209 
210 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
211 		list_add_tail(&efx->node, &efx_primary_list);
212 
213 		list_for_each_entry_safe(other, next, &efx_unassociated_list,
214 					 node) {
215 			if (efx_same_controller(efx, other)) {
216 				list_del(&other->node);
217 				netif_dbg(other, probe, other->net_dev,
218 					  "moving to secondary list of %s %s\n",
219 					  pci_name(efx->pci_dev),
220 					  efx->net_dev->name);
221 				list_add_tail(&other->node,
222 					      &efx->secondary_list);
223 				other->primary = efx;
224 			}
225 		}
226 	} else {
227 		/* Adding secondary function; look for primary */
228 
229 		list_for_each_entry(other, &efx_primary_list, node) {
230 			if (efx_same_controller(efx, other)) {
231 				netif_dbg(efx, probe, efx->net_dev,
232 					  "adding to secondary list of %s %s\n",
233 					  pci_name(other->pci_dev),
234 					  other->net_dev->name);
235 				list_add_tail(&efx->node,
236 					      &other->secondary_list);
237 				efx->primary = other;
238 				return;
239 			}
240 		}
241 
242 		netif_dbg(efx, probe, efx->net_dev,
243 			  "adding to unassociated list\n");
244 		list_add_tail(&efx->node, &efx_unassociated_list);
245 	}
246 }
247 
248 static void efx_dissociate(struct efx_nic *efx)
249 {
250 	struct efx_nic *other, *next;
251 
252 	list_del(&efx->node);
253 	efx->primary = NULL;
254 
255 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
256 		list_del(&other->node);
257 		netif_dbg(other, probe, other->net_dev,
258 			  "moving to unassociated list\n");
259 		list_add_tail(&other->node, &efx_unassociated_list);
260 		other->primary = NULL;
261 	}
262 }
263 
264 static int efx_probe_nic(struct efx_nic *efx)
265 {
266 	int rc;
267 
268 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
269 
270 	/* Carry out hardware-type specific initialisation */
271 	rc = efx->type->probe(efx);
272 	if (rc)
273 		return rc;
274 
275 	do {
276 		if (!efx->max_channels || !efx->max_tx_channels) {
277 			netif_err(efx, drv, efx->net_dev,
278 				  "Insufficient resources to allocate"
279 				  " any channels\n");
280 			rc = -ENOSPC;
281 			goto fail1;
282 		}
283 
284 		/* Determine the number of channels and queues by trying
285 		 * to hook in MSI-X interrupts.
286 		 */
287 		rc = efx_probe_interrupts(efx);
288 		if (rc)
289 			goto fail1;
290 
291 		rc = efx_set_channels(efx);
292 		if (rc)
293 			goto fail1;
294 
295 		/* dimension_resources can fail with EAGAIN */
296 		rc = efx->type->dimension_resources(efx);
297 		if (rc != 0 && rc != -EAGAIN)
298 			goto fail2;
299 
300 		if (rc == -EAGAIN)
301 			/* try again with new max_channels */
302 			efx_remove_interrupts(efx);
303 
304 	} while (rc == -EAGAIN);
305 
306 	if (efx->n_channels > 1)
307 		netdev_rss_key_fill(efx->rss_context.rx_hash_key,
308 				    sizeof(efx->rss_context.rx_hash_key));
309 	efx_set_default_rx_indir_table(efx, &efx->rss_context);
310 
311 	/* Initialise the interrupt moderation settings */
312 	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
313 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
314 				true);
315 
316 	return 0;
317 
318 fail2:
319 	efx_remove_interrupts(efx);
320 fail1:
321 	efx->type->remove(efx);
322 	return rc;
323 }
324 
325 static void efx_remove_nic(struct efx_nic *efx)
326 {
327 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
328 
329 	efx_remove_interrupts(efx);
330 	efx->type->remove(efx);
331 }
332 
333 /**************************************************************************
334  *
335  * NIC startup/shutdown
336  *
337  *************************************************************************/
338 
339 static int efx_probe_all(struct efx_nic *efx)
340 {
341 	int rc;
342 
343 	rc = efx_probe_nic(efx);
344 	if (rc) {
345 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
346 		goto fail1;
347 	}
348 
349 	rc = efx_probe_port(efx);
350 	if (rc) {
351 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
352 		goto fail2;
353 	}
354 
355 	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
356 	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
357 		rc = -EINVAL;
358 		goto fail3;
359 	}
360 
361 #ifdef CONFIG_SFC_SRIOV
362 	rc = efx->type->vswitching_probe(efx);
363 	if (rc) /* not fatal; the PF will still work fine */
364 		netif_warn(efx, probe, efx->net_dev,
365 			   "failed to setup vswitching rc=%d;"
366 			   " VFs may not function\n", rc);
367 #endif
368 
369 	rc = efx_probe_filters(efx);
370 	if (rc) {
371 		netif_err(efx, probe, efx->net_dev,
372 			  "failed to create filter tables\n");
373 		goto fail4;
374 	}
375 
376 	rc = efx_probe_channels(efx);
377 	if (rc)
378 		goto fail5;
379 
380 	return 0;
381 
382  fail5:
383 	efx_remove_filters(efx);
384  fail4:
385 #ifdef CONFIG_SFC_SRIOV
386 	efx->type->vswitching_remove(efx);
387 #endif
388  fail3:
389 	efx_remove_port(efx);
390  fail2:
391 	efx_remove_nic(efx);
392  fail1:
393 	return rc;
394 }
395 
396 static void efx_remove_all(struct efx_nic *efx)
397 {
398 	rtnl_lock();
399 	efx_xdp_setup_prog(efx, NULL);
400 	rtnl_unlock();
401 
402 	efx_remove_channels(efx);
403 	efx_remove_filters(efx);
404 #ifdef CONFIG_SFC_SRIOV
405 	efx->type->vswitching_remove(efx);
406 #endif
407 	efx_remove_port(efx);
408 	efx_remove_nic(efx);
409 }
410 
411 /**************************************************************************
412  *
413  * Interrupt moderation
414  *
415  **************************************************************************/
416 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
417 {
418 	if (usecs == 0)
419 		return 0;
420 	if (usecs * 1000 < efx->timer_quantum_ns)
421 		return 1; /* never round down to 0 */
422 	return usecs * 1000 / efx->timer_quantum_ns;
423 }
424 
425 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
426 {
427 	/* We must round up when converting ticks to microseconds
428 	 * because we round down when converting the other way.
429 	 */
430 	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
431 }
432 
433 /* Set interrupt moderation parameters */
434 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
435 			    unsigned int rx_usecs, bool rx_adaptive,
436 			    bool rx_may_override_tx)
437 {
438 	struct efx_channel *channel;
439 	unsigned int timer_max_us;
440 
441 	EFX_ASSERT_RESET_SERIALISED(efx);
442 
443 	timer_max_us = efx->timer_max_ns / 1000;
444 
445 	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
446 		return -EINVAL;
447 
448 	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
449 	    !rx_may_override_tx) {
450 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
451 			  "RX and TX IRQ moderation must be equal\n");
452 		return -EINVAL;
453 	}
454 
455 	efx->irq_rx_adaptive = rx_adaptive;
456 	efx->irq_rx_moderation_us = rx_usecs;
457 	efx_for_each_channel(channel, efx) {
458 		if (efx_channel_has_rx_queue(channel))
459 			channel->irq_moderation_us = rx_usecs;
460 		else if (efx_channel_has_tx_queues(channel))
461 			channel->irq_moderation_us = tx_usecs;
462 		else if (efx_channel_is_xdp_tx(channel))
463 			channel->irq_moderation_us = tx_usecs;
464 	}
465 
466 	return 0;
467 }
468 
469 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
470 			    unsigned int *rx_usecs, bool *rx_adaptive)
471 {
472 	*rx_adaptive = efx->irq_rx_adaptive;
473 	*rx_usecs = efx->irq_rx_moderation_us;
474 
475 	/* If channels are shared between RX and TX, so is IRQ
476 	 * moderation.  Otherwise, IRQ moderation is the same for all
477 	 * TX channels and is not adaptive.
478 	 */
479 	if (efx->tx_channel_offset == 0) {
480 		*tx_usecs = *rx_usecs;
481 	} else {
482 		struct efx_channel *tx_channel;
483 
484 		tx_channel = efx->channel[efx->tx_channel_offset];
485 		*tx_usecs = tx_channel->irq_moderation_us;
486 	}
487 }
488 
489 /**************************************************************************
490  *
491  * ioctls
492  *
493  *************************************************************************/
494 
495 /* Net device ioctl
496  * Context: process, rtnl_lock() held.
497  */
498 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
499 {
500 	struct efx_nic *efx = netdev_priv(net_dev);
501 	struct mii_ioctl_data *data = if_mii(ifr);
502 
503 	if (cmd == SIOCSHWTSTAMP)
504 		return efx_ptp_set_ts_config(efx, ifr);
505 	if (cmd == SIOCGHWTSTAMP)
506 		return efx_ptp_get_ts_config(efx, ifr);
507 
508 	/* Convert phy_id from older PRTAD/DEVAD format */
509 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
510 	    (data->phy_id & 0xfc00) == 0x0400)
511 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
512 
513 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
514 }
515 
516 /**************************************************************************
517  *
518  * Kernel net device interface
519  *
520  *************************************************************************/
521 
522 /* Context: process, rtnl_lock() held. */
523 int efx_net_open(struct net_device *net_dev)
524 {
525 	struct efx_nic *efx = netdev_priv(net_dev);
526 	int rc;
527 
528 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
529 		  raw_smp_processor_id());
530 
531 	rc = efx_check_disabled(efx);
532 	if (rc)
533 		return rc;
534 	if (efx->phy_mode & PHY_MODE_SPECIAL)
535 		return -EBUSY;
536 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
537 		return -EIO;
538 
539 	/* Notify the kernel of the link state polled during driver load,
540 	 * before the monitor starts running */
541 	efx_link_status_changed(efx);
542 
543 	efx_start_all(efx);
544 	if (efx->state == STATE_DISABLED || efx->reset_pending)
545 		netif_device_detach(efx->net_dev);
546 	efx_selftest_async_start(efx);
547 	return 0;
548 }
549 
550 /* Context: process, rtnl_lock() held.
551  * Note that the kernel will ignore our return code; this method
552  * should really be a void.
553  */
554 int efx_net_stop(struct net_device *net_dev)
555 {
556 	struct efx_nic *efx = netdev_priv(net_dev);
557 
558 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
559 		  raw_smp_processor_id());
560 
561 	/* Stop the device and flush all the channels */
562 	efx_stop_all(efx);
563 
564 	return 0;
565 }
566 
567 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
568 {
569 	struct efx_nic *efx = netdev_priv(net_dev);
570 
571 	if (efx->type->vlan_rx_add_vid)
572 		return efx->type->vlan_rx_add_vid(efx, proto, vid);
573 	else
574 		return -EOPNOTSUPP;
575 }
576 
577 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
578 {
579 	struct efx_nic *efx = netdev_priv(net_dev);
580 
581 	if (efx->type->vlan_rx_kill_vid)
582 		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
583 	else
584 		return -EOPNOTSUPP;
585 }
586 
587 static const struct net_device_ops efx_netdev_ops = {
588 	.ndo_open		= efx_net_open,
589 	.ndo_stop		= efx_net_stop,
590 	.ndo_get_stats64	= efx_net_stats,
591 	.ndo_tx_timeout		= efx_watchdog,
592 	.ndo_start_xmit		= efx_hard_start_xmit,
593 	.ndo_validate_addr	= eth_validate_addr,
594 	.ndo_eth_ioctl		= efx_ioctl,
595 	.ndo_change_mtu		= efx_change_mtu,
596 	.ndo_set_mac_address	= efx_set_mac_address,
597 	.ndo_set_rx_mode	= efx_set_rx_mode,
598 	.ndo_set_features	= efx_set_features,
599 	.ndo_features_check	= efx_features_check,
600 	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
601 	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
602 #ifdef CONFIG_SFC_SRIOV
603 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
604 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
605 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
606 	.ndo_get_vf_config	= efx_sriov_get_vf_config,
607 	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
608 #endif
609 	.ndo_get_phys_port_id   = efx_get_phys_port_id,
610 	.ndo_get_phys_port_name	= efx_get_phys_port_name,
611 	.ndo_setup_tc		= efx_setup_tc,
612 #ifdef CONFIG_RFS_ACCEL
613 	.ndo_rx_flow_steer	= efx_filter_rfs,
614 #endif
615 	.ndo_xdp_xmit		= efx_xdp_xmit,
616 	.ndo_bpf		= efx_xdp
617 };
618 
619 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
620 {
621 	struct bpf_prog *old_prog;
622 
623 	if (efx->xdp_rxq_info_failed) {
624 		netif_err(efx, drv, efx->net_dev,
625 			  "Unable to bind XDP program due to previous failure of rxq_info\n");
626 		return -EINVAL;
627 	}
628 
629 	if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
630 		netif_err(efx, drv, efx->net_dev,
631 			  "Unable to configure XDP with MTU of %d (max: %d)\n",
632 			  efx->net_dev->mtu, efx_xdp_max_mtu(efx));
633 		return -EINVAL;
634 	}
635 
636 	old_prog = rtnl_dereference(efx->xdp_prog);
637 	rcu_assign_pointer(efx->xdp_prog, prog);
638 	/* Release the reference that was originally passed by the caller. */
639 	if (old_prog)
640 		bpf_prog_put(old_prog);
641 
642 	return 0;
643 }
644 
645 /* Context: process, rtnl_lock() held. */
646 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
647 {
648 	struct efx_nic *efx = netdev_priv(dev);
649 
650 	switch (xdp->command) {
651 	case XDP_SETUP_PROG:
652 		return efx_xdp_setup_prog(efx, xdp->prog);
653 	default:
654 		return -EINVAL;
655 	}
656 }
657 
658 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
659 			u32 flags)
660 {
661 	struct efx_nic *efx = netdev_priv(dev);
662 
663 	if (!netif_running(dev))
664 		return -EINVAL;
665 
666 	return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
667 }
668 
669 static void efx_update_name(struct efx_nic *efx)
670 {
671 	strcpy(efx->name, efx->net_dev->name);
672 	efx_mtd_rename(efx);
673 	efx_set_channel_names(efx);
674 }
675 
676 static int efx_netdev_event(struct notifier_block *this,
677 			    unsigned long event, void *ptr)
678 {
679 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
680 
681 	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
682 	    event == NETDEV_CHANGENAME)
683 		efx_update_name(netdev_priv(net_dev));
684 
685 	return NOTIFY_DONE;
686 }
687 
688 static struct notifier_block efx_netdev_notifier = {
689 	.notifier_call = efx_netdev_event,
690 };
691 
692 static ssize_t phy_type_show(struct device *dev,
693 			     struct device_attribute *attr, char *buf)
694 {
695 	struct efx_nic *efx = dev_get_drvdata(dev);
696 	return sprintf(buf, "%d\n", efx->phy_type);
697 }
698 static DEVICE_ATTR_RO(phy_type);
699 
700 static int efx_register_netdev(struct efx_nic *efx)
701 {
702 	struct net_device *net_dev = efx->net_dev;
703 	struct efx_channel *channel;
704 	int rc;
705 
706 	net_dev->watchdog_timeo = 5 * HZ;
707 	net_dev->irq = efx->pci_dev->irq;
708 	net_dev->netdev_ops = &efx_netdev_ops;
709 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
710 		net_dev->priv_flags |= IFF_UNICAST_FLT;
711 	net_dev->ethtool_ops = &efx_ethtool_ops;
712 	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
713 	net_dev->min_mtu = EFX_MIN_MTU;
714 	net_dev->max_mtu = EFX_MAX_MTU;
715 
716 	rtnl_lock();
717 
718 	/* Enable resets to be scheduled and check whether any were
719 	 * already requested.  If so, the NIC is probably hosed so we
720 	 * abort.
721 	 */
722 	efx->state = STATE_READY;
723 	smp_mb(); /* ensure we change state before checking reset_pending */
724 	if (efx->reset_pending) {
725 		pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n");
726 		rc = -EIO;
727 		goto fail_locked;
728 	}
729 
730 	rc = dev_alloc_name(net_dev, net_dev->name);
731 	if (rc < 0)
732 		goto fail_locked;
733 	efx_update_name(efx);
734 
735 	/* Always start with carrier off; PHY events will detect the link */
736 	netif_carrier_off(net_dev);
737 
738 	rc = register_netdevice(net_dev);
739 	if (rc)
740 		goto fail_locked;
741 
742 	efx_for_each_channel(channel, efx) {
743 		struct efx_tx_queue *tx_queue;
744 		efx_for_each_channel_tx_queue(tx_queue, channel)
745 			efx_init_tx_queue_core_txq(tx_queue);
746 	}
747 
748 	efx_associate(efx);
749 
750 	rtnl_unlock();
751 
752 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
753 	if (rc) {
754 		netif_err(efx, drv, efx->net_dev,
755 			  "failed to init net dev attributes\n");
756 		goto fail_registered;
757 	}
758 
759 	efx_init_mcdi_logging(efx);
760 
761 	return 0;
762 
763 fail_registered:
764 	rtnl_lock();
765 	efx_dissociate(efx);
766 	unregister_netdevice(net_dev);
767 fail_locked:
768 	efx->state = STATE_UNINIT;
769 	rtnl_unlock();
770 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
771 	return rc;
772 }
773 
774 static void efx_unregister_netdev(struct efx_nic *efx)
775 {
776 	if (!efx->net_dev)
777 		return;
778 
779 	BUG_ON(netdev_priv(efx->net_dev) != efx);
780 
781 	if (efx_dev_registered(efx)) {
782 		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
783 		efx_fini_mcdi_logging(efx);
784 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
785 		unregister_netdev(efx->net_dev);
786 	}
787 }
788 
789 /**************************************************************************
790  *
791  * List of NICs we support
792  *
793  **************************************************************************/
794 
795 /* PCI device ID table */
796 static const struct pci_device_id efx_pci_table[] = {
797 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
798 	 .driver_data = (unsigned long) &siena_a0_nic_type},
799 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
800 	 .driver_data = (unsigned long) &siena_a0_nic_type},
801 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
802 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
803 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
804 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
805 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
806 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
807 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
808 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
809 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
810 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
811 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
812 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
813 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03),  /* SFC9250 PF */
814 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
815 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03),  /* SFC9250 VF */
816 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
817 	{0}			/* end of list */
818 };
819 
820 /**************************************************************************
821  *
822  * Data housekeeping
823  *
824  **************************************************************************/
825 
826 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
827 {
828 	u64 n_rx_nodesc_trunc = 0;
829 	struct efx_channel *channel;
830 
831 	efx_for_each_channel(channel, efx)
832 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
833 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
834 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
835 }
836 
837 /**************************************************************************
838  *
839  * PCI interface
840  *
841  **************************************************************************/
842 
843 /* Main body of final NIC shutdown code
844  * This is called only at module unload (or hotplug removal).
845  */
846 static void efx_pci_remove_main(struct efx_nic *efx)
847 {
848 	/* Flush reset_work. It can no longer be scheduled since we
849 	 * are not READY.
850 	 */
851 	BUG_ON(efx->state == STATE_READY);
852 	efx_flush_reset_workqueue(efx);
853 
854 	efx_disable_interrupts(efx);
855 	efx_clear_interrupt_affinity(efx);
856 	efx_nic_fini_interrupt(efx);
857 	efx_fini_port(efx);
858 	efx->type->fini(efx);
859 	efx_fini_napi(efx);
860 	efx_remove_all(efx);
861 }
862 
863 /* Final NIC shutdown
864  * This is called only at module unload (or hotplug removal).  A PF can call
865  * this on its VFs to ensure they are unbound first.
866  */
867 static void efx_pci_remove(struct pci_dev *pci_dev)
868 {
869 	struct efx_nic *efx;
870 
871 	efx = pci_get_drvdata(pci_dev);
872 	if (!efx)
873 		return;
874 
875 	/* Mark the NIC as fini, then stop the interface */
876 	rtnl_lock();
877 	efx_dissociate(efx);
878 	dev_close(efx->net_dev);
879 	efx_disable_interrupts(efx);
880 	efx->state = STATE_UNINIT;
881 	rtnl_unlock();
882 
883 	if (efx->type->sriov_fini)
884 		efx->type->sriov_fini(efx);
885 
886 	efx_unregister_netdev(efx);
887 
888 	efx_mtd_remove(efx);
889 
890 	efx_pci_remove_main(efx);
891 
892 	efx_fini_io(efx);
893 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
894 
895 	efx_fini_struct(efx);
896 	free_netdev(efx->net_dev);
897 
898 	pci_disable_pcie_error_reporting(pci_dev);
899 };
900 
901 /* NIC VPD information
902  * Called during probe to display the part number of the
903  * installed NIC.
904  */
905 static void efx_probe_vpd_strings(struct efx_nic *efx)
906 {
907 	struct pci_dev *dev = efx->pci_dev;
908 	unsigned int vpd_size, kw_len;
909 	u8 *vpd_data;
910 	int start;
911 
912 	vpd_data = pci_vpd_alloc(dev, &vpd_size);
913 	if (IS_ERR(vpd_data)) {
914 		pci_warn(dev, "Unable to read VPD\n");
915 		return;
916 	}
917 
918 	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
919 					     PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
920 	if (start < 0)
921 		pci_err(dev, "Part number not found or incomplete\n");
922 	else
923 		pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
924 
925 	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
926 					     PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
927 	if (start < 0)
928 		pci_err(dev, "Serial number not found or incomplete\n");
929 	else
930 		efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
931 
932 	kfree(vpd_data);
933 }
934 
935 
936 /* Main body of NIC initialisation
937  * This is called at module load (or hotplug insertion, theoretically).
938  */
939 static int efx_pci_probe_main(struct efx_nic *efx)
940 {
941 	int rc;
942 
943 	/* Do start-of-day initialisation */
944 	rc = efx_probe_all(efx);
945 	if (rc)
946 		goto fail1;
947 
948 	efx_init_napi(efx);
949 
950 	down_write(&efx->filter_sem);
951 	rc = efx->type->init(efx);
952 	up_write(&efx->filter_sem);
953 	if (rc) {
954 		pci_err(efx->pci_dev, "failed to initialise NIC\n");
955 		goto fail3;
956 	}
957 
958 	rc = efx_init_port(efx);
959 	if (rc) {
960 		netif_err(efx, probe, efx->net_dev,
961 			  "failed to initialise port\n");
962 		goto fail4;
963 	}
964 
965 	rc = efx_nic_init_interrupt(efx);
966 	if (rc)
967 		goto fail5;
968 
969 	efx_set_interrupt_affinity(efx);
970 	rc = efx_enable_interrupts(efx);
971 	if (rc)
972 		goto fail6;
973 
974 	return 0;
975 
976  fail6:
977 	efx_clear_interrupt_affinity(efx);
978 	efx_nic_fini_interrupt(efx);
979  fail5:
980 	efx_fini_port(efx);
981  fail4:
982 	efx->type->fini(efx);
983  fail3:
984 	efx_fini_napi(efx);
985 	efx_remove_all(efx);
986  fail1:
987 	return rc;
988 }
989 
990 static int efx_pci_probe_post_io(struct efx_nic *efx)
991 {
992 	struct net_device *net_dev = efx->net_dev;
993 	int rc = efx_pci_probe_main(efx);
994 
995 	if (rc)
996 		return rc;
997 
998 	if (efx->type->sriov_init) {
999 		rc = efx->type->sriov_init(efx);
1000 		if (rc)
1001 			pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n",
1002 				rc);
1003 	}
1004 
1005 	/* Determine netdevice features */
1006 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
1007 			      NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL);
1008 	if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
1009 		net_dev->features |= NETIF_F_TSO6;
1010 	/* Check whether device supports TSO */
1011 	if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
1012 		net_dev->features &= ~NETIF_F_ALL_TSO;
1013 	/* Mask for features that also apply to VLAN devices */
1014 	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1015 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1016 				   NETIF_F_RXCSUM);
1017 
1018 	net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1019 
1020 	/* Disable receiving frames with bad FCS, by default. */
1021 	net_dev->features &= ~NETIF_F_RXALL;
1022 
1023 	/* Disable VLAN filtering by default.  It may be enforced if
1024 	 * the feature is fixed (i.e. VLAN filters are required to
1025 	 * receive VLAN tagged packets due to vPort restrictions).
1026 	 */
1027 	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1028 	net_dev->features |= efx->fixed_features;
1029 
1030 	rc = efx_register_netdev(efx);
1031 	if (!rc)
1032 		return 0;
1033 
1034 	efx_pci_remove_main(efx);
1035 	return rc;
1036 }
1037 
1038 /* NIC initialisation
1039  *
1040  * This is called at module load (or hotplug insertion,
1041  * theoretically).  It sets up PCI mappings, resets the NIC,
1042  * sets up and registers the network devices with the kernel and hooks
1043  * the interrupt service routine.  It does not prepare the device for
1044  * transmission; this is left to the first time one of the network
1045  * interfaces is brought up (i.e. efx_net_open).
1046  */
1047 static int efx_pci_probe(struct pci_dev *pci_dev,
1048 			 const struct pci_device_id *entry)
1049 {
1050 	struct net_device *net_dev;
1051 	struct efx_nic *efx;
1052 	int rc;
1053 
1054 	/* Allocate and initialise a struct net_device and struct efx_nic */
1055 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
1056 				     EFX_MAX_RX_QUEUES);
1057 	if (!net_dev)
1058 		return -ENOMEM;
1059 	efx = netdev_priv(net_dev);
1060 	efx->type = (const struct efx_nic_type *) entry->driver_data;
1061 	efx->fixed_features |= NETIF_F_HIGHDMA;
1062 
1063 	pci_set_drvdata(pci_dev, efx);
1064 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1065 	rc = efx_init_struct(efx, pci_dev, net_dev);
1066 	if (rc)
1067 		goto fail1;
1068 
1069 	pci_info(pci_dev, "Solarflare NIC detected\n");
1070 
1071 	if (!efx->type->is_vf)
1072 		efx_probe_vpd_strings(efx);
1073 
1074 	/* Set up basic I/O (BAR mappings etc) */
1075 	rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1076 			 efx->type->mem_map_size(efx));
1077 	if (rc)
1078 		goto fail2;
1079 
1080 	rc = efx_pci_probe_post_io(efx);
1081 	if (rc) {
1082 		/* On failure, retry once immediately.
1083 		 * If we aborted probe due to a scheduled reset, dismiss it.
1084 		 */
1085 		efx->reset_pending = 0;
1086 		rc = efx_pci_probe_post_io(efx);
1087 		if (rc) {
1088 			/* On another failure, retry once more
1089 			 * after a 50-305ms delay.
1090 			 */
1091 			unsigned char r;
1092 
1093 			get_random_bytes(&r, 1);
1094 			msleep((unsigned int)r + 50);
1095 			efx->reset_pending = 0;
1096 			rc = efx_pci_probe_post_io(efx);
1097 		}
1098 	}
1099 	if (rc)
1100 		goto fail3;
1101 
1102 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1103 
1104 	/* Try to create MTDs, but allow this to fail */
1105 	rtnl_lock();
1106 	rc = efx_mtd_probe(efx);
1107 	rtnl_unlock();
1108 	if (rc && rc != -EPERM)
1109 		netif_warn(efx, probe, efx->net_dev,
1110 			   "failed to create MTDs (%d)\n", rc);
1111 
1112 	(void)pci_enable_pcie_error_reporting(pci_dev);
1113 
1114 	if (efx->type->udp_tnl_push_ports)
1115 		efx->type->udp_tnl_push_ports(efx);
1116 
1117 	return 0;
1118 
1119  fail3:
1120 	efx_fini_io(efx);
1121  fail2:
1122 	efx_fini_struct(efx);
1123  fail1:
1124 	WARN_ON(rc > 0);
1125 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1126 	free_netdev(net_dev);
1127 	return rc;
1128 }
1129 
1130 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
1131  * enabled on success
1132  */
1133 #ifdef CONFIG_SFC_SRIOV
1134 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1135 {
1136 	int rc;
1137 	struct efx_nic *efx = pci_get_drvdata(dev);
1138 
1139 	if (efx->type->sriov_configure) {
1140 		rc = efx->type->sriov_configure(efx, num_vfs);
1141 		if (rc)
1142 			return rc;
1143 		else
1144 			return num_vfs;
1145 	} else
1146 		return -EOPNOTSUPP;
1147 }
1148 #endif
1149 
1150 static int efx_pm_freeze(struct device *dev)
1151 {
1152 	struct efx_nic *efx = dev_get_drvdata(dev);
1153 
1154 	rtnl_lock();
1155 
1156 	if (efx->state != STATE_DISABLED) {
1157 		efx->state = STATE_UNINIT;
1158 
1159 		efx_device_detach_sync(efx);
1160 
1161 		efx_stop_all(efx);
1162 		efx_disable_interrupts(efx);
1163 	}
1164 
1165 	rtnl_unlock();
1166 
1167 	return 0;
1168 }
1169 
1170 static int efx_pm_thaw(struct device *dev)
1171 {
1172 	int rc;
1173 	struct efx_nic *efx = dev_get_drvdata(dev);
1174 
1175 	rtnl_lock();
1176 
1177 	if (efx->state != STATE_DISABLED) {
1178 		rc = efx_enable_interrupts(efx);
1179 		if (rc)
1180 			goto fail;
1181 
1182 		mutex_lock(&efx->mac_lock);
1183 		efx_mcdi_port_reconfigure(efx);
1184 		mutex_unlock(&efx->mac_lock);
1185 
1186 		efx_start_all(efx);
1187 
1188 		efx_device_attach_if_not_resetting(efx);
1189 
1190 		efx->state = STATE_READY;
1191 
1192 		efx->type->resume_wol(efx);
1193 	}
1194 
1195 	rtnl_unlock();
1196 
1197 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1198 	efx_queue_reset_work(efx);
1199 
1200 	return 0;
1201 
1202 fail:
1203 	rtnl_unlock();
1204 
1205 	return rc;
1206 }
1207 
1208 static int efx_pm_poweroff(struct device *dev)
1209 {
1210 	struct pci_dev *pci_dev = to_pci_dev(dev);
1211 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1212 
1213 	efx->type->fini(efx);
1214 
1215 	efx->reset_pending = 0;
1216 
1217 	pci_save_state(pci_dev);
1218 	return pci_set_power_state(pci_dev, PCI_D3hot);
1219 }
1220 
1221 /* Used for both resume and restore */
1222 static int efx_pm_resume(struct device *dev)
1223 {
1224 	struct pci_dev *pci_dev = to_pci_dev(dev);
1225 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1226 	int rc;
1227 
1228 	rc = pci_set_power_state(pci_dev, PCI_D0);
1229 	if (rc)
1230 		return rc;
1231 	pci_restore_state(pci_dev);
1232 	rc = pci_enable_device(pci_dev);
1233 	if (rc)
1234 		return rc;
1235 	pci_set_master(efx->pci_dev);
1236 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
1237 	if (rc)
1238 		return rc;
1239 	down_write(&efx->filter_sem);
1240 	rc = efx->type->init(efx);
1241 	up_write(&efx->filter_sem);
1242 	if (rc)
1243 		return rc;
1244 	rc = efx_pm_thaw(dev);
1245 	return rc;
1246 }
1247 
1248 static int efx_pm_suspend(struct device *dev)
1249 {
1250 	int rc;
1251 
1252 	efx_pm_freeze(dev);
1253 	rc = efx_pm_poweroff(dev);
1254 	if (rc)
1255 		efx_pm_resume(dev);
1256 	return rc;
1257 }
1258 
1259 static const struct dev_pm_ops efx_pm_ops = {
1260 	.suspend	= efx_pm_suspend,
1261 	.resume		= efx_pm_resume,
1262 	.freeze		= efx_pm_freeze,
1263 	.thaw		= efx_pm_thaw,
1264 	.poweroff	= efx_pm_poweroff,
1265 	.restore	= efx_pm_resume,
1266 };
1267 
1268 static struct pci_driver efx_pci_driver = {
1269 	.name		= KBUILD_MODNAME,
1270 	.id_table	= efx_pci_table,
1271 	.probe		= efx_pci_probe,
1272 	.remove		= efx_pci_remove,
1273 	.driver.pm	= &efx_pm_ops,
1274 	.err_handler	= &efx_err_handlers,
1275 #ifdef CONFIG_SFC_SRIOV
1276 	.sriov_configure = efx_pci_sriov_configure,
1277 #endif
1278 };
1279 
1280 /**************************************************************************
1281  *
1282  * Kernel module interface
1283  *
1284  *************************************************************************/
1285 
1286 static int __init efx_init_module(void)
1287 {
1288 	int rc;
1289 
1290 	printk(KERN_INFO "Solarflare NET driver\n");
1291 
1292 	rc = register_netdevice_notifier(&efx_netdev_notifier);
1293 	if (rc)
1294 		goto err_notifier;
1295 
1296 #ifdef CONFIG_SFC_SRIOV
1297 	rc = efx_init_sriov();
1298 	if (rc)
1299 		goto err_sriov;
1300 #endif
1301 
1302 	rc = efx_create_reset_workqueue();
1303 	if (rc)
1304 		goto err_reset;
1305 
1306 	rc = pci_register_driver(&efx_pci_driver);
1307 	if (rc < 0)
1308 		goto err_pci;
1309 
1310 	rc = pci_register_driver(&ef100_pci_driver);
1311 	if (rc < 0)
1312 		goto err_pci_ef100;
1313 
1314 	return 0;
1315 
1316  err_pci_ef100:
1317 	pci_unregister_driver(&efx_pci_driver);
1318  err_pci:
1319 	efx_destroy_reset_workqueue();
1320  err_reset:
1321 #ifdef CONFIG_SFC_SRIOV
1322 	efx_fini_sriov();
1323  err_sriov:
1324 #endif
1325 	unregister_netdevice_notifier(&efx_netdev_notifier);
1326  err_notifier:
1327 	return rc;
1328 }
1329 
1330 static void __exit efx_exit_module(void)
1331 {
1332 	printk(KERN_INFO "Solarflare NET driver unloading\n");
1333 
1334 	pci_unregister_driver(&ef100_pci_driver);
1335 	pci_unregister_driver(&efx_pci_driver);
1336 	efx_destroy_reset_workqueue();
1337 #ifdef CONFIG_SFC_SRIOV
1338 	efx_fini_sriov();
1339 #endif
1340 	unregister_netdevice_notifier(&efx_netdev_notifier);
1341 
1342 }
1343 
1344 module_init(efx_init_module);
1345 module_exit(efx_exit_module);
1346 
1347 MODULE_AUTHOR("Solarflare Communications and "
1348 	      "Michael Brown <mbrown@fensystems.co.uk>");
1349 MODULE_DESCRIPTION("Solarflare network driver");
1350 MODULE_LICENSE("GPL");
1351 MODULE_DEVICE_TABLE(pci, efx_pci_table);
1352